4 research outputs found

    Meta-Language Support for Type-Safe Access to External Resources

    Get PDF
    Meta-programming applications often require access to heterogeneous sources of information, often from different technological spaces (grammars, models, ontologies, databases), that have specialized ways of defining their respective data schemas. Without direct language support, obtaining typed access to this external, potentially changing, information is a tedious and error-prone engineering task. The Rascal meta-programming language aims to support the import and manipulation of all of these kinds of data in a type-safe manner. The goal is to lower the engineering effort to build new meta programs that combine information about software in unforeseen ways. In this paper we describe built-in language support, so called \textit{resources}, for incorporating external sources of data and their corresponding data-types while maintaining type safety. We demonstrate the applicability of Rascal resources by example, sho

    An Architecture for the Compilation of Persistent Polymorphic Reflective Higher-Order Languages

    Get PDF
    Persistent Application Systems are potentially very large and long-lived application systems which use information technology: computers, communications, networks, software and databases. They are vital to the organisations that depend on them and have to be adaptable to organisational and technological changes and evolvable without serious interruption of service. Persistent Programming Languages are a promising technology that facilitate the task of incrementally building and maintaining persistent application systems. This thesis identifies a number of technical challenges in making persistent programming languages scalable, with adequate performance and sufficient longevity and in amortising costs by providing general services. A new architecture to support the compilation of long-lived, large-scale applications is proposed. This architecture comprises an intermediate language to be used by front-ends, high-level and machine independent optimisers, low-level optimisers and code generators of target machine code. The intermediate target language, TPL, has been designed to allow compiler writers to utilise common technology for several different orthogonally persistent higher-order reflective languages. The goal is to reuse optimisation and code-generation or interpretation technology with a variety of front-ends. A subsidiary goal is to provide an experimental framework for those investigating optimisation and code generation. TPL has a simple, clean type system and will support orthogonally persistent, reflective, higher-order, polymorphic languages. TPL allows code generation and the abstraction over details of the underlying software and hardware layers. An experiment to build a prototype of the proposed architecture was designed, developed and evaluated. The experimental work includes a language processor and examples of its use are presented in this dissertation. The design space was covered by describing the implications of the goals of supporting the class of languages anticipated while ensuring long-term persistence of data and programs, and sufficient efficiency. For each of the goals, the design decisions were evaluated in face of the results

    Acta Cybernetica : Volume 11. Number 1-2.

    Get PDF

    Transactions and schema evolution in a persistent object-oriented programming system

    Get PDF
    Applications are subject of a continuous evolution process with a profound impact on their underlining data model, hence requiring frequent updates in the applications' class structure and database structure as well. This twofold problem, schema evolution and instance adaptation, usually known as database evolution, is addressed in this thesis. Additionally, we address concurrency and error recovery problems with a novel meta-model and its aspect-oriented implementation. Modern object-oriented databases provide features that help programmers deal with object persistence, as well as all related problems such as database evolution, concurrency and error handling. In most systems there are transparent mechanisms to address these problems, nonetheless the database evolution problem still requires some human intervention, which consumes much of programmers' and database administrators' work effort. Earlier research works have demonstrated that aspect-oriented programming (AOP) techniques enable the development of flexible and pluggable systems. In these earlier works, the schema evolution and the instance adaptation problems were addressed as database management concerns. However, none of this research was focused on orthogonal persistent systems. We argue that AOP techniques are well suited to address these problems in orthogonal persistent systems. Regarding the concurrency and error recovery, earlier research showed that only syntactic obliviousness between the base program and aspects is possible. Our meta-model and framework follow an aspect-oriented approach focused on the object-oriented orthogonal persistent context. The proposed meta-model is characterized by its simplicity in order to achieve efficient and transparent database evolution mechanisms. Our meta-model supports multiple versions of a class structure by applying a class versioning strategy. Thus, enabling bidirectional application compatibility among versions of each class structure. That is to say, the database structure can be updated because earlier applications continue to work, as well as later applications that have only known the updated class structure. The specific characteristics of orthogonal persistent systems, as well as a metadata enrichment strategy within the application's source code, complete the inception of the meta-model and have motivated our research work. To test the feasibility of the approach, a prototype was developed. Our prototype is a framework that mediates the interaction between applications and the database, providing them with orthogonal persistence mechanisms. These mechanisms are introduced into applications as an {\it aspect} in the aspect-oriented sense. Objects do not require the extension of any super class, the implementation of an interface nor contain a particular annotation. Parametric type classes are also correctly handled by our framework. However, classes that belong to the programming environment must not be handled as versionable due to restrictions imposed by the Java Virtual Machine. Regarding concurrency support, the framework provides the applications with a multithreaded environment which supports database transactions and error recovery. The framework keeps applications oblivious to the database evolution problem, as well as persistence. Programmers can update the applications' class structure because the framework will produce a new version for it at the database metadata layer. Using our XML based pointcut/advice constructs, the framework's instance adaptation mechanism is extended, hence keeping the framework also oblivious to this problem. The potential developing gains provided by the prototype were benchmarked. In our case study, the results confirm that mechanisms' transparency has positive repercussions on the programmer's productivity, simplifying the entire evolution process at application and database levels. The meta-model itself also was benchmarked in terms of complexity and agility. Compared with other meta-models, it requires less meta-object modifications in each schema evolution step. Other types of tests were carried out in order to validate prototype and meta-model robustness. In order to perform these tests, we used an OO7 small size database due to its data model complexity. Since the developed prototype offers some features that were not observed in other known systems, performance benchmarks were not possible. However, the developed benchmark is now available to perform future performance comparisons with equivalent systems. In order to test our approach in a real world scenario, we developed a proof-of-concept application. This application was developed without any persistence mechanisms. Using our framework and minor changes applied to the application's source code, we added these mechanisms. Furthermore, we tested the application in a schema evolution scenario. This real world experience using our framework showed that applications remains oblivious to persistence and database evolution. In this case study, our framework proved to be a useful tool for programmers and database administrators. Performance issues and the single Java Virtual Machine concurrent model are the major limitations found in the framework
    corecore