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A Tourist Guide through Treewidth 
H. L. Bodlaender** 

Abstract 
A short overview is given of many recent results in algorithmic graph the-

ory that deal with the notions treewidth, and pathwidth. We discuss algo-
rithms that find tree-decompositions, algorithms that use tree-decompositions 
to solve hard problems efficiently, graph minor theory, and some applications. 
The paper contains an extensive bibliography. 

1 Introduction 
In recent years, the notions 'treewidth', 'pathwidth', 'tree-decomposition', and 
'path-decomposition' have received a growing interest. These notions underly sev-
eral important and sometimes very deep results in graph theory and graph algo-
rithms, and are very useful for the analysis of several practical problems. 

In this paper, we give an overview of a number of these applications, and al-
gorithmic results. In section 2 we give the main definitions. Applications of the 
notions discussed in this paper are given in section 3. In section 4 we explain the ba-
sic idea behind linear time algorithms on graphs with constant bounded treewidth. 
In section 5 we review some results that deal with graph minors. In section 6 we 
discuss algorithms that find 'suitable' tree- or path-decompositions. 

It should be noted that the constant factors, hidden in the 'O'-notation can be 
quite large for several of the algorithms, discussed in this paper. In many cases, 
additional ideas will be required to turn the methods, described here, into really 
practical algorithms. 

2 Definitions 
In this section we give the most important definitions, with an example. The 
notions of treewidth and pathwidth were introduced by Robertson and Seymour 
[109,115]. 

"This works was partially supported by the ESPRIT Basic Research Actions of the EC under 
contract 7141 (project ALCOM II.). , 

^Department of Computer Science, Utrecht University, P.O.Box 80.089, 3508 T B Utrecht, the 
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Figure 1. . 
Example of a graph with tree- and path-decomposition 

Def init ion. A tree-decomposition of a graph G = (V, E) is a pair 
({Xt- | t £ /}, T = (I, F)) with { X , | t e 1} a family of subsets of V, one for each 
node of T, and T a tree such that 

• Uv eIXi = v. 

• for all edges (u, w) £ E, there exists an i S I with «•£ X,- and w £ X,-. 

• for all i, j, k £ I: if j is on the path from i to k in T, then X ; fl C X}-. 

The treewidth of a tree-decomposition ({X,- | t £ / } , T = (I, F)) is max,g/ |X,| — 1. 
The treewidth of a graph G is the minimum treewidtn over all possible tree-
decompositions of G. 
The notion of patliwidth is defined similarly. Now T must be a path. 
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Definition. A path-decomposition of a graph G = (V, E) is a sequence of subsets 
of vertices (X i , X 2 , . . . , Xr), such that 

•\Ji<i<rXi = V. 

• for all edges (v, w) € E, there exists an i, 1 < i < r, with v £ X,- and w £ Xi. 

• for all i,j, k € I: if t < j < k, then X,- D X^ Q Xj. 

NI 
N2 

N3 
N. 

A' 

G1 G2 C5 C7 

1 1 0 0 0 1 1 0 

0 0 0 1 1 0 0 0 

0 0 1 0 0 0 1 0 

0 1 0 1 0 0 0 1 

0 0 1 0 1 1 0 0 

4 
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3 tracks 

Figure 2. 
Example of gate matrix layout 

The pathwidth of a path-decomposition (Xi , X 2 , . . . . is maxi<,<r | — 1. 
The pathwidth of a graph G is the minimum pathwidth over all possible path-
decompositions of G. 
In figure 1, an example of a graph with treewidth and pathwidth 2 is given, together 
with a tree- and path-decomposition of it. 

Clearly, the pathwidth of a graph is at least its treewidth. There are several 
equivalent characterizations of the notions of treewidth and pathwidth, see e.g. 
[3,15,18,99,143]. The (probably) most well known equivalent characterization of 
treewidth is by the notion 'partial Ar-tree', see [132,139]. Also, tree decompositions 
are reflected by graph expressions, where graphs are built by operations on graphs 
with some special vertices (the sources) like: parallel composition, forget sources, 
renaming of sources. The treewidth can be characterized in terms of the number 
of sources used in the operations. See [50]. 

3 Applications 
Several well-studied graph classes have bounded treewidth or pathwidth, hence 
many results discussed here also apply for these classes. Examples are trees 
(treewidth l ) , series-parallel graphs (treewidth 2), outerplanar graphs (treewidth 
2), and Halin graphs (treewidth 3). See e.g. [18,20,132,143]. We mention some 
otheryapplications. 
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3.1 VLSI layouts 
A well studied problem in VLSI layout theory is the GATE MATRIX LAYOUT 
problem. This problem is stated in terms of a matrix M = (mij), whose columns 
represent gates G1,..., Gn, and whose rows represent nets Nit..., Nm. If m^y = 1, 
then net N{ must be connected with gate Gj. An example is given in figure 2. The 
problem of finding a permutation of the gates, such that all nets can be made within 
the minimum number of tracks is equivalent to the pathwidth problem (see [63]). 
See [99] for an extensive overview. See also [53]. 

3.2 Cholesky factorization 
There is also a close connection between treewidth, and Choleski factorization on 
sparse symmetric matrices. 

In the multifrontal method for Choleski factorization, one step is of the form 

' d vT ' Vd 0 ' ' 1 0 ' Vd «>T/Vd 
V B u/y/d I 0 B - v • vT/d 0 I 

where u is an (n — l)-vector, and B is an n — 1 by n — 1 maxtrix. I is the n — 1 
by n — 1 identity matrix. The process is repeated with the matrix B — v • vT. 
Consider the graph with vertices 1, 2 , . . . , n, and edges between vertices i and j, if 
the matrix entries on positions ( t , / ) and [ j , i ) are non-zero. One step as described 
above corresponds to removing a vertex and connecting all its neighbors. As the 
matrix is sparse, one wants to find an order of coluins/rows to be eliminated for 
which all matrices v • vT are small, i.e. have a large number of columns and rows 
that are entirely 0. One can show that to bound the maximum size of these matrices 
corresponds to bounding the treewidth of the graph, described above. For more 
details, see e.g. [29]. 

3.3 Expert systems 
Graphs modelling certain type of expert systems have been observed to have small 
treewidth in practice. Tree-decompositions of small treewidth for these graphs can 
be used to perform efficiently certian otherwise time-consuming statistical compu-
tations needed for reasoning with uncertainly in these systems. See e.g. [92,138]. 

3.4 Evolution theory 
Researchers in molecular biology are interested in the problem, given a set of 
species, a set of characteristics, and for each specie and each characteristic, the 
value that that characteristic has for that specie, to find a 'good' evolution tree 
for these species and their possibly extinct ancestors. One variant of this problem 
is called the PERFECT PHYLOGENY problem. This problem can be shown to be 
equivalent with the following graph problem: given a graph G = (V, E) with a 
coloring of the vertices, can we add edges to G such that the resulting graph is 
chordal but has no edges between vertices of the same color? Equivalently, does 
there exist a tree-decomposition ( { X j ] t 6 I},T) oi G such that for all t € I: if 
v, w G Xi, v w, then v and w have different colors. So, a necessary condition is 
that the treewidth of G is smaller than the number of colors. See [2,28,33,79,80,98]. 
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3.5 Naturs .language processing 
Kornai arid Tuza |88] have observed that dependency graphs of sentences encoding 
the major syntactic relations among the words have usually pathwidth at most 6. 
The pathwidth closely resembles the narrowness of these graphs1. For the relation-
ship of this notion to natural language processing, see [88]. 

4 Bounded treewidth and linear time algorithms 
An important reason for the interest in tree-decompositions, is that if we have a 
tree-decomposition of a graph G — (K, E) with its treewidth bounded by some fixed 
constant fc, then we can solve many problems that are hard (intractable) for arbi-
trary graphs, in polynomial and often linear time. Problems which can be dealt with 
in this way include many well-known NP-complete problems, like INDEPENDENT 
SET, HAMILTONIAN CIRCUIT, STEINER TREE, etc., but also certain statistical 
computations (including some with applications to reasoning with uncertainity in 
expert systems [92,138]), and some PSPACE-complete problems [4,5,26]. Results 
of this type can be found — among others — in [3,4,5,8,10,14,19,26,22,31,37,44,47, 
52,55,67,69,71,73,74,75,87,90,93,94,95,96,107,132,137,141,142,143,144,145]. 

As an example we consider the maximum independent set problem. In this 
problem, we a looking for the maximum size of a set W C V in a given graph 
G = (V, E), such that for all v, w £ W : (v, w) & E. 

Given a tree-decomposition, it is easy to make one with the same treewidth, 
and with T a rooted binary tree. Suppose we have such a tree-decomposition 
({Xi | i £ I},T = (I,F)) of input graph G, with root of T r, and with treewidth 
k. For each i £ define Y{ = {u 6 Xj | j = i or j is a descendant of i } . 

Note that if v £ Y,-, and v € Xj for some node j £ I that is not a descendant 
of i, then by definition of tree-decomposition, v £ X,-. Similarly, if v £ Y,-, and v is 
adjacent to a vertex w £ Xj with j a descendant of t, then v £ X; or w £ Xi. As 
a consequence, we have that, when we have an independent set W of the subgraph 
induced by Yi, (?[?<], and want to extend this to an independent set of G, then 
important is only what vertices in X,- belong to W , not what vertices in Y{ — Xi 
belong to W. Of the latter, only the number of the vertices in W is important. 

For t £ I, Z C Xi, define isi(Z) to be the maximum size of an independent set 
W in G[Yi] with W n X{ — Z. Take i s , ( 2 ) = — CXJ, if no such set exists. 

Our algorithm to solve the independent set problem on G basically consists of 
corriputing all tables isi, for all nodes i £ I. This is done in a bottom-up manner 
in the tree: each table isi is computed after the tables of the children of node i 
are computed. For a leaf node t, the following formula can be used to compute all 

values in the table is ; . 

• ( 7 \ - i \Z\ ifV„,ti,€£: {v,w) <£E 
l S i K ) \ - o o U3v,weZ-:{v,w)eE 

For an internal node i with two children j and k, we have the following formula. 

isi(Z) = 

max{ta y (Z ' ) + isk (Z") + \Z n (X{ - X; - Xt) | 
-\Z r\ Xj n Xk\ I ZnXj = Z'nXi-
and ZnXk = Z"n Xi} • if Vv.we Z : (v,w) & E 

—oo if 3v, w £ Z : (t>, w) £ E 
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The idea behind the last formula is: take the maximum over all sets Z' C Xy 
that agree with Z in which vertices in X ; n X3 belong to the independent set, and 
similarly for Z" C X*. Vertices in Z n X ; — Xy — X^ are not counted yet, so their 
number should be added, while vertices in Z n Xy O X^ are counted twice, hence 
their number should be subtracted once. 

We compute for each node t £ I the table is,- in some bottom-up order, until we 
have computed the table tsr. Note that we then can easily find the maximum size of 
an independent set in G, as this is max^cx,. Hence, we have an algorithm, 
that solves the independent set problem on G in 0(23kn) time. (Optimizations can 
bring the factor 23fc down to 2fc.) It is also possible, by using standard dynamic 
programming techniques, to construct the maximum sized independent set W itself. 

The idea behind this example is: each table entry gives information about an 
equivalence class of partial solutions. The number of such equivalence classes is 
bounded by some constant, when the treewidth is bounded by a constant. Tables 
can be computed using only the tables of the children of the node. 

The technique works for many examples. However, there are also results that 
state that large classes of problems can be solved in linear time, when a tree-
decomposition with constant bounded treewidth is available. One of the most 
powerfull results of this type is the result by Courcelle [47,51,46], which has been 
extended by Arnborg et al [8], by Borie et al [38], and by Courcelle and Mosbah [52], 
on (Extended) Monadic Second Order formulas. These result basically state that 
each graph problem that is expressible with a formula using the following language 
constructions: logical operations (A, V, -i, =>•), quantification over vertices, edges, 
sets of vertices, sets of edges (e.g. 3D £ V, Ve £ E, VW C V, 3F C E), membership 
tests (u £ W, e £ E), adjacency tests (u, w) £ E, v is endpoint of e), and certain 
extensions, can be solved in linear time on graphs with given a tree-decomposition 
of constant bounded treewidth. The extensions allow not only to deal with decision 
problems, but also optimization problems (like maximum independent set). 

For example, the problem whether a given graph G can be colored with three 
colors can be stated as 

3W x C V : 3W2 C V : 3W 3 C V : Vt> £ V : (u £ V v £ W2 V u 6 
W3) AVv S V : Vty e W : (u-, to) 6 E (->(w £ Wi Am G H / i ) a - ( v £ 
W2 A w 6 W2) A -.(u £ W3 A w £ W3)) 

In many cases, the information, computed per node t £ / is an element of a 
finite set. Then, the algorithm can be seen as a finite state tree-automata, and 
optimalization techniques can be applied, similar to Myhill-Nerode theory [14,62]. 
(See also [48,45,49].) 

In [64,65] parametric problems on graphs with bounded treewidth are solved, 
using modifications of the technique, presented above. 

For some problems (e.g. the maximum independent set problem) polynomial 
time algorithms are still known to exist, if the input graph is given together with 
a tree-decomposition of treewidth C?(logn). (See e.g. [19].) For other problems, it 
is unknown whether such algorithms exist. 

The problem whether two given graphs are isomorphic is also solvable in poly-
nomial time, when the graphs have bounded treewidth [11,22,42]. The techniques 
are here somewhat different. 

There also exist problems that remain hard when restricted to graphs with 
constant bounded treewidth, for instance the bandwidth problem is NP-complete 
for a very restricted subclass of the trees [100]. For some problems the complexity 
when we restrict the instances to graphs with bounded treewidth is open, like the 
problem to determine the pathwidth of graphs with treewidth < 2 [30]. 
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Figure 3. 
G is a minor of H 

5 Graph minors 
In this section, we give a short overview of some recent results on graph minors. A 
graph H = {W, F) is a minor of a graph G = (V,E ) , if (a graph isomorphic to) H 
can be obtained from G by a series of zero or more vertex deletions, edge deletions, 
and/or edge contractions (in arbitrary order), where an edge contraction is the 
operation to replace two adjacent vertices v and w by a vertex that is adjacent to 
all vertices that were adjacent to v or to. For an example, see figure 3. 

Robertson and Seymour obtained the following deep results on graph mi-
nors [17,109,115,111,122,122,116,117,121,124,123,125,114,118,119,120,126,127,128, 
129,110,112,113]. 

Theorem 5.1 
For every class of graphs that is closed under taking of minors, there exists a 
finite set of graphs, ob(§), called the obstruction set of such that for each graph 
G: G G Q, if and only if there is no H & ob(p) that is a minor of G. 

For example, the obstruction set of the planar graphs is {K&, -^3,3} [140]. Theorem 
5.1 was formerly known as Wagners conjecture. 

Theorem 5.2 
For every graph H, there exists an 0 ( n 3 ) algorithm, that, given a graph G, tests 
whether H is a minor of G. 

Theorem 5.3 
For every planar graph H, there exists a constant cjf, such that for every graph G: 
if H is not a minor of G, then the treewidth of G is at most CH. 
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The constant factor of the algorithm in theorem 5.2 is very high, making this 
algorithm not suitable for practical use. In [129]; it-is shown -that one can take in 
5.3 Cff = 204 | v 'h I + 8 | £ ; ' ' I5 . Prom theorem 5.1 and theorem 5.2 it follows that every 
class of graphs, closed under minor taking, is recognizable in 0 ( n 3 ) time (do a 
minor test for each graph in the obstruction set.) Using theorem 5.1, theorem 5.3, 
the result of the next section, that states that for graphs with constant bounded 
treewidth, a tree-decomposition of constant bounded treewidth can be found in 
0(n) time, and the fact, that with such a tree-decomposition, minor tests can be 
done in linear time with a procedure of the type, discussed in section 4, the following 
result can be derived: every class of graphs that does not contain all planar graphs 
and that is closed under minor taking, can be recognized in 0[n) time. (See also 
[13].) 

Many applications of this theory were found by Fellows and Langston ¡58,60,61]. 
Note however that the constants hidden in the 'O'-notation may be quite large, and 
that the proof of theorem 5.1 is inherently non-constructive (in a deep mathematical 
sense) [66]. I.e., it is not possible in all cases to extract the obstruction set of a class 
of graphs Q, given a formal proof that § is minor closed. Thus, we may arrive in a 
situation where we know that a polynomial algorithm exists for the problem without 
knowing the algorithm itself. Also, the algorithms are recognition algorithms: they 
do not constuct anything (like a vertex ordering, tree-decomposition, etc.) 

A technique that allows us in some cases to overcome non-constructive aspects 
of this theory is self-reduction, advocated by Fellows and Langston, see e.g. [21,39, 
59,63]. 

Self reduction is the technique to consult a decision algorithm a number of times 
with different inputs in order to construct a solution for the original problem. As 
an example, consider the problem of finding a simple path of length at least k (k 
constant) in an undirected graph. (There are direct and more efficient algorithms 
for this problem [27,63]; the solution here is presented only to explain the tech-
nique.) The class of graphs that do not contain such a path is closed under minor 
taking, and does not contain all planar graphs, so we have a linear time algorithm, 
deciding whether a given graph contains a simple path of length at least k. Given 
a graph G, we can solve the problem in 0 ( n • e) time by first testing whether G 
contains a desired path, and then repeatedly trying to remove an edge from G, such 
that the resulting graph still contains a simple path of length k. When no edge can 
be deleted anymore, the resulting graph is precisely the desired path. 

Even when we do not know the obstruction set, in several cases it is still possible 
to construct polynomial time algorithms based on minor tests (see [63]). 

In some cases, obstruction sets, and hence the decision algorithms themselves are 
computable [12,16,40,57,62,78,81,91,103,131,136]. The size of the obstruction sets 
can grow very fast: for instance, the obstruction set of the graphs with pathwidth 
at most k contains at least k\2 trees, each containing 5 3 2 ~ x vertices [136]. This 
clearly limits the practicality of the approach described above. 

Also, in some cases, linear time minor tests are possible [27,25,54,63]. For 
instance, suppose that H is a cycle of length k. The algorithm is as follows: first 
make a depth-first search spanning tree T = (V, F) of the input graph G = (V, E). 
If there is a backedge between a vertex u and a predecessor to of v which is at 
least k — 1 levels above v in T, then G contains H as a minor, stop. Otherwise, 
construct ( { X „ | t; G V},T = (V, F)), with X„ = { v } U {tu | w is a predecessor of 
v and differs at most k — 2 levels from v in T). This is a tree-decomposition of G 
with treewidth at most k — 2. Use this tree-decomposition to solve the problem in 
linear time. (See [63].) 
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6 Finding tree-decompositions 
In this section we consider the problem of finding tree-decompositions, and deter-
mining the treewidth of a graph. Unfortunately, determining whether the treewidth 
of a given graph G = f V , E ) is at most a given integer k is NP-complete [6]. The 
latter result holds also for pathwidth [6]. The complexity of these problem has been 
studied for several classes of graphs. Table 1 mentions several of the known results 
of this type. 

Polynomial time approximation algorithms with O(logn) performance ratio for 
treewidth, and 0 ( log 2 n) performance ratio for pathwidth, are presented in [29]. 
For several classes of perfect graphs, polynomial time approximation algorithms 
can be found in [84]. Seymour and Thomas gave a polynomial time algorithm for 
the branchwidth of planar graphs [134]; this directly implies a polynomial time 
approximation algorithm for the treewidth of planar graphs with a performance 
ratio l\ [114]. 

Class Treewidth Pathwidth 
Bounded degree N [35] N [101] (3) 
Trees/Forests C P [133] 
Series-parallel graphs C P [32] 
Outerplanar graphs C P [32] 
Halin graphs C [143] P [32] 
fc-Outerplanar graphs C [20] P [32] 
Planar graphs 0 N [101] (3) 
Chordal graphs P ( l ) N [68] 
Starlike chordal graphs P ( l ) N [68] 
fc-Starlike chordal graphs P ( l ) P [68] 
Co-chordal graphs p [85] P [85] 
Split graphs P ( l ) P [68,84] 
Bipartite graphs N N 
Permutation graphs P [34] P [34] 
Circular permutation graphs P [34] 0 
Cocomparability graphs N [6,72] N [6,72] 
Cographs P [36] P [36] 
Chordal bipartite graphs P [86] N [35] 
Interval graphs P ( 2 ) P ( 2 ) 
Circular arc graphs P [135] 0 
Circle graphs P [83] N [35] 

P =.polynomial time solvable. C = constant, hence linear time solvable. N = 
NP-complete. O = Open problem. (1) The treewidth of a chordal graph equals its 
maximum clique size minus one. (2) The treewidth and pathwidth of an interval 
graphs equal its maximum clique size minus one. (3) NP-completeness is shown for 
vertex separation number, but this is equivalent to pathwidth. 

Table 1: 
Complexity of Pathwidth and Treewidth on different classes of graphs 
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Remove a vertex of degree 1 

Contract over a vertex 
with degree 2 

Figure 4. 
Rewriting a graph with treewidth < 2 

For constant k, polynomial time algorithms exist for the problems. The graphs 
with treewidth 1 are exactly the forests. Algorithms that recognize graphs with 
treewidth 2 and 3 in linear time, and find the corresponding tree-decompositions 
were described by Matousek and Thomas [97j, using results from [9]. A similar 
algorithm (with a quite involved case analysis) for treewidth 4 was found recently 
by Sanders [130]. For example, the connected graphs with treewidth 2 are exactly 
those graphs that can be rewritten to a single vertex, using the operations shown in 
figure 4. For larger k, also recognition algorithms based on rewriting exist [7]. (In 
[7j, a much larger class of problems is also shown to be solvable with these rewrite 
techniques.) The latter algorithms can at present, not produce a corresponding 
tree-decomposition of the input graph. 

For arbitrary fixed k, an O ( n l o g n ) algorithm can be found, using the following 
result, due to Reed (108|. 

T h e o r e m 6.1 
For every constant k, there exists an O (n logn ) algorithm, that given a graph 
G = (V, E), either outputs that the treewidth of G is larger than A:, or outputs a 
tree-decomposition of G with treewidth at most 3k + 2. 

Actually, the result proven by Reed has a number, larger than 3A: -f 2. Minor 
improvements give the result stated above. The running time of this algorithm 
is singly exponential in k. Similar, but slower algorithms have been found by-
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Robertson and Seymour [119] and by Lagergren [89], the latter result also has an 
efficient parallel variant. 

Figure 5. 
Illustration to approximation algorithm 

These algorithms and the approximation algorithm in [29] are based on repeat-
edly finding separators. An 1/3-2/3 separator of a set W C V in a graph G = (V, E) 
is a set S C V, such that V — S can be partitioned into two non-adjacent sets of 
vertices Vj, V2, such that both Vi and V2 contain at most 2|W|/3 vertices in W. 

Each of the algorithms can be described by a recursive procedure which is called' 
with two arguments: a graph G' = (VE') (an induced subgraph of G), and a set 
of vertices X C V'. The algorithm produces a tree-decomposition with the root 
node set Xr of T containing all vertices in X (X C Xr). It works basically as 
follows: When V' is 'small enough', yield a one-node tree-decomposition, the node 
containing all vertices in V . Otherwise, first find a 'small' 1/3-2/3 separator S of 
X in G', separating V' — S into Vi and V2. Call the procedure recursively for graph 
G[Vi US] and set S u j l f l Vi), and for graph G[V2U5] and set S u ( X n V2V The 
desired tree-decomposition is obtained by taking one new node containing X n S, 
and connecting this node to the root nodes of the two tree-decompositions yielded 
by the recursive calls of the procedure (see figure 5). If the treewidth of G is at 
most k, then a 1/3-2/3 separator, as needed for the algorithm, exists of size at most 
k, and can be found, in time, linear in V , using flow techniques [119]. Starting 
with an arbitrary set X of size at most 3k, it follows with induction, that each call 
of the procedure uses sets X of size at most 3k, assuming the treewidth of G is at 
most k. (|X n Vi U S| < 2\X\/Z -I- |S| < 2k + k.) Hence, the algorithm produces in 
this case a tree-decomposition of treewidth less than 4k. 

Reed [108] has shown that one can also find small sized separator sets 5, that 
do not only separate X , but also partition V into sets of size at most 3/4 of |V'|. 
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This gives a recursion depth of O(logn), and results in an 0(n log n) algorithm. 
(The expose above is only a very rough sketch of some of the most important ideas 
of the algorithms. See further [29,89,108,119].) 

Using the algorithm of theorem 5.1, and a constant number of minor tests, it 
follows that the 'treewidth < k' and 'pathwidth < k' problems (for constant k) 
are decidable in O(nlogn) time. (Use that the treewidth and pathwidth can not 
increase by taking minors.) However, it is also possible to obtain direct, explicit 
and constructive algorithms for the problems. 

Both Lagergren and Arnborg [91] and Bodlaender and Kloks [31,82] give such 
an algorithm, using an involved application of the technique, discussed in section 4. 
Independently, results of a similar nature were obtained by Abrahamson and Fel-
lows [l]. From these results it follows that a technique of Fellows and Langston [62] 
can be used to compute the corresponding obstruction set. Bodlaender and Kloks 
[31] also discuss how in the same time bounds the path- or tree-decompositions 
with pathwidth or treewidth at most k can be found, if existing. 

Recently, the author has found a linear time algorithm for the problems to 
decide whether a graph has pathwidth or treewidth at most some constant k, and 
if so, to find a path- or tree-decomposition with pathwidth or treewidth at most k 
[24]. This algorithm uses a recursion technique, and the result in [31] as essential 
ingredients. 

A study to dynamic algorithms for graphs with small treewidth has been made 
by Cohen et al. [43] and recently by the author [23]. 
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A Lower Bound for On-Line Vector-Packing 
Algorithms* 

G. Galambos* H. Kellerer * G. Woginger*' 

Abstract 
In this paper we deal with the vector-packing problem which is 

a generalization of the well known one-dimensional bin-packing 
problem to higher dimensions. We give the first, non-trivial 
lower bounds on the asymptotic worst case ratio of any on-line 
cf-dimensional vector packing algorithm. 

K e y w o r d s , vector-packing, worst-case analysis, on-line algorithms, 
lower bounds, competitive algorithms. 

1 Introduction 
We consider the following problem, called vector-packing: Given a list Ln = 
{ai,... an) of n elements where each element is a a! dimensional vector (d > 1). 
The i-th vector in the liste is denoted by «(a,-) = (wj (a,-),. . . , «¿(a,-)), where 
0 < wy(a>) < 1 for j = 1,2, ...,d. The goal is to pack all elements into the 
minimal number of bins in such a way that for any non-empty B bin of the packing 
and for any index 1 < j < d 

a.eB 
For d = 1, this problem is the famous "classical" bin-packing problem, which is 
known to-be NP-hard. Hence, we are mainly interested in 'good' approximation 
algorithms. 

The quality of an approximation algorithm is usually measured by its asymptotic 
worst-case ratio that is defined as follows. For an arbitrary vector-packing algorithm 
A and an arbitrary list of d-dimensional vectors L, we denote by L* the minimal 
number of bins needed to pack the list L and by A[L) the number of bins which 
algorithm A uses to pack the elements of L. Let R.A{k) denote the supremum of 
the ratios A(L)/L* over all lists L with L* = k. The asymptotic worst case ratio 
RA is defined by the equation 

RA = lim sup RA [k). 
k • oo 
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The first approximation algorithms for vector-packing were designed by Kou and 
Markowsky [31 . They defined so-called irreducible algorithms as-follows. During 
the packing of an irreducible algorithm, for any two non-empty bins Bp and Bq 
there exists an index j, 1 < j < d with 

£ « / (o) + J2«/(«) > 
a€Bp a£B, 

(This means that the algorithm only opens a new bin if a newly arrived item can not 
be packed into any old bin.) Kou and Markowsky proved the following proposition. 

Proposi t ion 1.1 (Kou and Markowsky, [3]) The asymptotic worst case ratio of 
any irreducible algorithm fulfills 

RA<d+ 1. 

Garey, Graham, Johnson and Yao [l] generalized the First-Fit ( F F ) and the 
First-Fit Decreasing (FFD) algorithms to the d-dimensional case. They proved 
that 

RFF = D+W> 

3 
d < RFFD < d+ — ~ r e u ~ io 

Note that both of these algorithms are irreducible and hence fulfill the statement 
of Proposition 1.1. 

Now let us turn to lower bounds on the worst case ratios of heuristics. Yao 
in [6| studied the following class of the "decision-tree" algorithms. Let A be an 
algorithm for the vector-packing problem. For each n > 0, the action of A on a 
list L can be represented by a ternary tree Tn(A). Each internal node of Tn(A) 
contains a test. For any input L, the algorithm moves down the tree, testing and 
branching according to the result of the test, until it reaches some leaf. At the leaf, 
a packing valid for all lists that lead to this leaf is produced. The cost of A for 
input size n, Cn(A), is defined to be the number of tests made in the worst-case. 
(In fact, this is the height of Tn(A)). Yao proved that if A is such an algorithm for 
which Cn(A) = o(nlogn) then RA > d. 

In this paper we deal with the class of the on-line algorithms: If an algorithm A 
is in this class then it packs the elements one by one in the order given by the list 
L. After having packed an element into some bin, the element will be never moved 
again. E.g. algorithm FF mentioned above is an on-line algorithm. For d > 2 FF 
has the best worst case ratio among all known on-line heuristics for «¿-dimensional 
vector-packing. 

As a consequence of the classical result of Liang [5| for one-dimensional on-
line bin-packing algorithms, the inequality RA > 1.5364... holds for all d > 1. 
Till today there is no better results were known. In this paper we will prove a 
d-dependent lower bound for on-line vector-packing algorithms. A formula for our 
lower bounds is given in Theorem 2.1. Table 1 depicts the numerical values for 
some small dimensions. 

The rest of the paper is organized as follows. Section 2 contains some pre-
liminaries and describes the construction of a bad item list for on-line heuristics. 
Section 3 gives a rigorous proof for the lower bound. Section 4 finishes with the 
conclusions. 
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d Lower Bound d Lower Bound 
2 1.67072 7 1.87504 
3 1.75098 8 1.88891 
4 1.80035 9 1.90002 
5 1.83348 10 1.90910 
6 1.85722 oo 2.00000 

Table 1: Our lower bounds, rounded to five decimal places. 

2 The construction 
We start with defining the following sequence for any fixed d > 1. (Note that for 
every d, the reciprocal values l/i,(<i) sum up to 1/2 d). 

t0{d) = 2d+ 1 
U{d) = tii^iU^id) - 1) + 1, t > 1. 

A similar sequence introduced by Golomb [2] became one of the main tools in on-line 
bin-packing. Lee and Lee [4] used it to design a good one-dimensional bin-packing 
heuristic, and Liang [5] based his lower bound proof on the Golomb sequence. 
With this definition, our main result may be stated as follows. 

Theorem 2.1 For any on-line d-dimensional vector-packing algorithm A, its 
asymptotic worst case ratio is at least 

R U)> I 
> ~ V ° ° .1 | A i 1 • 2-1 ) = \ <y(d)-l + d + 2 

Remark . If we set d = 1 in Theorem 2.1, we exactly arrive at the well-known 
lower bound of Liang [5]. 

The exact values for 2 < d < 10 are depicted in Table 1. As d tends to infinity, 
the lower bound tends to 2. The remaining part of this paper is devoted to the 
proof of Theorem 2.1. 

Intuitively speaking, the underlying idea of our paper is as follows. We construct 
an adverse strategy that forces every on-line algorithm A to behave poorly on a 
special item list L or on some prefix of L. In the first step, we give A a list of very 
small items to pack. In case A spreads these items on many bins, it does not receive 
any further item and looses the game. In case A produces a 'reasonable' packing for 
the small items, it receives another list of items. Again, A has the choice between 
either producing a bad packing and loosing the game immediately, or producing a 
(currently) good packing and receiving another list. Then in the final step, A gets 
a list of big items. Now it turns out that everything it did before was wrong. It 
had better packed the smaller items in such a way that remained enough space to 
pack the big items. A looses the game against the adversary. 

Now we start with the definition of the item lists. Let d > 1 and r > 1 
be arbitrarily fixed integers. We consider the following lists, each consisting of n 
elements. 
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LQ L$ LÍ L3 L2 Li - Ll I? 

«1(0 

v2() 

vs(-) 

i + i f + i 0 0 0 0 

í + 5 Í + 5 l + s 0 0 0 

i + 5 i + 5 f + 5 | + 5 I + Í i + 5 

0 0 

0 0 

ÍT + TiW + £2 

Table 2: The elements used in the lists for d = 3 and r = 2 

1. For any j £ { l , . . . , r } and a £ L3, 

7 o i f i c d 

2. For any k € { 1 , . . . , ci} and a £ L2k-i, 

! 0 if i < d - k 
2 ^ + 5 if t' = d - f c + l 
Yi+6 if i = d-k + p,p = 2,...,k. 

3. For any k £ {1, •.. ,d} and a £ ¿2*, 

/ 0 if 
& + Í if 

i < d — k 
i = d— k + p,p — 1,... ,k. 

where 

S < 
4d(tr+1(d) - 1)' 

« l W < 2r(í r + 1 (d) - 1) ' 
and 

W ) 
The lists are presented to the on-line heuristic in the following order: First there 
come the lists L} with j going down from r to 1, and afterwards there come the 
lists Lj with j going up from 1 to 2d. The lists V with superscript contain the 
very small items (all components of the corresponding vectors are zero with the 
exception of the component with index d). The.lists L j with subscript, 1 < j < d 
contain the larger items; Ust L^j is the list with the big items that arrive in the 
final step. An illustration for d = 3 and r = 2 is given in Table 2. 
Convention. Next we shall work under a fixed dimension d and a fixed r. To 
simplify our notations, we shall use tj and Cj instead of t}-(d) and £y(r). 
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3 The Proof 
In this section we prove that any on-line heuristic must perform poorly on the list 
L = Lr ... L1 L± ... L2d (as defined in the preceding section) or on some prefix of 

Observation 3.1 For any integer 1 < j < r, 

P r o o f . It can be proved by induction from definitions of t,-, e,- and S. • 

L e m m a 3.2 For any integer n > 0, if ( i r+i — l)|n 

{Lr _JL_ 1 < j < r. 

P r o o f . In this case ( j = 1 ,2 , . . . , r) are positive integers. On the other hand, 
by Observation 3.1, we can pack ty — 1 items of each of the lists Lr,..., L3 together 
into one bin. • 

Now for any integer 1 < j < 2d, let us define the set N}- in the following way: 

N1=N2 = {k{tr+1-l):k=l,2,...}, 

Nj = {n(2d+l-j) :n€ Nj-i} 3 < j < 2d. 

It is clear that Nx D N2 2 • • • 2 N2d. 

L e m m a 3.3 For any 1 < j < 2d and n e JVy, 

[U...LiLi...Ljy 

P r o o f . The statement is proved by induction on j. First, the simple cases j = 1 
and j = 2 are considered; the induction step is structured into two subcases. All 
we have to do that is to give a feasible packing. Note that Observation 3.1 yields . 

•=i 

( j = 1). Let n € Ni be arbitrary. By the definition of JVy, 2d\n. So we always 
pack 2d elements from each list of (L r ... L1Li) together into one bin B. If i < d 
then for any a G B tij(o) = 0 holds, and if * = a we have 

£ «,<«) < 2 d ^ + 5 +. - 2ds) < 1. 

Hence we have a legal packing, using bins. 
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( j = 2). Let n € N2 be arbitrary. Then d|n. Let us pack together d elements 
from every list. For i < d u;(o) = 0 holds for each о 6 (LT ... Ь-Ь\Ь2), and for 
г = d we have 

Therefore we obtain a feasible packing, using ^ bins. 

(Induction step) Now let 3 < j < 2d and assume that for any positive integer 
j' < j, the statement is valid. Let n 6 Nj be arbitrary. We shall distinguish two 
cases depending on whether j is odd or even. 

A . j = 21 — 1 for some 2 < I < d. In the sequel we say that a non-empty bin has 
type т = ( r r , . . . r1 , Ti,..., r2d) if it contains exactly r* resp. r̂  elements from the 
list LX resp. L{. Let us pack the elements of the concatenated list If . . . L1 Li... LJ 
together into a bin В with type 

2l+r-2 2d-2l+l 
First, we will prove that this gives a legal packing, i.e. the following claim holds 
for the bin B. 
Claim 3.4 

£ v , ( a ) < l 1 < »' < ci. 
a€B 

Proo f . The proof of this claim is divided into cases (i) thru (iv). 
(i) If г < d - I, then Za€B « ¿ И = 
(ii) If t = d — I + 1 then only the elements of L2I- 1 have non-zero coordinates 

and therefore 

£ v,(a) = {2d- 21 + 2)(ы _ 1 з + S) < 1. 
a6B 

(iii) If d - I -1-1 < t < d then 

X>,(a) . = (2d-2l+2)(±-i+6) + (2i~2-2d+j)(±-.+6) 
aSB 

+ 

= ( K - , ) ( I + < ) + ( 5 f l T + i ) < 1 . 

(iv) If г = d then 

X ) « i ( a ) < ( 2 d - 2 I + 2 ) ( i + ff) + 0 " - 2 ) ( ^ + i ) 
a&B 

'2d ' v 2d 

2d — 1 1 1 _ 
2d + 2d+ l + 2d(2d + 1) ~ ' 
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This completes the proof of Claim 3.4 • 
To get a feasible packing for (L r ...L1Li... Lj), we first take 2 d _^ [ + 2 = 2d-j+1 

pieces of r type bins. By the definition of Nj, we know that 2d + 1 — j\n, and so, 
we can pack all the elements of Lj into 2d+i-j bins. From the other lists, there 
remain n = n — 2 d + " _ j . = (2d —j) items. By the definition of Nj, n g iVy-i. 
But then, by our induction hypothesis, these remaining items can be packed into 
n ^ j - bins. Therefore, we can pack all elements of (Lr ... L1 L\... Lj) into 

n • = 2 < f + ( j - l ) ( 2 d - j ) ~ = J_ 
2d-j + l n 2d n (2d + 1 — j)2d "2d 

bins, and case A is settled. 

H. j = 21, 2 < J < d. In this case we are going to pack d — l+l items using the 
bin type below: 

r = ( l ^ ^ M - I + 1, d - I + 1 , 0 i l ^ L 0 ) . 
2! + r-2 2d—21 

Claim 3.5 

< 1 l<i< d. 
A€B 

Proo f . The proof is done in a similar way as the proof of Claim 3.4: 
(i) if i < d — I holds then the above sum is equal to 0, 

(ii) if i = d — I +' 1 then only the lists £21-1 and L2\ have positive coordinates 
on the position t 

E '«*(«) •= (d- j + +«) + (<*-' + lJtrr^T + S) < 1, 
06B 

(iii) i f t f - / + l < » < d then 

£>(a) = (2d-2l + 2)(^ + S) + (2i-3-2d+j)(^ + 6) + ( ^ ~ + S) 

= ( K _ 1 ) ( ^ + 0 + ( _ L _ + i , < i , 

(iv) if t = d then 
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Thus, Claim 3.5 is true. 
To obtain a feasible packing for (Ly.,. LtL\... Lj), we first take pieces of 

r type bins. By the definition of Nj, from n 6 Nj it follows that n = (2d+l—j)(2d+ 
2-j)n' with n- e N¡-2, provided that j > 4. But then n = 2(2d+l-j)(d-l+1 )n\ 
Therefore, d — I + l|n, and so, we can pack all the elements of Ly- i and Lj into 
d _ " + 1 bins. After this packing each list from ( L r , . . . , L1, L\,..., Lj-2) contains n 
unpacked elements where n = n — d_1+ 1 — d_"+1(<f — I). 

Now let us observe that n 6 Nj-2. Then, by our induction hypothesis, the 
unpacked items can be packed into n ^ j - bins. Therefore, we can pack all elements 
of (Lr...L1Ll...LJ), into 

" -3-2 = 2d + (/ — 2)(d— I) _ J_ 
d-l+l 2d n (d-l + l)2d n2d 

bins, which completes the considered case and the proof of Lemma 3.3 too. • 

Lemmas 3.2 and 3.3 give us upper bounds for the number of bins in the optimal 
packings. Next, we will investigate the potential behaviour of arbitrary on-line 
algorithms on the constructed list L. We introduce the following notations: 

o fi = { 2 ? i , . . . , " . . . L i L i . . , L 2 i ) } denotes the final packing of the concate-
nated list (L r ... L1 Li... L2d) produced by the on-line heuristic A. For any 
type t = (rr ... t1 Ti... T2d), the number a(r) equals the number of bins of 
type r in the packing p. 

o, The subset /?* resp. /?y, contain only those bins which were used for the first 
time by the on-line heuristic A during the packing of the list V resp. Lj (i.e. 
their first item comes from Ll resp. Lj). Moreover, define for every 1 < t < r 
and 1 < j < 2d the sets: 
T® = {T : there exists a bin of type r in /? '} , 
Tj = { r : there exists a bin of type r in /?y}, 
and 
T = {r : there exists a bin of type r in ¡3} — Ui<i< r u Ui<y<2<i • 

Now we investigate the number of bins used by an arbitrary on-line algorithm 
A while A is packing the elements of the concatenated list (LT ... L1 Li ... Lj). 

A{L'...Li)=j2I2*(r)> l < t < r , (1) 
<=t rer ' 

A{U ... L1 Lx ... Lj) = £ ¿2 + E E «(0 1 < J < 2d (2) 
1=1 t€t< / = i r e r , 

and the number of the packed elements for each t resp. j, 1 < t < r, I < j < 2d : 
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тёт 

n = 2 » i - a ( r ) , l<]<2d. (4) 
тет 

Let us multiply the equations of (3) by f ^ j - Summarizing the equations of ( l ) 
- (2) and subtracting the multiplied equations of (3) and (4) we get: 

2d r + i 
JZA(Lr...Li) + J2MLr...L1L1...LJ)-2dn-n'£= 

• = i ]=l » = i ' 

r 2d 
= E(2 d+»') E « м + E ( 2 d - > + 4 E «(*) - (5) 

•=i тег1 y=i г ег,-

E - w E ^ + f r , . ) . 

т е г ¿ = i 1 j=i 

L e m m a 3.6 The right hand side of (5) is non-negative. 

P r o o f . The proof is constructed into three parts. A . First we prove that for any 1 < t < r and r € Г* 

. = i z > 1 « = i 

Since т 6 ? , 7r = . . . = T , + 1 = 0 and r* > 0. Now if we have some component 
r„ > 0 for some v (i.e. some item from Lv is contained in the corresponding 
bin), then we replace this item by 2d elements of L1. After the replacement we 
obtain a feasible packing of the considered bin and a new bin type f which is not 
neccessarily contained in T*, but its first nonzero component is (?) ' . On the other 
hand, it is easy to check that the weighted sums on the left hand side do not 
decrease. Therefore, it is enough to prove that for any bin type т of the items from 
the lists Lr,...,L1,L1,..., L2d, if r r = . . . = r< + 1 = 0, then 

y^2d+ s , , . 
> -t' <2d + i: 

t _ i — 
« = i l * 1 

Now we replace each element of Lu by tu — 1 elements of Lu+1. This replacement 
results a feasible packing, since 

(tu - l ) ( - i - + e „ + 1 ) < + e u . 
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On the other hand, the weighted sum in the newly constructed packing increases: 
. 2cf + u + 1 2d + u+ 1 2 d + u 

( '« - — — r = — ; > 7 - = T -

Repeating this procedure for every u < t, we finally obtain a feasible packing 
with only items from Ll and with an increased weighted sum. Since for every 
feasible packing in a bin, r' < i,- — 1 holds, we obtain the desired result. 
B . Secondly, we prove that for any 1 < j < 2d and r G Tj 

2d 2d 

«=1 v=) 

B l . Let us consider the subcase j — 2k, 1 < k < d. We examine the (d- k+ l)-th 
coordinate of the list Lj,..., L2d- Because of the definitions, it follows for each list 
that for any a 6 [Lj !.. L2d), Vd-k+1(®) = 2d-j+2 s o statement is true. 

B2 . If j = 2k — 1 then we again consider the (d — k + l)-th coordinate. Now 
the smallest elements in this coordinate are those ones which belong to the list Lj : 
if a 6 Lj then = 2d-j+2 an<^ s o desired inequality holds. 

C. Finally, we prove that the right hand side of (5) is nonnegative. Indeed, by 
case A , we obtain 

r r 

£ ( 2 d + t) £ a(r) = £ E + 
• = 1 TGT* i=l T6T' 

t'=l T€T{ « = 1 * « = 1 

= E + 
r e u ^ ^ T - «=i * «=i 

On the other hand by the case B, 2d 2d 

3=1 r e TJ j=I RETJ 

2d 2d 

* E E « w ( E M 
j=lr€Tj «=1 

2d 

E «(')£>•>• 

Let us observe that for any 1 < j < 2d and r € Tj, Tr — ... = r1 = 0 , and so 

t€U i<,<Mr, «=1 * 
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Therefore the last three inequalities give us that the considered right hand side is 
nonnegative which completes the proof of Lemma (3.6). • 

Now we are ready to prove of Theorem 2.1. For this reason let n €E N2d be arbitrary. 
Lemma 3.6 together with equation (5) yields 

2d r 2d + t 
^A{Lr ...U) + J2A{Lr •••L1L1...L3) >2dn + n^—!— (6) 

y = i i = l 

A[U...D) 

« = i y = i 

We define 
A(T/ T.*\ 

1 < i < r 
(Lr... L')* 

_ A(Lr ...LiLx...Lj) 
{Lr... L1Li... Lj)* 

and 

1 < j < 2d 

R = max I max r*, max r}-1. 

Now plugging R into (6) and using the results stated in Lemmas 3.2 and 3.3, we 
get 

r i 2 d r OJ , „ \—^ 1 „ n . . , v—N ¿d + i. 

i = l ; = 1 i '=l 

Finally, dividing by n and making r —• oo yields the statement of Theorem 2.1 
• 

4 Conclusion 
In this paper we derived the first non-trivial lower bound for ¿-dimensional on-line 
vector packing algorithms. The best on-line algorithm known today, the First-Fit 
algorithm has asymptotic worst case ratio d + In relation to this result, our 
lower bound is not too attractive, as it remain beneath 2 for any given d and there 
is a wide gap to the upper bound. 

Of course, the main open (and probably very hard) problem consists in giving 
a better lower bound for on-Ime approximation algorithms that tends to infinity 
as d tends to infinity, e. g. O(%/d) or Oflogd). Moreover, we invite the researchers 
to design better on-line algorithms with smaller asymptotic worst-case ratios. A 
good candidate might be the vector-generalization of the Harmonic Fit algorithm 
analysed by Lee and Lee [4]. 
Acknowledgment . We thank Gunter Rote and Balazs Imreh for constructive 
criticisms on the earlier version of this paper. 
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Some problems concerning Armstrong relations 
of dual schemes and relation schemes in the 

relational datamodeP 
J. Demetrovics* V. D. Thi* 

Abstract 
Several papers [3,5,6,7,8,9,11,12] have appeared for investigating dual de-

pendency. The practical meaning of dual dependency was shown in [5,6]. In 
this paper we give some new results concerning dual dependency. The concept 
of dual scheme is introduced. Some characterizations of dual scheme, such 
as closure, generator, generating Armstrong relation, inferring dual depen-
dencies, irredundant cover, normal cover are studied from different aspects. 
We give a characterization of Armstrong relations for a given dual scheme. 
We prove that the membership problem for dual dependencies is solved by 
a polynomial time algorithm. We show that the time complexity of finding 
an Armstrong relation of a given dual scheme is exponential in the number 
of attributes. Conversely, we give an algorithm to construct a dual scheme 
from a given relation R such that R is Armstrong relation of it. This paper 
gives some polynomial time algorithms which find closure, irredundant cover, 
normal cover from a given dual scheme. 

In the second part of this paper we present some results related to Arm-
strong relations for functional dependency (FD for short) in Boyce-Codd nor-
mal form. The concepts of unique relation and unique relation scheme are 
introduced. We prove that deciding whether a given relation R over a set of 
attributes U is unique is solved by a polynomial time algorithm. We show 
some cases in which FD-relation equivalence problem is solved .in polynomial 
time. 

K e y W o r d s and Phrases : relation, relational datamodel, dual dependency, 
dual scheme, generating Armstrong relation, inferring dual dependencies, mem-
bership problem, closure, closed set, irredundant cover, normal cover, minimal 
generator, Boyce-Codd normal form. 

1 Introduction 
Now we give some necessary definitions that are used in next sections. The next 
sections present our new results. 

'Research supported by Hungarian Foundation for Scientific Research Grant-2575. 
f Computer and Automation Institute Hungarian Academy of Sciences P.O.Box 63, Budapest, 

Hungary, H-1502 
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Definition 1.1 Let R = {hi,..., hm} be a relation over U, and A,B Ç U. Then 
we say that B dually depends on A in R denoted A B) iff 

R 

{Vhit h}- G R){3a G A) (MA) = M « ) ) (36 6 S ) (M&) = h}{b))) 

Let DR = { (A, B) : A, B C U, A-^B). DR is called the full family of dual 
R 

dependencies of R. Where we write [A, B) or A —• B for A —B when R, d are 
R 

clear from the context. 

Definition 1.2 A dual dependency (DD) over U is a statement of the form A —• 
B,where A, B Ç U. The DD A —* B holds in a relation R if A B We also say 
that R satisfies the DD A —> B. 

Definition 1.3 Let U be a finite set, and denote P(U) its power set. Let Y C 
P(U) X P{U). We say that Y is a d-family over U iff for all A,B,C,D ÇU 

(1) {A, A) € Y, 

(2)[A,B)eY,(B,C)eY=>[A,C)eY, 

(3) (A,B) G Y, C C A, B C D ==> (C, D) G Y, 

(4) [A, B) G Y, (C, D)eY=> (AUC, BUD) G Y. 

(5) (A, 0) G Y = > A = 0. 

Clearly, Du is a d-family over U. 
It is known ¡6,7] that if y is an arbitrary d-family, then there is a relation R 

over U such that DR = Y. 
Definition 1.4 A dual scheme P is a pair < U. D >, where U is a set of attributes, 
and D is a set of DDs over U. Let D+ be a set of all DDs that can be derived from 
D by the rules in Definition 1.3. It is easy to see that D+ is a d-family over U. 

Clearly, if P —< U, D > is a dual scheme, then there is a relation R over U 
such that DR = D+ ( see, [6,7]). Such a relation is called an Armstrong relation 
of P. 

In this paper we consider the comparision of two attributes as an elementary 
step of algorithms. Thus, if we assume that subsets of U are represented as sorted 
lists of attributes, then a Boolean operation on two subsets requires at most |Z/| 
elementary steps. 

Definition 1.5 Let I Ç P(U), U G I, and A, B G I => AnB G I. Let M Ç P[U). 
Denote M+ = {FLM : M Ç M). We say that M is a generator of I iff M+ = I. 
Note that U G M+ but not necessarily in M, since it is the intersection of the empty 
collection of sets. 

Denote N = {A € I : A^n{A'e I : AC A}). 
It is proved [7] that N is the unique minimal generator of I. Thus, for any 

generator Ar of I we obtain N C N . 
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Definition 1.6 Let D be a d-family over U, and (A, B) G D. {A,B) is called a 
maximal left-side dependency of D ifVA' : A C A',(A',B) G D => A' = A. 
Denote by M(D) the set of all maximal left-side dependencies of D. Then A is 
called a maximal left-side of D if there existst a B such that (A, B) G M(D). 
Denote by G(D) the set of all maximal left-sides of D. 

Definition 1.7 Let G C P(U). We say that G is a d-semilattice over U if$,U G 
G, A,B € G => AllB e G. 

Theorem 1.8 [6] Let D be a d-family over U. Then G(D) is a d-semi!attice over 
U. Conversely, if G is a d-semilattice over U, then there exists exactly one d-family 
D such that G{D) = G, where D = {(A, B) : VC e G : A 2 C => B % C}. 

Theorem 1.9 Let K be a Sperner system over U. We define the set of antikeys of 
K, denoted by i f - 1 , as follows: 

K~l = {A C U : {B e K) => (B 2 A) and(A c C ) = > ( 3 5 € K){B C C)} 

It is easy to see that K~l is also a Sperner system over U. 

2 Dual schemes 
Definition 2.1 Let R be a relation over U. Set N^j = {a 6 U : /i,(a) ^ hj(a)}, 
and NJI = {N{J : 1 < i < j < |i?|}. Then NR is called the non-equality system of 
R. 

According to definition of relation 0 ^ NR. 
Let P =< U, D > a dual scheme over U. Then D+ is a d-family over U, G{D+) 

is the set of all maximal left-sides of D+. Clearly, G{D+) is a d-semilattice over U. 
Denote by N[D+) the minimal generator of G ( D + ) . 

Now we present a characterization of Armstrong relations for a given dual 
scheme. 

Theorem 2.2 Let P =< U, D > be a dual scheme,R be a relation over U. Then R 
is an Armstrong relation of P if and only if N(D+) C NR U {0} C G(D+). 

Proof : ( = > ) : We assume that R is an Armstrong relation of P, i.e. DR = D+. 
According to Theorem 1.8 we obtain G(DR) = G(D+). Now we prove that for an 
arbitrary relation R G(DR) = (NR - U)+ U {0} holds. Because G(DR) is a d-
family over U, we have 0, i/ G G [ D r ) - Clearly, U G (NR - U)+. It is obvious that 
VJV,-y ^ 0. We suppose that Nij ^ i/.Because for any a G U — N^j we obtain /1,(0) = 

hj(a), but V6 € Nij: K(6) ^ hy(6),i.e. { a } U NiS-J* JViy. Hence, JV{y e G(DR), 

holds. Consequently, NR C G(Dr). Thus, we obtain (NR - U)+ U { 0 } C G(DR). 
Conversely, if A G G(DR) — {0, £/}, then if we suppose that for all hi,hj G R 

then there is a G A such that hAa) = h, (a). So U A which contradicts the 
R 

definition of A. Consequently, there is an index pair (i, j) such that A C jV,y. We set 
T = {Nij : A C Nij). If there exists an Nij : A = JVt-y then A G NR. In the converse 
case we set B = n Nij. If A C B then for all JV.y G T we have A C TV,,.So 

w.-yer 
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B A which contradicts A G G(DR) — {0, U}.Consequently, we obtain A = B. 

Hence, A E ( N R - U)+ U { 0 } holds . T h u s , G{DR) = (NR - U)+ U { 0 } ho lds . 
Consequently , we have G(D+) = (NR — U)+ U { 0 } . A c c o r d i n g to definit ion of 
m i n i m a l generator we obtain JV(Z> + ) C NR U { 0 } C G(D+). 

(<=):From N(D+) C NR U {0} C G(D+) we have G(D+) = (NR - U)+ U {0}. 
According to above part of proof we obtain G(DR) = G(£>+). By Theorem 1.8 R 
is an Armstrong relation of P. The theorem is proved. 

Let P =< U,D > be a dual scheme. We set HP(A) = {a G U : {a} A G £>+}. 
Let Z(P) = {A G P(U) : HP(A) = A} . It is easy to see that Z(P) = G(£>+). 
Clearly, for all A G P(U) : A C HP(A) = HP(HP(A)) and A C B => HP(A) C 
Hp(B). 

A l g o r i t h m 2.3 ( Compute HP(A) ) 

Input: P =< U,D — {AI BI : i = 1,..., M) > a dual scheme over U, A G P(U). 
Output: HP(A) 
Step 1: We set A(0) = A. 
Step t + 1: If there is an AJ —* BJ G D such that B3 C A(i) and AJ % -A(i'), then 

we set A(i+ 1) = A(z)U (UB c>i(i) •^•i)- converse case we set HP(A) = A( i ) . 
It can be seen that there is a t such t h a t A = A ( 0 ) C A ( l ) C . . . C A(t) = 

A(t + 1) = ... 
By rules (3) and (4) in Definition 1.3 it can be seen that the DD { a , i , . . . , a l t } —• 

B is equivalent to a set of DDs { { a t l } —̂  B,..., {a,-«} —• B}. Consequently, we can 
assume that D only contains the DDs form { a } —*• B. Clearly, if A ^ 0 then 
A 0£ D. 

In ¡2] the notion of a F-based derivation tree for functional dependency is in-
troduced, in the analogous way we present a derivation tree for dual dependency 
as follows. 

Def in i t ion 2.4 Let P =< U,D > be a dual scheme and D only contains the DDs 
form {a} —• B. The set of derivation trees (DT for short) over P is constructed as 
follows: 

1. A node labeled with a is a DT,where a 6 U. 

2. If a is label of a leaf of DT Q and {a} —• { 6 i , . . . , bt} G D. Then we replace 
this leaf in Q by the subtree whose root labeled with a and 6 i , . . . , 6t as chidren 
of root.An obtained tree is a DT. 

S. Nothing else is a DT. 

R e m a r k 2.5 Let P =< U,D > be a dual scheme and D only contains the DDs 
form { a } —* B. We call a sequence DDs fdi,..., dm) is a derivation of a DD E —• F 
over P if dm = E F and for each t ( l < t < m) one of the following holds: 

(1) di £ D or di = A A 

(2) di is the result of applying rule (2) to two of DDs di,..., 

(3) d{ is the result of applying rule (3) to one of DDs dlt..., 

(4) di is the result of applying rule (4) to two of DDs d\,..., i-

Where rules (2),(8),(4) in Definition l.S. 
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Propos i t ion 2.6 By Algorithm 2.3 we obtain Hp(A) = A(t) and the time com-
plexity of Algorithm 2.3 is polynomial in the size of P. 

Proo f : It is easy to see that the time complexity of Algorithm 2.3 is polynomial 
in the size of P. Now we have to prove that a £ A(t) iff a € Hp (A). 

( = > ) : We prove by the induction. It is obvious that a £ .4(0) = A C Hp (A). 
We assume that A(t) C Hp(A), and a £ + l ) - A(i). 

According to construction of Algorithm 2.3 there exists Aj —» Bj £ D such that 
Bj C A(i), a £ Aj - A(t'). By (2) and (3) of Definition 1.3 we have {a } Bj. By 
Bj C A(i) and (3) of Definition 1.3 Bj —*• A(t') holds. According to the inductive 
hypothesis A(i) —* A holds. Consequently, by (2) of Definition 1.3 we obtain 
{a } A. Thus, a £ HP(A) holds. 

(-£=): We can assume that D only contains the DDs form { a } —» B. By induc-
tion on the length of the derivation of { a } —* F we can show that if { a } —• F £ Dt 
then there is a DT with root labeled a and a set of leaves of this DT is a subset of 
F. This proof is in the analogous way as for functional dependency ,see [2], it will 
be omitted. From this consider and based on the notion of DT by induction on the 
depth of derivation trees we can show that if a £ Hp (A) then a £ A(t). This proof 
is easy, it will be omitted. Our proof is complete. 

It can be seen that A B £ D+ iff A C HP{B). From this and by Algorithm 
2.3 the following proposition is clear. 

Propos i t ion 2.7 (The membership problem ) 

Let P = < U, D > be a dual scheme. X —• Y is a dual dependency. Then there 
exists a polynomial time algorithm deciding whether X —• Y £ D+. 

Let D be a d-family over [/, G(D) is the set of all maximal left-sides of D. 
Denote by N(D) the minimal generator of G(D). Denote s(D) = rran{m: |i?| = 
m, Dr = D). 

Theorem 2.8 [11] [2\N[D)\)1/2 < s(D) < 2|JV(£>)|. 

Theorem 2.9 (Generating Armstrong relation for a given dual scheme) The time 
complexity of finding Armstrong relation of a given dual scheme P is exponential 
in the size of P. 

Proo f : Let P =< U,D > be a dual scheme. We set HP(A) = {a £ U : 
{ a } — A £ £>+}. Let Z(P) = {A £ P(U) : HP(A) = A } . It is easy to see that 
Z(P) = G[D+). Thus, N(D+) is the minimal generator of Z{P). First we con-
tract an exponential time algorithm that finds a relation R such that DR = D+. 
From P we compute Z(P) by Algorithm 2.3. After that we construct the minimal 
generator of Z(P). We assume that N(D+) = {Ai,..., A,}. Construct a relation 
R-= {h1,h2,...., h2t-i, h2,} as follows: 

Vt = 1,.. . ' , s Vo £ U: h2i-1 (a) = 2i - 1 

{ 2" - l 
if a '£ Ai 
otherwise. 

According; to Theorem 2.2 we obtain DR = D+. 
Let us take a partition U — XiU, , U.Xm U JV, where m = [n/3j, and |X,| 

(1 < t < m). ' . .. ' . 
We set 
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H = {B:\B\ = 2 , B C XI for some t} if \W\ = 0, 
H = {B:\B\ = 2, B C XI for some »' : 1 < i < m - 1 or B C XM U W) if 

\W\ = 1, 
H = {B: |B| = 2,BC Xi for some t" : 1 < i < m or B = W } if \W\ = 2. 
It is easy to see that 
H~L = {A: |Xn JCil = 1,V*> if \W\ = 0, 
H~1 = { A : | A n X i | = 1,(1 < t < m - 1} and \AC\(Xm UW)| = 1} if \W\ = 1, 
H-1 = = 1,(1 <i < m) and \A n W\ = 1} if \W\ = 2. 
It is clear that n - 1 <Lff| < n + 2,3ln/4l < We construct a dual scheme 

P =< U, D = {U B: B € H) > . Based on Definition 1.9 and by Algorithm 
2.3 we obtain H~l C N(D+). By Theorem 2.8 we have (2|AT(£>+)|)1/2 < s[D+). 
Consequently, we obtain 3 < s(D+). Based on the definition of s(D+) it can 
be seen that we always can construct a dual scheme P such that the number of 
rows of any Armstrong relation of P is exponential in the size of P. Our proof is 
complete. 

A lgor i thm 2.10 ( Inferring dual dependencies) 

Input: a relation R = {hi,..., hm} over U. 
Output: a dual scheme P =< U,D > such that DR = D+. 
Step 1: Find the non-equality system NER = {NIJ : 1 < t < j < m} , where 

NI3- = {a S U : hi(a) ? h^a)}, 
Step 2: Find the minimal generator N, where N = {A e NER : A ^ n { B € 

NER : A C 5 } } . 
Denote elements of N by A j , . . . , As. 
Step 3: For every B C U if there is A,- such that B C A,-, we compute C = 

HBC/I and set C —» B. In the converse case we set U —• B. 
Denote T the set of all such dual dependencies 
Step 4: Set D = T - Q, where Q = { X — Y E T : X = Y or there is 

X Y1 E T:Y' C Y). 

Clearly, according to Theorem 2.2, Algorithm 2.10 finds a relation scheme P 
such that a given relation R is an Armstrong relation of P. 

Definition 2.11 Let P =< U,D >, P' =< U, D' > be two dual schemes. We say 
that P' is a cover of P if D = D+. It is obvious that P also is a cover of P . 

It can be seen that if P, P' are dual schemes over U then based on Proposition 2.7 
and Algorithm 2.3 there is a polynomial time algorithm deciding whether D+ = 
D'+. 

Definition 2.12 Let P =< U,D >, D = {A, — Bi : i = 1 , . . . , m} be a dual 
scheme. We say that P is an irredundant cover if for all T C D : D+ ^ T + . 

Now we give an algorithm to find an irredundant cover of a given dual scheme. 

Algorithm 2.13 (Finding an irredundant cover) 

Input : Let P =< U,D = {Ai —* Bi : i = 1,..., m} > be a dual scheme. 
Output : P =< U,D > is an irredundant cover of P. 
Step 1: Set L ( l ) = D 
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Step (i+1) : Set Q = L{i) - {A< Bi), and 

+ ^ otherwise. 

Then we set D' = L(m + 1). 

Propos i t i on 2.14 < U, L(m + l ) > is an irredundant cover of P. 

Proo f : First we show that < U,L(i + l) > is a cover of < U, L(i) > . If £,(»' +1 ) = Q 
then by Ai -<• Bi & Q+ we have L(i)+ = L(i + 1)+ . If L(i -f-1) = L(i) it is obvious 
that L(i+ 1)+ = L{i)+. So we have D+ = L{l)+ = ... = L(m + l ) + = D' +. Now 
we show that < U, D > is irredundant. Suppose that there is an irredundant cover 
< U, L > of P such that L C L(m + 1). Thus, there is a DD Ay B} e L{m + 1) 
but Aj Bj 0 L, where 1 < j < m. From the definition of L[j + 1) we obtain 
A, Bj <£ Q+, where Q = L(j) - {Ay 5y} . Since L[m + l ) C L{j) it follows 
that A, Bj £ Q' + , where Q' = L(m + 1) - { A y Bj). Clearly, Q' C Q, 
L C L(m + 1) — { A y —• Bj) hold. Consequently, Ay —» Bj ^ L+. This conflicts 
with the fact that L+ = D+. Our proof is complete. 

Let P =< U, D > be a dual scheme. We can assume that the set D only 
contains the DDs form {a } —• B. Based on this we give the next definition 

Definition 2.15 Let P =< U,D> be a dual scheme. P is called a normal dual 
scheme if P is irredundant and the following properties hold : 

(1) D only contains the DDs form {a} —• B, where a €E U, B E P{U), 

(2) for all { a } — B e D and B' C B : < U,D - { { a } - > B } u { { a } ^ B'} > is 
not a cover of P. 

Propos i t i on 2.16 Let P —< U, D > be a dual scheme. Then there is an algorithm 
finding a normal cover of P. The time complexity of it is polynomial in the size of 
P. 

Proo f : (1) is clear. Consequently, we assume that D only contains the DDs form 
{a } —• B. Based on Algorithm 2.13 from P we construct an irredundant dual 
scheme P which is a cover of P. Assume that P =< U,D = {{a,-} Bi : i = 
1, . . . , t } > , and Bi — For each t'(l < t < t) we set 12(1) = Bi, for 

1 fc 

E(j + 1) = { - 6.7 if W - W ) - M e D,+ 

1 E(j) otherwise. 

Denote Ti = E(h+ 1). According to Algorithm 2.3 and Proposition 2.7 we compute 
Ti in polynomial time in the size of P'. By induction we can show that {a, } -+ Ti £ 
D + and VT C T we obtain {a^} —• T D +. This is clear and-so its proof will 
be omitted. Now we set P" —< U, D" = { {a» } Ti : t = 1 t } > . . . It is easy to 

. see that P is a normal cover of P. By Algorithm 2.13 and Algorithm 2.3 we can 
compute P" in polynomial time in the size of P. Our proof is complete. 
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3 Relation schemes in BCNF 
In this section we give some new results concerning relation schemes in BCNF. We 
show some cases in which FD-relation equivalence problem is solved by polynomial 
time algorithms. Now we give some necessary definitions. 
Def init ion 3.1 Let R = {h\,..., hm} be a relation over U, and A, B C U. 

Then we say that B functionally depends on A in R denoted (A-^-*B) iff 
R 

(Vfc,-, hi 6 R)(Va g A ) ( M " ) = /»y(a)) (V6 e B){hi(b) = hs[b))) 

Let FN = {(A,B) : A, B C U, A-^B). FR is called the full family of functional 
R 

dependencies of R. Where we write (A, B) or A —• B for A B when R, f are 
ii 

clear from the context. 
A functional dependency over U is a statement of the form A —» 1?,where 

A, B C U. The FD A B holds in a relation R if AuB. We also say that R 
R 

satisfies the FD A —* B. 
It is easy to see that FR satisfies the following properties: 
VB C A: A B E FR (pseudoreflexivity), if A B 6 FR and C C D, then 

{A U D) {B U C} (augmentation), if A B € FR and {B U C) D, then 
( i u C } - t £>(pseudotransitivity). 
Def init ion 3.2 A relation scheme S,or RS for short, is a pair < U,F >. Where 
U is a set of attributes, and F is a set of FDs over U. Let F+ be a set of all FDs 
that can be derived from F by the above rules. Denote A + = {a: A —* {a} € ,F+} . 
A + is called the closure of A over S.Denote Z(F+) = {ACU:A+ = A). 

Clearly, in [l] if S =< U, F > is a RS, then there is a relation R over U such that 
FR = F+. Such a relation is called an Armstrong relation of S. 

Let R be a relation, S =< U, F > be a RS, and A C U. Then A is a key of R 

(a key of S, respectively) if (A —• U € F+, respectively). A is a minimal 
R 

key of R(S, respectively) if A is a key of R(S, respectively), and any proper subset 
of A is not a key of R(S, respectively). Denote KR(KS , respectively) the set of all 
minimal keys of R(S, respectively). 

Clearly, KR,KS are Sperner systems over U. 
Let R be a relation,S = < U.F > be a RS.il, 5 are in Boyce-Codd normal 

form (BCNF) if for each A { a } e F+(€ FR,respectively) and a & A then 
A-* U 6 F+[E FR, respectively). 
Definit ion 3.3 Let S =< U,F > be a RS. We say that S is a k-RS over U if 
F = {Ki —• U,..., Km —> U}, where {Ki,..., Km} is a Sperner system over U. It 
is easy to see that Ks = {Kx,..., 

It can be seen that a relation scheme S =< U, F > is in BCNF iff VA C U 
either A+ = A or A+ = U. Clearly, if S =< U, F > is in BCNF then using the 
algorithm for finding a minimal cover we can construct in polynomial time a fc-RS 
s' =< U,F' > such that F+ = F' +, see [10]. Conversely, it can be seen that an 
arbitrary k-RS is in BCNF. Consequently, we can consider a RS in BCNF as a 
fc-RS. 
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Theorem 3.4 [4] Let Si =< U,FX > ,S 2 =< U,F2 > be two RS over U. Then 
FS = F2+ iff Z(Fi + ) = Z(F2+), and Fi+ C F2+ iff Z{F2+) C Z[Fi + ). 

Theorem 3.5 [4] Let K be a Sperner system and S =< U,F > be a RS over U. 
Then Ks = K iff 

{UYUK'1 C Z(F+)C{U}UG{K~1), 

where GfK-1) = {A C U : 3B € K~l:A C £ } . 
Based on Theorem 3.5 we have 

Theorem 3.6 Let K = {Ki,..., Kt} be a Sperner system over U. Consider the 
relation scheme S = (U, F) with F = {Ki -» U,.. ., Kt —• U}. 

Then Ks = K, and Z{F+) = GiKg1) U {U}. 

Let R be a relation over U. Denote AJ = {a € U:A —* { a } € -FR}, and 
Z(Fr) = {ACU:A+=A}. 

According to Theorem 3.5 we can give examples for which there are two RSs 
Si =< U,Fi >,S2 =< U,F2 > such that KSl = but F^ / F2+. Clearly, for 
relations this consider is the same. 

We give the following notion. 

Definition 3.7 Let S =< U,F > be a RS, R be a relation over U. We call S 
(R, respectively) is an unique RS ( relation,respectively) if for all RS S' =< U, F' > 
( relation R'¡respectively) : KS = KS• (KR = KR>¡respectively) then F+ = F'+ 

[FR = FRI,respectively). 

Propos i t ion 3.8 The time complexity of deciding whether a given relation R over 
U is unique is polynomial in the sizes of R and U. 

Proo f : Let R a relation over U. By [13] from R we can compute KR in polynomial 
time in the sizes of R and U, where KR is a set of all minimal keys of R. 

Denote elements of KR~1 by AX,...., AT. Set MR = {Ai~a:a 6 U,i = 1,, .., i } . 
Denote elements of MR by Bi,...,Bt. We construct a relation R' — 

{h0, hi,..., h,} as follows: 
For all a € U, h0(a) = 0, for each t = 1, . . . , s h{(a) = 0 if a e Bi, in the 

converse case we set hi (a) = t. 
By [10] R' is in BCNF and KR = KR>. 
We construct a relation R" = {Zo> h , - - - , l t } as follows: 
l0(a) = 0 for all o e U. For all j = 1 , . . . , t then l, (a) = j if a & Ay, 
in the converse case set Zy(a) = 0. 
It can be seen that KR '= KR• and Z(FR•) = (see Definition 1.5). 
It is easy to see that MR, R and R are constructed in polynomial time in the 

sizes of U and R. 
Based on Theorem 3.5 we see that R is unique iff FR> = FR». Clearly,^» = FR" 

can be tested in polynomial time in the sises of R' and R". The proposition is 
proved. 

Definition 3.9 [4] Let K be a Sperner system over U. We say that K is saturated 
if for any A £ K, {A} U K is not a Sperner system. 
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Theorem S.10 [4] Let S =< U,F> be a RS. If Ks is a saturated Sperner system, 
then S is an unique RS: 

Examples show that there is a Sperner system K ( / i r respect ive ly ) such that 
K r K - 1 , respectively) is saturated, but K~l (A",respectively) is not saturated. 

Now we define the next notion. 

Definition S . l l Let K be a Sperner system over U. We say that K is inclusive, 
if for every A € K there is a B & K~1 such that B C A. We call K is embedded 
if for each A € K there exists a B G H:A C B, where H~l = K. 

Theorem 3.12 [13] Let K be a Sperner system over U. Denote H a Sperner system 
for which H = K. The following facts are equivalent: 

(1) K is saturated, 

(2) K~l is embedded, 

(S) H is inclusive. 

Let S =< U, F > be a RS in BCNF,i? be a relation in BCNF. Then we say 
that S is an inclusive RS if Ks is inclusive and R an embedded relation if K^1 is 
embedded. 

It can be seen that the BCNF property of S is polynomially recognizable. By 
[13] we can compute KR1 in polynomial time in the size of R, and based on poly-
nomial time algorithm finding minimal cover we also construct Ks from a given 
BCNF relation scheme. On the other hand, by definitions of embedded,inclusive 
Sperner systems we obtain the following proposition. 

Propos i t ion 3.13 Let S — < U,F > be a RS ,R be a relation over U. Then 

1. Deciding whether S is an inclusive RS is solved in polynomial time in the size 
of S. 

2. There exists an algorithm deciding whether R is an embedded relation and the 
time complexity of it is polynomial in the sizes of U and R. 

It is easy to see that if S =< U, F >, S' =< U, F' > are two RSs then deciding 
whether F+ = F'+ can be tested in polynomial time in the sizes of S and S'. 

Now we introduct the next problem. 
Let S =< U, F >,S' =< U,F' > be two RSs. Decide whether Ks = Ks<• 

The following proposition is clear. 

Propos i t ion 3;14 Let S, S' be two RSs.If S is unique then deciding whether Ks = 
Ks1 is polynomially recognizable. 

In [10] the FD-relation equivalence problem is introduced as follows: 
Let S =< U,F > be a RS, R be a relation over U. Decide whether F+ = FR, 

i.e. Ji is an Armstrong relation of S. 

Definit ion 3.15 Let Ki,K2 be two Sperner system over U. We set K = K\ U 
and TK = {A e K: fiB € K: A C B}. We say that the union K = Kx U K2 is 
equality if VAi, A2 G Tff: |Ai| = |A2|. 
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Based on Definition 3.15 we give the next theorem related to the FD-relation 
equivalence problem . 

Propos i t i on 3.16 Let S =< U,F> be a relation scheme in BCNF and R a 
relation over U in BCNF. Ks = {Ai Ap} (K^1 = {B1,...,Bq}) is the set of 
minimal keys of S ( the set of antikeys of R). Then if Ks U K^1 is equality then 
the FD-relation equivalence problem is solved in polynomial time in the sizes of S 
and R. 

P r o o f : Clearly, by [13] from R we compute K^1 in polynomial time in the size 
of R, and from S we find a ¿-relation scheme that is a minimum cover of S. 
The minimum cover is constructed in polynomial time in the size of S, We set 
K = KS U KFT1. Because K is equality,we assume that = m, and |f/| = n. We 
compute the number C™. Clearly, K and K~l are uniquely determined by each 
other. By definitions of KS and K^1 we can see that if \TK | ^ C™ then KS ^ KR. 
Thus, in BCNF class we obtain F+ ^ FR. 

Now we assume that \TK\ — C™. If there is A , ( l < i < p) such that AI C 
B){ 1 < j < q) then Ks KR. Consequently,we can assume that AI g By for 
all i, j. For each j = 1,... ,q we compute B'f. It can be seen that for all D C U 
D+ is computed in polynomial time in the size of S. We set M = {Bj U {a } : a G 
U — Bj} = {Mi,..., Mt}. It is obvious that M is computed in polynomial time. 
If B t ± U and for all I = 1 , . . . , t Af,+ = U hold then Bj E Kg1 holds, otherwise 
we obtain Bj & Kg 1 . If there is a Bj: Bj & Kg 1 then by the definition of antikeys 
KR t̂  Ks.We assume that for all j=l , . . . ,q Bj E Kg1. For each i = 1 p we 
set N = {A ; — {a} : a E Ai} = {Ni,..., N,}. It can be seen that N is computed in 
polynomial time. If there is a iV„(l < n < s) such that Nn g Bj for all j = 1 , . . . , q 
then AI KR holds. In the converse case we obtain AI G KR. Clearly, if there 
is an AI ^ KR then Ks j1 KR. We assume that for each i = l , . . . , p we have 
AI E KR. We set 

Z = {Ai - {a}: a G Ait i = 1 , . . . , p ) , 

W = {A G Q: A = A+, {A U { a } ) + - U, Va G U - A), 

J = {Bj U {a } : a G U - Bj,j = 1 , . . . , q}, 
I = {B E J:B+ = U, {B - a}+ ± UWa G B}. 

Based on definition of -Ks and definition of K w e can see that if either there 
is an A G W such that A £ KZ1 or there exists a B E I but B 0 Ks then 
KS KR. It can be seen that W, I are constructed in polynomial time in the 
sizes of S,R, KS,K~L. Finally, we see that if for all t = 1 , . . . , p, j = 1 , . . . , q 
Ai G KR,Bj E Kg1, W C K~l, I C Ks hold then by \TK\ = C™ and according 
to definition of set of minimal keys and definition of set of antikeys we obtain 
KR = KS- Since S, R are in BCNF we have FR = F+. The proof is complete. 

Let K be a Sperner system over U. We say that K is pseudo-monotonous if for 
each Sperner system K' : K N K' = 0 and KU K' is a Sperner system over U then 
K'1 C {K U K'}"1 • 

We say that K is a changed Sperner system if for each H' : H' C H then there 
are AE K,B E H1-1 such that Ac. B, where i f - 1 = K. 
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Propos i t ion 3.1T Let S be a RS in BCNF, R be a relation in BCNF. Then if 
either Ks is pseudo-monotonous or K^1 is changed, then FD-relation equivalence 
problem is solved in polynomial time in the sizez of S and R. 

Proo f : First we assume that K ^ 1 is a changed Sperner system. Based on a 
polynomial time algorithm finding a minimal cover,we construct a set of all minimal 
keys Ks . It is known [13] that from R we compute K ^ 1 in polynomial time in the 
size of R. 

If there are A € Ks and B € K^1 such that AC B, then Ks ± KR. Thus,for 
all A G KS,B G KR1 we can assume that A £ B. We set X = {A - {a}: A G 
Ks, a G A } . If for all C G X, B G K w e obtain C C B then Ks C KR. In the 
converse case we have Ks KR. It is easy to see that X is computed in polynomial 
time. We assume that Ks C KR. 

For each B G KJ^1 we compute . If there is a B such that B+ = U then 
Ks t* KR. We assume that B+ ? U for all B G K^1. We set Y = {B U { a } : B G 
K^,a G U — B}. It is obvious that Y is computed in polynomial time. If for 
all- D G Y we have D+ = U then K^1 C Kg1. In the converse case we obtain 
Kx1 ± K^Because K and K'1 are uniquely determined by each other, we have 
KR ^ Ks- Now assume that K^1 C Kg1' and Kg Q KR. By hypothesis K^1 is a 
changed Sperner system. Consequently,if Ks C KR then there are B G K^1 and 
E € K^1 such that B C E. Hence, K^1 % Kg1 holds.Thus, Ks = KR. Because 
S, R are in BCNF, we obtain FR = F+. 

If 5 is pseudo-monotonous then the proof is the same. The proof is complete. 

4 Conclusion 
Our further research will be devoted to the following problems: 

1. What is the time complexity of finding a dual scheme P from a given relation 
R such that D+ = DR 

2. G.iven a relation scheme S and a relation R. What is the time complexity of 
deciding whether Ks = KR. 

3. Let Si, S2 be two relation schemes over U. What is the time complexity of 
deciding whether Ksx = K$2 . 

4. Let S be a RS. What is the time complexity of deciding whether 5 is an 
unique RS. 
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Fundamental Concepts of Object Oriented 
Databases 

K.-D. Schewe* B. Thalheim* 

Abstract 
It is claimed that object oriented databases ( O O D B s ) overcome many 

of the limitations of the relational model. However, the formal foundation of 
O O D B concepts is still an open problem. Even worse, for relational databases 
a commonly accepted datamodel existed very early on whereas for O O D B s the 
unification of concepts is missing. The work reported in this paper contains 
the results of our first investigations on a formally founded object oriented 
datamodel ( O O D M ) and is intended to contribute to the development of a 
uniform mathematical theory of OODBs. 

A clear distinction between objects and values turns out to be essential 
in the O O D M . Types and Classes are used to structure values and objects 
repectively. Then the problem of unique object identification occurs. We show 
that this problem can be be solved for classes with extents that are completely 
representable by values. Such classes are called value-representable. 

Another advantage of the relational approach is the existence of struc-
turally determined generic update operations. We show that this prop-
erty can be carried over to object-oriented datamodels if classes are value-
representable. Moreover, in this case database consistency with respect to 
implicitly specified referential and inclusion constraints will be automatically 
preserved. 

This result can be generalized with respect to distinguished classes of 
explicitly stated static constraints. Given some arbitrary method and some 
integrity constraint there exists a greatest consistent specialization (GCS) that 
behaves nice in that it is compatible with the conjunction of constraints. We 
present an algorithm for the GCS construction of user-defined methods and 
describe the GCSs of generic update operations that are required herein. 

1 Introduction 
The shortcomings of the relational database approach encouraged much research 
aimed at achieving more appropriate data models. It has been claimed that the 
object-oriented approach will be the key technology for future database systems 
and languages [8]. Several systems [4,6,7,9,15,16,17,19,26,36,37,38] arose from these 
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efforts. However, in contrast to research in the relational area there is no common 
formal agreement on what constitutes an object-oriented database [10,11,13]. 

The basic question "What is an object?" seems to be trivial, but already here 
the variety of answers is large. In object oriented programming the notion of an 
object was intended as a generalization of the abstract data type concept with 
the additional feature of inheritance. In this sense object orientation involves the 
isolation of data in semi-independent modules in order to promote high software 
development productivity. The development of object oriented databases regarded 
an object also as a basic unit of persistent data, a view that is heavily influenced 
by existing semantic datamodels (SDMs) [2,29,31,39,40,60]. Thus, object oriented 
databases are composed of independent objects but must also provide for the main-
tenance of inter-object consistency, a demand that is to some degree in dissonance 
with the basic style of object orientation. 

A view that is common in OODB research is that objects are abstractions of real 
world entities and should have an identity [8]. This leads to a distinction between 
values and .objects [10,11]. A value is identified by itself whereas an object has an 
identity independent of its value. This object identity is usually encoded by object 
identifiers [1,3,34]. Abstracting from the pure physical level the identifier of an 
object can be regarded as being immutable during the object's lifetime. Identifiers 
ease the sharing and update of data. However, such abstract identifiers do not 
relieve us from the task to provide unique identification mechanisms for objects. In 
object oriented programming object names are sufficient, but retrieving mass data 
by name is senseless. 

In most approaches to OODBs an object is coupled with a value of some fixed 
structure. To our point of view this contradicts already the goal of objects being 
abstractions of reality. In real situations an object has several and also changing 
aspects that should be captured by the object model. Therefore, in our object 
model each object o consists of a unique identifier id, a set of (type-, value-)pairs 
(Ti, v,-), a set of (reference-, object-)pairs (refy,o}) and a set of methods meth^. 

Types are used to structure values. Classes serve as structuring primitive for 
objects having the same structure and behaviour. It is obvious that the multiple 
aspects view of an object allows them to be simultaneously members of more than 
one class and to change class memberships. This setting also makes every discussion 
on "object migration" unnessecary, as migration is only a specific form of value 
change. 

In our model a class structure uniformly combines aspects of object values and 
references. The extent of classes varies over time, whereas types are immutable. 
Relationships between classes are represented by references together with referential 
constraints on the object identifiers involved. Moreover, each class is accompanied 
by a collection of methods. A schema is given by a collection of class definitions 
together with explicit integrity constraints. 

The Identification Prob lem. One important concept of object-oriented 
databases is object identity. Following [1,12] the immutable identity of an ob-
ject can be encoded by the concept of abstract object-identifiers. The advantages 
of this approach are that sharing, mutability of values and cyclic structures can be 
represented easily [42]. On the other hand, object identifiers do not have a meaning 
for the user and should therefore be hidden. 

We study whether equality of identifiers can be derived from the equality of 
values. In the literature the notion of "deep" equality has been introduced for 
objects with equal values and references to objects that are also "deeply" equal. 
This recursive definition becomes interesting in the case of cyclic references. 
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Therefore, we introduce uniqueness constraints, which express equality on iden-
tifiers as a consequence of the equality of some values or references. On this basis 
we can address the problem how to characterize those classes that are completely 
representable (and hence also identifiable) by values. 

Generic U p d a t e Operations. The success of the relational data model is due 
certainly to. the existence of simple query and update-languages. Preserving the 
advantages of the relational in OODBs is a serious goal. 

The generic querying of objects has been approached in [1,12]. While querying is 
per se a set-oriented operation, i.e. it is not necessary to select just one single object, 
and hence does not raise any specific problems with object identifiers, things change 
completely in case of updates. If an object with a given value is to be updated (or 
deleted), this is only defined unambigously, if there does not exist another object 
with the same value. If more than one object exists with the same value or more 
generally with the same value and the same references to other objects, then the 
user has to decide, whether an update- or delete-operation is applied to all these 
objects, to only one of these objects selected non-deterministically or to none of 
them, i.e. to reject the operation. However, it is not possible to specify a priori 
such an operation that works in the same way for all objects in all situations. The 
same applies to insert-operations. Hence the problem, in which cases operations 
for the insertion, deletion and update of objects can be defined generically. 

Some authors [43] have chosen the solution to abandon generic operations. Oth-
ers [6,7,9] use identifying values to represent object identity, thus embody a strict 
concept of surrogate keys to avoid the problem. Our approach is different from 
both solutions in that we use the concept of hidden abstract identifiers, but at the 
same time formally characterize those classes for which unique generic operations 
for the insertion, deletion and update of single objects can be derived automatically. 
It turns out that these are exactly the value-representable ones. 

The Consistency Prob lem. One of the primary benefits that database sys-
tems offer is automatic enforcement of database integrity. One type of integrity is 
maintained through automatic concurrency control and recovery mechanisms; an-
other one is the automatic enforcement of user-specified integrity constraints. Most 
commercial database systems, especially relational database management systems 
enforce only a bare minimum of constraints, largely because of the performance 
overhead associated with updates. 

The maintenance problem is the problem how to ensure that the database sat-
isfies its constraints after certain actions. There are at present two approaches 
to this maintenance problem. The first one, more classical is the modification of 
methods in accordance to the specified integrity constaints. The second approach 
uses generation mechanisms for the specified events. Upon occurrence of certain 
database events like update operations the management component is activated 
for integrity maintenance. The first research direction did not succeed because of 
some limitations within the approach. The second one is at present one of the most 
active database research are sis. One of our objectives is to show that the first ap-
proach can be extended to object-oriented databases using stronger mathematical 
fundamentals. 

Accuracy is an obviously important and desirable feature of any database. To 
this end, integrity constraints, conditions that data must satisfy before a database is 
updated, are commonly employed as a means of helping to maintain consistency. In 
relational databases the specification and enforcement of integrity constraints has 
a long tradition [61], whereas in OODBs the integrity problem has only recently 
drawn attention [48]. 
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In object oriented databases, integrity maintenance can be based on two different 
approaches. The first one uses blind update_operations. In this case, any update is 
allowed and the system organizes the maintenance. The second approach is based 
on methods rewriting. This approach is more effective. Assuming a consistent 
database state the modified method can not lead to an inconsistent state. 

In relational databases distinguished classes of static integrity constraints have 
been discussed such as inclusion, exclusion, functional, key and multi-valued de-
pendencies. All these constraints can be generalized to the object oriented case. 
Then the result on the existence of integrity preserving methods can be generalized 
to capture also these constraints. We shall also describe the resulting methods. 

T h e O r g a n i z a t i o n o f the P a p e r . We start with a motivating example in Sec-
tion 2 then introduce in Section 3 a core OODM to formalize the concepts used 
intuitively in the example. In Section 4 the notions of (weak) value-representabi-
lity are introduced in order to handle the identification problem. The genericity 
problem will be approached in Section 5. We show the relationship between value-
representability and the unique existence of generic update operations. The consis-
tency problem is dealt with in Section 6. We outline an operational approach based 
on the computation of greatest consistent specializations (GCSs). Since the used 
algorithm allows the problem to be reduced to basic update operations, we describe 
the GCSs hereof. We summarize our results and describe some open problems in 
Section 7. 

2 A Motivating Example 
In this section we start giving a completely informal introduction to the O O D M 
on the basis of a simple university example. We first introduce types and classes, 
then show an example of a database instance, i.e. the content of the database at a 
given timepoint. The representation of an instance requires object identifiers. Then 
we extend the example by introducing user-defined constraints. We shall see that 
this enables alternative representations without using identifiers, hence leads to the 
notion of value-representability. Finally, we indicate the definition of methods as a 
means to model database dynamics. For the sake of simplicity we only describe a 
generic update method that can be generated by the system. 

As already said in the introduction, we distinguish between values and objects 
with the main difference defined by values identifying themselves whereas objects 
require an additional external identification mechanism. Types are used to struc-
ture values. Thus, let us first give some examples of types. 

Example Basically, every type can be built from a few predefined basic types such 
as BOOL, NAT, STRING, etc. and also predefined type constructors for records, 
finite sets, lists, unions, etc. 

The type definition for PERSONNAME uses both a set constructor {•} and 
a (tagged) record constructor (•): 

Type PERSONNAME 
= ( FirstName : STRING , 

SecondName : STRING , 
Titles : STRING ) 

End PERSONNAME 
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The definition of a type PERSON uses the type PERSONNAME. 

Type PERSON 
= ( PersonldentityNo : NAT , 

Name : PERSONNAME ) 
End PERSON 

The following defines STUDENT as a subtype of PERSON, i.e. we can naturally 
project each value of type STUDENT onto a value of type PERSON. 

Type STUDENT 
= ( PersonldentityNo : NAT , 

StudNo : NAT , 
Name : PERSONNAME ) 

End STUDENT 

Besides these definitions of types as sets of values we may also define new type 
constructors as follows, where a is a parameter for this new constructor: 

Type MPERSON{ot) 
= ( PersonldentityNo : NAT , 

Spouse : a ) 
End MPERSON • 

Next we use these types to build the structural part of an OODM schema. We 
define a schema as a collection of classes and a class as a variable collection of 
objects. 

Example Each object in a class has a structure, which combines aspects of values 
associated with the object and references to other objects. This structure can be 
based on a type definition as above or involve itself a (nameless) type definition. 
Moreover, class definitions involve IsA relations in order to model objects in more 
than one class. We use o to indicate concatenation for record types. 

Schema University 
Class PERSONC 

Structure PERSON 
End PERSONC 
Class MARRIEDPERSONC 

IsA PERSONC 
Structure ( PersonldentityNo : NAT , 

Spouse : MARRIEDPERSONC ) 
End MARRIEDPERSONC 
Class STUDENTC 

IsA PERSONC 
Structure STUDENT o 

( Supervisor : PROFESSORC , 
Major : DEPARTMENTC . 
Minor : D E P A R T M E N T C ) End S T U D E N T C 

Class PROFESSORC 
IsA PERSONC 
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Structure ( PersonldentityNo : NAT , 
Age : NAT , 
Salary : NAT , 
Faculty : D E P A R T M E N T C ) End P R O F E S S O R C 

C l a s s D E P A R T M E N T C 
I s A P E R S O N C 
Structure ( DeptName : STRING ) 

End D E P A R T M E N T C • 

In principle, we are now able to describe the content of the database at a given 
timepoint. For such database instances we need a type I D of object identifiers that 
is used for two purposes, first as a unique and efficient internal identification mecha-
nism for objects and second for modelling objects in different classes and references 
to other objects. In this case each class will be associated with a representation 
type that can be used directly for storing objects. 

Example We use P as a name for the instance. 
P(PERSONC) = 

{ ( t ! , ( 123 , ( "John" , "Denver" , { "Professor" , "Dr" } ) ) ) , 
( i 2 , ( 124 , ( "Mary" , "Stuart" , { "Dr" } ) ) ) , 
( »3 , ( 456 , ( "John" , "Stuart" , { } ) ) ) , 
( i 4 , ( 567 , ( "Laura" , "James" , { } ) ) ) , 
( i 5 , ( 987, ( "Dave" , "Ford" , { } ) ) ) } 

¿ » ( M ARRIED P E R S O N C ) = 
{ (tx , ( 123 , i3 ) ) , 

( ¿2 , ( 124 , H ) ) } 
P ( P R O F E S S O R C ) = 

{ ( »! , ( 123, 48,8000, t6 ) ) } 
P ( S T U D E N T C ) = 

{ ( t3 , ( 456 , 1023 , ( "John" , "Stuart" , { } ) , »'i , t'e , »7 ) ) , 
( i4 , ( 567 , 2134 , ( "Laura" , "James" , { } ) , t'i , i6 , »7 ) ) } 

P ( D E P A R T M E N T C ) = 
{ ( t6 , ( "Computer Science" ) ) , 

( t7 , ( "Philosophy" ) ) , 
( i 8 , ( "Music" ) ) } 

• 

Note that the following three conditions are satisfied by the instance: 

• The object identifiers are unique within a class, 

• the IsA relations in the schema give rise to set inclusion relationships for the 
underlying sets of identifiers (inclusion integrity), and 

• the identifiers occurring within an object's value at a place corresponding 
to a reference, always occur as an object identifier in the referenced class 
(referential integrity). 

We shall always refer to these conditions as model inherent constraints that must 
be- satisfied by each instance. Other integrity constraints can be defined by the user 
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and added to the schema in order to capture more application semantics as shown 
in the next example. 

Example First let us express that there are no two persons with the same Per-
sonldentityNo, no two students with the same StudentNo and no two departments 
with the same name. In order to formulate this, use xp, xs and to refer to 
the content of the classes P E R S O N C , S T U D E N T C and D E P A R T M E N T C , and let 
cP : PERSON — (PersonldentityNo : NAT) and c s : STUDENT x ID3 — 
(StudNo : NAT) be functions that arise from the natural projection to the compo-
nents PersonldentityNo and StudNo in PERSON and STUDENT respectively. 
This gives the following uniqueness constraints. 

-Vi,y :: ID.Vv, w :: 
PERSON. (i,v) e xP A (j, w) exP AcP(v) = cP(w) => i = j. 
Vi,j :: ID.Vv,w :: 
STUDENT x ID3. ( t> ) 6 xs A {j,w) 6 xs A c s ( v ) = cs(w) => i = j 

:: ID.Vv, w :: 
(DeptName : STRING), (i, v) e xD A (j, w) € xD A v = w => i = j . ( l ) 

Let us further assume that the salary of a professor is determined by his/her age. 
For this purpose, let Age, Salary : Tpro/ —NAT be the natural projections to 
the Age- and Salary-values respectively. Then we have the following functional 
constraint on the class PROFESSORC: 

Vt,j :: ID.Vv, w :: TProi. (i,v) € xPro} A [j,w) G xProJ A Age(u) = Age(iu) =5-
Salary(v) = Salary(ui) . (2) 

Next assume that we want to guarantee that the spouse of a person's spouse is the 
person itself, which gives (with the abbreviations understood) the formula 

Vt, j :: ID. Vt>, w :: 

Tmp• (*I V) € XMP A (j, w) E xmp A Spouse(u) = j' => Spouse(ty) = i .(3) 

Note that all these constraints are also satisfied by the instance above. • 

Now we have added uniqueness constraints, the object identifiers used in instances 
correspond one-to-one to values of some types associated with the classes. These 
are the so-called value identification types Vc- Hence we could remove identifiers 
and represent the same information in a purely value-based fashion. In our example 
the value representation type for the class PERSONC is simply PERSON, but for 
the class MARRIED PERSONC we need the recursive type 

VMP = PERSON O (Spouse :VMP) 

with values that are rational trees [45,47]. 
So far only structural aspects (types, classes, constraints) have been considered. 

Let us now add methods to classes in order to model the dynamics of the database. 
In the OODM methods will be modelled in a simple procedural style. 
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Example Let us describe an insert-method for the class PERSONC. 

insert P e r < o n C (in: P :: PERSON, out: I :: ID) = 
IF 3 0 e PERSONC . value(O) = P 
THEN I : = ident(O) 
ELSE I : = Newld ; 

PERSONC : = PERSONC U { ( I,P)} 
ENDIF 

For an insertion into the class MARRIED PERSONC we need a more complex input 
type V recursively defined as 

V = PERSON o (V U ID) 

For each P :: V let f(P) :: PERSON be the projection onto PERSON corre-
sponding to the subtype relation between V and PERSON. Then we have 

insert*iarriedPcrsonC (in: P :: V, out: I :: ID) = 
I : = insert J>ER,0FLC(/(P)) ; 
IF V O e MARRIEDPERSONC . ident(O) ± I 
THEN P' := substitute^,P,Spouse(P)) ; 

IF P' :: ID 
THEN J := P' 
ELSE J := insertMarriedPerionC {P') 
ENDIF ; 

MARRIEDPERSONC : = MARRIEDPERSONC U { ( I J ( P ) O ( J ) ) } 
ENDIF 

We used the global method Newld to denote the selection of a new identifier. The 
expression substitute( / ,P,T) denotes the result of replacing the value I for P in the 
expression T. Later we shall use a more abstract syntax oriented toward guarded 
commands [20,41,46]. • 
Later we shall see that methods as described in this example are canonical and can 
be automatically derived from the schema. Corresponding generic update methods 
look quite similar with the only difference that there is no output. Such generic 
update methods only exist for value representable classes in which case, however, 
they enforce integrity with respect to the model inherent constraints. However, 
generic update methods need not be consistent with respect to the user-defined 
constraints. To achieve this, we have to apply the GCS algorithm to user-defined 
methods. 

In the following sections we formally define the concepts above and proof the 
main results on value representation, generic updates and integrity enforcement. 

3 A Core Object Oriented Datamodel 
In this section we present a slightly modified version of the object oriented data-
model (OODM) of [45,47,49]. We observe that an object in the real world always 
has an identity. Therefore, abstract (i.e. system-provided) object identifiers are 
introduced to capture identity. However, neither the" real world object that was the 
basis of the abstraction nor the abstract identifier can be used for the identification 
of an object. 

In contrast to existing object oriented datamodels [1,3,4,6,7,8,9,16,17,26,36,37, 
42,43,54] an object is not coupled with a unique type. In contrast, we observe that 
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real world objects can have different aspects that may change over time. Therefore, 
a primary decision was taken to let an object be associated with more than one 
type and to let these types even change during the object's lifetime. The same 
applies to references to other objects. 

In the following let NP, NT, NO, NR, NP, NM and V denote arbitrary pair-
wise disjoint, denumerable sets representing parameter-, type-, class-, reference-, 
function-, method- and variable-names respectively. 

3.1 A Simple Type System 
Relational approaches to data modelling are called value-oriented since in these 
models real world entities are completely represented by their values. In the object-
oriented approach we distinguish between objects and values. Values can be gouped 
into types. In general, a type may be regarded as an immutable set of values of 
a uniform structure together with operations defined on such values. Subtyping is 
used to relate values in different types. 

In [12,47,49] algebraic type specifications as in [21,23] have been used to allow 
open type systems. For the sake of simplicity we deviate here from this approach 
and follow the more classical view of [14,15,45] using a type system that consists of 
some basic types such as BOOL, NATURAL, INTEGER, STRING, etc., and 
type constructors for records, finite sets, bags, lists, etc. and a subtyping relation. 
Moreover, assume the existence of recursive types, i.e. types defined by (a system 
of) domain equations. In principle we could use one of the type systems defined in 
[4,5,14,15,19,24,38]. In addition we suppose the existence of an abstract identifier 
type ID in T without any non-trivial supertype. Arbitrary types can then be 
defined by nesting. A type T without occurrence of ID will be called a value-type. 
We shall proceed giving a more formal definition of types. 

Definition 1 1. A base type is either BOOL, NAT, INT, FLOAT, 
STRING, ID or L. 

2. Let a{ e Np and a, f), a,- € Np (i = 1 ,...,n). A type constructor is either 
(ai : <*i , . . . , a„ : a n ) (record), {a} (finite set), [a] (list), (a) (bag) or a U ft 
(union). 

S. A type t is either a base type, a type constructor, a generalized constructor 
that results from replacing some parameters in a type constructor by types or 
a recursive type defined by an equation t = {a/i}.^, where t' is a generalized 
constructor and one of its parameters a is replaced by t G Nx-
In the latter two cases the remaining parameters of the type constructor 
together with the parameters of the replacing types yield the parameters 
ai,..., an oft. 

4- A type t is called proper iff the number of its parameters is 0. t is called a 
value type iff there is no occurrence of ID in t. 

5. A type form consists of a type name t 6= NT and a type t' with possibly some 
of its parameters replaced by type names. 

6. A type specification T is a finite collection of type forms t 1 ( . . . , t„ such that 
the only type names occurring herein are the names of t\,... ,tn. 

The semantics of such types as sets of values is defined as usual. Moreover, we 
assume the standard operators on base types and on records, sets, bags, . . . We 
omit the details here. 
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If t' is a proper type occurring in a type i, then there exists a corresponding 
occurrence relation 

o : t X t' -> BOOL . 

Finally, we introduce subtypes. For a more detailed introduction to types see either 
[14] or [49]. 

Definit ion 2 1. A subtype relation < on types is given by the following rules: 

(a) Every type t is its own subtype and a subtype of _L. 
(b) NAT < INT < FLOAT . 
(c) (. ..,a,_i : ai-i.ai : a,-,a<+1 : ai+1,...) < (....a,-! : aj^.aj-n : 

Q»'+i> • • •) whenever ctj < a'.. 

( { a } < W } 
(d) { [a] < [P\ J iff a < ft. 

I («) < W J 
(e) { a } < (a) and [a] < (a). 
(f) aJ<aU0. 

2. A subtype function is a function t' —* t from a subtype to its supertype ft' < t) 
defined by (a)-(f) above. 

3.2 The Class Concept as a Structural Primitive 
The class concept provides the grouping of objects having the same structure which 
uniformly combines aspects of object values and references. Moreover, generic 
operations on objects such as object creation, deletion and update of its values 
and references are associated with classes provided these operations can be defined 
unambigously. Objects can belong to different classes, which guarantees each object 
of our abstract object model to be captured by the collection of possible classes. As 
for values that are only defined via types, objects can only be defined via classes. 

Each object in a class consists of an identifier, a collection of values and refer-
ences to objects in other classes. Identifiers can be represented using the unique 
identifier type ID. Values and references can be combined into a representation 
type, where each occurence of ID denotes references to some other classes. There-
fore, we may define the structure of a class using parameterized types. 

Definit ion 3 1. Let t be a value type with parameters ai,..., an. For distinct 
reference names ri,...,rn £ Nr and class names C\,..., Cn G Nq the ex-
pression derived from t by replacing each aj in t by r,- : C{ for i = 1 , . . . , n is 
called a structure expression. 

2. A structural class consists of a class name C £ Nc, a structure expression 
S and a set of class names Di,... ,Dm € Nq (in the following called the set 
of superclasses^. We call r,- the reference named r̂  from class C to class C{. 
The type derived from S by replacing each reference ri : C{ by the type ID 
is called the representation type Tc of the class C, the type Uc = (ident : 
ID, value :: Tc) is called the class type of C. 

S. A (structural) schema S is a finite collection of structural classes C\,... ,Cn 
closed under references and superclasses. 
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4- An instance P of a structural schema S assigns to each class C a value P(C) 
of type Uc such that the following conditions are satisfied: 

uniqueness o f identifiers: For every class C we have 

Vi' :: ID.Vv,w :: r c . ( t > ) 6 P{C) A (i,w) e P(C) = • « = »». (4) 

inclusion integrity: For a subclass C of C' we have 

Vi :: ID.i 6 dom(P(C)) => i e dom(P{C')) . (5) 

Moreover, if Tc is a subtype ofT'c with subtype function f : Tc T'c, 
then we have 

Vi :: ID.Vv :: Tc. (t,«) e P(C) =» (i, /(«)) € P(C') . (6) 

referential integrity: For each reference from C to C' with corresponding 
occurrence relation or we have 

Vi,j :: ID.Vv :: Tc. (»,») S P{C) A or{v,j) => 3 E d o m { P ( C ' ) ) . (7) 

3.3 User Defined Integrity Constraints 
Let us now extend the notion of schema by the introduction of explicit user-defined 
integrity constraints. First we define the notion of constraint schema in general, 
then we restrict ourselves to distinguished classes of constraints that arise as gener-
alizations of constraints known from the relational model, e.g. functional and key 
constraints, inclusion and exclusion constraints [48,52]. 
Definition 4 Let S = , . . . , C „ } be a structural schema. 

1. An integrity constraint on S is a formula J over the underlying type system 
with free variables fr(I) C {xcl,..., xcn}, where each %c{ is a variable of 
type {Uc\ }. We call xc, the class variable of C,-. 

2. A constrained schema consists of a structural schema S and a finite set of 
integrity constraints on S. 

3. An instance of a constrained schema is an instance of the underlying structural 
schema. An instance P is said to be consistent with respect to the integrity 
constraint I iff substituting P(C) for each class variable xc in I evaluates to 
true, when interpreted in the usual way. 

Note that the conditions for an instance in Definition 4 correspond to model inher-
ent integrity constraints. We refer to these constraints as implicit identifier, IsA 
and referential constraints on the schema S. Let us now define some distinguished 
classes of user-defined constraints. 

Definition 5 Let C, C1,C ,2 be classes in a schema S and let c* : TQ —* T{ (i — 
1,2,3^ and Ci : Tc- —• T (i = 1 ,2) be subtype functions. 

1. A functional constraint on C is a constraint of the form 

:: ID.Vv,v':: 
Tc.c1{v) = c1{v') A {i,v)exc A {i',v') exc => c2{v) =c2(v').(8) 
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2. A uniqueness constraint on C is a constraint of the form 

Vi',t' :: ID.Wv,v' :: 
Tc. C1^) = C V ) A ( » » E xc A (T',T/) E I C = > I = »•'. (9) 

A uniqueness constraint on C is called trivial iff Tc = Ti and c1 = id hold. 

S. An inclusion constraint on Cj and C 2 13 a constraint of the form 

Vi :: T. 3t'i :: ID, uj :: Tcx. (»i, « i ) S i c , A ci(i>x) = t =• 
3»2 :: ID, v2 :: T C j . (i2 j t>2) e xCt A c2(t>2) = t . (10) 

4- An exclusion constraint on C\, C2 is a constraint of the form 

Vi'i,i'2 :: ID.Vvi :: Tc1 .^v2 :: 

Tc,-(»i, f i ) 6 xCl A (t'2l v2) e xc, => cifwx) ^ c2(v2) . (11) 

3.4 Methods as a Basis for Behaviour Modelling 
So far, only static aspects have been considered. A structural schema is simply a 
collection of data structures called classes. Let us now turn to adding dynamics 
to this picture. As required in the object oriented approach operations will be 
associated with classes. This gives us the notion of a method. 

We shall distinguish between visible and hidden methods to emphasize those 
methods that can be invoked by the user and others. This is not intended to define 
an interface of a class, since for the moment all methods of a class including the 
hidden ones can be accessed by other methods. The justification for such a weak 
hiding concept is due to two reasons. 

• Visible methods serve as a means to specify (nested) transactions. In order 
to build sequences of database instances we only regard these transactions 
assuming a linear invocation order on them. 

• Hidden methods can be used to handle identifiers. Since these identifiers do 
not have any meaning for the user, they must not occur within the input or 
output of a transaction. 

Definit ion 6 Let S be a structural schema. 
Let Ti,..., Tn, T[,..., T'm be types, M € NM and t.\,..., 

1. A method signature consists of a method name M, a set of input-parameter 
/ input-type pairs tj :: Ti and a set of output-parameter / output-type pairs 
Oj :: TV. We write 

oi •.•.T[,...,om:-.rm <- M{ti::T1,...,in'::Tn) . 

2. Let C be some structural class in S. A method M on C consists of a method 
signature with name M and a body that is recursively built from the following 
constructs: 

(a) assignment x := E, where x is either the class variable xc or a local 
variable wit,iin S, and E is a term of the same type as x, 
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(bj 3kip, fail, loop, 
(c) sequential composition Si] choice Si • projection x :: T | S, guard 

P —• S, restricted choice SiftS?, where P is a well-formed formula and 
x is a variable of type T, and 

(d) instantiation x\,..., x'- «- C' : S'(E'1}..., E'-), where S' is a method 
on class C' with input-parameters i'lt..., iy and output-parameters 
o\,..., o'i, such that the variables o'j, x'j have the same type and the 
term E'g has the same type as the variable i'g. 

8. A method M on a class C with signature oi :: T[,..., om :: T^ *— M(ti :: 
Ti,...,Ln :: Tn) is called value-defined iff all T< (t = 1 ...n) and T} ( j = 
1 , m ) are proper value types. 

As already mentioned the OODM distinguishes between transactions, i.e. methods 
visible to the user, and hidden methods. We require each transaction to be value-
defined. 

Subclasses inherit the methods of their superclasses, but overriding is allowed 
as long as the new method is a specialization of all its corresponding methods in 
its superclasses. Overriding becomes mandatory in the case of multiple inheritance 
with name conflicts. A method that overrides a hidden method on some superclass 
must also be hidden. 

Definition 7 Let S be a structural schema and C £ S be a structural class 
as in Definition S with superclasses Di,..., Dk- A method specification on C 
consists of two sets of methods S — {Mi,...,Mn} (called transactions^ and 
U — {M[,..., M^} (called hidden methods^ such that the following properties 
hold: 

1. Each Mi (i = 1 ,...,n) is value-defined. 

2. For each transaction Ml on some superclass Di there exists some i E 
{1,..., n} such that Mi specializes M1. 

3. For each hidden method Ml on some superclass Di there exists some j 6 
{1,..., m) such that Mj specializes Ml. 

Let us briefly discuss what specialization means for the input- and output-types. 
Sometimes it is required that the input-type for an overriding method should be a 
subtype of the original one (covariance rule), sometimes the opposite (contravari-
ance rule) is required. The first rule applies e.g. if we want to override an insert 
method. In this case the inherited method has no effect on the subclass, but sim-
ply calls the "old" method. The second rule applies if input-types required on the 
superclass can be omitted on the subclass. Both rules are captured by the for-
mal notion of specialization. We omit the details [44]. Now we are prepared- to 
generalize the definition of classes and schemata. 

Definition 8 1. A class consists of a class name C G Nc, a structure expression 
S, a set of class names Di,... ,Dm G Nc (called the set of superclasses^ and 
a method specification (S = {Mi,..., Mh) , M {M'u ..., M„,}) on C. 
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2. A (behavioural) schema S is a finite collection of classes {Ci,... ,C„ closed 
under references, superclasses and method call together with a collection of 
integrity constraints Ii,...,In on $. 

S. An instance P of a behavioural schema S is an instance of the underlying 
structural schema. A database history on S is a sequence Po,Pi,... of in-
stances such that each transition from P,_i to Pi is due to some transaction 
on some class C €E S. 

Note the relation between database histories used here and the work on the seman-
tics of object bases in [22,28]. 

3.5 Queries and Views 
Roughly speaking the querying of a database is an operation on the database with-
out changing its state. The emphasis of a query is on the output. While such 
a general view of queries can be subsumed by transactions, hence by methods in 
the OODM, query languages are in particular intended to be declarative in or-
der to support an ad-hoc querying of a database without the need to write new 
transactions [8]. 

Querying a relational database can be expressed by terms in relational algebra. 
This view can be easily generalized to the OODM using its type system. Therefore, 
terms over such types occur naturally. Moreover, type specifications are based on 
other type specifications via constructors, selectors and functions. Hence, T allows 
arbitrary terms involving more than one class variable xc to be built. Then a query 
turns out be be represented by term t over some type T such that the free variables 
of t are all class variables. This approach is in accordance with the algebraic 
approach in [12] and with so called universal traversal combinators [25]. 

In relational algebra a view may be regarded simply as a stored query (or derived 
relation). We shall try to generalize also this view to the OODM. 

However, things change dramatically, when object identifiers come into play 
[13], since now we have to distinguish between queries that result in values and 
those that result in (collections of) objects. Therefore we distinguish in the OODM 
between value queries and general access expressions. 

A value query on a schema S can then be represented by a term t of some value 
type T with fr(t) C ( x c | C & 5 } . Ad-hoc querying of a database should then 
be restricted to value queries. This is no loss of generality, because for any type 
T in T involving identifiers there exists a corresponding type T' allowing multiple 
occurrences. Take e.g. a class C. If we want to get all the objects in that class no 
matter whether they have the same values or not, the corresponding term would 
be xc- This is not a value query, but if Tc is a value type, we may take T' = (Tc) 
and the natural projection given by the subtype functions 

{(ident: ID, value : a ) } ((ident: ID, Value : a ) ) —» (a) . 

In the case of arbitrary access expressions another problem, occurs [13]. So far, 
we can only build terms t that involve identifiers already existing in tne database. 
Thus, such queries are called object preserving. If we want the result of a query to 
represent "new" objects, i.e. if we want to have object generating queries, we have 
to apply a mechanism to create new object identifiers. This can be achieved by 
object creating functions on the type ID with arity ID X . . . X ID —» ID [32,35]. 

The idea that a view is a stored query then carries over easily. However, the 
structure of a view should be compatible with the structure of the schema, i.e. each 
view may be regarded as a derived class. Summarizing, we get the following formal 
definition. 
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Definition 9 Let S = {Cy,...,Cn} be some schema. 

1. A value query on S is a term t over some proper value type T with fr(t) C 

&. An access expression on S is a term t over some proper type T with fr(t) C 
{xCl,- •• ,xcJ. 

S. A view on $ consists of a view name v 6 NQ such that there is no class 
C <E S with this name, a structure expression S(v) containing references to 
classes in S or to views on S and a defining access expression t(v) of type 
{Uv}, where T„ is the representation type corresponding to S(v). 

4- A (complete) schema is a behavioural schema together with a finite set of 
views. An instance of a complete schema is an instance of the underlying 
structural schema such that for every view v replacing each class variable 
IQ in the access expressions of v yields a value of type {[/„} satisfying the 
uniqueness property for identifiers. 

4 The Object Identification Problem 
From an object oriented point of view a database may be considered as a huge 
collection of objects of arbitrary complex structure. Hence the problem to uniquely 
identify and retrieve objects in such collections. 

Each object in a database is an abstraction of a real world object that has a 
unique identity. The representation of such objects in the OODM uses an abstract 
identifier I of type I D to encode this identity. Such an identifier may be considered 
as being immutable. However, from a systems oriented view permutations or col-
lapses of identifiers without changing anything else should not affect the behaviour 
of the database. 

For the user the abstract identifier of an object has no meaning. Therefore, 
a different access to the 'identification problem is required. We show that the 
unique identification of an object in a class leads to the notion of (weak) value-
identifiability, where weak value-representability can be used to capture also objects 
that do not exists for there own, but depend on other objects. This is related 
to weak entities in entity-relationship models [62]. The stronger notion of value-
representability is required for the unique definition of generic update operations. 

4.1 The Notion of Value- Represent ability 
According to our definitions two objects in a class C are identical iff they have the 
same identifier. By the use of constraints, especially uniqueness constraints, we 
could restrict this notion of equality. 

Let us address the characterization of those classes, the objects in which are 
completely representable by values, i.e. we could drop the object identifiers and 
replace references by values of the referred object.. We shall see in Section 5 that 
in case of value-representable classes we are able to preserve an important advan-
tage of relational databases, i.e. the existence of structurally-determined update 
operations. 



64 K.-D. Schewe, B. Thalheim 

Definition 10 Let C be a class in a schema S with representation type Tc-

1. C is called value-identifiable iff there exists a proper value type Ic such that for 
all instances D of S there is a function c : Tc —* Ic such that the uniqueness 
constraint on C defined by c holds for D. 

2. C is called value-representable iff there exists a proper value type Vc such 
that for all instances D of S there is a function c : Tc —• Vc such that for P 

(a) the uniqueness constraint on C defined by c holds and 
(b) for each uniqueness constraint on C defined by some function c' : Tc —» 

VQ with proper value type VQ there exists a function c" : VC —> VQ that 
is unique on c[codom(D(C))) with c' = c" o c. 

It is easy to see that each value-representable class C is also value-identifiable. 
Moreover, the value-representation type Vc in Definition 10 is unique up to isomor-
phism. 

4.2 Value-Representability in the Case of Acyclic Reference 
Graphs 

Since value-representability is defined by the existence of a certain proper value 
type, it is hard to decide, whether an arbitrary class is value-representable or not. 
In case of simple classes the problem is easier, since we only have to deal with 
uniqueness and value constraints. In this case it is helpful to analyse the reference 
structure of the class. Hence the following graph-theoretic definitions. 

Definition 11 The reference graph of a class C in a schema S is the smallest 
labelled graph Grep = (V, E, I) satisfying: 

1. There exists a vertex tic £ V with l(vc) = {t,C}, where t is the top-level type 
in the structure expression S of C. 

2. For each proper occurrence of a type t / ID in Tc there exists a unique vertex 
vt € V with l{vt) = {i}. 

S. For each reference ri : C,- in the structure expression S of C the reference 
graph G*rej is a subgraph of Gref. 

4• For each vertex vt or t>c corresponding to t(xi,..., x n ) in S there exist unique 
edges froth vt or vc respectively to vti in case x» is the type t,- or to vc, 
in case Xi is the reference r^ : C{. In the first case = {SA, where Si is 
the corresponding selector name; in the latter case the label is {Sj,r,}. 

Definition 12 1. Let S — {Clt...,Cn} be a schema. Let S' = {C[,... ,C'n} 
be another schema such that for all i there exists a uniqueness constraint on 
Ci defined by some Ci : Tci —* Tc1.. Then an identification graph Ga of the 
class Ci is obtained from the reference graph of C{ by changing each label C'}-
to C,-. 

2. The identification graph Gid resulting from the use of trivial uniqueness con-
straints is called the standard identification graph. 
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Clearly, there need not exist any identification graph nor does the existence of 
one identification graph imply the existence of the standard one. However, if the 
standard identification graph exist, then it is equal to the reference graph. 

Proposition 13 Let C be a class in a schema S with acyclic reference graph Gref 
such that there exist uniqueness constraints for C and each Ci such that Ci occurs 
as a label in GTej. Then C is value-representable. 

Proof . We use induction on the maximum length of a path in Grej. If there are 
no references in the structure expression S of C the type Tc is a proper value type. 
Since there exists a uniqueness constraint on C, the identity function id on Tc 
also defines a uniqueness constraint. Hence Vc = Tc satisfies the requirements of 
Definition 10. 

If there are references u : Ci in the structure expression S of C, then the 
induction hypothesis holds for each such C<, because GTef is acyclic. Let Vc result 
from S by replacing each r,- : Ci by Vc i • Then Vc satisfies the requirements of 
Definition 10. • 

Corollary 14 Let C be a class in a schema S such that there exist an acyclic 
identification graph Gid and uniqueness constraints for C and each Ci occuring as 
a label in Gid• Then C is value-identifiable. 

4.3 Computation of Value Representation Types 
We want to address the more general case where cyclic references may occur in 
the schema S = { C i , . . . , C„ } . In this case a simple induction argument as in 
the proof of Proposition 13 is not applicable. So we take another approach. We 
define algorithms to compute types Vc and I c that turn out to be proper value 
types under certain conditions. In the next subsection we then show that these 
types are the value representation type and the value identification type required 
by Definition 10. 

Algor i thm 15 Let F(Ci) = T; provided there exists a uniqueness constraint on Ci 
defined by c; : Tc, —* Ti, otherwise let F(Ci) be undefined. If ID occurs in some 
F{Ci) corresponding to ry : Cy ( j i), we write IDj. 

Then iterate as long as possible using the following rules: 

1. If F(Cj) is a proper value type and IDj occurs in some F(Ci) ( j ^ i), then 
replace this corresponding IDj in F(Ci) by F(Cj). 

2. If IDi occurs in some F(Ci), then let F(Ci) be recursively defined by 
F[Ci) == Si, where 5,- is the result of replacing IDi in F(Ci) by the type 
name F(Ci). 

This iteration terminates, since there exists only a finite collection of classes. If 
these rules are no longer applicable, replace each, remaining occurrence of IDj in 
F(Ci) by the type name F(Cj) provided F(Cj) is defined. • 

Note that the the algorithm computes (mutually) recursive types. Now we give a 
sufficient condition for the result of Algorithm 15 to be a proper value type. 

Lemma 16 Let C be a class in a schema S such that there exists a uniqueness 
constraint for all classes Ci occurring as a label in some identification graph Gid °f 
C. Let Ic be the type F(C) computed by Algorithm 15 with respect to the uniqueness 
constraints used in the definition of Gid• Then Ic is a proper value type. 
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Proo f . Suppose Ic were not a proper value type. Then there exists at least 
one occurrence of ID in Ic- This corresponds to a class C,- without uniqueness 
constraint occurring as a label in G,<j, hence contradicts the assumption of the 
lemma. • 

4.4 The Finiteness Property 
Let us now address the general case. The basic idea is that there is always only 
a finite number of objects in a database. Assuming the database being consistent 
with respect to inclusion and referential constraints yields that there can not exist 
infinite cyclic references. This will be expressed by the finiteness property. We 
show that this property allows the computation of value representation types. 

Definition 17 Let C be a class in a schema S and let denote a path in GTej 
from vck to i>c, provided there is a reference ri : Ci in the structure expression of 
Cfc. Then a cycle in Grej is a sequence go,i•'' 9n-i,n with Cq = Cn and Cf. ^ C/ 
otherwise. 

Note that we use paths instead of edges, because the edges in G r e / do not always 
correspond to references. According to our definition of a class there exists a 
referential constraint on Cfc, Ct defined by Ok,i : Tck X ID —> BOOL corresponding 
to pfc j. Therefore, to each cycle there exists a corresponding sequence of functions 
oo,i ' ' -On-i.n- This can be used as follows to define a function eye : ID X ID —• 
BOOL corresponding to a cycle in Gref. 

Definition 18 Let C be a class in a schema S and let <70,i ' " 9n-i,n be a cycle 
in Grej. The corresponding cycle relation eye : ID x ID —+ BOOL is defined by 
cyc{itj) = true iff there exists a sequence i = t 'o ,t i , . . . , i n = j (n ^ 0) such that 
(ii,vi)€Ci and 0/^+1(11+1, vi) = true for all I = 0 , . . . , n — 1. 

Given a cycle relation eye, let cycm the m-th power of eye. 

Lemma 19 Let C be a class in a schema S. Then C satisfies the finiteness 
property, i.e. for each instance V of S and for each cycle in Grej the corresponding 
cycle relation eye satisfies 

Vi S dom(C). 3n. Vj € dom[C).3m < n. (cycn(i,j) = true =>• cycm(i,j) = true) . 

Proo f . Suppose the finiteness property were not satisfied. Then there exist an 
instance D, a cycle relation eye and an object identifier »o such that 

Vn. 3j & dom(C).Vm < n. (cycn(i0,j) = true A cycm(i0,j) — false) 

holds. Let such a j corresponding to n > 0 be tn . Then the elements to, »1, *2> • • • are 
pairwise distinct. Hence there would be infinitely many objects in P contradicting 
the finiteness of a database. • 

Lemma 20 Let P be an instance of schema S = {Cy,... ,Cn}. Then P satisfies 
at each stage of Algorithm 15 uniqueness constraints for all i = 1,..., n defined by 
some ¿¡-.TatF(Ci). 
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Proo f . It is sufficient to show that whenever a rule is applied replacing F(Ci) by 
F(Ci)', then F[Ci)' also defines a uniqueness constraint on G,-. 

Suppose that (z, u) e G, holds in P. Since it is possible to apply a rule to F(Ci), 
there exists at least one value j :: ID occurring in c,-(u). Replacing ID, in F(Ci) 
corresponds to replacing j by some value t)y :: F(C}). Because of the finiteness 
property such a value must exist. Moreover, due to the uniqueness constraint 
defined by cy the function / : F(Ci) —• F(Ci)' representing this replacement must 
be injective on Ci(codo(P(Ci))). Hence, cj- = / o c< defines a uniqueness constraint 
on G,-. • 
Now assume that we use only trivial uniqueness constraints in Algorithm 15. In 
order to distinguish this situation from the general case we write G(C,) instead of 
F(C{) to refer to this special case. 

L e m m a 21 Let P be an instance of schema S = {Ci,... ,Cn). Then at each stage 
of Algorithm 15 (applied with arbitrary uniqueness constraints and in parallel with 
trivial ones) there exists for all i = l , . . . , n a function Ci : G(Ci) —+ F(C{) that is 
unique on Ci(codom(P[Ci))) with c(- = c,- o c,-. 

P r o o f . As in the proof of Lemma 20 it is sufficient to show that the required 
property is preserved by the application of a rule from any of the two versions of 
Algorithm 15. Therefore, let c,- satisfy the required property and let g : G(C,) —> 
G(G,)' and / : F(Ci) —• F[Ci)' be functions corresponding to the application of 
a rule to G[Ci) and F(C{) respectively. Such functions were constructed in the 
proofs of Lemma 20 and Lemma 20 respectively. 

Then f o c{ satisfies the required property with respect to the application of 
/ . In the case of applying g we know that g is injective on Ci(codom(P(Ci))). Let 
h : G(G,)' G(G,) be any continuation of g~l : g[ci(codom(P(Ci)))) — G(G,). 
Then c,- o h satisfies the required property. • 

Theorem 22 Let C be a class in a schema S such that there exists a uniqueness 
constraint for all classes Ci occurring as a label in the reference graph Grej of 
C. Let Vc be the type G(C) computed by Algorithm 15 with respect to trivial 
uniqueness constraints and let Ic be the type F(C) computed by Algorithm 15 with 
respect to arbitrary uniqueness constraints. Then G is value-representable with value 
representation type VQ and each such IQ is a value identification type. 

Proo f . Vc is a proper value type by Lemma 16. From Lemma 20 it follows that 
if P. is an instance of S, then there exists a function c : Tc —* Vc such that the 
uniqueness constraint defined by c holds for P. The same applies to Ic-

If Vc is another proper value type and P satisfies a uniqueness constraint defined 
by c' : Tc VQ, then V'c is some value-identification type Ic- Hence by Lemma 
21 there exists a function c" : Vc —» V'c that is unique on c[codom(P(C))) with 
c' = c" o c. This proves the Theorem. • 

Corol lary 23 Let S be a schema such that all classes C in S are value-identifiable. 
Then all classes C in S are also value-representable. 

• 

4.5 Weak Value-Representability 
Let us now ask whether there exist also weaker identification mechanisms other than 
value-represent ability. In several papers, e.g. [42] a navigational approach on the 
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basis of the reference structure has been favoured. This leads to dependent classes 
similar to "weak entities" -in the entity-relationship model_[62]. We shall.show that 
such an approach requires at least a value-identifiable "entrance" of some path and 
the hard restriction on references to be representable by surjective functions. 

Definition 24 Let S be some schema. 

1. If r is a reference from class C to D in S and o : Tc x ID —• BOOL is the 
function of Definition 4 expressing the corresponding referential constraint, 
then r satisfies the (SF)-condition iff 

(a) o(v,i) A o(v,j) => i = j and 
(b) j € dom(xD) =$> 3t> :: Tc-v G codom(xc) Ao(v,j) 

hold for all i, j :: ID, v::Tc. 

2. An (SF)-chain from class D to C in S is a sequence of classes D = 
C o , . . . , Cn = C such that for all i ( t = 1 , . . . , n) either Cj is a subclass of Ci-i 
or there exists a reference r,- from C,_i to C,- satisfying the (SF)-condition. 

3. A class C in S is called weakly value-identifiable iff there exists a value-
identifiable class D and an (SF)-chain from D to C. 

The notation (SF)-condition has been chosen to emphasize that such a reference 
represents a surjective function. It is easy to see taking n = 0 that each value-
identifiable class is also weakly value-identifiable. 

Lemma 25 If C is a weakly value-identifiable class in a schema S, then there 
exists a proper value type IQ such that for each instance D of S there exists a 
function c : ID —• Ic such that c is infective on dom(D(C)). 

Call Ic a weak value-identification type of the class C. 

Proo f . Let D = Cq, ... ,Cn = C be an (SF)-chain from the value-identifiable 
class D to C with corresponding references r,- (i = 1, . . . , n ) . If r̂  satisfies the 
fSF)-condition, there exists a function Ci : ID —• ID such that j G <iom(P(Ct)) => 
(c, (y),ti) G xci_! for some v with Oi(v,j) (just take some inverse image of j under 
the surjective reference function). Since r,- defines a function, c,- is clearly injective. 
If Ci is a subclass of Cj_i , then take Cj = id. 

If c' : ID —• ID is the function defined by the uniqueness constraint on D and 
c" -. ID — ID is the concatenation C io . . . o c n , then c — c ' o c " satisfies the required 
property. • 

Definition 26 A class C in a schema S is called weakly value-representable iff 
there exists a proper value type Vc such that for each instance D of S the following 
properties hold. 

1. There is a function c : ID —* Vc that is infective on dom(P(C)). 

2. For each proper value type V'c and each function c' : ID —> V'c that is injec-
tive on dom(D(C)) there exists a function c" : Vc —* V'G that is unique on 
c(dom(D{C))) with c' = c" o c. 

We call Vc the weak v ilue-representation type of the class C. 
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Note that the weak value-representation type is unique provided it exists. Again it 
is easy to see that value-representability implies weak value-representability. More-
over, due to Lemma 25 each weakly value-representable class is also weakly value-
identifiable. We shall see that also the converse of this fact is true. 

We want to compute weak value representation types. This can be done using a 
slight modification of Algorithm 15 that completely ignores uniqueness constraints. 
We refer to this algorithm as the blind version of Algorithm 15 and to emphasize 
this, we write H(CA instead of F(Ci). Analogous to Lemmata 16 and 20 the 
following results holds. 

Lemma 27 Let C be a class in a schema S and let IQ be the type H(C) computed 
by the blind version of Algorithm 15. Then Ic is a proper value type. 

Lemma 28 Let P be an instance of the schema S = { C i , . . . , Cn}. Let C, D be 
classes such that C is weakly value-identifiable, D is value-identifiable and there 
exists some (SF)-chain from D to C. Let c : ID —* Ic be the function of Lemma 
25 corresponding to this chain. Let c' : ID —• H(D) be a function corresponding 
to the uniqueness constraint on D and the instance P. Then at each stage of the 
blind version of Algorithm 15 there exists a function c : H(D) —• Ic that is unique 
on c'(domp(C)) with c = c o c'. 

Based on these two lemmata we can now state the main result on weak value 
representability. 

Theorem 29 Let C be a weakly value-identifiable class in a schema S andlet Vc 
be the product of all types H(D), where D is the leading value-identifiable class in 
some maximal (SF)-chain corresponding to C and H(D) is the result of the blind 
version of Algorithm 15. Then C is weakly value-representable with weak value-
representation type Vc. 

Proo f . Vc is a proper value type by Lemma 27. From Lemmata 20 and 25 it 
follows that there exists a function c' : ID —• Vc that is injective on domp(C). 

From Lemma 28 it follows that there exists a function c : Vc —• Ic that is 
unique on c'(dom(P(C))) with c = c o c'. This proves the Theorem. • 

5 The Genericity Problem 
The preservation of advantages of relational databases requires generic operations 
for querying and for the insertion, deletion and update of single objects. While 
querying [1,12,30,55] is per se a set-oriented operation, i.e. it is not necessary to 
select just one single object, and hence does not raise any specific problems with 
object identifiers, things change completely in case of updates. If an object with 
a given value is to be updated (or deleted), this is only defined unambigously, if 
there does not" exist another object with the same value. If more than one object 
exists with the same value or more generally with the same value and the same 
references to other objects, then the user has to decide, whether an update- or 
delete-operation is applied to all these objects, to only one of these objects selected 
non-deterministically or to none of them, i.e. to reject the operation. However, it 
is not possible to specify a priori such an operation that works in the same way 
for all objects in all situations. The same applies to insert-operations. Hence the 
problem, in which cases operations for the insertion, deletion and update of objects 
can be defined generically. 
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Some authors [43] have chosen the solution to abandon generic operations. Oth-
ers [6,7,9] use "identifying values to represent object identity, thus embody a strict 
concept of surrogate keys to avoid the problem. Our approach is different from-both 
solutions in that we use the concept of hidden abstract identifiers, but at the same 
time formally characterize those classes for which unique generic methods for the 
insertion, deletion and update of single objects exist. At the same time inclusion 
and referential integrity have to be enforced. We show that these classes are the 
value-representable ones. 

5.1 Generic Update Methods 
The requirement that object-identifiers have to be hidden from the user imposes 
the restriction on canonical update operations to be value-defined in the sense that 
the identifier of a new object has to be chosen by the system whereas all input- and 
output-data have to be values of proper value types. 

We now formally define what we mean by generic update methods. For this 
purpose regard an instance P of a schema S as a set of objects. For each recursively 
defined type T let T denote by replacing each occurrence of a recursive type T ' in 
T by UNION(T', ID). 

Definition 30 Let C be a class in a schema S. Generic update methods on C are 
insertc, deletec and updatec satisfying the following properties: 

1. Their input types are proper value types; their output type is the trivial type 
1. 

2. In the case of insert applied to an instance P there exists some o :: Uc such 
that 

(a) the result is an instance P' with o <E P' and P C P' hold and 

(b) if P is any instance with P C P and o 6 P, then P' C P. 

3. In the case of delete applied to an instance P there exists some o :: UQ such 
that 

(a) the result is an instance P' with o £ P' and P' C P hold and 

(b) if P is any instance with P C P and o P, then P C P'. 

4- In the case of update applied to an instance P = Pi LI P2, where P2 — {o} 
if o £ of and P2 — 0 otherwise there exist o,o' :: Uc with o = (t, v) and 
o' = (i,v') such that 

(a) the result is on instance P' = Pi U P2 with P2C\ P2 = 0, 
(b) oeP.o' S P', 

(c) if D is any instance with Pi C P and o' £ P, then P' C P. 

Canonical update methods on C are insert'c, delete'c and update'c defined anal-
ogously with the only difference of their output type being ID and their input-type 
being T for some value-type T. 
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Note that this definition of genericity includes the consistency with respect to the 
implicit constraints on S. We show that value-representability is necessary and 
sufficient for the existence and uniqueness of such operations. 

Lemma 31 Let C be a class in a schema S such that there exist canonical update 
methods on C. Then also generic update methods exist on C. 

Proo f . In the case of inserí define insertc^V :: Vg) == I <— insert'c(V), i.e. call 
the corresponding canonical operation and ignore its output. The same argument 
applies to delete and update. • 

T h e o r e m 32 Let C be a class in a schema S such that there exist generic update 
methods on C. Then C is value-representable. Moreover, all super- and subclasses 
of C are also value-representable. 

Proo f . First consider the delete method with input type Ic which is by definition 
a proper value type. We show that it is already a value identification type. 

If not, then for all instances P and all functions c : Tc —* Ic there exist i, j :: ID 
and v, w :: Tc with 

i ± jA ( i > ) 6 P(C) A ( ; » S P(C) Ac(u) = c(ty) . (12) 

Now take o = [i,v) and o' = ( j ,w ) . Then there exist two distinct instances 
9' and P" satisfying the conditions of Definition 30(iii) with respect to o and o' 
respectively, hence contradict the assumption of a unique generic delete-method on 
C. 

The same argument applies to the input-type Vc- Moreover, since insertion 
requires all values of referenced object to be provided, we derive from Algorithm 
15 and Theorem 22 that Vc is a value representation type. Therefore, C is value-
representable. 

The value-representability on superclasses is implied, since insert (and update) 
on C involve the corresponding method on each superclass. The value-
representability of subclasses follows from the propagation of update through them. 
We omit the technical details. • 

5.2 Generic Updates in the Case of Value-Representability 
Our next goal is to reduce the existence problem of canonical update operations to 
schemata without IsA relations. 

Lemma 33 Let C, D be value-representable classes in a schema S such that C is 
a subclass of D with subtype function g : Tc —> Tp. Then there exists a function 
h : Vc —• Vx? such that for each instance D of S with corresponding functions 
c :Tc Vc and d : Tp VD we have /i(c(v)) = cf(sr(t;)) for all v € codom(P(C)). 

Proo f . By Definition 10 c is injective on codom(P(C)), hence any continuation h 
of d o g o c - 1 satisfies the required property. 

It remains to show that h does not depend on P. Suppose Pi, P2 are two 
instances such that to = ci(t>i) = c2(v2) € Vc, where c\,d\,hi correspond to P\ 
and C2, d2, h.2 correspond to P2. Then there exists a permutation ir on I D such 
that V2 = T(I>I). We may extend ir to a permutation on any type. Since I D has no 
non-trivial supertype. g permutes with tt, hence g(v2) = 7r(p(t;i)). From Definition 
10 it follows d2{g(v2)j = di(g(vi)), i.e. h2(w) = hi(w). • 
In the following let 5o be a schema derived from a schema S by omitting all IsA 
relations. 
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Lemma 34 Let C be a value-representable class in S such that all its superclasses 
and subclasses Di ... Dn are also value-representable. Then canonical update oper-
ations exist on C in S iff they exist on C and all Di in So. 

P r o o f . By Theorem 22 the value-representation type Vc is the result of Algorithm 
15, hence Vc does not depend on the inclusion constraints of S. Then we have 

I :: ID «- insert'c{V :: Vc) == 
I - insert'Dl (M^));insert'DJhn(V))-1 - insert°c(V) 

where hi : Vc —* Vp. is the function of Lemma 33 and insertdenotes a canonical 
insert on C in S0- ftence in this case the result for the insert follows by structural 
induction on the IsA-hierarchy. 

If the subtype function g required in Lemma 33 does not exist for some su-
perclass D then simply add VJJ to the input type. We omit the details for this 
case. 

The arguments for delete and update are analogous. The value-representability 
of subclasses is required for the update case. • 
Prom now on we use a global operation Newld that produces a fresh identifier 
I :: ID. This can be represented as a method using projection. 

Lemma 35 Let C be a value-representable class in SQ. Then there exist unique 
quasi-canonical update operations on C. 

P r o o f . Let r¿ : C{ (i = 1 . . . n) denote the references in the structure expression of 
C. If V be a value of type VQ, then there' exist values V¿y :: Vci (i = 1.. . n, j = 
1 . . . ki) occurring in V. Let V = { V ¿ y / | i = 1 . . . n,j = 1 . . . ki}.V denote the 
value of type Tc that results from replacing each V,' j by some J,- y :: ID. Moreover, 
for I:: ID let 

v(n = ( {V/J}-ViJ ^ y o c c u r s Vi,j 
•'•> \ V i j else 

Then the canonical insert operation can be defined as follows: 
I:: ID <— insert'dV :: Vc) == 

3 T-.-.ID, V' :: Tc..{Pair{I',V') eC A c{V') = V ) —/:=/' 

B 3V' :: TC.V = V — I *— Newld-, xc := xc U { ( / , V ) } 
B I«— Newld ; Jhl — insert'Ci );...; J„,fc„ ^ insert'Cn ( ) ; 

xc~xcU {(I,V)} 
It remains to show that this operation is indeed canonical. Apply the method to 
some instance P. If there already exists some o = (I',V') in C with c(V') — V, 
the result is P' = P and the requirements of Definition 30 are trivially satisfied. 
Otherwise let o = (I, V). If P is an instance with P C P and o & P, we have J{¿ e 
dom(Ci) for all i = 1... n, j = I. ..ki, since P satisfies the referential constraints. 
Hence P contains the distinguished objects corresponding to the involved quasi-
canonical operations insert'c_. By induction on the length of call-sequences Pij C P 

for all t = 1 n, j = 1 ...ki, where Pit]- is the result of J,-y «— insert'Ci(V¿ '. 
Hence P' — (J PÍJ U {o } C P. The uniqueness follows from the uniqueness of Vc-

The definitions and proofs for delete and update are analogous. • 
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Theorem 36 Let C be a value-representable class in a schema S such that all its 
super- and subclasses are also value-representable. Then there exist unique generic 
update operations on C. 

Proo f . By Lemma 31 and Lemma 34 it is sufficient to show the existence of 
canonical update operations on C and all its super- and subclasses in the schema 
So- This follows from Lemma 35. • 
In ¡50] it has been shown, how linguistic reflection [56] can be exploited to generate 
the generic update operations for value-representable classes in an OODM schema. 

6 The Consistency Problem 
In general a database may be considered as a triplet ( S , 0 , C ) , where S defines 
a structure, 0 denotes a collection of state changing operations and C is a set 
of constraints. Then the consistency problem is to guarantee that each specified 
operation o € 0 will never violate any constraint I S C. Integrity enforcement 
aims at the derivation of a new set 0' with | O' |=| O | of operations such that 
(5, 0',C) satisfies this property. 

Suppose we are given a database schema S and a static integrity constraint 
I on that schema. Regard I as a logical formula defined on S. Consistency 
requires that only those instances P of S are allowed that satisfy I. Call the set 
of such instances sat(S, J). Each transaction is a database transformation. Such a 
database transformation T takes an arbitrary instance P and possibly some input 
values « ! , . . . , « „ and produces a new instance P' and possibly some output values 
Uj,..., v'm. T is consistent with respect to I iff for each P €= sat(S, I) we also have 
P' € sat{S, I). 

Classically consistency is maintained at run-time by transaction monitors. 
Whenever an inconsistent instance is produced the transaction that caused the 
inconsistency will be rolled back. This "everything or nothing" approach has been 
critized, since it causes enormous run-time overhead for consistency checking and 
rollback. Moreover, it leaves the burden of writing consistent transactions to the 
user. In principle the first problem vanishes, if verification techniques are used at 
design time [44,57,58], whereas the second one still'remains. 

As an alternative a lot of attention has been paid to integrity enforcement. 
In most cases the envisioned solution is an active database [18,27,59,64,65], where 
production rules are used to repair inconsistencies instead of rolling back. Although 
this is sometimes coupled with design time (or even run-time) analysis of the rules 
[18,27,33,63], the approach is not always successfull. Moreover, a satisfying theory 
for rule triggering systems with respect to the integrity enforcement problem is still 
missing. Therefore, we favour an operational approach [51,48,52,53], which aims at 
replacing inconsistent database transactions by consistent specializations. 

6.1 Greatest Consistent Specializations 
In general non-deterministic partial state transitions S as used in our method lan-
guage can be described by a subset of P X where P denotes the set of possible 
states and P± = P U {-L}, where _L is a special symbol used to indicate non-
termination. It can be shown [20,41,46,44] that this is equivalent to defining two 
predicate transformers wp(S) and wlp(S) associated with 5 satisfying the pairing 
condition wp(S)(Z) •<=> wlp[S)(R) Awp(S)(true) and the universal conjunctivity of 
wlp(S),i.e. 

u>lp(S)(Vi e I. Zi) o V» e I. wlp(S)(Zi) . 
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The predicate transformers assign to some postcondition R the weakest (liberal) 
precondition of 5 to establish R. Clearly, pre- and postconditions are X-constraints. 
Informally these conditions can be characterized as follows: 

• wlp(S)(R) characterizes those initial states such that all terminating execu-
tions of S will reach a final state characterized by R provided 5 is defined in 
that initial state, and 

• wp(S)(R) characterizes those initial states such that all executions of S ter-
minate and will reach a final state characterized by R provided 5 is defined. 

The use of these predicate transformers for the definition of language semantics is 
usually called "axiomatic semantics". Based on this consistency and specialization 
can be formally defined and used for the formal description of the consistency 
problem. For this purpose we define "extended operations" and therefore need to 
know for each operation S the set of classes S' such that S does neither read nor 
change the class variables xc with C ^ 5 ' . In this case we call S a S'-operation. 
We omit the formal definition [41,51]. 

Definition 37 Let S be a schema, I a constraint and S, T methods defined on 
Si C S and £ S respectively with Si C 

1. S is consistent with respect to I iff I => tvlp(S)(J) holds. 

2. T specializes S iff wp(S)(true) => wp(T)(true) and wlp(S){R) => 
wlp(T)(R) hold for ail constraints R with free variables XQ such that C 6 Si 
(denoted T C S). 

Hence the following definition of a greatest consistent specialization: 

Definition 38 Let S be a schema, I a constraint and S a method defined on 
Si C S. A method Sj is a Greatest Consistent Specialization (GCS) of S with 
respect to J iff 

1. Sj Q S , 

2. Sj is consistent with respect to I and 

S. for each method T satisfying properties (i) and (ii) (instead of Sj) we have 
T Q Sj . 

If only properties (i) and (ii) are satisfied, we simply talk of a consistent special-
ization. 

Let us first state the main results from [48]. 

Theorem 39 Let S be a schema, I, J constraints and S a method defined on 
SXCS. 

1. There exists a greatest consistent specialization Sj of S with respect to I. 
Moreover, Sj is uniquely determined (up to semantic equivalence) by S and 

2. The GCSs (Sj)j and S^JAJ) coincide on initial states satisfying I A J. 
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The proof of these results heavily uses predicate transformers and is therefore omit-
ted here. 

In [51] it has been shown that a GCS—that is in general non-deterministic— 
can be written as a finite choice of maximal quasi-deterministic specializations 
(MQCSs), where quasi-determinism means determinism up to the selection of some 
values. In most cases this value selection can be shifted to the input, but the se-
lection of object identifiers should be left to the system. 

Next, we formally define quasi-determinism and then present the main result 
from [51], an algorithm for the computation of MQCSs. 

Definition 40 A method S is called quasi-deterministic iff there exist types 
Ti,...,Tn such that S is semantically equivalent to 

Vl ::2\ | ...y„::Tn | S' , 

where S' is a deterministic method. 

Algorithm 41 In: An X-operation S and constraints Ii,...,In defined on exten-
sions Yi,..., Yn of X. 

Let I be the list of the constraints. As long as t ^ nil proceed as follows: 

1. Set S'j = S. 

2. Choose and remove one constraint Ii from t. 

S. Check whether S'j is Ii-reduced. If not, stop with no result, otherwise con-
tinue. 

4- Make S'j B -free by replacing each occurring S1B.S2 by S1 Dwlp[Si)(f alse) 

5. Replace each basic assignment in S'j by some fsubsumption-free) MQCS with 
respect to 

6. Compute P{Sj) as 

P{Sl) = izi/xi,. •• ,zn/xn}.wlp({x1/zl!... 
...,xn/zn}.^j)(-^wlp(S)(z1 ^ X l V... VZN ± *„)) , 

where the Xi are the class variables occurring in J or in S and the Zi are used 
as a disjoint copy of these. 

7. SetS - P{Sj) S'j. 

Set S'j = S. 

Out: An operation I S'j, where J3'j is a (subsumption-free) MQCS of the 
original S with respect to the conjunction I of the constraints. 

• 
An extension of the GCS algorithm to compute all (subsumption-free) MQCSs is 
easy. 

It has been shown in [51] that Algorithm 41 is correct. However, it depends on 
checking a very technical condition, J-reducedness. We omit this condition liere. 
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6.2 Enforcing Integrity in the O O D M 
Since Algorithm 41 allows integrity enforcement to be reduced to the-case-of-as-
signments, we may restrict ourselves to the case of a single explicit constraint in 
addition to the trivial uniqueness constraints that are required to assure value-
representability and that are used to construct generic update operations. In the 
following we describe MQCSs with respect to the constraints introduced in Defini-
tion 5. 

6.2.1 Inclusion Constraints. 

Let I be an inclusion constraint on Ci, C2 defined via c,- : Tc, —• T (t = 1, 2). Then 
each insertion into requires an additional insertion into C 2 whereas a deletion 
on C2 requires a deletion on C\. Update on one of the Ci requires an additional 
update on the other class. 

Let us first concentrate on the insert-operation on Cj (for an insert on C2 
there is nothing to do). Insertion into C\ requires an input-value of type Vc,," an 
additional insert on C2 then requires an input-value of type Vc , . However, these 
input-values are not independent, because the corresponding values of type Tcl 
and Tc , must satisfy the general inclusion constraint. Therefore we first show that 
the constraint can be "lifted" to a constraint on the value-representation types. 
Note that this is similar to the handling of IsA-constraints in Lemma 33. 

L e m m a 42 Let Cx, C2 be classes, ct- : Tc, —* T functions and let Vc, be the 
value-representation type of Ci (i = 1,2). Then there exist functions fi : Vc, —* T 
such that for all database instances D 

/ i ( d ? ( « 0 ) = / 2 ( 4 M ) o C1(«1) = c2(u2) (13) 
for all Vi G codom(P(xCi)) (i = l , 2 j holds. Here df : TC{ —> VQ. denotes the 
function used in the uniqueness constraint on Ci with respect to P. 

P r o o f . Due to Definition 10 we may define fi = c , o ( d ? ) _ 1 on c,(co<iom(i ,(xc1))) 
( ¿ = 1 . 2 ) . 

Then we have to show that this definition is independent of the instance P. 
Suppose PI, P2 are two different instances. Then there exists a permutation IT on 
ID such that d?3 = df1 o n, where n is extended to Tc, . Then 

ao(d^)-1 = CiOK-toid?*)-1 = TT^OC-O (dfl)-l , 

since Ci permutes with TT-1. Then the stated equality follows. • 
Now let Vci,Oi — VCl X Vci and define the new insert-operation on Ci by 
[insertCl)j({vi,v2) ::VCuCi) == 

/i(«Ji) = /2(^2) -+ insertCl{vi) ; insertc,(v2) , (14) 

where the /,• are the functions of Lemma 42. Note there there is no need to require 
C2. Delete- and update-operations can be defined analogously. 
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6.2.2 Functional and Uniqueness Constraints. 

Now let J be a functional constraint on C defined via c1 : Tc Ti and c2 : Tc 
T?. In this case nothing is required for the delete operation whereas for inserts (and 
updates) we have to add a postcondition. Moreover, let c p : Tc —* Vc denote the 
function associated with the value-representability of C and the database instance 
D and let all other notations be as before. Let us again concentrate on the insert-
operation. Let insert'c denote the canonical insert on C. Then we define 

(insertc)j(V ::VC) == 
I:: ID | I <— insert'ci 
V' ::TC | {I,V')exc -

(VJ:: ID,W ::TC. ({J,W) € xc 

Ac1{W) = c1{V') => c2(W) = c2(V')) — skip . (15) 

Note that in this case there is no change of input-type. For delete- and update-
operations we have analogous definitions. 

A uniqueness constraint defined via c1 : Tc —* T\ is equivalent to a functional 
constraint defined via c1 and c2 = id : Tc —+ Tc plus the trivial uniqueness con-
straint. Since trivial uniqueness constraints are already enforced by the canonical 
update operations, there is no need to handle separately arbitrary uniqueness con-
straints. 

6.2.3 Exclusion Constraints. 

The handling of exclusion constraints is analogous to the handling of inclusion 
constraints. This means that an insert (update) on one class may cause a delete 
on the other, whereas delete-operations remain unchanged. 

We concentrate again on the insert-operation. Let I be an exclusion constraint 
on Ci and C 2 defined via c< : TCi —• T (t = 1, 2). Let / , : Vc, T denote the 
functions from Lemma 42. Then we define a new insert-operation on Cj by 

[insertCl)j{V :: V C l ) = = 
insertc1 (V) ; 

US. ((I :: ID | V' ::TC, | (I,V')exc, 

Ac2{V') = friV) deletecAV) i S ) 81 skiP ) • (16) 
For delete- and update-operations an analogous result holds. 

Theorem 43 The methods Sj in (14), (15) and (16) are MQCSs of generic 
insert-methods with respect to inclusion, functional and exclusion constraints re-
spectively. 

The proof involves detailed use of predicate transformers and is therefore omitted 
here [48,49]. Analogous results hold for delete and update. 

7 Conclusion 
In this paper we describe first results concerning the formal foundations of object 
oriented database concepts. For this purpose we introduced a formal object oriented 
datamodel (OODM) with the following characteristics. 
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• Objects are considered to be abstractions of real world entities, hence they 
have an immutable identity. This identity is encoded by abstract identifiers 
that are assumed to form some type ID. This identifier concept eases the 
modelling of shared data and cyclic references, however, it does not relieve us 
from the problem to provide unique identification mechanisms for objects in 
a database. 

• In our approach there is not only one value of a given type that is associated 
with an object. In contrast we allow several values of possibly different types 
to belong to an object, and even this collection of types may change. 

• Classes are used to structure objects. At each time a class corresponds to a 
collection of objects with values of the same type and references to objects in 
a fixed set of classes. Inheritance is based on IsA relations that express an 
inclusion at each time of the sets of objects. Moreover, referential integrity is 
supported. 

• We associate with each class a collection of methods. Methods are specified by 
guarded commands, hence the method language is computationally complete. 
In order to allow the handling of identifiers that are always hidden from the 
user as well as user-accessible transactions a hiding operator on methods is 
introduced. Generic update operations, i.e. insert, delete and update on a 
class are assumed to be automatically derived whenever this is possible. 

• We associate integrity constraints to schemata. Certain kinds of such con-
straints can be obtained by generalizing corresponding constraints in the re-
lational model. We assume that methods are automatically changed in order 
to enforce integrity. 

On this basis of this formal OODM we study the problems of identification, gener-
icity and integrity. We show that the unique identification of objects in a class 
requires the class to be value-representable. 

An advantage of database systems is to provide generic update operations. 
We show that the unique existence of such generic methods requires also value-
representability. However, in this case referential and inclusion integrity can be en-
forced automatically. This result can be generalized with respect to distinguished 
classes of user-defined integrity constraints. Given some arbitrary method S and 
some constraint I there exists a greatest consistent specialization (GCS) Sj of S 
with respect to I . Such a GCS behaves nice in that it is compatible with the 
conjunction of constraints. For the GCS construction of a user-defined transaction 
we apply the GCS algorithm developped in [48,51,52,53]. 

This work on mathematical foundations of OODB concepts is not yet completed. 
A lot of problems are still left open and are the matter of current investigations 
and future research. 

• In our approach classes are sets. What are other bulk types? Does it make 
sense to abstract from classes in this way? 

• The problem of updatable views is still open. 

• Our approach to genericity only handles the worst case expressed by the value 
representation type. We assume that polymorphism will help to generalize 
our results to the general case.. Moreover, we must integrate communication 
aspects at least with respect to the user. 
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• The usual axiomatic semantics for guarded commands abstracts from an exe-
cution model. All results are true for semantic equivalence classes. However, 
we also need optimization, especially with respect to the derived GCSs. 

• We only presented a formal OODM without looking into methodological as-
pects such as the characterization of good designs. 

We express the hope that others will also contribute to solve open problems in 
OODB foundation or in the implementation of more sophisticated object oriented 
database languages on a sound mathematical basis. 
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On the characterization of the integers: The 
hidden function problem revisited 

R. Berghammer* 

Abstract 
In this paper the hidden function problem studied so far only for equa-

tional (e.g., in [9] and [ l l ] ) or conditional equational (e.g., in [3]) algebraic 
specifications is considered for arbitrary first-order theories. It is shown that 
a unique characterization of the integers with zero, successor and predeces-
sor as term-generated model of a finite first-order theory needs at least one 
hidden function or relation. 
Keywords: Hidden function problem, algebraic specifications, first-order the-
ories. 

1 Introduction 
In mathematical logic, a structure for a first-order language is said to be a model for 
a set T of sentences over the same language, if each sentence of T holds in it. The 
algebraic specification approach of computer science uses a restricted definition. 
Here it is often additionally demanded that each element of the carrier sets can 
finitely be "described" by a closed term, i.e., that the model of the specification is 
term-generated (see e.g., [l], [12], [6], or [ 13]). The main reason for the restriction 
to term-generated models of specifications is the necessity of finite descriptions 
of algorithms. As an essential advantage one obtains the proof principle of term 
induction. Furthermore, by using only term-generated models one is able to extend 
the expressiveness of first-order theories (resp. algebraic specifications). 

In this paper we deal with the question, whether and how the structure Z := 
[ Z , 0, succ, pred) can - up to isomorphism - be characterized as the only term-
generated model of a set of first-order sentences over a first-order language with 
symbols foi°0, the successor function succ(u) := tt + 1 , and the predecessor function 
pred(u) := u — 1. First, we give a positive answer using an infinite set of sentences. 
Then we show, and this is the main result of the paper, that there is no finite set 
of first-order sentences with the same property. Finally, we extend the language by 
a symbol for the "usual" ordering relation on the integers 2Z and present a finite 
set of sentences, which has the structure Z := {22,0, succ, pred, < ) as - up to 
isomorphism - only term-generated model. 

The relation < simplifies the specification of the constant and operations of 
interest 0, succ, and pred. In the terminology of algebraic specifications it is called 
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a "hidden function", since the way to specify Z is structured by first specifying Z 
and then to forget or hide the auxiliary relation < . 

Strictly speaking, < is a hidden relation. The-term "hidden function" (which we 
will use in the remainder of the paper, too) results from the fact that the algebraic 
specification approach considers relations as functions to the truth values. 

Given a class C of first-order formulae and a semantic mechanism S which 
determines the meaning of a specification, the so-called hidden function problem 
for C and S asks whether the use of hidden functions extends the expressiveness of 
specifications. All the known examples deal with the following question: Is there a 
structure that fails to possess a unique characterization (this notion depends on S) 
using finite subsets of C only, but the same is not true if auxiliary functions may 
be used? In the case of C being the class of universally quantified equations and 
S being initial algebra semantics, a solution - the first example which requires the 
use of a hidden function - can be found in [9j. This paper contains no formal proof, 
but based on Majster's example in [ l l j a simple structure, called "toy stack", is 
constructed and carefully proved that it cannot be specified using initial algebra 
semantics and finitely many equations unless hidden functions are permitted. This 
proof is mainly based on regular sets and their properties. Independently of [11], 
in [2] another solution of the hidden function problem for equational specifications 
and initial algebra semantics is given. It is shown that the structure N := (IN, 0, 
succ, sqr), where succ is again the successor function and sqr(u) := u2, does not 
possess a finitary equational specification without the use of hidden machinery. 
The (rather complicated) proof can also be found in [3j. Obviously, N admits a 
very natural finite equational specification involving addition and multiplication as 
auxiliary functions. Using the so-called sparsity property of predicates on natural 
numbers, in the same paper [3] the hidden function problem is also solved for 
conditional equational specifications and initial algebra semantics. 

Our examples Z and Z solve also a hidden function problem for certain C and 
S. In comparison to the papers just mentioned, we do not restrict the class of 
formulae and consider all term-generated models. This means that C is the class 
of all first-order formulae and that a structure M is (uniquely) characterized by 
a set T of sentences under S if and only if M is a term-generated model of T 
and all these models are isomorphic. Furthermore, we use proof principles from 
"classical" model theory, viz. the use of the compactness theorem and elimination 
of quantifiers. 

2 Preliminaries 
Throughout this paper we use first-order logic with the equality symbol « as a 
logical symbol. In this section, we briefly recall some basic definitions of first-order 
logic. Further details can be found in, for instance, [7] or [10]. 

Assume L to be a first-order language. A structure M for L (also called L-
structure) consists of a non-empty carrier set \M\, an n-ary function /A/ : J-W|" —* 
\M\ for every n-place function symbol / , and an n-ary predicate PM : \M\n — IB 
for every n-place predicate symbol p, where IB denotes the set {0 ,1 } representing 
truth values. If n = 0, then JM is an element of \M\ and PM is a truth value. 

Assume M and N to be two structures for the same first-order language. A 
bijective function $ : |M| —• |iV| is said to be an isomorphism from M to N, if 
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* ( / « ( « ! , • • •, U„)) = / W ( * ( U l ) , . . . , * ( « „ ) ) 

for all n-place function symbols / and all u i , . . . , un G \M\ and 

PAi ( « i , . . . , u „ ) = 1 O p j v ( $ ( u i ) , . . . , $ ( u „ ) ) = 1 
\ 

for all n-place predicate symbols p and all u i , . . . , url G |M|. If there is an isomor-
phism from M to N, then we say that M and N art isomorphic. 

Let M be a structure for a first-order language L and ty : V —• \M\ be an 
assignment for the variables x G V with values from \M\. Furthermore, let t be a 
term and A be a formula built up over L. By t^ we denote the value of t in M 
under by M (= A[,ir] we denote that A holds in M under SP. Both notations are 
inductively defined as usual. In particular, we have M |= i j « if and only if 
'i® = ^f both t and A are closed, then tqf as well as M \= do not depend 
on the assignment 1ir. Therefore, in this case we use the notations tM and M \= A 
instead. The notation M [= A is also used to indicate that M -A['®r] for every 
assignment vf. 

Let L be a first-order language. A set T of sentences (i.e., closed formulae) built 
up over L is called a theory over L. A structure M for L is said to be a model of 
T, if M [= A for all sentences A G T. In addition, M is called term-generated, if 
for every element u G \M\ there exists a closed term t (also built up over L) such 
that u - t M . 

3 An infinite characterization of the integers 
without hidden functions 

In the following, we give a characterization of the integers with 0, succ, and pred as 
- up to isomorphism - only term-generated model of an infinite first-order theory. 
This result will also be used in the next section. 

Let Lz be the first-order language consisting of a 0-place function symbol (con-
stant symbol) z and two 1-place function symbols s,p, and let Tz denote the fol-
lowing infinite theory: 

(1) Vx(3(p(x)) « x) 
(2) Vx(p(s(x)) M x) 

(3.1) V x H s ( x ) . « x ) ) 
(3.2) Vx(->(s(s(x)) « x)) 

(3.n) Vx(-i(s(s(. . . s ( s ( x ) ) . . . ) ) » x) (exactly n occurrences of s). 

Obviously, we have: The structure Z := (Z,0, succ, pred) is a term-generated 
model of Tz- We call Z the standard model of the theory Tz- In the following, we 
show that it is - up to isomorphism - the only term-generated model of Tz • To this 
end, we assume for the rest of this Section 3 an arbitrarily chosen (but fixed) term-
generated model M :— (|M|, zm, sm,pm) of Tz and construct an isomorphism 
from M to the standard model. 
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Define s^f (resp. P^) as nth power of sm (resp. Pm)- Fundamental for the 
construction of the just mentioned isomorphism is the following representation of 
the elements of \M\. 

L e m m a 3.1 Let u G \M\. Then there exists exactly one natural number n € IN 
such that u = or u = PM{zM)-

P r o o f , a) In the first step we prove the existence of the number n. 
As the model M is term-generated, for all u £ \M\ there exists a closed term t 

built up over Lz such that tM = u. Thus, it suffices to show that for all closed terms 
t built up over Lz there exists a natural number n € IN such that tM = s^i^Af) 
or tM = PM{zM)- This can be done by term induction. 

Induction base: The case of t being the symbol z is trivial; choose n = 0. 

Induction step: By the induction hypothesis, tM = SM(zM) o r TM = PM(ZM)-

First, suppose tM = S ^ Z M ) - Then we have 

S(t)M = oU{tU) = sM(s"M(zM)) = s«M+i(zu). 

Furthermore, due to the validity of sentence (2) in M , 

p(t)M = PM(tM) = PM(snM(zM)) = PM(*M ( S ^ ' M ) ) = i 1 ^ ) , 

provided n > 0. Finally, in the case n = 0 we obtain 

p(t)M =PM{tM) = PMM-

This shows that also s(t)M and p(t)M have the stated representation. 
The remaining case tM = PM(ZM) is handled similarly using the validity of ( l ) 

in M. 

b) In a second step, now we prove the uniqueness of the representation. To this 
end, suppose u = s^(zm) = s ^ z * / ) and m ^ n. W.l.o.g, let m < n. Then there 
exists a positive natural number k fulfilling the equation m + k = n. Sentence (2) 
is true in M. Thus, 

sZM = >m{*m) = Sm('mM) ^zm = sku{zu). 

However, S^ (ZM) = ZM contradicts the validity of sentence (3.k) in M . In the 
same manner one deals with the remaining cases. • 

With the help of this lemma, we are able to define a function $ from the carrier 
set \M| to the integers by 

I - » if U = Pm(zM)-
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We then have the following property: 

Lemma 3.2 The function $ is an isomorphism from the fixed model M to the 
standard model Z. 

P r o o f . Bijectivity of $ is obvious; the inverse from the integers to \M\ is 
given as •".,.,:-{£<£} 
It remains to prove that $ preserves the interpretations of the three symbols z, s, 
and p. This is done in the following. Note, that we have zz = 0, sz = succ, and 
pz = pred. 

Obviously, 3>(zm) = 0 holds. Now, assume u 6 |M|. For a proof of $(sjii(u)) = 
succ($(tt)) we distinguish two cases. If u = s ^ (ZM), then we obtain 

$ M u ) l = = n + 1 = + 1 = * ( « ) + 1 - succ($(u)). 

In the case u — PM ( zM ) w e h a v e 

*(«A/(U)) = H P ^ M ) R=~N+L = *{PMM) + 1 = * ( " ) + 1 = succ($(u)), 

provided n > 0 (here we have used that sentence (1) is true in M), and 

$ ( s m H ) = $(sm(zm)) = 1 = + 1 = * ( « ) + 1 = succ($(u)), 

provided n = 0. Equation $(pw(u)) = pred($(u)) is proved analogously to the 
latter one. • 

Summing up, we have the desired result that the structure Z is characterized 
by the theory Tz: 

Theorem 3.3 The standard model Z is - up to isomorphism - the only term-
generated model of Tz • • 

4 There is no finite characterization of the inte-
gers without hidden functions 

In this section we show (Theorem 4.3 below) that there is no finite theory of ar-
bitrary sentences built up over the language Lz of Section 3 which has Z as - up 
to isomorphism - only term-generated model. The crucial point of this proof is the 
use of the compactness theorem of first-order logic which implies that a theory T 
has a model if every finite subset of T has a model. However, to conclude the proof 
it is additionally necessary to get a term-generated model for the chosen theory. 
Here elimination of quantifiers plays an important role. 

A theory T over a first-order language L admits elimination of quantifiers if 
and only if for every formula A built up over L there is a quantifier-free formula B 
built up over the same language such that M f= A «-» B for every model M of T. In 
model theory elimination of quantifiers is one of the methods for proving theories 
decidable. Some examples can e.g., be found in [10], Section 13. The next lemma 
shows that the theory Tz of Section 3 admits elimination of quantifiers, whereby 
no additional free variables are introduced. 
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Lemma 4.1 Assume A to be a formula built up over the language Lz• Then there 
exists a quantifier-free formula B, also built up over Lz, such that M \= A *-* B 
for every model M of Tz and, furthermore', the set of the free variables of B is 
contained in the set of the free variables of A. 

Proo f , a) In a first step we prove the existence of a quantifier-free formula B over 
Lz such that M t= A «-• B for every model M of Tz • 

We are allowed to assume the given formula A to be of the form 3x(Ai A.. .A A m ) , 
where each Ai, 1 < t < m, is an atomic formula or the negation of an atomic 
formula. A proof of this well-known fact can e.g., be found in [7], Section 3.1. 
Furthermore, we may suppose that the variable x occurs in each Ai. For. if x 
does not occur in some A,0 , then we use the equivalence of 3x(Ai A . . . A A m ) and 
Ai0 A 3x(Ai A . . . A Ai 0_i A A,0 + i A . . . A A m ) . 

Assume y,-, 1 < i < k, to denote the free variables of 3x(Ai A . . . A Am). For 
a being an element from { z , x , y i , . . . , y j c } , we abbreviate the term s ( . . . a ( a ) . . . ) 
(resp. p(. . -p(a) • •.)) with n > 0 occurrences of a (resp. p) by 3n(a) (resp. pn(a)). 
Particularly, we have s°(a) := p°(o) := a. 

Now, suppose M to be a model of the theory Tz- Each atomic sub-formula of 
A is an equation ii « t2, where the terms t,-, 1 < t < 2, are built up using the 
variables y,-, 1 < » < k, the variable x, and the function symbols z, s, and p. Since 

i the variable x occurs in at least one of the terms and the sentences ( l ) and (2) are 
true in M, there exist natural numbers m and n and o G {z, x, y i , . . . , y*} such 
that 11 « £2 is equivalent to one of the following equations: 

(i) a m (x ) « sn(a) (ii) s m ( x ) « p n ( a ) 
(iii) p m ( x ) « s " ( a ) (iv) p m ( x ) « pn(a). 

In the case m < n, the first equation is equivalent to x « s n - m ( o ) ; otherwise 
it is equivalent to s m _ n ( x ) « a, i.e., to i k p m - , 1 ( a ) . The proofs that also for 
the remaining equations there exist equivalent formulae of this specific form are 
identical and follow likewise from the validity of (1) and (2) in M. 

Hence, we may suppose that every atomic formula occurring in A is of the form 
x « ^ ( a ) or i « p"(a), where a G {z, x, y j , . . . , y/t}. However, we may further 
suppose that a is different from x. This is due to the fact that x m s"(x) as well 
as x « pn(x) can be replaced by z « z if n = 0, and by ->(z « z) if n 0, and that 
the latter closed formulae can again be moved out-side of quantification. 

Summing up, we may assume the given formula A to be of the form (1 < m, 1 < 
3 < m ) 3x(x « ti A . . . A x « A —i(x » ty) A . . . A ->(x « t m ) ) , 

where the terms tj, 1 < » < m, are of the form sn(a) or p"(a) and a G {zj y i , . . . , yjt}. 
Now, we distinguish three cases: 

Case 1: j = 1, i.e, the formula A has the form 3x(->(x » i i ) A . . . A ->(x » im))- It 
can easily be shown that the carrier set of each model of the theory Tz is infinite. 
Now 

M is a model of Tz => |M| is infinite 
=> M (= V y i . . . Vym(3x(-i(x « yi) A . . . A ->(x « y m ) ) ) 
=> M \= 3x(->(x » i i ) A . . . A ->(x » t m ) ) 

implies that A is true in M. Since M |= z « z holds, too, we may choose B as 
z « z and obtain, thuL, M f= A B. 
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Case £: j > 1 and m— 1, i.e., A has the form 3x(x « ti) . Then A is also valid in 
M and we may again choose B as formula z « z. 

Case S: j > 1 and m > 2, i.e., A contains an equation and there is at last a further 
equation and/or negation of an equation: 

3x(x » ti A . . . A X « ty_i A ->(a: « £y) A . . . A ->(x « tm)). 

In this case, first, we delete the equation x » ti from A and then replace in the 
resulting formula every occurrence of the variable x by the term Since x does 
not occur in the terms t,-, 1 < t < m, this leads to 

3x(i! « t2 A ... A tx » ty_! A ->(ti « ty) A ... A -^(tj « tm)), 

a formula, which is equivalent to the original one. (Note, that the matrix of the 
original formula A is quantifier-free.) We have now a formula in the matrix of 
which x no longer occurs, so the quantifier may be omitted. Now, we choose B as 
formula 

ii « i 2 A . . . A ti « fy_i A —i(fi w iy) A . . . A —i(ti « t m ) . 

With this choice, we have again that M |= A «-+ B holds. 
b) The additional property is an immediate consequence of the construction of B. 
Either B is closed (cases 1 and 2) or the sets of the free variables of A and B are 
identical (case 3). • 

Let L be a first-order language with at least one constant symbol. Furthermore, 
let T be a theory over L such that each sentence of T is a prenex universal formula, 
i.e., of the form Vxi . . . Vx„A, where n > 0 and A (the "matrix" of the formula) is 
quantifier-free. If T has a model, then it has also a term-generated one. For a logic 
without equality a proof of this well-known fact can e.g., be found in [8], p. 19; the 
generalization of this proof to a logic with equality is trivial. 

As an immediate consequence, we obtain: 

L e m m a 4.2 Assume A to be a sentence built up over the language L'z. If there is 
a model of the theory Tz U {A}, then there is also a term-generated one. 

P r o o f . We use Lemma 4.1 and obtain that for every sentence A over there 
exists a quantifier-free sentence B over the same language such that the class of all 
models of Tz U { A } equals the class of all models of Tz U {B}. Each sentence of 
Tz is a prenex universal formula. Since B is a prenex universal formula, too, the 
above mentioned property of the class of these formulae applies. • 

After these preparations, we are now able to prove the desired result. 

Theorem 4.3 There is no finite theory over the first-order language Lz which has 
the structure Z as - up to isomorphism - only term-generated model. 

P r o o f . Suppose, for a contradiction, that we are given a finite theory { j 4 i , . . . , A m } 
over the language Lz which Has - up to isomorphism - the structure Z as only term-
generated model. We define the sentence A by A := A\ A ... A Am. 
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Claim: Each finite subset S of the theory Tz U { - "A} has a model. 

Proof: If -iA £ S, then Z is a model. Otherwise, let k := max{n : (3.n) e S}. 
We define a structure M for the language Lz as a "loop of size k + 1", i.e., by 
\M\ := { 0 , . . . , * : } and 

n J u + 1 ifu Jik , , J u - 1 i f u ^ O 
zU:=0 »«(«):= | Q i f u = fc pw(«) := | fc jf u = q. 

It is obvious that the sentences ( l ) , (2) and (3,n), where 1 < n < k, are true in 
M. Also M f= -*A holds. Otherwise, we would have M (= A which implies (the 
structure M is term-generated) that M and Z were isomorphic. Thus, we have a 
contradiction. Summing up, M is a model of S. 

Now, we use the compactness theorem of first-order logic to deduce that the 
theory Tz U has a model. In combination with Lemma 4.2 this implies the 
existence of a term-generated model M of Tz U M is also a term-generated 
model of Tz- From this fact and Theorem 3.3 we obtain that the two models M 
and Z of Tz are isomorphic. As a consequence, M \= A holds. But this is a 
contradiction to M \= ->A. • 

Consider the sub-theory of Tz containing the two sentences (1) and (2) only. It 
can be shown that each term-generated model of this theory is either isomorphic to 
Z or to a "loop of size n". In the manner of speaking of algebraic specifications or 
universal algebra, Z is initial in the class of all term-generated models of {(1), (2)}. 
To obtain this model as - up to isomorphism - only term-generated model, one has 
to extend the theory in such a way that loops are prevented, i.e., infinitely many 
inequalities can be derived. Theorem 4.3 states that the language used so far is too 
"poor" to do this in a finite manner. 

5 A finite characterization of the integers using 
a hidden function 

As just mentioned, a finite extension of the theory {(1), (2)} which prevents loops 
requires an extension of the language Lz, i.e., the use of hidden machinery. In this 
section we show, that a symbol for the usual ordering on the integers suffices. To 
this end, we extend the language Lz to Lz Lz U { « c } , where < is a 2-place 
predicate symbol. Furthermore, we consider the three sentences (the symbol C is 
used in infix notation) 

(3) Vz(->(a(x) <C x)) (4) Vx(x <C x) (5) VsVy(s(x) < y - . K y ) . 

And, finally, we define the finite theory Tz over Lz to consist of the sentences (1) 
and (2) of Tz and the sentences (3), (4), and (5). 

Clearly, the structure Z := (Z,0, succ, pred, < ) for Lz is a term-generated 
model of Tz - In the rest of this section we prove that each other term-
generated model is isomorphic to this model. As in Section 3, therefore, we 
assume in the sequel an arbitrarily chosen (but fixed) term-generated model 
M := [ \ M \ , Z M o f Tz- In the following, we write tz <CM V (resp. 
u «) instead of C m (u, V) = 1 (resp: < w (u, u) = 0). As in the case of Tz 
we obtain:' 
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Lemma 5.1 Let u e \M\. Then there exists exactly one natural number n e IN 
such that u = or u = p£i(z.kr). 

P r o o f . As the existence of n follows from the validity of (1) and (2) in M (cf. the 
proof of Lemma 3.1), it remains to show uniqueness. 

If u = s j } ( z M ) = s^{zM) and m + k = n (where k > 0), then 

) M = sZ(skM{zM)) => skM(ZM) = ZM ^ skM{zM) Z M 

=> SM(ZM) < M Z M , 

since (2), (4), and (5) are true in M. However, SM(ZM) z m is a contradiction 
to the validity of formula (3) in M. 

The remaining cases are handled similarly. • 

The proof of the fact that the function $ of the third section is an isomorphism 
from M to Z, too, is prepared by a simple 

L e m m a 5.2 If u 6 \M\ and n e IN, then n > 0 implies s^ («) ^fM "«• 

We use induction on n. The induction base n = 1 holds since sentence (3) is true in 
M ; the induction step proceeds as follows: From the validity of (5) in M we obtain 

u »J, (u) < M « 

and, thus, contraposition in conjunction with the induction hypothesis applies. 
• 

Now, we are able to prove: 

L e m m a 5.S The function $ of Section S is also an isomorphism from the fixed 
model M to the model Z. 

P r o o f . Due to Lemma 3.2 of the third section, we have only to prove that 
preserves the two interpretations and < of the predicate symbol <C, i.e., that 
for all u, v £ \M| 

u C m v $(«) < $(v). 

Assume u = s ^ ( z j y ) and t; = «^ (z j^ ) . For a proof of direction "=>" we show that 
3>(u) ^ implies u u. FVom $(u) ^ $(u) we get m > n, hence m = k + n, 
where A; > 0. Thus, 

« = >kJnM = 'ui'TiM) = skM(v). 

Due to this result, u « is equivalent to aj i (v) and Lemma 5.2 applies. 
Now, we prove direction "<=". FVom $(u) < $(v) we obtain that m < n holds, i.e., 
k + m = n, where k > 0. This shows the equation 

& ( « ) = *M(°ZM) = skM+mM = 

In combination with the validity of (4) in M , this result yields s^r ( u ) ^ M v which 
in turn implies (since (5) is true in M) that u Cjif v. 
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Next, let u = and v - (z.w). For a proof of " =>" we distinguish 
between m + n = 0 and m + n > 0. The first case is trivial. In the second case we 
use that (1) is true in M and get 

PMM O *Z+n(PMM) « M PM(ZM). 

Now, Lemma 5.2 shows that the premise of the implication to be proven does not 
hold. A proof of is trivial. 

The remaining cases can be shown analogously. • 

We now have that the structure Z is characterized by the theory Tz-

Theorem 5.4 The model Z is - up to isomorphism - the only term-generated 
model of Tz- • 

It is obvious that the use of a predicate symbol for the ordering (in combination 
with an extension of the theory { ( l ) , ( 2 ) } ) is not the only way to prevent loops. 
E.g., one can also extend, the langauge Lz by a predicate symbol n and {(1) , (2)} 
by the four sentences 

(6) -m(z) (7) n(p(z)) 
(8) Vx(n(x) ^ n(P(x))) (9) Vx(n(s(x)) - n(x)) 

which specify the interpretation of n to test a given integer for being negative or 
not. Another possibility is to introduce inductively (using z,s, and p) a 2-place 
function symbol / that describes the repeated application of the symbols s and p, 
resp. A natural way to specify / is 

(10) V x ( / ( x , z ) « x ) 
(11) V x V y ( / ( x , S ( y ) ) « S ( / ( x , y ) ) ) 
(12) V x V y ( / ( x , p ( y ) ) « p ( / ( x , y ) ) ) . 

We may then substitute in the theory Tz the infinite set (3.n), n > 1, of sentences 
by a single one, viz. 

(13) VxVy(-i(y » z) - - ( / ( x , y) « z)). 

In both cases, the proof of isomorphism is mainly a consequence of (the validity 
of) Lemma 3.1. 

We finish this section with a remark concerning our proof method. Certain, 
our " model-oriented" approach is not the only way to solve the given problem. For 
instance, a proof which argues algebraically can proceed as follows: One shows 
that the initial term-generated model Z of the theory { ( l ) , ( 2 ) } can be extended 
by the ordering relation < in such a way that the resulting structure Z for Lz is 
initial wrt. Tz- Since the truth values 0 and 1 are different, the ordering relation 
cannot identify elements. Now, the desired isomorphism result is an immediate 
consequence of .the initiality of Z. This remark shows also: For a translation of 
the proof of this section into the notation of algebraic specifications a specification 
of the truth values is required which has T up to isomorphism - the two element 
Boolean algebra as only model.' 
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6 Concluding remarks 
FVom a theoretical point of view, hidding machinery is used to overcome the lack of 
expressive power. In the present paper we have shown its necessity even in the case 
of full first-order specifications. To this end, first, we have presented an infinite first-
order theory Tz whose term-generated models are exactly the structures isomorphic 
to Z = succ, pred). Then we have shown that there is no finite set of first-
order sentences which has the same property. And, finally, we have given unique 
characterizations of Z using hidding machinery. 

For the proof of the main result (Theorem 4.3) we have used the argument that 
the theory Tz U { - "A} has a term-generated model if every of its finite subsets has 
a model. It seems that this argument (an extension of the compactness theorem of 
first-order logic) can also be used to prove that there is no finite characterization 
of more complex data types without hidden functions. 

For the description of large structures and systems it is necessary to compose 
specifications in a modular way from smaller ones to master complexity. Hidding is 
one of these so-called specification-building operations and contained in almost all 
modern specification languages; see [13] for an overview. FVequently, its use makes 
specifications more readable and understandable. Furthermore, in various case 
studies it has proven advantageous to use hidding if specifications are transformed, 
e.g., into versions which provide algorithmic solutions. As two examples for this 
latter application we mention the papers [5] and [4]. In all these cases the decisive 
question is how to find suitable hidden functions and their defining formulae. This 
aspect of hidding was not addressed here, but some work can be found in the 
literature. However, it seems that a general methodology for the practical use of 
hidden machinery remains to be developed. 
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On codes concerning bi-infinite words 
Do Long Van* Nguyen Huong Lam* Phan Trung Huy* 

Abstract 
In this paper we consider a subclass of circular codes called Z-codes. Some 

tests of Sardinas-Patterson type for Z-codes are given when they are finite , 
or regular languages. As consequences, we prove again the results of Beal 
and Restivo, relating regular Z-codes to circular codes and codes with finite 
synchronization delay. Also, we describe the structure of two-element Z-
codes. 

1 Preliminary 
In this paper only very basic notions of free monoids and formal languages are 
needed. As a general reference we mention [7], and for the facts concerning codes 
we always refer to [3] silently. In addition to this we use also notions concerning 
infinite and bi-infinite words without very formal definitions because of a wide 
availability of papers on the subject. To fix our notations we want to specify the 
following. Throughout this paper A denotes a finite alphabet. The free monoid 
generated by A, or the set of finite words, is denoted by A* and its neutral element, 
the empty word, by e. As usual we set A + = A* — e. For a word x in A*, |z| means 
the length of x. We call a nonempty word x primitive if it is not a proper power of 
any word, otherwise x is imprimitive. We call two words x and y copower if they 
are powers of the same word. For example, as well known two different words are 
copower if and only if the set they form is not a code. For two finite words x and 
y the notation y x _ 1 and x _ 1 y are used to denote the right and the left quotient of 
y by x respectively. Naturally, the quotient and the product of two words can be 
extended to languages, i.e. subsets of A* : 

X~lY = { x _ 1 y : x e X,y <=Y), YX'1 = { y x _ 1 : x € X , y € F } . 
XY = {xy:xeX,yeY},X2=XX,...-, 

and X* = Un>o Kleene closure of X ) . 
In the following, our consideration is mainly based on the notion of infinite and 

bi-infinite words on A. Let NA, AN,AZ be the sets of left infinite, right- infinite 
and bi-infinite words on A respectively. For a language X of A*, we denote u X , X" 
arid U X U the left infinite, the right infinite and the bi-infinite product of nonempty 
words of X respectively, i.e. their elements are obtained by concatenation of words 
of X—e carried out infinitely to the left, to the right or infinitely in both directions. 
For example, 

w X = {... U2U1 : ti{ e X — e,i = 1,2,...}. 
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Factorizations in elements of X (over X, on X ) of a left or right infinite word are 
understood customarily (see [JLO] for details), but factorizations of a bi-infinite word 
need a special treatment as follows. Let w £ Az be in the form: 

w = ... a_2a_iOoOia2 ... 

with a,- € A. A factorization on elements of X of the bi-infinite word w is a strictly 
increasing function p : Z —• Z satisfying x,- = oM(,) + 1 . . . a^f+i ) € X for all t e Z. 
Two factorizations ¡x and A are said to be equal, denoted p = A if there is t £ Z 
such that A(i + t) = ¿t(i) for all t 6 Z. Otherwise, A and \i. are distinct, denoted 
H / A. It is easy to verify that fi ^ A iff n{Z) / A(Z), or equivalently, there exist a 
word u 6 A+, two bi-infinite sequences of words of X : . . . , x_2, x~i, xo> xi, • • • 
and • •., y~ 2 , y — i , Vo, yi, J/2 > • • • such that 

. . . 2 _ 2 I _ i U = . . . y _ i y 0 , |u|<|x0|, 
2 0 i i . . . = uyxy2..., |u| < |s/o| 

with u j i i o or u ji t/o-
If every rigth infinite word of AN has at most one factorization on elements of 

X then X is said to be an N-code (see [10], where in a wider context JV-code is 
called strict code). Analogously, if every left infinite word possesses this property, 
we call X an N-code. Obviously, X is an N-code iff X = [x : x € X } is an iV-code, 
where i is the mirror image of the word x. For the bi-infinite words, we have our 
basic 

Definition 1 A language X of A+ is a Z-code if all factorizations on X of every 
bi-infinite word are equal. 

Example 1 Every singleton {u} is always both an TV-code and an TV-code but it 
is a Z-code if and only if u is primitive. The two-word language X = {06, 6a} is 
both an iV-code and an TV-code, but it is not a Z-code since the word u(ab)u has 
two factorizations . . . ab.ab.ab ... and . . . ba.ba.ba..., which are verified directly to 
be distinct. 

The family of Z-codes is closely connected with the so-called circular code [3]. 
A language X of A* is said to be circular if for any xo, x i , . . . xm, yo, y i , . . . yn of X 
and s, t of A* the equalities 

X i X 2 . . . X m = tyo . . . ym s, 

xo = st 

imply s = e, m = n and x0 = y0, x m = ym. 
It is easy to see that every circular language is a code and that every Z-code is 

a circular code. But not always a circular code is a Z-code, as the following code 
[4] X = U {a6*a6'+1,t = 0 ,1 ,2 , . . . } shows that. Nevertheless, every regular 
circular code is a Z-code i.e. the families of regular Z-codes and regular circular 
codes coincide, as shown by Beal [2]. Therefore, results and algorithms invented 
for circular codes can be applied to Z-codes. However, in the next section we 
work independently with Z-codes, proposing some tests for regular and finite Z -
codes. As consequences of that, we can obtain a result of A. Restivo on codes with 
finite (bounded) synchronization delay [ l l ] and the aforementioned Beal's result. 
Also, for completeness, as an easy consequence of [l], we describe the structure of 
two-word Z-codes. 
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2 Tests for Z-codes 
We develop now a criterion to verify whether a finite subset X of A+ is a Z-code. 
Our procedure is something like the Sardirias- Patterson one (cp. [10]), but actually 
instead of one sequence of subsets associated to X we need two sequences associated 
to each overlap of elements of X. Precisely, we define first the subset: 

W(X) = {ty G A+ : 3u, u G A*\3x, y € X : uw = x, wv = y, tiv / e } 

whose element is called an overlap of elements of X. For each w G W(X), we define 
two sequences Ui(w,X) an V,(w, X ) of subsets of A* as follows 

U0(w,X) = w-'X-ie}, 
Ui+1(w,X) = Uiiw.X^XuX^Uiiw.X), 

V0{w,X) = ^ " ' - { e } , 
Vi+1(w,X) = XVi(w,X)-1UVi(w,X)X-\ 

i = 0,1, 2 , . . . . Further, if there is no risk of confusion, instead of W(X), U{(tu, X),. 
Vy(w,X) we write simply W,Ui,Vj. The following property of Ut(u>,X), V}(w,X) 
is useful in the sequel. 

Lemma 1 For every N > 0 and for any word u, u G Upf(w,X) iff there exist 
xi,..., xn, t / i , . . . , ym G X such that m + n — 1 = N and either 

wxi ...xn=yl ...ymu, |u| < |i„|, |tw| < |j/i| 

or 
wx1...xnu = y1...ym, |u| < |ym|, |to| < |yi|. 

Remark. Similarly, the symmetrical statement holds for Vy. 

Proo f . By induction on N. For N = O we have 

u G U0 -O- ( 3 y i G X : w~1y1 = u wu = ylt |u| < |t/iU < IS/i!)-

Suppose the lemma is true for some N > 0, we prove it true for N + 1. We have 

u G UN+i 3u' G UN, 3x G X : tt'u = x V xu - u'. 

By induction hypothesis, u' G Un iff there exist x\,..., x„ , yx , . . . , ym G X such 
that n + m — 1 = N and either 

wx1...xnu' = y i . . . y m , |u'|<|ym|, |w| < |yi| (1) 

or 
wx1...xn = y1...ymu.', |u'|<|i„|, < |J/1.t• (2) 

Therefore u G C/jv+i is equivalent to the fact that there exist xi,...,xn, x, 
S/ii • • • > ym in X such that 

( ( « ' « = x ) & ( ( l ) V ( 2 ) ) ) V ( ( x u = « ' ) & ( ( ! ) V ( 2 ) ) ) 
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or equivalently 
((u'tt = x)&(l)) V (u'u = x)&(2))V 
((xu = u')&(l)) V ((xu = u')&(2)). 

The last, in its turn, as it is easy to verily, is equivalent to the fact that there exist 
x i , . . . , x„>, y i , . . . , ymi in X such that n+m'—1 = N+1 and 

wxi ...xn> = y1 . ..ym<u, |u|<|z„>|, |to| < |yi| 
or 

wxl...xn>u=y1...ym>, |u|<|xm-|, |to| < |t/iI, 
i.e. the lemma is true also for N + 1. 

Now we state a sufficient condition for a language to be a Z-code. 
Propos i t ion 1 A finite subset X of A+ is a Z-code if for every overlap to of 
elements of X, the following conditions hold: 

(i) ifw G W n X then Ui = Q and V}- = 0 for some i,j > 0; 
(ii) ifweW-X then Ui — 0 or Vy = 0 for some i„j > 0. 

P r o o f . We suppose that X is not a Z-code, i.e. at least one word of Az possesses 
two distinct factorizations on X, therefore we have two equalities: 

. . . x _ 2 x _ i i y = . . . y _ i y 0 (1) 

X 0 X ! . . . = wyj.y-2... (2) 

for some w G A+, |u;| < |y0| and |u>| <.|xo|, w ^ x0 or to / y0, hence w G W. 
If w G W n X and, say, w ^ x0, then U0 0. By (2), for every N > 0 there is 

the least integer n > 0 such that |xo • • • xn| > |iwyi . . . yjv |> that is 
x0xi ...xn — u>yi ... yjvii 

for some word u G A*, |u| < |x„|. By Lemma 1, u G £///+„. Thus UM ^ 0: (i) does 
not hold. For the case w ^ y0, by (l) and the symmetrical version of Lemma 1 we 
get VJV 0 for all N > 0 : (i) does not hold again. 

Now let to G W — X then we have both w ^ xo and to / y0. By the same 
argument as above we obtain U{ 0 and Vj / 0 for all i, j > 0 : (ii) does not hold. 
The proof is completed. 

In order to make a converse of Proposition 1 for finite languages we prove a 
lemma, which places an upperbound on the least i such that Ui — 0. For a finite 
subset X = { x i , 22j • • • , i n } of A* we define || X ||= ]C?=i lx»l- Note that each Ui 
consists only of right factors (i.e. suffices) of words in X and if Uk = Ui ^ 0 for 
k ^ I then Ui / 0 for all t > 0. Since the set of right factors of words in X is of 
cardinality at most || X ||, such an upperbound obviously exists and we can take it 
as 2llxH. In the following lemma a more refined estimation is given. 

Lemma 2 For any finite subset X of A* and w G W, the following assertions are 
equivalent 

(i) Ui(w, X) jt 0 for some i >|| X ||; 
(ii) Ui (to, X ) ^ 0 for all i > 0; 
(Hi) There exist infinite sequences Xi, X2, -. •; yi, y21 ••• of words in X 

such that 
XOX\%2 •••- yiy2 • • • 

with |to| < |yi|. 
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Remark. The symmetrical statement holds for VJ(w,X). 

P r o o f , (iii) => (ii): already done in the proof of Proposition 1. 

iii) fi): obvious. 

i) =» (iii): Let uN E UN{W,X),N >|| X ||. Then there exist u< € UI{W,X) 
such that u0 = to, u,+ i € uJxX or X - 1 U i , t = 0 , 1 , . . . , N — 1. It is easy to see 
that uq, t t i , . . . , ujv are suffices of words in X and the cardinality of the set of the 
suffices of the finite set X does not exceed || X || and thus is less than N + 1. 
Therefore, there are p and q,0 < p < q < N such that up = uq. Let I be the largest 
number not exceeding q—p such that u p + i = yj"1up, up+2 = (yiJ/2) - 1«p, • ••, «p+1 = 
(yi •••yj)~1"p.i where yi,...,yi 6 X; otherwise I = 0. Then u p + , + 1 6 "p+j-X" 
and we apply Lemma 1 to the case uq € Uq-p-i(up+i, X) to obtain some words 
xi,... ,xn and z\ , . . . , z m of X such that 

Up+jXi ...xn = zi... zmuq 

or 
Up+tXl .. .xnuq = Zx .. .zm. 

Whence 
u p x i . . . xn = yi ... yizx ... zmuq 

or 
UpZl ...xnuq = yi ...yiZx ...zm. 

Since up = uq, these equalities lead respectively to the infinite words 

up(xi... xn)w = (t/i ... yizx ... zm)u (1) 

or 

up(a:i ...xnyi ...ytzi...zm)u = (yx ...yizx ... zmxi... xn)w. (2) 

On the other hand, since up S Up(u),X), again by Lemma 1 we have 

tux = y'yup, < |y'| (3) 

or 

wxiip = y'y, |w|<|y'| (4) 

where y' G X, x, y € X*. Combining (3) and (4) with (1) and (2), we get four 
possibilities that all lead to the desired infinite equality in (iii). Lemma 2 is proved. 

Now we are ready to state our criterion. 

T h e o r e m 1 A finite subset x of A+ is a Z-code if and only if for every overlap w 
of elements of X, the following conditions hold: 

(i) ifw&WC\X then Ui{ w, X) = 0 and Vs{w, X) = 0 for some i,j <|| X ||; 
(ii) • if w. e W - X then Ui{w,X) = 0 or v/(w,X) = 0 for some i,j <|| X ||. 
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Proo f . The sufficient part is Proposition 1, we have to prove only the. necessary 
one. Suppose that (i) or (ii) does not hold. We shall derive from this two equalities 
which show that X is not a Z-code. In fact, by Lemma 2 and its symmetrical 
version, we have two cases: there exist 

(1) weW C\X and x,-, yy e X, i, j = 0 ,1 ,2 , . . . such that 

x0X! • • • = uiy0yi..., |to| < |x0| 

or 
. . .XIXO = • ..yiyoui, |u>| < |sco|; 

(2) w e W - X and x,-,yy € X,i,j = 2 , - 1 , 0 , 1 , 2 , . . . such that 

x 0 x! • • • = u>y0yi. . . , M < |x0| 

and 
. . . x_ ix 0 = . . .y_iy0w, ¡u>| < |x0| 

regarding (i) or (ii) does not hold. 
The first case together with the obvious equalities . . . ww = . . . tutu and ioto . . . — 

ww . . . show that X is not a Z-code. 
The equalities in the second case themselves ensure that X is not a Z-code. 

The proof is completed. 
We give now some examples illustrating the execution of the algorithm. 

Example 2 (a) Consider X = {a2b,b2a}. We apply Theorem 1 to show that X is 
a Z-code. 

W = {a,b}, 
U0{a,X) = {ab}, £Ma,X) = 0, 
U0(b, X) = {6a}, U\(b, X) = 0. 

Since a, 6 ^ X, we conclude that X is a Z-code. 
(b) Let-X - { u } with u imprimitive, u = Xn(n > 2). Clearly A S W - X, 

U0{X,X) = { A " " 1 } , which impUes A e t/i(A, X ) , A " - 1 € U2(X, X),.... Thus 
TJi{A, X) ± 0 for all »' > 0. So {u} is not a Z-code. 

Conversely, let X = {u } not be a Z-code and let A be an overlap of X such that 
Ui(X, X) ^ 0 for all i ^ 0. Since A is an overlap of u, we have xA = u for some 
x e A+. Further, if A0 G Uo(X,X) then AA0 = 11. Hence U0(X,X) = {A 0 } . Let 
•̂ l G Ĉ i (A, AT) then AoAi = it. Thus |Aj| = |A| and from xA = u it follows A = A^ 
Consequently AoA = AAo = u, which with Ao, Ai ^ e yield that u is imprimitive. 
Thus {u } is a z-code if and only if u is primitive. 

The main setback of Theorem 1 is that it is unfit for infinite (even regular) 
languages. 

Example 3 Consider X = {a,cab,c,bc+d} on the alphabet A = {a,b,c,d}. It is 
an infinite regular Z-code, but for all t > 0 : Ui(c,X) ^ 0. 

Nevertheless, for the important class of regular languages we can work out 
another algorithm close to the previous one, also of Sardinas-Patterson type. Let 
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X be a regular language and as before W be the set of overlaps. First, for each 
overlap w S W we construct two sequences: 

U0 = w~lX - {*}, Ui+1 = U^X*, 

Vo = Xw-1 - {e}, Vi+1 = X'V;1 

for all i > 0, which, if needed, will be referred to as U{(w,X) and Vy(tu,X) . Of 
course there is no need to compute Ui(w, X ) , Vj(tv, X ) for all w € W, it is sufficient 
to take representatives modulo the right and left principal congruence defined by 
X * or X . Recall that for a subset X of A* the following equivalence relation 

u =R v u _ 1 X = t i - 1 X , ti, ti € A " , 

called right principal congruence defined by X . Analogously is defined the left 
principal congruence =]_,• When X is regular, the number of right (left) principal 
congruence classes, called right index (resp. left index) of X , is finite and equal to 
the number of states of the minimal automaton recognizing X . Now we state 

T h e o r e m 2 Let X be a regular subset of A+ and m, e be the right and left index 
of X*. Then X is a Z-code if and only if for all w EW the following conditions hold 

(i) weWnX implies Ui(w,X) = 0 and Vy( to ,X) = 0 for some i < m,j < e; 
(ii) w € W — X implies U{(w, X) = 0 or Vy(to, X ) = 0 for some i < m, j < e. 

Remark. As seen from the proof below, (i) and (ii) are sufficient for any language 
of A* to be a Z-code. 

Proof . In fact, we prove an equivalent statement: X is not a Z-code iff (i) or (ii) 
does not hold. 

First, let X not be a Z-code. Then there exist two equalities: 

. . . x _ 2 x - i t o ' = . . . y - i y o , (1) 

x0xi ... = wy1y2... (2) 

with |u>| < ¡xq|, |u)| < |t/o|j xii Vj G X , w XQ or to yo> hence w 6 W. 

If w G W fl X , we assume for certainty that w / yo and consider ( l ) , putting 
wo = you>-1 6 V0. From (1) we get 

. . . x _ 2 x _ i = . . . y _ 2 y _ iv0. 

Choose n € N such that | x _ „ . . . x _ 2 x _ i | > |uo| and put again t>i = 

( x _ i . . . x - i ju j * 1 , hence t^ 6 X 'v^ " 1 C X * V 0 = V i and 

• • • z - (n-i -2)2 : - (n+i)w i = • • • y - 2 y - i -

We apply this argument over and over again to see that Vy ^ 0 for all j > 0, i.e 
(i) does not hold. 

If now w € W — X , we have both w ^ xo and w ^ yo- Similarly, we apply the 
argument above to ( l ) and (2) to verify I/j ^ 0 and Vy ^ 0 for all t, j > 0 : (ii) 
does not hold. 
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Conversely, let ¡7, ^ 0 for all » > 0 and N be any integer not less than m, 
and UN £ UN- There exist u, € Ui,x = 0 , 1 , . . . ,N — 1 such that u0 6 vu~1X, 
Ui+1 £ ut^X*,» = 0, 1 , . . . , N — 1, or equivalently, WUQ £ X , £ X*, ¿ = 
0,1 N — 1. Among u0, • • • > VN we can pick out u, and up such that p < q 
and uq =r Up mod X*. We define now an infinite sequence of words u'Q, u^ , . . . by 
putting 

«i = , 0 < » < g — 1 
and 

u'<t+i = up+t, ¿ = 0 , 1 , . . . , 

where t is the least nonnegative residue of ¿ mod q — p. 
It is easy to verify that 

for t = 0,1, 2 , . . . and 
x1 = WU'Q = WUO € X. 

Consider now the infinite product wu'Qu\ ... written in two ways 

(umoKrijUa) • • • = u>(uou'i)(u2u3) 

or 

x0xi • • • = wyxy-2 ... (3) 

with xq £ X, |tu| < |xo|;x,-,yy € X*. 
Analogously, if V j ^ 0 for all t > 0, we have the equality 

. . .x_2x_iu> = . . . y_ iyo , (4) 

where y0 £ X, |to| < |y0|; Xj, yy £ X*. _ 
If now tu EW n X and (i) does not hold, for instance, £/,• / 0 for all t. Then (3) 

together with the obvious equality . . . ww = ... ww show that X is not a Z-code. 
If w £ W - X and (ii) does not hold, i.e. Ui,V}- ji 0 for all i,j > 0. Then (3) 

and (4) will give rise to two distinct factorizations on X of some bi-infinite word: 
X is not a Z-code and the theorem follows. 

Example 4 We use Theorem 2 to show that the language X = {a, cab, c, bc+d} 
given in Example 3 is in fact a Z-code. 

W = {c,b}, 
U0(c,X) = {ab},U1(c,X) = c+dX*,U2(c,X) = &, 
V 0 ( C , X ) = 0, 
U0(b,X) = c+d,Ui(b,X) = 0. 

Since c £ W n X , beW - X , X i s a Z-code. 

In general Theorem 2 is not true for arbitrary languages, as shown in the fol-
lowing 
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Example 5 Consider X = {a i+26a<6 : t = 0 ,1 ,2 , . . . }u{6a2 i + 16_: t" = 0 , 1 , 2 , . . . } C 
{a, 6}*. Clearly, b is an overlap and for all t > 0, we have ab 6 U<(b, X), o2( i+1)fc e 
VAb, X), i.e. Ui,Vj ^ 0 for all i,j > 0, but a simple verification ensures that X is 
a Z-code. 

We should mention two other algorithms to verify whether a regular code X is a 
Z-code. Both of them consist in checking the emptiness problem for some automata 
(Devolder and Timmerman [4], Beal (2j) that has as well known a polynomial time 
complexity in the number of states of automata. 

Using Theorem 2 we give alternative proofs of the results of M.P. Beal and A. 
Restivo. First, we prove 

Corollary 1 (M.P. Beal [l]) Let X be a regular code. Then X is a Z-code if and 
only if it is a circular code. 

P r o o f . First, observe that if X is a code then 

(1) for any to 6 W n X : Ui(w,X) n X* = 0 and Vi{w,X) n X* = 0 for all 
t' = 0 ,1 ,2 , . . . ; 

(2) for any w € W - X : Ui(w,X) D X* = 0 or Vi(w,X) n X* = 0 for all 
» = 0 ,1 ,2 , . . . 

that are trivially to be verified using Lemma 1 or its symmetrical version. 
Let now X be a regular circular code, hence a code: ( l ) and (2) are satisfied. 
Suppose that for some to G W fl X we have, say, Ui ^ 0 for all t = 0,1,2 

For any N > 0 there exist uo, « i , . . . , «at such that tii € UQ1X*, . . . , ujv 6 
u ^ ^ X * . Since X* is of finite right index m, if we take N sufficiently large, we can 
find i,j : 0 < i < j, such that t i ^ X * = uJ1X* and j — 1 is even. Consider the 
words 

U = Ui+1 . . .Uj , v = U i + 2 - - - « j - l > 
it follows ityu,+i 6 X*, v S X* and u = u,+1uuy € X*. By circularity of X we get 
uy, u , + i € X*, in particular, Uy £ t/y 0 X* 0 contradicting (1). Therefore for 
any w £ W n X we have Ui = 0 for some t and analogously Vy = 0 for some j. 

As for any to € W — X, by the same way, we can conclude that either J7,- = 0 
fpr some t or V j = 0 for some j. By virtue of Theorem 2, X is a Z-code. The proof is completed. 

We now deduce another statement concerning codes with bounded synchro-
nization delay. Recall that a subset X of A* is said to be a code with bounded 
synchronization delay provided it is a code and for some integer p > . 0, for all 
«,»£ Xp, and for all g, f (E A*, 

gu, vf e X* 

whenever 
guvfeX*. 

The least number p satisfying this condition is the synchronization delay of X. The 
fact that every code with bounded synchronization delay is a Z-code is obvious, but 
the reverse conclusion is not always valid. A lot of interesting properties of these 
codes have been discovered, for example, in the finite case, these codes are exactly 
the very pure codes, i.e. circular codes (see [ll], [12]). We have the following 
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Corol lary 2 (A. Restivo [11]) Let X be a regular subset of A+,X is a code with 
bounded delay if and only if it is a Z-code satisfying A*XdA* fl X = 0 for some 
positive integer d. - — _ 

Proo f . "Only if" part: first, the fact that each code with bounded synchronization 
delay is a Z-code is easy. Further, we show that A'XdA*nX = 0 for all d exceeding 
the right index of X. Suppose on the contrary that 

u x i . . . XdV € A*XdA* n X 

for some xi, x2,.. •, xd 6 X and u, v € A*. Then, indeed, there exist » and j, i < 
j < d, such that u i i . . . X{ =R XIX\ . . . xy mod X which implies that for all k = 
0 , 1 , 2 , . . . : 

UXI... x ; (x , + 1 . . . Xj)k =R UXi... x; ( x ; + i . . . xy) f c+1 mod X 

and consequently 

uxx ... xi(xi+1 ... xj )kxj+1 ...xdv&X. 

Hence the synchronization delay of X cannot be bounded. 
Conversely, let X be a regular Z-code and A*XdA* D X = 0 for some positive 

integer d, hence d > 2. By Theorem 2, for all overlaps w € W, Um(w, X) — 0 or 
Ve(tu, X) = 0, where m and e are the right and left index of X*, respectively. We 
show that X is of bounded synchronization delay not greater than p = (m + l)ci 
(the value in [l l] is 2(m + l)<i). If that is not so, there must exist some words 
g, h e A', xlt..., xp, x p + 1 , . . . x2 p , y i , . . . , yq € X such that 

gx1...xpxp+1...x2ph = y1...yq (1) 

and for all k = 1, 2 , . . . , q 
gxx . . . xp ^ yx... yk. 

Thus, it has to exist a unique positive integer I < q such that 
yi ...yi-i < gxx ...xp < yi ...yi 

and the largest positive integer t < p— 1 and the smallest positive integer j > p+ 1 
satisfying 

gxi.. .n < yx .. .yi-i < gxx.. .xp < yx.. ,yt < gxx . . . x y (2) 

(abusing language, we write for words x,y,x < y,x < y to indicate that x is a 
prefix, a proper prefix of y, respectively). Since yt £ A*XdA*,j < d + p and 
i > p — d. 

Further, if in (2) gxx... x» = y i . . - JU-i and gxx • • • xy = yx . . . yt then 

' yi = xi+1...Xj, j - i > 2 

that is a contradiction with the fact that X is a code. 
Alternatively, assume that gxx.. .xy ^ yx'... yi which gives rise to 
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g x x . . . x j - i w = y i - . - y i , (3.1) 

xJx}+1...x2ph = wyt+i...yq, (3.2) 

where to G W and |t/>| < |J/I|, |ti/| < |xy|. Similarly, the case gxi... xt- ^ y i . . . yi-i 
gives rise to 

gxi...x{+1-yi... yi-!W, (4.1) 

wxi+2...X2Ph = yiyi+i...yq, (4.2) 

where w & W and |to| < |yj|, |to| < |x,+i|. 
We will show that (3.2) or (4.2) equally leads to U2m{to, X ) ^ 0 and (3.1) or 

(4.1) - to Vfc(to, X ) ^ 0 with fc abitrarily large, in particular k > e that is quite a 
contradiction. 

First, suppose that we have (3.2), setting 

U1 = x] +1 • • • Xj+d, • • •, um = xj+(m-l)d+l • • • Xy + md 

and let q{k) the smallest integer such that for k = 0 , 1 , . . . , m 

X j i < toy ( + 1 . . .y i ( f c ) (5) 

(for compactness, we set by convention that xyui . . .Ufc = xy when k = 0). Since 
A*XdA*CiX = 0, to < xy and t i i , . . . , u m e it follows /+1 < q(0) < q( 1) < < 
g(m), Putting ufc = y ( + i . . . y , ( f c ) , f c = 0,1,2, . . . , m , by (5) and A*XdA* n X = 0 
we get 

XyUi...Ufc < WVK < Xytlj . . . u f c + i (6) 

for fc = 1 , 2 , . . . , m — 1 and 

toufc_i < xyu i . . . ufc < toufc (7) 

for fc = 1 , . . . , m . 

It is easy to verify that (6), (7) together with w < xy yield 

(tOUo)~^(xyUi) e U2l - •. , (u;um_i) _ 1 (xyui . . . tlm) e t/2m, 

i.e. U2m f 0. Likewise, since t + 2 < j , (4.2) leads also to C / 2 m / 0. 
Now, as far as Ve is concerned, we treat (3.1) and (4.1) as above, only in the 

symmetrical way. Directly, (3.1) or (4.1) cannot lead to Vc ^ 0, but we can "pump" 
them up to some equalities "long" enough by proceeding as follows. Suppose, for 
example, that we have (4.1). Among m + 1 numbers 1, d + 1 , . . . , md + 1 there 
must exist o, b such that grxi . . .x0 gx% ...if, mod X* with a < b. Note that 
b — a > d > 2 and o, 6 < md + 1 < p — d + l < t + 1. Further, for some integer 
s < t < I we must have 

yi---y.-l "a = 9*1 •••Xa, 
gx i...xava = yi ...y„ 
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and 

yi-yt-i«6 = gxi...xb, 
gxl...xbvb = yi...yt, 

«6«6 = tk, 

where u0 , u„, ub , «6 € A*. Hence x a + i . . . x j + i € vaX*w. Prom gx i...xa =r 
gx i . . . xt, mod X* it follows 

gxi. ..xa =R gii... x a ( x „ + i . . . xb)k mod X* 

for all k — 0 ,1 ,2 , Since gxi ... xava £ X* we have gxi... x a ( x a + i . . . Xb)kva £ 
X\ Therefore 

gx1...xa(xa+1...xb)kxa+1...xi+i &X*w, (8) 

where, as before, 
Looking into 

< R + i l - , , 
8) we see that the left-hand side of (4.1) is pumped up by a 

product of k(b — a — 1) words. We take k large enough to obtain a sufficiently 
"long" equality of the form (4.1). Now proceeding as is done for U2m , we conclude 
that V e is nonempty. This contradiction with Theorem 2 completes the proof. 

The regularity condition is essential for Theorem 3 to be valid. Indeed, consider 
the following 

E x a m p l e 6 The Z- code X = {ai+1baib :i = 0,1, 2 , . . . } C {a, b}* is not a regular 
language. It is not a code with bounded synchronization delay, although A* X2 A* n 
X = 9. 

" Concluding, from [8] or [l] we deduce the following statement. 

Theorem 3 Let X = {x,y}(|x! > |t/|) be a two-word language of A* then 
X is not a Z-code if and only if one of the following assertions holds 

(i) x or y is imprimitive; 
(ii) x and y are conjugate; 
(Hi) xyn is imprimitive for some positive integer n < + 1; 
(iv) x2y is a square. 

P r o o f . Obviously, if one of (i)-(iv) holds, X is not a Z-code. 
Conversely, suppose that X is not a Z-code (thus not a circular code, not a very 

pure code) and besides x and y are primitive and not conjugate. We show that (iii) 
or (iv) must occur. 

Indeed, by [8] or [l], x*y U xy* contains an imprimitive word u = vm, m > 2: 

- if u = xyn then in — l)|y| cannot excceed |u| — 1 otherwise by Fine and Wilf 
Theorem (see [9] or [5]) x and y are copower that contradicts the assumption. Thus 
( n - l ) | y | < H t o r 2 ( n - l ) | y | < 2 H < H + »|y| = |®y»|.i.e. |n| < |f| + 1; 

- if u — xny = vm we can suppose n > 2. Further, if the inequality 

. n + 1 m > T. n — 1 
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holds, then m ( n - l ) | i | > (n+l)|x| > njx|+|!/| = m|w|. Therefore, (n - l )|z| > |«|, 
or, n|x| > |x|+ |u|. Again by Fine and Wiif Theorem x, v and thus x, y are copower 
that contradicts the assumption. So, we always have m < Since m, n > 2 it 
follows m = n = 2. 
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Market Oriented Integration of 
MS-Windows-Based Tools for Distributed 

Decision Support* 
M. Biro* P. Danyi* P. Gelleri* 

Abstract 
In this paper, we discuss the meaningfulness of value added systems in-

tegration for distributed decision support from a market oriented primary 
perspective. The issues to be analysed are derived from all pairwise interre-
lationships of the entities involved in a decision situation. These are the task 
logic, the decision culture, and the decision environment. Keeping these con-
siderations in focus, we summarize experiments with commercially available 
products for the Microsoft Windows environment which is undisputably the 
most popular operating environment for personal computers. 

Keywords : Systems integration, Decision support systems, Model de-
sign, Distributed decisions. 

1 Introduction 
The purpose of this paper is to give a structured guide to the design of distributed 
decision support systems. Since our primary objective is the supply of the market, 
we are concentrating on Microsoft Windows based tools which can be used on the 
most popular type of personal computers worldwide. 

Our approach is derived from practical experiences in building and installing 
decision support systems to orders. One of our recent observations is that users are 
less keen on accepting a clever but custom made software tool than well established 
commercial products. We also see however, that commercial products alone are 
most of the time inappropriate for the support of specific decision circumstances. 
Our answer is value added systems integration. 

The universal validity of our conclusion is supported by the report of a colo-
quium held by the U.S. Computer Science and Telecommunications Board, the 
Commission on Physical Sciences, Mathematics, and Applications, and the Na-
tional Research Council in 1991. There, "systems integration was identified as a 
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large and rapidly growing market in which the United States was a clear leader" 
[l] [Keeping the U.S. Computer Industry Competitive... 1992]. 

In this paper, we are not going into the details of systems integration issues 
in general. We are rather concentrating on the structuring of ideas based on our 
practical experiences in building and installing decision support systems and our 
pioneering role in introducing object- oriented windows based software and decision 
support technology in Hungary [2], [3]. 

2 A Model for Mapping Decision Situations 
A DSS must always refer to the particular decision situation. However, decision 
situations are not only determined by the decision problem itself, but also by the 
problem owner and the available decision techniques. Let us formulate a model 
which, according to our experiences, provides an appropriate guidance for our anal-
ysis (Figure 1.). A DSS stands in the intersection of the entities of the basic model 
which means that a DSS can only be built if we bring together the contexts of these 
entities. 

A - Problem or task 
B - Problem owner 
C - Decision techniques 

m Tasklogic 

[2] - Decision culture 

i!| - Decision circumstances 

Figure 1. 

Examples could be brought from an infinitely 'wide range of areas including 
money allocation, tender evaluation, personnel selection. Let us consider the fol-
lowing specific example. A DSS is being designed for managing catastrophe situa-
tions in a power plant. The system must not only contain decision techniques in 
themselves, sis e.g. MCDM, fuzzy logic or AHP. Decision models should be set up 
concerning 
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• different kinds of problem (or task) situations, e.g. earthquake, computer 
virus, etc... 

• problem owners with different levels of decision authority ranging from a 
guard to the president. 

The entities do never occur apart but in a colorful amalgamation which we are 
interested in. Let us consider the intersections of all pairs of entities: 

Task logic. The intersection of decision technique and problem (or task) is related 
to the abstract types of decision problems which reflects different decision models 
and have logically different solution algorithms. The most typical task logics are 
as follows: selection among discrete (well defined) alternatives, task monitoring, 
resource allocation, etc. It is obvious that any DSS supports some of the possible 
task logics but not all of the logics. Different DSSs must be built for the catastrophe 
example in the different warning phases with dissimilar levels of danger. 

Decision culture. The intersection of problem owner and decision technique 
is related to the decision culture. This means the problem owner's experience 
in solving decision problems that is capability of using various kinds of decision 
methods and tools, and his skill level at using them. More specifically, e.g. some 
people prefer using probabilities, others do odds or utilities. On the other hand, 
some people are risk-averse, some are risk-prone. Japanese and American managers 
hardly ever look similarly at the very same problem. What kind of presumptions 
can we have about cultures? First, some people may be homogeneous as fax as 
their decision thinking is concerned. Second, if they think differently, classes must 
be defined. Our goal is to help the problem owner in finding his real role i.e. his 
class. 

Decision circumstances. Finally, let us consider the concept of decision cir-
cumstances, which is related to the intersection of problem and problem owner in 
the model. First, decision circumstances include the constraints and goals of the 
problem owner together with his or her attitude to the task. This also means time 
and resource constraints, and considerations coming from personal interests on the 
other hand. Second, the environment of the given problem has a huge influence on 
the design of the DSS. Some of the important issues are the individual or group 
nature of the decision environment, the chance for a compromise in the group case, 
the equality or inequality of voting powers, etc. 

3 The M S - W I N D O W S Based Toolkit Approach 
In our opinion the most effective way of building a DSS satisfying particular re-
quirements is using a toolkit. When we build a DSS from parts, we can excellently 
track the needs of the user, the environment, etc. In addition, the toolkit approach 
provides some technical advantages: 

• modularity 

• all of the pieces are exchangeable 

• interfaces between units must be precisely elaborated. 
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The tools that we shall inspect are commercially available products for the Mi-
crosoft Windows operating environment. The interface between the units is natu-
rally provided by DDE (Dynamic Data Exchange) and OLE (Object Linking and 
Embedding) which are defined in general within tne environment. 

However, while the above features significantly facilitate systems integration, we 
have to extend the commercial tools with new capabilities in order to supporting 
specific decision circumstances. These extensions will be highlighted below as well. 

Tools covering significant task logics 
The tools that can be mentioned here must include at least group scheduling capa-
bilities which are necessary for monitoring the group decision making process and 
for allocating the necessary resources. There aire many Windows based products 
belonging to this category. One of them is Schedule-f included with Windows for 
Workgroups and the future Windows NT as well. 

Windows for workgroups has another important characteristic from the task 
logic point of view, which differentiates it from other groupware tools like Lotus 
Notes available today. It supports peer-to-peer networking with network dynamic 
data exchange facility as opposed to the client- server paradigm inherent to other 
tools. This feature opens new possibilities for distributed decision support where 
each personal computer on the network can operate both as a client and a server, 
obviating the need for a dedicated server. These networks are not only inexpensive 
but also easy to set up. A useful exploitation of this technology for distributed 
negotiation support (DINE) is described in [4]. This application was based on a 
prototype network dynamic data exchange facility developed with the participation 
of one of the authors one year before the release of the commercial Microsoft tool. 

Tools covering significant decision cultures 
Experts participating in a distributed decision making process may have different 
professional backgrounds which basically determine their decision culture. Differ-
ent professional backgrounds implie that their professional cognitive patterns are 
different as well. A tool supporting distributed decision making must provide sup-
port for each individual expert and for the group as a whole. Thus, the model 
representations offerred by the system must be appealing to all of the participants, 
which implies that they must be as close as possible to everyday cognitive patterns. 
Tabular (relational) representations in spreadsheets for example satisfy this require-
ment, since tables are incorporated among our cognitive patterns at the elementary 
school level. This is in fact the fundamental reason of their general success [5]. 

Spreadsheet products for Windows are numerous again. They include Lotus 
1-2-3, Borland Quattro, and Microsoft Excel. 

The already mentioned application (DINE) [4], [6] is based on Microsoft Excel, 
which was extended with several features in order to accomodating experts from 
various professional backgrounds and still providing a high level of decision sup-
port. These features include optimisation and multiple criteria decision making 
capabilities in an environment where dynamically changing data originating from 
shared data bases or other members of the decision making group are permanently 
taken into account. 
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Tools covering significant decision circumstances 
Groupsystems and Lotus Notes are commercial tools that are relevent to different 
decision circumstances. Groupsystems provides anonymous, real-time interaction 
with the help of a facilitator in an electronic meeting room. Lotus Notes pro-
vides workgroup electronic mail, distributed databases, bulletin boards, document 
management, etc... in an environment distributed in time and space. 

It is a characteristic property of DINE that it provides integrated support for 
both the group as a whole and the individual user while privately evaluating the 
positions of other group members. This support is independent on the cooperative 
or competitive nature of the decision circumstances. 

4 DINE 
The DINE model supports simultaneous, multiple issue, independent peer-to-peer 
negotiations. It allows the integration of existing negotiation support techniques 
which, as opposed to DINE, mostly focus on scenarios where the negotiation is-
sues are shared by all negotiators. The latter techniques are used to support the 
independent peer- to-peer negotiations in DINE. Negotiators may in fact use any 
tool even without DINE, as long as it supports the same peer-to-peer informa-
tion sharing protocol. At the same time, DINE is a generalized multiple criteria 
decision making model where the alternatives to be ranked are compound sub-
sets of negotiated offers. DINE naturally integrates asynchronous and synchronous 
communication requirements, intuitive judgement and deep knowledge based tech-
niques. The implementation is based on the Microsoft Windows environment and 
some of its value added features have already been mentioned. 

Our objective here is the critical description of the value- added features re-
lated to model-based deep knowledge generation wich bring the Microsoft Excel 
commercial tool closer to a wide range of task logics, decision cultures and decision 
circumstances. 

The cunstruction of models in general is well supported in spreadsheet envi-
ronments. There is even integrated support for the specification and solution of 
optimization models within a spreadsheet (What's Best, IFPS/Optimum, Microsoft 
Excel Solver). The advantages of such systems over algebraic languages have been 
analysed in detail [8], [18], we will not go into these issues here. 

What difficulties do arise however with existing tools and what kind of fur-
ther support can be provided for optimization modeling and model experiments in 
spreadsheets which can improve their scope of usability? Let us list some of these 
below. 

1. The first problem is that while changing most parameters of the model is 
natural and easy, changing the size of the model involves spreadsheet ma-
nipulations which are error prone and external to the world of the model 
itself. 

2. The second problem is also related to the size of the model. There are two ma-
jor reasons why large models are increasingly difficult to handle with spread-
sheets. The first reason is memory limitation which is a question of money 
and technology scaling only. The other reason is our cognitive limitation. The 
power of the spreadsheet in visualizing data relationships may decrease with 
larger models unless appropriate data are stored in relational databases and 
the display structures of the model are carefully chosen in the beginning. 



116 M. Biro, P. Danyi, P. Gelleri 

3. The third problem is that existing spreadsheet model building schemes are 
essentially jilgebraic which means that a transformation of real world objects 
and relationships into "algebraic entities and expressions is necessary. - A- re-
markable possibility for integrating iconic and other representation schemes 
including spreadsheets is described in jl4]. This issue is not discussed any 
further in this paper, it will be the subject of a further study. 

The purpose of the meta-model building tool in DINE is the provision of relief to 
the first two difficulties above. The solutions provided by DINE are best illustrated 
in the light of an example. 

An example 
The example is a simple multiperiod investment problem similar to the one provided 
as a sample application for Microsoft Excel Solver. The point is not on the validity 
of the assumptions, but on the new spreadsheet representation and underlying 
meta-model building tool which solves the first two problems above. 

Determine how to invest cash into certificates of deposit (CD) with fixed in-
terest rate and fixed term, so as to maximize interest income while meeting given 
periodical cash requirements (plus a safety margin). The algebraic formulation of 
this problem is a typical textbook exercise. The spreadsheet formulation provided 
as a sample application for Microsoft Excel Solver has its advantages, however it 
strongly suffers from the above listed difficulties. The DINE approach will preserve 
the advantages, while resolving the problems. 

The primary concepts that appear to be necessary for the formulation of the 
model are the following: 

• Date 

• Cash requirement 

. CD 

• Interest 

• Term 

• Investment 
These concepts will be extended during meta-model building with a few sec-

ondary quantities which contribute to a better visualization of the data relation-
ships. 

The meta-model building tool 
The quantities in our example which are appropriate for database storage are the 
cash requirements with the corresponding dates (a private database) and the CD's 
with their interest rates and terms (public database). The decision variables are 
clearly the amounts invested into different CD's at the specified dates (Investment). 

CD Interest rate Term Date Cash 
requirement 

The meta-model of the problem is placed into the first line of a table whose 
field headings are the primary concepts and some further interesting secondary 
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quantities. On request, our macros interpret the meta-model and replace the line 
with a table which is then the final model still hot linked to the underlying databases 
and automatically responding to any intuitive or optimization based changes. 

The purpose of the meta-model is the definition of the way the actual model 
will be automatically built as soon as the underlying databases are available and 
the user requests it. The meta-model by consequent is independent on the sizes of 
any databases which determine the siae of the model itself, it depends however on 
the fields of those databases. 

The functional decomposition of the model into databases and meta-model pro-
vides a solwtion to the first problem above. It allows an easy reconstruction of the 
model any time the size of any database changes. The use of the relational database 
paradigm means a solution to the second problem (keeping a clear view of relation-
ships) from the side of the primary data the model refers to. The databases may 
even reside on remote servers. 
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Figure 2. Model, underlying databases, 
and chart showing model characteristics. 

The solution to the second problem from the side of the model, that is keeping 
a clear view of relationships within the model, is a question of careful design of 
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the model structure in the spreadsheet, and of the most useful decomposition of 
calculations into secondary result tables. The secondary result tables should in 
particular include quantities which will serve as constraints to the optimization 
problem, and should at the same time be useful for the evaluation of the effect of 
intuitive changes made with the decision variables. From the technical point of 
view, the primary and secondary result tables have to be defined in such a way 
that the same spreadsheet formula can provide all required quantities in any given 
column of the table when the meta-model is expanded into the final model. 

5 CONCLUSION 
In this paper, we gave a structured guide to the design of distributed decision 
support systems from a market oriented perspective. We concentrated on Microsoft 
Windows based tools which can be used on the most popular type of personal 
computers worldwide. 

We illustrated the power of value added systems integration with new features 
incorporated into a prototype distributed negotiation support application exploit-
ing the advanced capabilities of the Microsoft Excel commercial spreadsheet envi-
ronment. 
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