
Volume 11 Numbers 1—2

ACTA
CYBERNETICA

Editor-in-Chief: F. Gécseg (Hungary)

Managing Editor: Z . Fülöp (Hungary)

Editors: M. Arató (Hungary), S. L. Bloom (USA), W. Brauer (Germany), L. Budach
(Germany), R. G. Bukharaev (USSR), H. Bunke (Switzerland), B. Courcelle (France),
J. Csirik(Hungary), J. Demetrovics (Hungary), B. Dömölki (Hungary), J. Engelfriet (The
Netherlands), Z . Ésik (Hungary), J. Gruska (Czechoslovakia), H. jürgensen (Canada),
L. Lovász (Hungary), A. Makay (Hungary), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary)

Szeged, 1993

Information for authors: Acta Cybernetica publishes only original papers in English in the field of
computer sciences. Review papers are accepted only exceptionally. Manuscripts should be sent in
triplicate to one of the Editors. The manuscript must be typed double-spaced on one side of the paper
only. For the form of references, see one of the articles previously published in the journal.

Editor-in-Chief: F. Gécseg
A . József University
Department of Computer Science
Szeged
Aradi vértanúk tere 1.
H-6720 Hungary

Managing Editor: Z . Fülöp
A. József University
Department of Computer Science
Szeged
Árpád tér 2.
H-6720 Hungary

Board of Editors:

M . Aratô
University of Debrecen
Department of Mathematics
Debrecen
P.O. Box 12
H-4010 Hungary

S . L. Bloom
Stevens Institute of Technology
Department of Pure and
Applied Mathematics
Castle Point, Hoboken
New Jersey 07030
U S A

W . Brauer
Institut für Informatik
der T U München
D-8000 München 2.
Postfach 202420
Germany

L. Budach
Fraunhofer Institut für
Software und Systemtechnik
PSF 1298 Kurtstrasse
DO-1086 Berlin
Germany

R. G. Bukharaev
Kazan State University
Lenin str. 2.
420012 Kazan
USSR

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Länggass strasse 51
CH-3012 Bern
Switzerland

B. Courcelle
Université de Bordeaux I.
Mathématiques et Informatique
351, cours de la Liberation
33405 T A L A N C E Cedex
France

J. Csirik
A. József University
Department of Computer
Science
Szeged
Árpád tér 2,
H-6720 Hungary

J. Demetrovics
M T A SZTAKI
Budapest
P.O.Box 63
H-1502 Hungary

B. Dömölki
SZKI
Budapest
Donáti u. 35—45.
H-1015 Hungary

J. Engelfriet
Rijksuniversiteit te Leiden
Subfaculteit der
Wiskunde & Informática
Postbus 9512
2300 R A Leiden
The Netherlands

Z . Esik
A. József Univesity
Department of Foundations of
Computer Science
Szeged
Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Technical
Cybernetics
Slovak Academy of Science
Dübravska 9
Bratislava 84237
Slovakia

H. Jürgensen
The University of Western
Ontario
Department of Computer
Science
Middlesex College
London N 6 A 5B7
Canada

L. Lovász
Eötvös University
Budapest
Múzeum krt. 6—8.
H-1088 Hungary

Á. Makay
A. József University
Kalmár Laboratory of
Cybernetics
Szeged
Árpád tér 2.
H-6720 Hungary

A. Prékopa
Eötvös University
Budapest
Múzuem krt. 6—8.
H-1088 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50
Finland

L. Varga
Eötvös University
Budapest
Bogdánfy u. 10/B.
H-1117 Hungary

Acta Cybernetica, Vol. 11, No. 1-2, Szeged, 1993

A Tourist Guide through Treewidth
H. L. Bodlaender**

Abstract
A short overview is given of many recent results in algorithmic graph the-

ory that deal with the notions treewidth, and pathwidth. We discuss algo-
rithms that find tree-decompositions, algorithms that use tree-decompositions
to solve hard problems efficiently, graph minor theory, and some applications.
The paper contains an extensive bibliography.

1 Introduction
In recent years, the notions 'treewidth', 'pathwidth', 'tree-decomposition', and
'path-decomposition' have received a growing interest. These notions underly sev-
eral important and sometimes very deep results in graph theory and graph algo-
rithms, and are very useful for the analysis of several practical problems.

In this paper, we give an overview of a number of these applications, and al-
gorithmic results. In section 2 we give the main definitions. Applications of the
notions discussed in this paper are given in section 3. In section 4 we explain the ba-
sic idea behind linear time algorithms on graphs with constant bounded treewidth.
In section 5 we review some results that deal with graph minors. In section 6 we
discuss algorithms that find 'suitable' tree- or path-decompositions.

It should be noted that the constant factors, hidden in the 'O'-notation can be
quite large for several of the algorithms, discussed in this paper. In many cases,
additional ideas will be required to turn the methods, described here, into really
practical algorithms.

2 Definitions
In this section we give the most important definitions, with an example. The
notions of treewidth and pathwidth were introduced by Robertson and Seymour
[109,115].

"This works was partially supported by the ESPRIT Basic Research Actions of the EC under
contract 7141 (project ALCOM II.). ,

^Department of Computer Science, Utrecht University, P.O.Box 80.089, 3508 T B Utrecht, the
Netherlands, e-mail: hansbQcs.ruu.nl.

1

2 H. L. BodJa.ender

Figure 1. .
Example of a graph with tree- and path-decomposition

Def init ion. A tree-decomposition of a graph G = (V, E) is a pair
({Xt- | t £ /}, T = (I, F)) with { X , | t e 1} a family of subsets of V, one for each
node of T, and T a tree such that

• Uv eIXi = v.

• for all edges (u, w) £ E, there exists an i S I with «•£ X,- and w £ X,-.

• for all i, j, k £ I: if j is on the path from i to k in T, then X ; fl C X}-.

The treewidth of a tree-decomposition ({X,- | t £ / } , T = (I, F)) is max,g/ |X,| — 1.
The treewidth of a graph G is the minimum treewidtn over all possible tree-
decompositions of G.
The notion of patliwidth is defined similarly. Now T must be a path.

A Tourist Guide through Tree width 3

Definition. A path-decomposition of a graph G = (V, E) is a sequence of subsets
of vertices (X i , X 2 , . . . , Xr), such that

•\Ji<i<rXi = V.

• for all edges (v, w) € E, there exists an i, 1 < i < r, with v £ X,- and w £ Xi.

• for all i,j, k € I: if t < j < k, then X,- D X^ Q Xj.

NI
N2

N3
N.

A'

G1 G2 C5 C7

1 1 0 0 0 1 1 0

0 0 0 1 1 0 0 0

0 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1

0 0 1 0 1 1 0 0

4

¿•www»

3 tracks

Figure 2.
Example of gate matrix layout

The pathwidth of a path-decomposition (Xi , X 2 , is maxi<,<r | — 1.
The pathwidth of a graph G is the minimum pathwidth over all possible path-
decompositions of G.
In figure 1, an example of a graph with treewidth and pathwidth 2 is given, together
with a tree- and path-decomposition of it.

Clearly, the pathwidth of a graph is at least its treewidth. There are several
equivalent characterizations of the notions of treewidth and pathwidth, see e.g.
[3,15,18,99,143]. The (probably) most well known equivalent characterization of
treewidth is by the notion 'partial Ar-tree', see [132,139]. Also, tree decompositions
are reflected by graph expressions, where graphs are built by operations on graphs
with some special vertices (the sources) like: parallel composition, forget sources,
renaming of sources. The treewidth can be characterized in terms of the number
of sources used in the operations. See [50].

3 Applications
Several well-studied graph classes have bounded treewidth or pathwidth, hence
many results discussed here also apply for these classes. Examples are trees
(treewidth l) , series-parallel graphs (treewidth 2), outerplanar graphs (treewidth
2), and Halin graphs (treewidth 3). See e.g. [18,20,132,143]. We mention some
otheryapplications.

4 H. L. BodJa.ender

3.1 VLSI layouts
A well studied problem in VLSI layout theory is the GATE MATRIX LAYOUT
problem. This problem is stated in terms of a matrix M = (mij), whose columns
represent gates G1,..., Gn, and whose rows represent nets Nit..., Nm. If m^y = 1,
then net N{ must be connected with gate Gj. An example is given in figure 2. The
problem of finding a permutation of the gates, such that all nets can be made within
the minimum number of tracks is equivalent to the pathwidth problem (see [63]).
See [99] for an extensive overview. See also [53].

3.2 Cholesky factorization
There is also a close connection between treewidth, and Choleski factorization on
sparse symmetric matrices.

In the multifrontal method for Choleski factorization, one step is of the form

' d vT ' Vd 0 ' ' 1 0 ' Vd «>T/Vd
V B u/y/d I 0 B - v • vT/d 0 I

where u is an (n — l)-vector, and B is an n — 1 by n — 1 maxtrix. I is the n — 1
by n — 1 identity matrix. The process is repeated with the matrix B — v • vT.
Consider the graph with vertices 1, 2 , . . . , n, and edges between vertices i and j, if
the matrix entries on positions (t , /) and [j , i) are non-zero. One step as described
above corresponds to removing a vertex and connecting all its neighbors. As the
matrix is sparse, one wants to find an order of coluins/rows to be eliminated for
which all matrices v • vT are small, i.e. have a large number of columns and rows
that are entirely 0. One can show that to bound the maximum size of these matrices
corresponds to bounding the treewidth of the graph, described above. For more
details, see e.g. [29].

3.3 Expert systems
Graphs modelling certain type of expert systems have been observed to have small
treewidth in practice. Tree-decompositions of small treewidth for these graphs can
be used to perform efficiently certian otherwise time-consuming statistical compu-
tations needed for reasoning with uncertainly in these systems. See e.g. [92,138].

3.4 Evolution theory
Researchers in molecular biology are interested in the problem, given a set of
species, a set of characteristics, and for each specie and each characteristic, the
value that that characteristic has for that specie, to find a 'good' evolution tree
for these species and their possibly extinct ancestors. One variant of this problem
is called the PERFECT PHYLOGENY problem. This problem can be shown to be
equivalent with the following graph problem: given a graph G = (V, E) with a
coloring of the vertices, can we add edges to G such that the resulting graph is
chordal but has no edges between vertices of the same color? Equivalently, does
there exist a tree-decomposition ({ X j] t 6 I},T) oi G such that for all t € I: if
v, w G Xi, v w, then v and w have different colors. So, a necessary condition is
that the treewidth of G is smaller than the number of colors. See [2,28,33,79,80,98].

A Tourist Guide through Tree width 5

3.5 Naturs .language processing
Kornai arid Tuza |88] have observed that dependency graphs of sentences encoding
the major syntactic relations among the words have usually pathwidth at most 6.
The pathwidth closely resembles the narrowness of these graphs1. For the relation-
ship of this notion to natural language processing, see [88].

4 Bounded treewidth and linear time algorithms
An important reason for the interest in tree-decompositions, is that if we have a
tree-decomposition of a graph G — (K, E) with its treewidth bounded by some fixed
constant fc, then we can solve many problems that are hard (intractable) for arbi-
trary graphs, in polynomial and often linear time. Problems which can be dealt with
in this way include many well-known NP-complete problems, like INDEPENDENT
SET, HAMILTONIAN CIRCUIT, STEINER TREE, etc., but also certain statistical
computations (including some with applications to reasoning with uncertainity in
expert systems [92,138]), and some PSPACE-complete problems [4,5,26]. Results
of this type can be found — among others — in [3,4,5,8,10,14,19,26,22,31,37,44,47,
52,55,67,69,71,73,74,75,87,90,93,94,95,96,107,132,137,141,142,143,144,145].

As an example we consider the maximum independent set problem. In this
problem, we a looking for the maximum size of a set W C V in a given graph
G = (V, E), such that for all v, w £ W : (v, w) & E.

Given a tree-decomposition, it is easy to make one with the same treewidth,
and with T a rooted binary tree. Suppose we have such a tree-decomposition
({Xi | i £ I},T = (I,F)) of input graph G, with root of T r, and with treewidth
k. For each i £ define Y{ = {u 6 Xj | j = i or j is a descendant of i } .

Note that if v £ Y,-, and v € Xj for some node j £ I that is not a descendant
of i, then by definition of tree-decomposition, v £ X,-. Similarly, if v £ Y,-, and v is
adjacent to a vertex w £ Xj with j a descendant of t, then v £ X; or w £ Xi. As
a consequence, we have that, when we have an independent set W of the subgraph
induced by Yi, (?[?<], and want to extend this to an independent set of G, then
important is only what vertices in X,- belong to W , not what vertices in Y{ — Xi
belong to W. Of the latter, only the number of the vertices in W is important.

For t £ I, Z C Xi, define isi(Z) to be the maximum size of an independent set
W in G[Yi] with W n X{ — Z. Take i s , (2) = — CXJ, if no such set exists.

Our algorithm to solve the independent set problem on G basically consists of
corriputing all tables isi, for all nodes i £ I. This is done in a bottom-up manner
in the tree: each table isi is computed after the tables of the children of node i
are computed. For a leaf node t, the following formula can be used to compute all

values in the table is ; .

• (7 \ - i \Z\ ifV„,ti,€£: {v,w) <£E
l S i K) \ - o o U3v,weZ-:{v,w)eE

For an internal node i with two children j and k, we have the following formula.

isi(Z) =

max{ta y (Z ') + isk (Z") + \Z n (X{ - X; - Xt) |
-\Z r\ Xj n Xk\ I ZnXj = Z'nXi-
and ZnXk = Z"n Xi} • if Vv.we Z : (v,w) & E

—oo if 3v, w £ Z : (t>, w) £ E

6 H. L. BodJa.ender

The idea behind the last formula is: take the maximum over all sets Z' C Xy
that agree with Z in which vertices in X ; n X3 belong to the independent set, and
similarly for Z" C X*. Vertices in Z n X ; — Xy — X^ are not counted yet, so their
number should be added, while vertices in Z n Xy O X^ are counted twice, hence
their number should be subtracted once.

We compute for each node t £ I the table is,- in some bottom-up order, until we
have computed the table tsr. Note that we then can easily find the maximum size of
an independent set in G, as this is max^cx,. Hence, we have an algorithm,
that solves the independent set problem on G in 0(23kn) time. (Optimizations can
bring the factor 23fc down to 2fc.) It is also possible, by using standard dynamic
programming techniques, to construct the maximum sized independent set W itself.

The idea behind this example is: each table entry gives information about an
equivalence class of partial solutions. The number of such equivalence classes is
bounded by some constant, when the treewidth is bounded by a constant. Tables
can be computed using only the tables of the children of the node.

The technique works for many examples. However, there are also results that
state that large classes of problems can be solved in linear time, when a tree-
decomposition with constant bounded treewidth is available. One of the most
powerfull results of this type is the result by Courcelle [47,51,46], which has been
extended by Arnborg et al [8], by Borie et al [38], and by Courcelle and Mosbah [52],
on (Extended) Monadic Second Order formulas. These result basically state that
each graph problem that is expressible with a formula using the following language
constructions: logical operations (A, V, -i, =>•), quantification over vertices, edges,
sets of vertices, sets of edges (e.g. 3D £ V, Ve £ E, VW C V, 3F C E), membership
tests (u £ W, e £ E), adjacency tests (u, w) £ E, v is endpoint of e), and certain
extensions, can be solved in linear time on graphs with given a tree-decomposition
of constant bounded treewidth. The extensions allow not only to deal with decision
problems, but also optimization problems (like maximum independent set).

For example, the problem whether a given graph G can be colored with three
colors can be stated as

3W x C V : 3W2 C V : 3W 3 C V : Vt> £ V : (u £ V v £ W2 V u 6
W3) AVv S V : Vty e W : (u-, to) 6 E (->(w £ Wi Am G H / i) a - (v £
W2 A w 6 W2) A -.(u £ W3 A w £ W3))

In many cases, the information, computed per node t £ / is an element of a
finite set. Then, the algorithm can be seen as a finite state tree-automata, and
optimalization techniques can be applied, similar to Myhill-Nerode theory [14,62].
(See also [48,45,49].)

In [64,65] parametric problems on graphs with bounded treewidth are solved,
using modifications of the technique, presented above.

For some problems (e.g. the maximum independent set problem) polynomial
time algorithms are still known to exist, if the input graph is given together with
a tree-decomposition of treewidth C?(logn). (See e.g. [19].) For other problems, it
is unknown whether such algorithms exist.

The problem whether two given graphs are isomorphic is also solvable in poly-
nomial time, when the graphs have bounded treewidth [11,22,42]. The techniques
are here somewhat different.

There also exist problems that remain hard when restricted to graphs with
constant bounded treewidth, for instance the bandwidth problem is NP-complete
for a very restricted subclass of the trees [100]. For some problems the complexity
when we restrict the instances to graphs with bounded treewidth is open, like the
problem to determine the pathwidth of graphs with treewidth < 2 [30].

A Tourist Guide through Tree width 7

c ^ o - o - o

c > - < > - 6 - < 3
G Ö

o
o
o

a — o — o

o o - a

C h - o

o
o

H

Figure 3.
G is a minor of H

5 Graph minors
In this section, we give a short overview of some recent results on graph minors. A
graph H = {W, F) is a minor of a graph G = (V,E) , if (a graph isomorphic to) H
can be obtained from G by a series of zero or more vertex deletions, edge deletions,
and/or edge contractions (in arbitrary order), where an edge contraction is the
operation to replace two adjacent vertices v and w by a vertex that is adjacent to
all vertices that were adjacent to v or to. For an example, see figure 3.

Robertson and Seymour obtained the following deep results on graph mi-
nors [17,109,115,111,122,122,116,117,121,124,123,125,114,118,119,120,126,127,128,
129,110,112,113].

Theorem 5.1
For every class of graphs that is closed under taking of minors, there exists a
finite set of graphs, ob(§), called the obstruction set of such that for each graph
G: G G Q, if and only if there is no H & ob(p) that is a minor of G.

For example, the obstruction set of the planar graphs is {K&, -^3,3} [140]. Theorem
5.1 was formerly known as Wagners conjecture.

Theorem 5.2
For every graph H, there exists an 0 (n 3) algorithm, that, given a graph G, tests
whether H is a minor of G.

Theorem 5.3
For every planar graph H, there exists a constant cjf, such that for every graph G:
if H is not a minor of G, then the treewidth of G is at most CH.

8 H. L. BodJa.ender

The constant factor of the algorithm in theorem 5.2 is very high, making this
algorithm not suitable for practical use. In [129]; it-is shown -that one can take in
5.3 Cff = 204 | v 'h I + 8 | £ ; ' ' I5 . Prom theorem 5.1 and theorem 5.2 it follows that every
class of graphs, closed under minor taking, is recognizable in 0 (n 3) time (do a
minor test for each graph in the obstruction set.) Using theorem 5.1, theorem 5.3,
the result of the next section, that states that for graphs with constant bounded
treewidth, a tree-decomposition of constant bounded treewidth can be found in
0(n) time, and the fact, that with such a tree-decomposition, minor tests can be
done in linear time with a procedure of the type, discussed in section 4, the following
result can be derived: every class of graphs that does not contain all planar graphs
and that is closed under minor taking, can be recognized in 0[n) time. (See also
[13].)

Many applications of this theory were found by Fellows and Langston ¡58,60,61].
Note however that the constants hidden in the 'O'-notation may be quite large, and
that the proof of theorem 5.1 is inherently non-constructive (in a deep mathematical
sense) [66]. I.e., it is not possible in all cases to extract the obstruction set of a class
of graphs Q, given a formal proof that § is minor closed. Thus, we may arrive in a
situation where we know that a polynomial algorithm exists for the problem without
knowing the algorithm itself. Also, the algorithms are recognition algorithms: they
do not constuct anything (like a vertex ordering, tree-decomposition, etc.)

A technique that allows us in some cases to overcome non-constructive aspects
of this theory is self-reduction, advocated by Fellows and Langston, see e.g. [21,39,
59,63].

Self reduction is the technique to consult a decision algorithm a number of times
with different inputs in order to construct a solution for the original problem. As
an example, consider the problem of finding a simple path of length at least k (k
constant) in an undirected graph. (There are direct and more efficient algorithms
for this problem [27,63]; the solution here is presented only to explain the tech-
nique.) The class of graphs that do not contain such a path is closed under minor
taking, and does not contain all planar graphs, so we have a linear time algorithm,
deciding whether a given graph contains a simple path of length at least k. Given
a graph G, we can solve the problem in 0 (n • e) time by first testing whether G
contains a desired path, and then repeatedly trying to remove an edge from G, such
that the resulting graph still contains a simple path of length k. When no edge can
be deleted anymore, the resulting graph is precisely the desired path.

Even when we do not know the obstruction set, in several cases it is still possible
to construct polynomial time algorithms based on minor tests (see [63]).

In some cases, obstruction sets, and hence the decision algorithms themselves are
computable [12,16,40,57,62,78,81,91,103,131,136]. The size of the obstruction sets
can grow very fast: for instance, the obstruction set of the graphs with pathwidth
at most k contains at least k\2 trees, each containing 5 3 2 ~ x vertices [136]. This
clearly limits the practicality of the approach described above.

Also, in some cases, linear time minor tests are possible [27,25,54,63]. For
instance, suppose that H is a cycle of length k. The algorithm is as follows: first
make a depth-first search spanning tree T = (V, F) of the input graph G = (V, E).
If there is a backedge between a vertex u and a predecessor to of v which is at
least k — 1 levels above v in T, then G contains H as a minor, stop. Otherwise,
construct ({ X „ | t; G V},T = (V, F)), with X„ = { v } U {tu | w is a predecessor of
v and differs at most k — 2 levels from v in T). This is a tree-decomposition of G
with treewidth at most k — 2. Use this tree-decomposition to solve the problem in
linear time. (See [63].)

A Tourist Guide through Tree width 9

6 Finding tree-decompositions
In this section we consider the problem of finding tree-decompositions, and deter-
mining the treewidth of a graph. Unfortunately, determining whether the treewidth
of a given graph G = f V , E) is at most a given integer k is NP-complete [6]. The
latter result holds also for pathwidth [6]. The complexity of these problem has been
studied for several classes of graphs. Table 1 mentions several of the known results
of this type.

Polynomial time approximation algorithms with O(logn) performance ratio for
treewidth, and 0 (log 2 n) performance ratio for pathwidth, are presented in [29].
For several classes of perfect graphs, polynomial time approximation algorithms
can be found in [84]. Seymour and Thomas gave a polynomial time algorithm for
the branchwidth of planar graphs [134]; this directly implies a polynomial time
approximation algorithm for the treewidth of planar graphs with a performance
ratio l\ [114].

Class Treewidth Pathwidth
Bounded degree N [35] N [101] (3)
Trees/Forests C P [133]
Series-parallel graphs C P [32]
Outerplanar graphs C P [32]
Halin graphs C [143] P [32]
fc-Outerplanar graphs C [20] P [32]
Planar graphs 0 N [101] (3)
Chordal graphs P (l) N [68]
Starlike chordal graphs P (l) N [68]
fc-Starlike chordal graphs P (l) P [68]
Co-chordal graphs p [85] P [85]
Split graphs P (l) P [68,84]
Bipartite graphs N N
Permutation graphs P [34] P [34]
Circular permutation graphs P [34] 0
Cocomparability graphs N [6,72] N [6,72]
Cographs P [36] P [36]
Chordal bipartite graphs P [86] N [35]
Interval graphs P (2) P (2)
Circular arc graphs P [135] 0
Circle graphs P [83] N [35]

P =.polynomial time solvable. C = constant, hence linear time solvable. N =
NP-complete. O = Open problem. (1) The treewidth of a chordal graph equals its
maximum clique size minus one. (2) The treewidth and pathwidth of an interval
graphs equal its maximum clique size minus one. (3) NP-completeness is shown for
vertex separation number, but this is equivalent to pathwidth.

Table 1:
Complexity of Pathwidth and Treewidth on different classes of graphs

10 H. L. BodJa.ender

Remove a vertex of degree 1

Contract over a vertex
with degree 2

Figure 4.
Rewriting a graph with treewidth < 2

For constant k, polynomial time algorithms exist for the problems. The graphs
with treewidth 1 are exactly the forests. Algorithms that recognize graphs with
treewidth 2 and 3 in linear time, and find the corresponding tree-decompositions
were described by Matousek and Thomas [97j, using results from [9]. A similar
algorithm (with a quite involved case analysis) for treewidth 4 was found recently
by Sanders [130]. For example, the connected graphs with treewidth 2 are exactly
those graphs that can be rewritten to a single vertex, using the operations shown in
figure 4. For larger k, also recognition algorithms based on rewriting exist [7]. (In
[7j, a much larger class of problems is also shown to be solvable with these rewrite
techniques.) The latter algorithms can at present, not produce a corresponding
tree-decomposition of the input graph.

For arbitrary fixed k, an O (n l o g n) algorithm can be found, using the following
result, due to Reed (108|.

T h e o r e m 6.1
For every constant k, there exists an O (n logn) algorithm, that given a graph
G = (V, E), either outputs that the treewidth of G is larger than A:, or outputs a
tree-decomposition of G with treewidth at most 3k + 2.

Actually, the result proven by Reed has a number, larger than 3A: -f 2. Minor
improvements give the result stated above. The running time of this algorithm
is singly exponential in k. Similar, but slower algorithms have been found by-

A Tourist Guide through Tree width 11

Robertson and Seymour [119] and by Lagergren [89], the latter result also has an
efficient parallel variant.

Figure 5.
Illustration to approximation algorithm

These algorithms and the approximation algorithm in [29] are based on repeat-
edly finding separators. An 1/3-2/3 separator of a set W C V in a graph G = (V, E)
is a set S C V, such that V — S can be partitioned into two non-adjacent sets of
vertices Vj, V2, such that both Vi and V2 contain at most 2|W|/3 vertices in W.

Each of the algorithms can be described by a recursive procedure which is called'
with two arguments: a graph G' = (VE') (an induced subgraph of G), and a set
of vertices X C V'. The algorithm produces a tree-decomposition with the root
node set Xr of T containing all vertices in X (X C Xr). It works basically as
follows: When V' is 'small enough', yield a one-node tree-decomposition, the node
containing all vertices in V . Otherwise, first find a 'small' 1/3-2/3 separator S of
X in G', separating V' — S into Vi and V2. Call the procedure recursively for graph
G[Vi US] and set S u j l f l Vi), and for graph G[V2U5] and set S u (X n V2V The
desired tree-decomposition is obtained by taking one new node containing X n S,
and connecting this node to the root nodes of the two tree-decompositions yielded
by the recursive calls of the procedure (see figure 5). If the treewidth of G is at
most k, then a 1/3-2/3 separator, as needed for the algorithm, exists of size at most
k, and can be found, in time, linear in V , using flow techniques [119]. Starting
with an arbitrary set X of size at most 3k, it follows with induction, that each call
of the procedure uses sets X of size at most 3k, assuming the treewidth of G is at
most k. (|X n Vi U S| < 2\X\/Z -I- |S| < 2k + k.) Hence, the algorithm produces in
this case a tree-decomposition of treewidth less than 4k.

Reed [108] has shown that one can also find small sized separator sets 5, that
do not only separate X , but also partition V into sets of size at most 3/4 of |V'|.

12 H. L. BodJa.ender

This gives a recursion depth of O(logn), and results in an 0(n log n) algorithm.
(The expose above is only a very rough sketch of some of the most important ideas
of the algorithms. See further [29,89,108,119].)

Using the algorithm of theorem 5.1, and a constant number of minor tests, it
follows that the 'treewidth < k' and 'pathwidth < k' problems (for constant k)
are decidable in O(nlogn) time. (Use that the treewidth and pathwidth can not
increase by taking minors.) However, it is also possible to obtain direct, explicit
and constructive algorithms for the problems.

Both Lagergren and Arnborg [91] and Bodlaender and Kloks [31,82] give such
an algorithm, using an involved application of the technique, discussed in section 4.
Independently, results of a similar nature were obtained by Abrahamson and Fel-
lows [l]. From these results it follows that a technique of Fellows and Langston [62]
can be used to compute the corresponding obstruction set. Bodlaender and Kloks
[31] also discuss how in the same time bounds the path- or tree-decompositions
with pathwidth or treewidth at most k can be found, if existing.

Recently, the author has found a linear time algorithm for the problems to
decide whether a graph has pathwidth or treewidth at most some constant k, and
if so, to find a path- or tree-decomposition with pathwidth or treewidth at most k
[24]. This algorithm uses a recursion technique, and the result in [31] as essential
ingredients.

A study to dynamic algorithms for graphs with small treewidth has been made
by Cohen et al. [43] and recently by the author [23].

Acknowledgements
I thank Bruno Courcelle, Jens Gustedt, Ton Kloks, Mike Fellows, Detlef Seese, and
Andrzej Proskurowski for useful comments on earlier versions of this tourist guide.

References
[1] K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth

and well-quasiordering. In Graph Structure Theory, Contemporary Mathe-
matics vol. 147, pages 539-564. American Mathematical Society, 1993.

[2] R. Agarwala and D. Fernandez-Baca. A polynomical-time algorithm for the
phylogeny problem when the number of character states is fixed. Manuscript,
1992.

[3] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability - A survey. BIT, 25:2-23, 1985.

[4] S. Arnborg. Graph decompositions and tree automata in reasoning with un-
certainty. Manuscript, to appear in Journal of Experimental and Theoretical
AI, 1991.

[5] S. Arnborg. Some PSPACE-complete logic decision problems that become
linear time solvable on formula graphs of bounded treewidth. Manuscript,
1991.

[6] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a Jfc-tree. SI AM J. Alg. Disc. Meth., 8:277-284, 1987.

A Tourist Guide through Tree width 13

[7]NS. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic the-
ory of graph reduction. In H. Ehrig, H. Kreowski, and G. Rozenberg, editors,
Proceedings of the Fourth Workshop on Graph Grammars and Their Appli-
cations to Computer Science, pages 70-83. Springer Verlag, Lecture Notes in
Computer Science, vol. 532, 1991. To appear in J. ACM.

S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12:308-340, 1991.

S. Arnborg and A. Proskurowski. Characterization and recognition of partial
3-trees. SIAM J. Alg. Disc. Meth., 7:305-314, 1986.

S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard prob-
lems restricted to partial fc-trees. Disc. Appl. Math., 23:11-24, 1989.

S. Arnborg and A. Proskurowski. Canonical representations of partial 2-
and 3-trees. In Proceedings of the 2nd Scandinavian Workshop on Algorithm
Theory, pages 310-319. Springer Verlag, Lecture Notes in Computer Science,
vol. 477, 1990.

S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors charac-
terization of partial 3-trees. Disc. Math., 80:1-19, 1990.

S. Arnborg, A. Proskurowski, and D. Seese. Monadic second, order logic, .
tree automata and forbidden minors. In E. Borger, H. Kleine Buning, M. M.
Richter, and W. Schonfeld, editors, Proceedings 4th Workshop on Computer
Science Logic, CSL'90, pages 1—16. Springer Verlag, Lecture Notes in Com-
puter Science, vol. 533, 1991.

M. W. Bern, E. L. Lawler, and A. L. Wong. Linear time computation of
optimal subgraphs of decomposable graphs. J. Algorithms, 8:216-235, 1987.

D. Bienstock. Graph searching, path-width, tree-width and related problems
(a survey). DIMACS Ser. in Discrete Mathematics and Theoretical Computer
Science, 5:33-49, 1991.

D. Bienstock and N. Dean. On obstructions to small face covers in planar
graphs. J. Comb. Theory Series B, 55:163-189, 1992.

D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas. Quickly ex-
cluding a forest. J. Corrib. Theory Series B, 52:274-283, 1991.

H. L. Bodlaender. Classes of graphs with bounded treewidth. Technical Re-
port RUU-CS-86-22, Dept. of Computer Science, Utrecht University, Utrecht,
the Netherlands, 1986.

H. L. Bodlaender. Dynamic programming algorithms on graphs with bounded
tree-width. In Proceedings of the 15th International Colloquium on Automata,
Languages and Programming, pages 105-119. Springer Verlag, Lecture Notes
in Computer Science, vol. 317, 1988.

H. L. Bodlaender. Some classes of graphs with bounded treewidth". Bulletin
of the EATCS, 36:116-126, 1988.

t

14 H. L. BodJa.ender

[21] H. L. Bodlaender. Improved self-teduction algorithms for graphs with
bounded treewidth. In Proc. 15th Int. Workshop on-Graph-theoretic Con-
cepts in Computer Science WG'89, pages 232-244. Springer Verlag, Lect.
Notes in Computer Science, vol. 411, 1990. To appear in: Annals of Discrete
Mathematics.

[22] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chro-
matic index on partial fc-trees. J. Algorithms, 11:631-643, 1990.

[23] H. L. Bodlaender. Dynamic algorithms for graphs with treewidth 2..
Manuscript, 1992.

[24] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth. Technical Report RUU-CS-92-27, Department of Computer
Science, Utrecht University, Utrecht, the Netherlands, .1992. To appear in
proceedings STOC'93.

[25] H. L. Bodlaender. On disjoint cycles. In Proceedings 17th International
Workshop on Graph-Theoretic Concepts in Computer Science WG'91, pages
230-239. Springer Verlag, Lecture Notes in Computer Science, vol. 570, 1992.

[26] H. L. Bodlaender. Complexity of path-forming games. Theor. Comp. Sc.,
110:215-245, 1993.

[27] H. L. Bodlaender. On linear time minor tests with depth first search. J.
Algorithms, 14:1-23, 1993.

[28] H. L. Bodlaender, M. R. Fellows, and T. J. Warnow. Two strikes against per-
fect phylogeny. In Proceedings 19th International Colloquium on Automata,
Languages and Programming, pages 273-283, Berlin, 1992. Springer Verlag,
Lecture Notes in Computer Science 623.

[29] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approx-
imating treewidth, pathwidth, and minimum elimination tree height. In
G. Schmidt and R. Berghammer, editors, Proceedings 17th International
Workshop on Graph-Theoretic Concepts in Computer Science WG'91, pages
1-12. Springer Verlag, Lecture Notes in Computer Science, vol. 570, 1992.

[30] H. L. Bodlaender and J. Gustedt. A conjecture on the pathwidth of k-trees.
In: Proceedings AMS Summer Conference on Graph Minors, 1992. Contemp.
Math. 147. In section "Open Problems", editor N. Dean, 1993.

[31] H. L. Bodlaender and T. Kloks. Better algorithms for the pathwidth and
treewidth of graphs. In Proceedings of the 18th International Colloquium
on Automata, Languages and Programming, pages 544-555. Springer Verlag,
Lecture Notes in Computer Science, vol. 510, 1991.

[32] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for
the pathwidth and treewidth of graphs. Manuscript. A preliminary version
appeared as [31], 1993.

[33] H. L. Bodlaender and T. Kloks. A simple linear time algorithm for triangu-
lating three-colored graphs. J. Algorithms, 15:160-172, 1993.

[34] H. L. Bodlaender, T. Kloks, and D. Kratsch. TVeewidth and pathwidth of
permutation graphs. In Proceedings 20th International Colloquium on Au-
tomata, Languages and Programming, pages 114-125, Berlin, 1993. Springer
Verlag, Lecture Notes in Computer Science, vol. 700.

A Tourist Guide through Tree width 15

H. L. Bodlaender, T. Kloks, D. Kratsch, and H. Muller, 1993. Unpublished
results.

H. L. Bodlaender and R. H. Mohring. The pathwidth and treewidth of
cogTaphs. SI AM J. Disc. Meth., 6:181-188, 1993.

R. B. Borie. Recursively Consttucted Graph Families. PhD thesis, School of
Information and Computer Science, Georgia Institute of Technology, 1988.

R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on recur-
sively constructed graph families. Algorithmica, 7:555-582, 1992.

D. J. Brown, M. R. Fellows, and M. A. Langston. Nonconstructive
polynomial-time decidability and self-reducibility. Int. J. Computer Math.,
31:1-9, 1989.

R. L. Bryant, M. R. Fellows, N. G. Kinnersley, and M. A. Langston. On find-
ing obstruction sets and polynomial-time algorithms for gate matrix layout.
In Proc. S5th Allerton Conf. on Communication, Control and Computing,
1987.

N. Chandrasekharan. Fast Parallel Algorithms and Enumeration Techniques
for Partial k-Trees. PhD thesis, Clemson University, 1990.

N. Chandrasekharan. Isomorphism testing of A;-trees is in NC, for fixed k.
Inform. Proc. Letters, 34:283-287, 1990.

R. F. Cohen, S. Sairam, R. Tamassia, and J. S. Vitter. Dynamic algorithms
for bounded tree-width graphs. Technical Report CS-92-19, Department of
Computer Science, Brown University, 1992.

D. G. Corneil and J. M. Keil. A dynamic programming approach to the
dominating set problem on fc-trees. SIAM J. Alg. Disc. Meth., 8:535-543,
1987.

B. Courcelle. The monadic second-order logic of graphs VI: On several
representations of graphs by relational structures. Technical Report 89-99,
Bordeaux-I University, 1989. To appear in: Discrete Applied Mathematics.

B. Courcelle. Graph rewriting: an algebraic and logical approach. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages
192-242, Amsterdam, 1990. North Holland Publ. Comp.

B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets
of finite graphs. Information and Computation, 85:12-75, 1990.

B. Courcelle. The monadic second-order logic of graphs V: On closing the
gap between definability and recognizability. Theor. Comp. Sc., 80:153-202,
1991.

B. Courcelle. The monadic second-order logic of graphs VII: Graphs as rela-
tional structures. Manuscript, to appear in: Theoretical Computer Science,
1991.

B. Courcelle. Graph grammars, monadic second-order logic and the theory
of graph minors. Bulletin of the EATCS, 46:193-226, 1992. To appear in:
Proceedings AMS Summer Research Conference on Graph Minors.

16 H. L. BodJa.ender

[51] B. Courcelle. The monadic second-order logic of graphs III: Treewidth, for-
bidden minors and complexity issues. Informatique Théorique, 26:257-286,
1992.

[52] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comp. Sc., 109:49-82, 1993.

[53] N. Deo, M. S. Krishnamoorty, and M. A. Langston. Exact and approximate
solutions for the gate matrix layout problem. IEEE Trans. Computer Aided
Design, 6:79-84, 1987.

[54] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness. Manuscript, 1991.

[55] E. S. El-Mallah and C. J. Colbourn. Partial k-tree algorithms. Congressus
Numerantium, 64:105-119, 1988.

[56] M. R. Fellows. The Robertson-Seymour theorems: A survey of applications.
Contemporary Mathematics, 89:1-18, 1989.

[57] M. R. Fellows, N. G. Kinnersley, and M. A. Langston. Finite-basis theorems,
and a computational integrated approach to obstruction set isolation. In
E. Kaltofen and S. M. Watt, editors, Proceedings of the 3rd Conference on
Computers and Mathematics, pages 37-45, New York, 1989. Springer Verlag.

[58] M. R. Fellows and M. A. Langston. Nonconstructive advances in polynomial-
time complexity. Inform. Proc. Letters, 26:157-162, 1987.

[59] M. R. Fellows and M. A. Langston. Fast self-reduction algorithms for com-
binatorial problems of VLSI design. In Proc. 3rd Aegean Workshop on Com-
puting, pages 278-287. Springer Verlag, Lecture Notes in Computer Science,
vol. 319, 1988.

[60] M. R. Fellows and M. A. Langston. Layout permutation problems and well-
partially-ordered sets. In J. Reif, editor, 5th MIT Conf. on Advanced Re-
search in VLSI, pages 315-327, Cambridge, MA, 1988. Springer Verlag Lec-
ture Notes in Computer Science 319.

[61] M. R. Fellows and M. A. Langston. Nonconstructive tools for proving
polynomial-time decidability. J. ACM, 35:727-739, 1988.

[62] M. R. Fellows and M. A. Langston. An analogue of the Myhill-Nerode theorem
and its use in computing finite-basis characterizations. In Proceedings of the
30th Annual Symposium on Foundations of Computer Science, pages 520-
525, 1989.

[63] M. R. Fellows and M. A. Langston. On search, decision and the efficiency of
polynomial-time algorithms. In Proceedings of the 21rd Annual Symposium
on Theory of Computing, pages 501-512, 1989.

[64] D. Fernández-Baca and G. Slutzki. Solving parametric problems on trees. J.
Algorithms, 10:381-402, 1989.

[65] D. Fernández-Baca and G. Slutzki. Parametic problems on graphs of bounded
treewidth. In O. Nurmi and E. Ukkonen, editors, Proceedings 3rd Scandina-
vian Workshop on Algorithm Theory, pages 3Q4-316. Springer Verlag, Lecture
Notes in Computer Science, vol. 621, 1992. .

A Tourist Guide through Tree width 17

H. Friedman, N. Robertson, and P. D. Seymour. The metamathematics of
the graph minor theorem. Contemporary Mathematics, 65:229-261, 1987.

D. Granot and D. Skorin-Kapov. On some optimization problems on ¿-trees
and partial fc-trees. Manuscript, to appear in Discrete Appl. Math., 1988.

J. Gustedt. Path width for chordal graphs is NP-complete. Technical Report
221/1989, Technical University Berlin, 1989. To appear in Discr. Appl. Math.

A. Habel. Graph-theoretic properties compatible with graph derivations. In
J. van Leeuwen, editor, Proceedings 14th International Workshop on Graph-
Theoretic Concepts in Computer Science WG'88, pages 11-29. Springer Ver-
lag, Lecture Notes in Computer Science, vol. 344, 1988.

A. Habel and H. J. Kreowski. May we introduce to you: hyperedge re-
placement. In H. Ehrig, M. NagI, and A. Rosenberg, editors, Proc. Graph-
Grammars and their Applications to Computer Science '86, pages 15-26.
Springer Verlag, Lect. Notes in Comp. Science vol. 291, 1987.

A. Habel and H.-J. Kreowski. Filtering hyperedge-replacement languages
through compatible properties. In Proceedings 15th International Workshop
on Graph-Theoretic Concepts in Computer Science WG'89, 1990.

M. Habib and R. H. Möhring. Treewidth of cocomparability graphs and
a new order-theoretic parameter. Technical Report 336/1992, Fachbereich
Mathematik, Technische Universität Berlin, 1992.

E. Hare, S. Hedetniemi, R. Laskar, K. Peters, and T. Wimer. Linear-time
comptability of combinatorial problems on generalized-series-parallel graphs.
In D. S. Johnson, T. Nishizeki, A. Nozaki, and H. S. Wilf, editors, Proc.-of the
Japan-US Joint Seminar on Discrete Algorithms and Complexity, Orlando,
Florida, 1987. Academic Press, Inc.

W. Hohberg and R. Reischuk. A framework to design algorithms for opti-
mization problems on graphs. Preprint, April 1990.

K. Jansen and P. Scheffler. Generalized coloring for tree-like graphs. In Pro-
ceedings 18th International Workshop on Graph-Theoretic Concepts in Com-
puter Science WG'92, pages 50-59, Berlin, 1993. Springer Verlag, Lecture
Notes in Computer Science, vol. 657.

D. S. Johnson. The NP-completeness column: An ongoing guide. J. Alao-
rithms, 6:434-451, 1985.

D. S. Johnson. The NP-completeness column: An ongoing guide. J. Algo-
rithms, 8:285-303, 1987.

Y. Kajitani, A. Ishizuka, and S. Ueno. Characterization of partial 3 trees in
terms of 3 structures. Graphs and Combinatorics, 2:233-246, 1986.

S. Kannan and T. Warnow. Inferring evolutionary history from DNA se-
quences. In Proceedings of the Slrd Annual Symposium on Foundations of
Computer Science, pages 362-371, 1990.

S. Kannan and T. Warnow. Triangulating 3-colored graphs. SIAM J. Disc.
Meth., 5:249-258, 1992.

18 H. L. BodJa.ender

[81] N. G. Kinnersley. Obstruction Set Isolation for Layout Permutation Problems.
PhD thesis, Washington State University, May 1989.

[82] T. Kloks. Treewidth. PhD thesis, Utrecht University, Utrecht, the Nether-
lands, 1993.

[83] T. Kloks. Treewidth of circle graphs. Technical Report RUU-CS-93-12, De-
partment of Computer Science, Utrecht University, Utrecht, 1993.

[84] T. Kloks and H. Bodlaender. Approximating treewidth and pathwidth of
some classes of perfect graphs. In Proceedings Third International Symposium
on Algorithms and Computation, ISAAC'92, pages 116-125, Berlin, 1992.
Springer Verlag, Lecture Notes in Computer Science, vol. 650.

[85] T. Kloks, H. Bodlaender, H. Müller, and D. Kratsch. Computing treewidth
and minimum fill-in: All you need are the minimal separators. To appear in:
proceedings 1st European Symposium on Algorithms, ESA'93, 1993.

[86] T. Kloks and D. Kratsch. Treewidth of chordal bipartite graphs. In P. Enjal-
bert, A. Finkel, and K. W. Wagner, editors, Proceedings Symp. Theoretical
Aspects of Computer Science, STACS'93, pages 80—89, Berlin, 1993. Springer
Verlag, Lecture Notes in Computer Science, vol. 665.

[87] E. Korach and N. Solel. Linear time algorithm for minimum weight Steiner
tree in graphs with bounded treewidth. Manuscript, 1990.

[88] A. Kornai and Z. Tuza. Narrowness, pathwidth, and their application in
natural language processing. Manuscript. Submitted Disc. Appl. Math., 1990.

[89] J. Lagergren. Efficient parallel algorithms for tree-decomposition and related
problems. In Proceedings of the Slrd Annual Symposium on Foundations of
Computer Science, pages 173-182, 1990.

[90] J. Lagergren. Algorithms and Minimal Forbidden Minors for Tree-
decomposable Graphs. PhD thesis, Royal Institute of Technology, Stockholm,
Sweden, 1991.

[91] J. Lagergren and S. Arnborg. Finding minimal forbidden minors using a fi-
nite congruence. In Proceedings of the 18th International Colloquium on Au-
tomata, Languages and Programming, pages 533-543. Springer Verlag, Lec-
ture Notes in Computer Science, vol. 510, 1991.

[92] S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. The Journal
of the Royal Statistical Society. Series B (Methodological), 50:157-224, 1988.

[93] C. Lautemann. Efficient algorithms on context-free graph languages. In
Proceedings of the . 15th International Colloquium on Automata, Languages
and-Programming, pages 362-378. Springer Verlag, Lect. Notes in Comp. Sc.
317, 1988.

[P4] S. Mahajan and J. G. Peters. Regularity and locality in ¿-terminal graphs.
Manuscript, 1990.

[95] E. Mata-Montero.. Resilience of partial A:-tree networks with edge and node
failures. Networks, 21:321-344, 1991.

A Tourist Guide through Tree width 19

[96] J. Matousëk and R. Thomas. On the complexity of finding iso- and other
morphisms for partial A;-trees. Manuscript, to appear in: Topological, Alge-
braical, and Combinatorial Structures, J. Nesetril, ed., North-Holland, 1988.

[97] J. Matousëk and R. Thomas. Algorithms finding tree-decompositions of
graphs. J. Algorithms, 12:1-22, 1991.

[98] F. R. McMorris, T. Warnow, and T. Wimer. Triangulating colored graphs.
In proceedings SODA'92, to appear in SIAM J. Disc. Math., 1991.

[99] R. H. Möhring. Graph problems related to gate matrix layout and PLA
folding. In E. Mayr, H. Noltemeier, and M. Syslo, editors, Computational
Graph. Theory, Comuting Suppl. 7, pages 17-51. Springer. Verlag, 1990.

100] B. Monien. The bandwidth minimization problem for caterpillars with hair
length 3 is NP-complete. SIAM J. Alg. Disc. Meth., 7:505-512, 1986.

101] B. Monien and I. H. Sudborough. Min cut is NP-completé for edge weighted
trees. Theor. Comp. Sc., 58:209-229, 1988.

102] M. H. Mosbah. Constructions d'Algorithmes Pour les Graphes Structurés par
des Méthodes Algébriques et Logiques. PhD thesis, Université Bordeaux-I,
1992.

103] R. Motwani, A. Raghunathan, and H. Saran. Constructive results from graph
minors: Linkless embeddings. In Proceedings of the S9th Annual Symposium
on Foundations of Computer Science, pages 398-407, 1988.

104] A. Proskurowski. Separating subgraphs in k-trees: Cables and caterpillars.
Disc. Math., 49:275-285, 1984.

105] A. Proskurowski. Maximal graphs of pathwidth k or searching a partial
A-caterpillar. Technical Report CIS-TR-89-17, Dept. of Computer and Infor-
mation Science, University of Oregon, 1989.

106] A. Proskurowski and M. M. Syslo. Efficient computations in tree-like graphs.
Technical Report 235, Mathematik, Techn. Univ. Berlin, 1989.

107] V. Radhakrishnan, H. B. Hunt III, and R. E. Stearns. Efficient algorithms
for solving systems of linear equations and path problems. Technical Report
91-21, Dept. of Computer Science, S UN Y Albany, 1991.

108] B. Reed. Finding approximate separators and computing tree-width quickly.
In Proceedings of the S^th Annual Symposium on Theory of Computing, pages
221-228, 1992.

109] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. J.
Comb. Theory Series B, 35:39-61, 1983.

110] N. Robertson and P. D. Seymour. Generalizing Kuratowskis theorem. Con-
gressus Numerantium, 45:129-138, 1984.

111] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J.
Comb. Theory Series B, 36:49-64, 1984.

112] N. Robertson and P. D. Seymour. Graph width and well-quasi ordering: a
survey. In J. A. Bondy and U. S. R. Murty, editors, Progress in Graph Theory,
pages 399-406, Toronto, 1984. Academic Press.

20 H. L. BodJa.ender

[113] N. Robertson and P. D. Seymour. Graph minors — a survey. In I. Anderson,
editor, Surveys in Combinatorics, pages 153—171. Cambridge Univ. Press,
1985.

[114] N. Robertson and P. D. Seymour. Graph minors. XI. Distance on a surface.
Manuscript, 1985.

[115] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of
tree-width. J. Algorithms, 7:309-322, 1986.

[116] N. Robertson and P. D. Seymour. Graph minors. V. Excluding a planar
graph. J. Comb. Theory Series B, 41:92-114, 1986.

[117] N. Robertson and P. D. Seymour. Graph minors. VI. Disjoint paths across a
disc. J. Comb. Theory Series B, 41:115-138, 1986.

[118] N. Robertson and P. D. Seymour. Graph minors. XII. Excluding a non-planar
graph. Manuscript, 1986.

[119] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths
problem. Manuscript, 1986.

[120] N. Robertson and P. D. Seymour. Graph minors. XIV. Taming a vortex.
Manuscript, 1987.

[121] N. Robertson and P. D. Seymour. Graph minors. VII. Disjoint paths on a
surface. J. Comb. Theory Series B, 45:212-254, 1988.

[122] N. Robertson and P. D. Seymour. Graph minors. IV. Tree-width and well-
quasi-ordering. J. Comb. Theory Series B, 48:227-254, 1990.

[123] N. Robertson and P. D. Seymour. Graph minors. IX. Disjoint crossed paths.
J. Comb. Theory Series B, 49:40-77, 1990.

[124] N. Robertson and P. D. Seymour. Graph minors. VIII. A Kuratowski theorem
for general surfaces. J. Comb. Theory Series B, 48:255-288, 1990.

[125] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theory Series B, 52:153-190, 1991.

[126] N. Robertson and P. D. Seymour; Graph minors. XV. Etending an embed-
ding. Manuscript, 1991.

[127] N. Robertson and P. D. Seymour. Graph minors. XVI. Giant steps.
Manuscript, 1991.

[-1-28]—N-.- Robertson-and~P—D—Seymour._Graph minors. XVII. Excluding a non-
planar graph. Manuscript, 1991.

[129] N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a planar
graph. Technical Report TR89-16, DIMACS, 1989.

[130] D. P. Sanders. On linear recognition of tree-width at most four. Manuscript,
1992.

[131] A. Satyanarayana and L. Tung. A characterization of partial 3-trees. Net-
works, 20:299-322, 1990.

A Tourist Guide through Tree width 21

132] P. Scheffler. Die Baumweite von Graphen als ein Maß für die Kompliziertheit
algorithmischer Probleme. PhD thesis, Akademie der Wissenschaften der
DDR, Berlin, 1989.

133] P. Scheffler. A linear algorithm for the pathwidth of trees. In R. Bodendiek
and R. Henn, editors, Topics in combinatorics and graph theory, pages 613-
620, Heidelberg, 1990. Physica-Verlag.

134] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Manuscript,
1990.

135] R. Sundaram, K. Sher Singh, and C. Pandu Rangan. Treewidth of circular-arc
graphs. Manuscript, to appear in SIAM J. Disc. Math., 1991.

136] A. Takahashi, S. Ueno, and Y. Kajitani. Minimal acyclic forbidden minors
for the family of graphs with bounded path-width. In SIGAL 91-19-3, IPS J,
1991. To appear in: Annals of discrete mathematics (Proceedings of 2nd
Japan conference on graph theory and combinatorics, 1990).

137] J. Telle and A. Proskurowski. Efficient sets in partial Ar-trees. Technical re-
port, Department of Computer and Information Science, University of Ore-
gon, 1991.

138] L. C. van der Gaag. Probability-Based Models for Plausible Reasoning. PhD
thesis, University of Amsterdam, 1990.

139] J. van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer
Science, A: Algorithms and Complexity Theory, pages 527-631, Amsterdam,
1990. North Holland Publ. Comp.

140] K. Wagner. Uber eine Eigenshaft der ebenen Complexe. Math. Ann., 14:570-
590, 1937.

141] M. Wiegers. The fc-section of treewidth restricted graphs. In B. Rovan, editor,
Proceedings Conference on Mathematical Foundations of Computer Science
MFCS'90, pages 530-537, Berlin, 1990. Springer Verlag, Lecture Notes in
Computer Science, vol. 452.

142] T. V. Wimer. Linear algorithms for the dominating cycle problems in series-
parallel graphs, 2-trees and Halin graphs. Congressus Numerantium, 56, 1987.

143] T. V. Wimer. Linear Algorithms on k-Terminal Graphs. PhD thesis, Dept.
of Computer Science, Clemson University, 1987.

144] T. V. Wimer, S. T. Hedetniemi, and R. Laskar. A methodology for construct-
ing linear graph algorithms. Congressus Numerantium, 50:43-60, 1985.

145] X. Zhou, S. Nakano, H. Suzuki, and T. Nishizeki. An efficient algorithm
for edge-coloring series-parallel multigraphs. In I. Simon, editor, Proceed-
ings LATIN'92, pages 516-529. Springer Verlag, Lecture Notes in Computer
Science, vol. 583, 1992.

Received March 22, 1993

Acta Cybemetica, Vol. 11, No. 1-2, Szeged, 1993

A Lower Bound for On-Line Vector-Packing
Algorithms*

G. Galambos* H. Kellerer * G. Woginger*'

Abstract
In this paper we deal with the vector-packing problem which is

a generalization of the well known one-dimensional bin-packing
problem to higher dimensions. We give the first, non-trivial
lower bounds on the asymptotic worst case ratio of any on-line
cf-dimensional vector packing algorithm.

K e y w o r d s , vector-packing, worst-case analysis, on-line algorithms,
lower bounds, competitive algorithms.

1 Introduction
We consider the following problem, called vector-packing: Given a list Ln =
{ai,... an) of n elements where each element is a a! dimensional vector (d > 1).
The i-th vector in the liste is denoted by «(a,-) = (wj (a,-),. . . , «¿(a,-)), where
0 < wy(a>) < 1 for j = 1,2, ...,d. The goal is to pack all elements into the
minimal number of bins in such a way that for any non-empty B bin of the packing
and for any index 1 < j < d

a.eB
For d = 1, this problem is the famous "classical" bin-packing problem, which is
known to-be NP-hard. Hence, we are mainly interested in 'good' approximation
algorithms.

The quality of an approximation algorithm is usually measured by its asymptotic
worst-case ratio that is defined as follows. For an arbitrary vector-packing algorithm
A and an arbitrary list of d-dimensional vectors L, we denote by L* the minimal
number of bins needed to pack the list L and by A[L) the number of bins which
algorithm A uses to pack the elements of L. Let R.A{k) denote the supremum of
the ratios A(L)/L* over all lists L with L* = k. The asymptotic worst case ratio
RA is defined by the equation

RA = lim sup RA [k).
k • oo

' T h i s research was supported by a grant from the Hungarian Academy of Sciences (O T K A Nr.
2037) and by the Christian Doppler Laboratorium fur Diskrete Optimierung.

^Department of Computer Sciences, Teacher Trainer College, Szeged, Hungary.
^Institute of Mathematik, University Grass, A-80X0 Graz, Austria
^Institute of Mathematik, Technical University Graz, A-8010 Graz, Austria

23

24 G. Galambos

The first approximation algorithms for vector-packing were designed by Kou and
Markowsky [31 . They defined so-called irreducible algorithms as-follows. During
the packing of an irreducible algorithm, for any two non-empty bins Bp and Bq
there exists an index j, 1 < j < d with

£ « / (o) + J2«/(«) >
a€Bp a£B,

(This means that the algorithm only opens a new bin if a newly arrived item can not
be packed into any old bin.) Kou and Markowsky proved the following proposition.

Proposi t ion 1.1 (Kou and Markowsky, [3]) The asymptotic worst case ratio of
any irreducible algorithm fulfills

RA<d+ 1.

Garey, Graham, Johnson and Yao [l] generalized the First-Fit (F F) and the
First-Fit Decreasing (FFD) algorithms to the d-dimensional case. They proved
that

RFF = D+W>

3
d < RFFD < d+ — ~ r e u ~ io

Note that both of these algorithms are irreducible and hence fulfill the statement
of Proposition 1.1.

Now let us turn to lower bounds on the worst case ratios of heuristics. Yao
in [6| studied the following class of the "decision-tree" algorithms. Let A be an
algorithm for the vector-packing problem. For each n > 0, the action of A on a
list L can be represented by a ternary tree Tn(A). Each internal node of Tn(A)
contains a test. For any input L, the algorithm moves down the tree, testing and
branching according to the result of the test, until it reaches some leaf. At the leaf,
a packing valid for all lists that lead to this leaf is produced. The cost of A for
input size n, Cn(A), is defined to be the number of tests made in the worst-case.
(In fact, this is the height of Tn(A)). Yao proved that if A is such an algorithm for
which Cn(A) = o(nlogn) then RA > d.

In this paper we deal with the class of the on-line algorithms: If an algorithm A
is in this class then it packs the elements one by one in the order given by the list
L. After having packed an element into some bin, the element will be never moved
again. E.g. algorithm FF mentioned above is an on-line algorithm. For d > 2 FF
has the best worst case ratio among all known on-line heuristics for «¿-dimensional
vector-packing.

As a consequence of the classical result of Liang [5| for one-dimensional on-
line bin-packing algorithms, the inequality RA > 1.5364... holds for all d > 1.
Till today there is no better results were known. In this paper we will prove a
d-dependent lower bound for on-line vector-packing algorithms. A formula for our
lower bounds is given in Theorem 2.1. Table 1 depicts the numerical values for
some small dimensions.

The rest of the paper is organized as follows. Section 2 contains some pre-
liminaries and describes the construction of a bad item list for on-line heuristics.
Section 3 gives a rigorous proof for the lower bound. Section 4 finishes with the
conclusions.

A Lower Bound for On-Line Vector-Packing Algorithms 25

d Lower Bound d Lower Bound
2 1.67072 7 1.87504
3 1.75098 8 1.88891
4 1.80035 9 1.90002
5 1.83348 10 1.90910
6 1.85722 oo 2.00000

Table 1: Our lower bounds, rounded to five decimal places.

2 The construction
We start with defining the following sequence for any fixed d > 1. (Note that for
every d, the reciprocal values l/i,(<i) sum up to 1/2 d).

t0{d) = 2d+ 1
U{d) = tii^iU^id) - 1) + 1, t > 1.

A similar sequence introduced by Golomb [2] became one of the main tools in on-line
bin-packing. Lee and Lee [4] used it to design a good one-dimensional bin-packing
heuristic, and Liang [5] based his lower bound proof on the Golomb sequence.
With this definition, our main result may be stated as follows.

Theorem 2.1 For any on-line d-dimensional vector-packing algorithm A, its
asymptotic worst case ratio is at least

R U)> I
> ~ V ° ° .1 | A i 1 • 2-1) = \ <y(d)-l + d + 2

Remark . If we set d = 1 in Theorem 2.1, we exactly arrive at the well-known
lower bound of Liang [5].

The exact values for 2 < d < 10 are depicted in Table 1. As d tends to infinity,
the lower bound tends to 2. The remaining part of this paper is devoted to the
proof of Theorem 2.1.

Intuitively speaking, the underlying idea of our paper is as follows. We construct
an adverse strategy that forces every on-line algorithm A to behave poorly on a
special item list L or on some prefix of L. In the first step, we give A a list of very
small items to pack. In case A spreads these items on many bins, it does not receive
any further item and looses the game. In case A produces a 'reasonable' packing for
the small items, it receives another list of items. Again, A has the choice between
either producing a bad packing and loosing the game immediately, or producing a
(currently) good packing and receiving another list. Then in the final step, A gets
a list of big items. Now it turns out that everything it did before was wrong. It
had better packed the smaller items in such a way that remained enough space to
pack the big items. A looses the game against the adversary.

Now we start with the definition of the item lists. Let d > 1 and r > 1
be arbitrarily fixed integers. We consider the following lists, each consisting of n
elements.

26 G. Galambos

LQ L$ LÍ L3 L2 Li - Ll I?

«1(0

v2()

vs(-)

i + i f + i 0 0 0 0

í + 5 Í + 5 l + s 0 0 0

i + 5 i + 5 f + 5 | + 5 I + Í i + 5

0 0

0 0

ÍT + TiW + £2

Table 2: The elements used in the lists for d = 3 and r = 2

1. For any j £ { l , . . . , r } and a £ L3,

7 o i f i c d

2. For any k € { 1 , . . . , ci} and a £ L2k-i,

! 0 if i < d - k
2 ^ + 5 if t' = d - f c + l
Yi+6 if i = d-k + p,p = 2,...,k.

3. For any k £ {1, •.. ,d} and a £ ¿2*,

/ 0 if
& + Í if

i < d — k
i = d— k + p,p — 1,... ,k.

where

S <
4d(tr+1(d) - 1)'

« l W < 2r(í r + 1 (d) - 1) '
and

W)
The lists are presented to the on-line heuristic in the following order: First there
come the lists L} with j going down from r to 1, and afterwards there come the
lists Lj with j going up from 1 to 2d. The lists V with superscript contain the
very small items (all components of the corresponding vectors are zero with the
exception of the component with index d). The.lists L j with subscript, 1 < j < d
contain the larger items; Ust L^j is the list with the big items that arrive in the
final step. An illustration for d = 3 and r = 2 is given in Table 2.
Convention. Next we shall work under a fixed dimension d and a fixed r. To
simplify our notations, we shall use tj and Cj instead of t}-(d) and £y(r).

A Lower Bound for On-Line Vector-Packing Algorithms 27

3 The Proof
In this section we prove that any on-line heuristic must perform poorly on the list
L = Lr ... L1 L± ... L2d (as defined in the preceding section) or on some prefix of

Observation 3.1 For any integer 1 < j < r,

P r o o f . It can be proved by induction from definitions of t,-, e,- and S. •

L e m m a 3.2 For any integer n > 0, if (i r+i — l)|n

{Lr _JL_ 1 < j < r.

P r o o f . In this case (j = 1 ,2 , . . . , r) are positive integers. On the other hand,
by Observation 3.1, we can pack ty — 1 items of each of the lists Lr,..., L3 together
into one bin. •

Now for any integer 1 < j < 2d, let us define the set N}- in the following way:

N1=N2 = {k{tr+1-l):k=l,2,...},

Nj = {n(2d+l-j) :n€ Nj-i} 3 < j < 2d.

It is clear that Nx D N2 2 • • • 2 N2d.

L e m m a 3.3 For any 1 < j < 2d and n e JVy,

[U...LiLi...Ljy

P r o o f . The statement is proved by induction on j. First, the simple cases j = 1
and j = 2 are considered; the induction step is structured into two subcases. All
we have to do that is to give a feasible packing. Note that Observation 3.1 yields .

•=i

(j = 1). Let n € Ni be arbitrary. By the definition of JVy, 2d\n. So we always
pack 2d elements from each list of (L r ... L1Li) together into one bin B. If i < d
then for any a G B tij(o) = 0 holds, and if * = a we have

£ «,<«) < 2 d ^ + 5 +. - 2ds) < 1.

Hence we have a legal packing, using bins.

28 G. Galambos

(j = 2). Let n € N2 be arbitrary. Then d|n. Let us pack together d elements
from every list. For i < d u;(o) = 0 holds for each о 6 (LT ... Ь-Ь\Ь2), and for
г = d we have

Therefore we obtain a feasible packing, using ^ bins.

(Induction step) Now let 3 < j < 2d and assume that for any positive integer
j' < j, the statement is valid. Let n 6 Nj be arbitrary. We shall distinguish two
cases depending on whether j is odd or even.

A . j = 21 — 1 for some 2 < I < d. In the sequel we say that a non-empty bin has
type т = (r r , . . . r1 , Ti,..., r2d) if it contains exactly r* resp. r̂ elements from the
list LX resp. L{. Let us pack the elements of the concatenated list If . . . L1 Li... LJ
together into a bin В with type

2l+r-2 2d-2l+l
First, we will prove that this gives a legal packing, i.e. the following claim holds
for the bin B.
Claim 3.4

£ v , (a) < l 1 < »' < ci.
a€B

Proo f . The proof of this claim is divided into cases (i) thru (iv).
(i) If г < d - I, then Za€B « ¿ И =
(ii) If t = d — I + 1 then only the elements of L2I- 1 have non-zero coordinates

and therefore

£ v,(a) = {2d- 21 + 2)(ы _ 1 з + S) < 1.
a6B

(iii) If d - I -1-1 < t < d then

X>,(a) . = (2d-2l+2)(±-i+6) + (2i~2-2d+j)(±-.+6)
aSB

+

= (K - ,) (I + <) + (5 f l T + i) < 1 .

(iv) If г = d then

X) « i (a) < (2 d - 2 I + 2) (i + ff) + 0 " - 2) (^ + i)
a&B

'2d ' v 2d

2d — 1 1 1 _
2d + 2d+ l + 2d(2d + 1) ~ '

A Lower Bound for On-Line Vector-Packing Algorithms 29

This completes the proof of Claim 3.4 •
To get a feasible packing for (L r ...L1Li... Lj), we first take 2 d _^ [+ 2 = 2d-j+1

pieces of r type bins. By the definition of Nj, we know that 2d + 1 — j\n, and so,
we can pack all the elements of Lj into 2d+i-j bins. From the other lists, there
remain n = n — 2 d + " _ j . = (2d —j) items. By the definition of Nj, n g iVy-i.
But then, by our induction hypothesis, these remaining items can be packed into
n ^ j - bins. Therefore, we can pack all elements of (Lr ... L1 L\... Lj) into

n • = 2 < f + (j - l) (2 d - j) ~ = J_
2d-j + l n 2d n (2d + 1 — j)2d "2d

bins, and case A is settled.

H. j = 21, 2 < J < d. In this case we are going to pack d — l+l items using the
bin type below:

r = (l ^ ^ M - I + 1, d - I + 1 , 0 i l ^ L 0) .
2! + r-2 2d—21

Claim 3.5

< 1 l<i< d.
A€B

Proo f . The proof is done in a similar way as the proof of Claim 3.4:
(i) if i < d — I holds then the above sum is equal to 0,

(ii) if i = d — I +' 1 then only the lists £21-1 and L2\ have positive coordinates
on the position t

E '«*(«) •= (d- j + +«) + (<*-' + lJtrr^T + S) < 1,
06B

(iii) i f t f - / + l < » < d then

£>(a) = (2d-2l + 2)(^ + S) + (2i-3-2d+j)(^ + 6) + (^ ~ + S)

= (K _ 1) (^ + 0 + (_ L _ + i , < i ,

(iv) if t = d then

30 G. Galambos

Thus, Claim 3.5 is true.
To obtain a feasible packing for (Ly.,. LtL\... Lj), we first take pieces of

r type bins. By the definition of Nj, from n 6 Nj it follows that n = (2d+l—j)(2d+
2-j)n' with n- e N¡-2, provided that j > 4. But then n = 2(2d+l-j)(d-l+1)n\
Therefore, d — I + l|n, and so, we can pack all the elements of Ly- i and Lj into
d _ " + 1 bins. After this packing each list from (L r , . . . , L1, L\,..., Lj-2) contains n
unpacked elements where n = n — d_1+ 1 — d_"+1(<f — I).

Now let us observe that n 6 Nj-2. Then, by our induction hypothesis, the
unpacked items can be packed into n ^ j - bins. Therefore, we can pack all elements
of (Lr...L1Ll...LJ), into

" -3-2 = 2d + (/ — 2)(d— I) _ J_
d-l+l 2d n (d-l + l)2d n2d

bins, which completes the considered case and the proof of Lemma 3.3 too. •

Lemmas 3.2 and 3.3 give us upper bounds for the number of bins in the optimal
packings. Next, we will investigate the potential behaviour of arbitrary on-line
algorithms on the constructed list L. We introduce the following notations:

o fi = { 2 ? i , . . . , " . . . L i L i . . , L 2 i) } denotes the final packing of the concate-
nated list (L r ... L1 Li... L2d) produced by the on-line heuristic A. For any
type t = (rr ... t1 Ti... T2d), the number a(r) equals the number of bins of
type r in the packing p.

o, The subset /?* resp. /?y, contain only those bins which were used for the first
time by the on-line heuristic A during the packing of the list V resp. Lj (i.e.
their first item comes from Ll resp. Lj). Moreover, define for every 1 < t < r
and 1 < j < 2d the sets:
T® = {T : there exists a bin of type r in /? '} ,
Tj = { r : there exists a bin of type r in /?y},
and
T = {r : there exists a bin of type r in ¡3} — Ui<i< r u Ui<y<2<i •

Now we investigate the number of bins used by an arbitrary on-line algorithm
A while A is packing the elements of the concatenated list (LT ... L1 Li ... Lj).

A{L'...Li)=j2I2*(r)> l < t < r , (1)
<=t rer '

A{U ... L1 Lx ... Lj) = £ ¿2 + E E «(0 1 < J < 2d (2)
1=1 t€t< / = i r e r ,

and the number of the packed elements for each t resp. j, 1 < t < r, I < j < 2d :

A Lower Bound for On-Line Vector-Packing Algorithms 31

тёт

n = 2 » i - a (r) , l<]<2d. (4)
тет

Let us multiply the equations of (3) by f ^ j - Summarizing the equations of (l)
- (2) and subtracting the multiplied equations of (3) and (4) we get:

2d r + i
JZA(Lr...Li) + J2MLr...L1L1...LJ)-2dn-n'£=

• = i]=l » = i '

r 2d
= E(2 d+»') E « м + E (2 d - > + 4 E «(*) - (5)

•=i тег1 y=i г ег,-

E - w E ^ + f r , .) .

т е г ¿ = i 1 j=i

L e m m a 3.6 The right hand side of (5) is non-negative.

P r o o f . The proof is constructed into three parts. A . First we prove that for any 1 < t < r and r € Г*

. = i z > 1 « = i

Since т 6 ? , 7r = . . . = T , + 1 = 0 and r* > 0. Now if we have some component
r„ > 0 for some v (i.e. some item from Lv is contained in the corresponding
bin), then we replace this item by 2d elements of L1. After the replacement we
obtain a feasible packing of the considered bin and a new bin type f which is not
neccessarily contained in T*, but its first nonzero component is (?) ' . On the other
hand, it is easy to check that the weighted sums on the left hand side do not
decrease. Therefore, it is enough to prove that for any bin type т of the items from
the lists Lr,...,L1,L1,..., L2d, if r r = . . . = r< + 1 = 0, then

y^2d+ s , , .
> -t' <2d + i:

t _ i —
« = i l * 1

Now we replace each element of Lu by tu — 1 elements of Lu+1. This replacement
results a feasible packing, since

(tu - l) (- i - + e „ + 1) < + e u .

32 G. Galambos

On the other hand, the weighted sum in the newly constructed packing increases:
. 2cf + u + 1 2d + u+ 1 2 d + u

('« - — — r = — ; > 7 - = T -

Repeating this procedure for every u < t, we finally obtain a feasible packing
with only items from Ll and with an increased weighted sum. Since for every
feasible packing in a bin, r' < i,- — 1 holds, we obtain the desired result.
B . Secondly, we prove that for any 1 < j < 2d and r G Tj

2d 2d

«=1 v=)

B l . Let us consider the subcase j — 2k, 1 < k < d. We examine the (d- k+ l)-th
coordinate of the list Lj,..., L2d- Because of the definitions, it follows for each list
that for any a 6 [Lj !.. L2d), Vd-k+1(®) = 2d-j+2 s o statement is true.

B2 . If j = 2k — 1 then we again consider the (d — k + l)-th coordinate. Now
the smallest elements in this coordinate are those ones which belong to the list Lj :
if a 6 Lj then = 2d-j+2 an<^ s o desired inequality holds.

C. Finally, we prove that the right hand side of (5) is nonnegative. Indeed, by
case A , we obtain

r r

£ (2 d + t) £ a(r) = £ E +
• = 1 TGT* i=l T6T'

t'=l T€T{ « = 1 * « = 1

= E +
r e u ^ ^ T - «=i * «=i

On the other hand by the case B, 2d 2d

3=1 r e TJ j=I RETJ

2d 2d

* E E « w (E M
j=lr€Tj «=1

2d

E «(')£>•>•

Let us observe that for any 1 < j < 2d and r € Tj, Tr — ... = r1 = 0 , and so

t€U i<,<Mr, «=1 *

A Lower Bound for On-Line Vector-Packing Algorithms 33

Therefore the last three inequalities give us that the considered right hand side is
nonnegative which completes the proof of Lemma (3.6). •

Now we are ready to prove of Theorem 2.1. For this reason let n €E N2d be arbitrary.
Lemma 3.6 together with equation (5) yields

2d r 2d + t
^A{Lr ...U) + J2A{Lr •••L1L1...L3) >2dn + n^—!— (6)

y = i i = l

A[U...D)

« = i y = i

We define
A(T/ T.*\

1 < i < r
(Lr... L')*

_ A(Lr ...LiLx...Lj)
{Lr... L1Li... Lj)*

and

1 < j < 2d

R = max I max r*, max r}-1.

Now plugging R into (6) and using the results stated in Lemmas 3.2 and 3.3, we
get

r i 2 d r OJ , „ \—^ 1 „ n . . , v—N ¿d + i.

i = l ; = 1 i '=l

Finally, dividing by n and making r —• oo yields the statement of Theorem 2.1
•

4 Conclusion
In this paper we derived the first non-trivial lower bound for ¿-dimensional on-line
vector packing algorithms. The best on-line algorithm known today, the First-Fit
algorithm has asymptotic worst case ratio d + In relation to this result, our
lower bound is not too attractive, as it remain beneath 2 for any given d and there
is a wide gap to the upper bound.

Of course, the main open (and probably very hard) problem consists in giving
a better lower bound for on-Ime approximation algorithms that tends to infinity
as d tends to infinity, e. g. O(%/d) or Oflogd). Moreover, we invite the researchers
to design better on-line algorithms with smaller asymptotic worst-case ratios. A
good candidate might be the vector-generalization of the Harmonic Fit algorithm
analysed by Lee and Lee [4].
Acknowledgment . We thank Gunter Rote and Balazs Imreh for constructive
criticisms on the earlier version of this paper.

34 G. Galambos

References
[l] M.R.Garey, R.L.Graham, D.S. Johnson and A.C.C. Yao, Resource constrained

scheduling as generalized bin packing, J. Comb. Th. Ser. A. 21, (1976), 257-
298.

[2j S. Golomb, On certain non-linear sequences, American Math. Monthly 70,
(1963), 403-405.

[3] L.T. Kou and G. Markowsky, Multidimensional Bin Packing Algorithms, IBM
Journal of Research and Development, (1977), 443-448.

[4] C.C. Lee and D.T. Lee, A Simple On-line Bin Packing Algorithm, J. Assoc.
Comp. Mach. 32, (1985), 562-572.

[5] F.M. Liang, A Lower Bound for On-line Bin Packing, Inf. Proc. Letters 10,
(1980), 76-79.

[6] A.C.C.Yao, New Algorithms for Bin Packing, J. Assoc. Comp. Mach. 27,
(1980), 207-227.

(Received May SO, 1991.)

(Revised September 10, 1993 and November 15, 1993.)

Acta Cybernetica, Vol. 11, No. 1-2, Szeged, 1993

Some problems concerning Armstrong relations
of dual schemes and relation schemes in the

relational datamodeP
J. Demetrovics* V. D. Thi*

Abstract
Several papers [3,5,6,7,8,9,11,12] have appeared for investigating dual de-

pendency. The practical meaning of dual dependency was shown in [5,6]. In
this paper we give some new results concerning dual dependency. The concept
of dual scheme is introduced. Some characterizations of dual scheme, such
as closure, generator, generating Armstrong relation, inferring dual depen-
dencies, irredundant cover, normal cover are studied from different aspects.
We give a characterization of Armstrong relations for a given dual scheme.
We prove that the membership problem for dual dependencies is solved by
a polynomial time algorithm. We show that the time complexity of finding
an Armstrong relation of a given dual scheme is exponential in the number
of attributes. Conversely, we give an algorithm to construct a dual scheme
from a given relation R such that R is Armstrong relation of it. This paper
gives some polynomial time algorithms which find closure, irredundant cover,
normal cover from a given dual scheme.

In the second part of this paper we present some results related to Arm-
strong relations for functional dependency (FD for short) in Boyce-Codd nor-
mal form. The concepts of unique relation and unique relation scheme are
introduced. We prove that deciding whether a given relation R over a set of
attributes U is unique is solved by a polynomial time algorithm. We show
some cases in which FD-relation equivalence problem is solved .in polynomial
time.

K e y W o r d s and Phrases : relation, relational datamodel, dual dependency,
dual scheme, generating Armstrong relation, inferring dual dependencies, mem-
bership problem, closure, closed set, irredundant cover, normal cover, minimal
generator, Boyce-Codd normal form.

1 Introduction
Now we give some necessary definitions that are used in next sections. The next
sections present our new results.

'Research supported by Hungarian Foundation for Scientific Research Grant-2575.
f Computer and Automation Institute Hungarian Academy of Sciences P.O.Box 63, Budapest,

Hungary, H-1502

35

36 J. Demetrovics, V. D. Thi

Definition 1.1 Let R = {hi,..., hm} be a relation over U, and A,B Ç U. Then
we say that B dually depends on A in R denoted A B) iff

R

{Vhit h}- G R){3a G A) (MA) = M «)) (36 6 S) (M&) = h}{b)))

Let DR = { (A, B) : A, B C U, A-^B). DR is called the full family of dual
R

dependencies of R. Where we write [A, B) or A —• B for A —B when R, d are
R

clear from the context.

Definition 1.2 A dual dependency (DD) over U is a statement of the form A —•
B,where A, B Ç U. The DD A —* B holds in a relation R if A B We also say
that R satisfies the DD A —> B.

Definition 1.3 Let U be a finite set, and denote P(U) its power set. Let Y C
P(U) X P{U). We say that Y is a d-family over U iff for all A,B,C,D ÇU

(1) {A, A) € Y,

(2)[A,B)eY,(B,C)eY=>[A,C)eY,

(3) (A,B) G Y, C C A, B C D ==> (C, D) G Y,

(4) [A, B) G Y, (C, D)eY=> (AUC, BUD) G Y.

(5) (A, 0) G Y = > A = 0.

Clearly, Du is a d-family over U.
It is known ¡6,7] that if y is an arbitrary d-family, then there is a relation R

over U such that DR = Y.
Definition 1.4 A dual scheme P is a pair < U. D >, where U is a set of attributes,
and D is a set of DDs over U. Let D+ be a set of all DDs that can be derived from
D by the rules in Definition 1.3. It is easy to see that D+ is a d-family over U.

Clearly, if P —< U, D > is a dual scheme, then there is a relation R over U
such that DR = D+ (see, [6,7]). Such a relation is called an Armstrong relation
of P.

In this paper we consider the comparision of two attributes as an elementary
step of algorithms. Thus, if we assume that subsets of U are represented as sorted
lists of attributes, then a Boolean operation on two subsets requires at most |Z/|
elementary steps.

Definition 1.5 Let I Ç P(U), U G I, and A, B G I => AnB G I. Let M Ç P[U).
Denote M+ = {FLM : M Ç M). We say that M is a generator of I iff M+ = I.
Note that U G M+ but not necessarily in M, since it is the intersection of the empty
collection of sets.

Denote N = {A € I : A^n{A'e I : AC A}).
It is proved [7] that N is the unique minimal generator of I. Thus, for any

generator Ar of I we obtain N C N .

Some problems concerning Armstrong relations 37

Definition 1.6 Let D be a d-family over U, and (A, B) G D. {A,B) is called a
maximal left-side dependency of D ifVA' : A C A',(A',B) G D => A' = A.
Denote by M(D) the set of all maximal left-side dependencies of D. Then A is
called a maximal left-side of D if there existst a B such that (A, B) G M(D).
Denote by G(D) the set of all maximal left-sides of D.

Definition 1.7 Let G C P(U). We say that G is a d-semilattice over U if$,U G
G, A,B € G => AllB e G.

Theorem 1.8 [6] Let D be a d-family over U. Then G(D) is a d-semi!attice over
U. Conversely, if G is a d-semilattice over U, then there exists exactly one d-family
D such that G{D) = G, where D = {(A, B) : VC e G : A 2 C => B % C}.

Theorem 1.9 Let K be a Sperner system over U. We define the set of antikeys of
K, denoted by i f - 1 , as follows:

K~l = {A C U : {B e K) => (B 2 A) and(A c C) = > (3 5 € K){B C C)}

It is easy to see that K~l is also a Sperner system over U.

2 Dual schemes
Definition 2.1 Let R be a relation over U. Set N^j = {a 6 U : /i,(a) ^ hj(a)},
and NJI = {N{J : 1 < i < j < |i?|}. Then NR is called the non-equality system of
R.

According to definition of relation 0 ^ NR.
Let P =< U, D > a dual scheme over U. Then D+ is a d-family over U, G{D+)

is the set of all maximal left-sides of D+. Clearly, G{D+) is a d-semilattice over U.
Denote by N[D+) the minimal generator of G (D +) .

Now we present a characterization of Armstrong relations for a given dual
scheme.

Theorem 2.2 Let P =< U, D > be a dual scheme,R be a relation over U. Then R
is an Armstrong relation of P if and only if N(D+) C NR U {0} C G(D+).

Proof : (= >) : We assume that R is an Armstrong relation of P, i.e. DR = D+.
According to Theorem 1.8 we obtain G(DR) = G(D+). Now we prove that for an
arbitrary relation R G(DR) = (NR - U)+ U {0} holds. Because G(DR) is a d-
family over U, we have 0, i/ G G [D r) - Clearly, U G (NR - U)+. It is obvious that
VJV,-y ^ 0. We suppose that Nij ^ i/.Because for any a G U — N^j we obtain /1,(0) =

hj(a), but V6 € Nij: K(6) ^ hy(6),i.e. { a } U NiS-J* JViy. Hence, JV{y e G(DR),

holds. Consequently, NR C G(Dr). Thus, we obtain (NR - U)+ U { 0 } C G(DR).
Conversely, if A G G(DR) — {0, £/}, then if we suppose that for all hi,hj G R

then there is a G A such that hAa) = h, (a). So U A which contradicts the
R

definition of A. Consequently, there is an index pair (i, j) such that A C jV,y. We set
T = {Nij : A C Nij). If there exists an Nij : A = JVt-y then A G NR. In the converse
case we set B = n Nij. If A C B then for all JV.y G T we have A C TV,,.So

w.-yer

38 J. Demetrovics, V. D. Thi

B A which contradicts A G G(DR) — {0, U}.Consequently, we obtain A = B.

Hence, A E (N R - U)+ U { 0 } holds . T h u s , G{DR) = (NR - U)+ U { 0 } ho lds .
Consequently , we have G(D+) = (NR — U)+ U { 0 } . A c c o r d i n g to definit ion of
m i n i m a l generator we obtain JV(Z> +) C NR U { 0 } C G(D+).

(<=):From N(D+) C NR U {0} C G(D+) we have G(D+) = (NR - U)+ U {0}.
According to above part of proof we obtain G(DR) = G(£>+). By Theorem 1.8 R
is an Armstrong relation of P. The theorem is proved.

Let P =< U,D > be a dual scheme. We set HP(A) = {a G U : {a} A G £>+}.
Let Z(P) = {A G P(U) : HP(A) = A} . It is easy to see that Z(P) = G(£>+).
Clearly, for all A G P(U) : A C HP(A) = HP(HP(A)) and A C B => HP(A) C
Hp(B).

A l g o r i t h m 2.3 (Compute HP(A))

Input: P =< U,D — {AI BI : i = 1,..., M) > a dual scheme over U, A G P(U).
Output: HP(A)
Step 1: We set A(0) = A.
Step t + 1: If there is an AJ —* BJ G D such that B3 C A(i) and AJ % -A(i'), then

we set A(i+ 1) = A(z)U (UB c>i(i) •^•i)- converse case we set HP(A) = A(i) .
It can be seen that there is a t such t h a t A = A (0) C A (l) C . . . C A(t) =

A(t + 1) = ...
By rules (3) and (4) in Definition 1.3 it can be seen that the DD { a , i , . . . , a l t } —•

B is equivalent to a set of DDs { { a t l } —̂ B,..., {a,-«} —• B}. Consequently, we can
assume that D only contains the DDs form { a } —*• B. Clearly, if A ^ 0 then
A 0£ D.

In ¡2] the notion of a F-based derivation tree for functional dependency is in-
troduced, in the analogous way we present a derivation tree for dual dependency
as follows.

Def in i t ion 2.4 Let P =< U,D > be a dual scheme and D only contains the DDs
form {a} —• B. The set of derivation trees (DT for short) over P is constructed as
follows:

1. A node labeled with a is a DT,where a 6 U.

2. If a is label of a leaf of DT Q and {a} —• { 6 i , . . . , bt} G D. Then we replace
this leaf in Q by the subtree whose root labeled with a and 6 i , . . . , 6t as chidren
of root.An obtained tree is a DT.

S. Nothing else is a DT.

R e m a r k 2.5 Let P =< U,D > be a dual scheme and D only contains the DDs
form { a } —* B. We call a sequence DDs fdi,..., dm) is a derivation of a DD E —• F
over P if dm = E F and for each t (l < t < m) one of the following holds:

(1) di £ D or di = A A

(2) di is the result of applying rule (2) to two of DDs di,...,

(3) d{ is the result of applying rule (3) to one of DDs dlt...,

(4) di is the result of applying rule (4) to two of DDs d\,..., i-

Where rules (2),(8),(4) in Definition l.S.

Some problems concerning Armstrong relations 39

Propos i t ion 2.6 By Algorithm 2.3 we obtain Hp(A) = A(t) and the time com-
plexity of Algorithm 2.3 is polynomial in the size of P.

Proo f : It is easy to see that the time complexity of Algorithm 2.3 is polynomial
in the size of P. Now we have to prove that a £ A(t) iff a € Hp (A).

(= >) : We prove by the induction. It is obvious that a £ .4(0) = A C Hp (A).
We assume that A(t) C Hp(A), and a £ + l) - A(i).

According to construction of Algorithm 2.3 there exists Aj —» Bj £ D such that
Bj C A(i), a £ Aj - A(t'). By (2) and (3) of Definition 1.3 we have {a } Bj. By
Bj C A(i) and (3) of Definition 1.3 Bj —*• A(t') holds. According to the inductive
hypothesis A(i) —* A holds. Consequently, by (2) of Definition 1.3 we obtain
{a } A. Thus, a £ HP(A) holds.

(-£=): We can assume that D only contains the DDs form { a } —» B. By induc-
tion on the length of the derivation of { a } —* F we can show that if { a } —• F £ Dt
then there is a DT with root labeled a and a set of leaves of this DT is a subset of
F. This proof is in the analogous way as for functional dependency ,see [2], it will
be omitted. From this consider and based on the notion of DT by induction on the
depth of derivation trees we can show that if a £ Hp (A) then a £ A(t). This proof
is easy, it will be omitted. Our proof is complete.

It can be seen that A B £ D+ iff A C HP{B). From this and by Algorithm
2.3 the following proposition is clear.

Propos i t ion 2.7 (The membership problem)

Let P = < U, D > be a dual scheme. X —• Y is a dual dependency. Then there
exists a polynomial time algorithm deciding whether X —• Y £ D+.

Let D be a d-family over [/, G(D) is the set of all maximal left-sides of D.
Denote by N(D) the minimal generator of G(D). Denote s(D) = rran{m: |i?| =
m, Dr = D).

Theorem 2.8 [11] [2\N[D)\)1/2 < s(D) < 2|JV(£>)|.

Theorem 2.9 (Generating Armstrong relation for a given dual scheme) The time
complexity of finding Armstrong relation of a given dual scheme P is exponential
in the size of P.

Proo f : Let P =< U,D > be a dual scheme. We set HP(A) = {a £ U :
{ a } — A £ £>+}. Let Z(P) = {A £ P(U) : HP(A) = A } . It is easy to see that
Z(P) = G[D+). Thus, N(D+) is the minimal generator of Z{P). First we con-
tract an exponential time algorithm that finds a relation R such that DR = D+.
From P we compute Z(P) by Algorithm 2.3. After that we construct the minimal
generator of Z(P). We assume that N(D+) = {Ai,..., A,}. Construct a relation
R-= {h1,h2,...., h2t-i, h2,} as follows:

Vt = 1,.. . ' , s Vo £ U: h2i-1 (a) = 2i - 1

{ 2" - l
if a '£ Ai
otherwise.

According; to Theorem 2.2 we obtain DR = D+.
Let us take a partition U — XiU, , U.Xm U JV, where m = [n/3j, and |X,|

(1 < t < m). ' . .. ' .
We set

40 J. Demetrovics, V. D. Thi

H = {B:\B\ = 2 , B C XI for some t} if \W\ = 0,
H = {B:\B\ = 2, B C XI for some »' : 1 < i < m - 1 or B C XM U W) if

\W\ = 1,
H = {B: |B| = 2,BC Xi for some t" : 1 < i < m or B = W } if \W\ = 2.
It is easy to see that
H~L = {A: |Xn JCil = 1,V*> if \W\ = 0,
H~1 = { A : | A n X i | = 1,(1 < t < m - 1} and \AC\(Xm UW)| = 1} if \W\ = 1,
H-1 = = 1,(1 <i < m) and \A n W\ = 1} if \W\ = 2.
It is clear that n - 1 <Lff| < n + 2,3ln/4l < We construct a dual scheme

P =< U, D = {U B: B € H) > . Based on Definition 1.9 and by Algorithm
2.3 we obtain H~l C N(D+). By Theorem 2.8 we have (2|AT(£>+)|)1/2 < s[D+).
Consequently, we obtain 3 < s(D+). Based on the definition of s(D+) it can
be seen that we always can construct a dual scheme P such that the number of
rows of any Armstrong relation of P is exponential in the size of P. Our proof is
complete.

A lgor i thm 2.10 (Inferring dual dependencies)

Input: a relation R = {hi,..., hm} over U.
Output: a dual scheme P =< U,D > such that DR = D+.
Step 1: Find the non-equality system NER = {NIJ : 1 < t < j < m} , where

NI3- = {a S U : hi(a) ? h^a)},
Step 2: Find the minimal generator N, where N = {A e NER : A ^ n { B €

NER : A C 5 } } .
Denote elements of N by A j , . . . , As.
Step 3: For every B C U if there is A,- such that B C A,-, we compute C =

HBC/I and set C —» B. In the converse case we set U —• B.
Denote T the set of all such dual dependencies
Step 4: Set D = T - Q, where Q = { X — Y E T : X = Y or there is

X Y1 E T:Y' C Y).

Clearly, according to Theorem 2.2, Algorithm 2.10 finds a relation scheme P
such that a given relation R is an Armstrong relation of P.

Definition 2.11 Let P =< U,D >, P' =< U, D' > be two dual schemes. We say
that P' is a cover of P if D = D+. It is obvious that P also is a cover of P .

It can be seen that if P, P' are dual schemes over U then based on Proposition 2.7
and Algorithm 2.3 there is a polynomial time algorithm deciding whether D+ =
D'+.

Definition 2.12 Let P =< U,D >, D = {A, — Bi : i = 1 , . . . , m} be a dual
scheme. We say that P is an irredundant cover if for all T C D : D+ ^ T + .

Now we give an algorithm to find an irredundant cover of a given dual scheme.

Algorithm 2.13 (Finding an irredundant cover)

Input : Let P =< U,D = {Ai —* Bi : i = 1,..., m} > be a dual scheme.
Output : P =< U,D > is an irredundant cover of P.
Step 1: Set L (l) = D

Some problems concerning Armstrong relations 41

Step (i+1) : Set Q = L{i) - {A< Bi), and

+ ^ otherwise.

Then we set D' = L(m + 1).

Propos i t i on 2.14 < U, L(m + l) > is an irredundant cover of P.

Proo f : First we show that < U,L(i + l) > is a cover of < U, L(i) > . If £,(»' +1) = Q
then by Ai -<• Bi & Q+ we have L(i)+ = L(i + 1)+ . If L(i -f-1) = L(i) it is obvious
that L(i+ 1)+ = L{i)+. So we have D+ = L{l)+ = ... = L(m + l) + = D' +. Now
we show that < U, D > is irredundant. Suppose that there is an irredundant cover
< U, L > of P such that L C L(m + 1). Thus, there is a DD Ay B} e L{m + 1)
but Aj Bj 0 L, where 1 < j < m. From the definition of L[j + 1) we obtain
A, Bj <£ Q+, where Q = L(j) - {Ay 5y} . Since L[m + l) C L{j) it follows
that A, Bj £ Q' + , where Q' = L(m + 1) - { A y Bj). Clearly, Q' C Q,
L C L(m + 1) — { A y —• Bj) hold. Consequently, Ay —» Bj ^ L+. This conflicts
with the fact that L+ = D+. Our proof is complete.

Let P =< U, D > be a dual scheme. We can assume that the set D only
contains the DDs form {a } —• B. Based on this we give the next definition

Definition 2.15 Let P =< U,D> be a dual scheme. P is called a normal dual
scheme if P is irredundant and the following properties hold :

(1) D only contains the DDs form {a} —• B, where a €E U, B E P{U),

(2) for all { a } — B e D and B' C B : < U,D - { { a } - > B } u { { a } ^ B'} > is
not a cover of P.

Propos i t i on 2.16 Let P —< U, D > be a dual scheme. Then there is an algorithm
finding a normal cover of P. The time complexity of it is polynomial in the size of
P.

Proo f : (1) is clear. Consequently, we assume that D only contains the DDs form
{a } —• B. Based on Algorithm 2.13 from P we construct an irredundant dual
scheme P which is a cover of P. Assume that P =< U,D = {{a,-} Bi : i =
1, . . . , t } > , and Bi — For each t'(l < t < t) we set 12(1) = Bi, for

1 fc

E(j + 1) = { - 6.7 if W - W) - M e D,+

1 E(j) otherwise.

Denote Ti = E(h+ 1). According to Algorithm 2.3 and Proposition 2.7 we compute
Ti in polynomial time in the size of P'. By induction we can show that {a, } -+ Ti £
D + and VT C T we obtain {a^} —• T D +. This is clear and-so its proof will
be omitted. Now we set P" —< U, D" = { {a» } Ti : t = 1 t } > . . . It is easy to

. see that P is a normal cover of P. By Algorithm 2.13 and Algorithm 2.3 we can
compute P" in polynomial time in the size of P. Our proof is complete.

42 J. Demetrovics, V. D. Thi

3 Relation schemes in BCNF
In this section we give some new results concerning relation schemes in BCNF. We
show some cases in which FD-relation equivalence problem is solved by polynomial
time algorithms. Now we give some necessary definitions.
Def init ion 3.1 Let R = {h\,..., hm} be a relation over U, and A, B C U.

Then we say that B functionally depends on A in R denoted (A-^-*B) iff
R

(Vfc,-, hi 6 R)(Va g A) (M ") = /»y(a)) (V6 e B){hi(b) = hs[b)))

Let FN = {(A,B) : A, B C U, A-^B). FR is called the full family of functional
R

dependencies of R. Where we write (A, B) or A —• B for A B when R, f are
ii

clear from the context.
A functional dependency over U is a statement of the form A —» 1?,where

A, B C U. The FD A B holds in a relation R if AuB. We also say that R
R

satisfies the FD A —* B.
It is easy to see that FR satisfies the following properties:
VB C A: A B E FR (pseudoreflexivity), if A B 6 FR and C C D, then

{A U D) {B U C} (augmentation), if A B € FR and {B U C) D, then
(i u C } - t £>(pseudotransitivity).
Def init ion 3.2 A relation scheme S,or RS for short, is a pair < U,F >. Where
U is a set of attributes, and F is a set of FDs over U. Let F+ be a set of all FDs
that can be derived from F by the above rules. Denote A + = {a: A —* {a} € ,F+} .
A + is called the closure of A over S.Denote Z(F+) = {ACU:A+ = A).

Clearly, in [l] if S =< U, F > is a RS, then there is a relation R over U such that
FR = F+. Such a relation is called an Armstrong relation of S.

Let R be a relation, S =< U, F > be a RS, and A C U. Then A is a key of R

(a key of S, respectively) if (A —• U € F+, respectively). A is a minimal
R

key of R(S, respectively) if A is a key of R(S, respectively), and any proper subset
of A is not a key of R(S, respectively). Denote KR(KS , respectively) the set of all
minimal keys of R(S, respectively).

Clearly, KR,KS are Sperner systems over U.
Let R be a relation,S = < U.F > be a RS.il, 5 are in Boyce-Codd normal

form (BCNF) if for each A { a } e F+(€ FR,respectively) and a & A then
A-* U 6 F+[E FR, respectively).
Definit ion 3.3 Let S =< U,F > be a RS. We say that S is a k-RS over U if
F = {Ki —• U,..., Km —> U}, where {Ki,..., Km} is a Sperner system over U. It
is easy to see that Ks = {Kx,...,

It can be seen that a relation scheme S =< U, F > is in BCNF iff VA C U
either A+ = A or A+ = U. Clearly, if S =< U, F > is in BCNF then using the
algorithm for finding a minimal cover we can construct in polynomial time a fc-RS
s' =< U,F' > such that F+ = F' +, see [10]. Conversely, it can be seen that an
arbitrary k-RS is in BCNF. Consequently, we can consider a RS in BCNF as a
fc-RS.

Some problems concerning Armstrong relations 43

Theorem 3.4 [4] Let Si =< U,FX > ,S 2 =< U,F2 > be two RS over U. Then
FS = F2+ iff Z(Fi +) = Z(F2+), and Fi+ C F2+ iff Z{F2+) C Z[Fi +).

Theorem 3.5 [4] Let K be a Sperner system and S =< U,F > be a RS over U.
Then Ks = K iff

{UYUK'1 C Z(F+)C{U}UG{K~1),

where GfK-1) = {A C U : 3B € K~l:A C £ } .
Based on Theorem 3.5 we have

Theorem 3.6 Let K = {Ki,..., Kt} be a Sperner system over U. Consider the
relation scheme S = (U, F) with F = {Ki -» U,.. ., Kt —• U}.

Then Ks = K, and Z{F+) = GiKg1) U {U}.

Let R be a relation over U. Denote AJ = {a € U:A —* { a } € -FR}, and
Z(Fr) = {ACU:A+=A}.

According to Theorem 3.5 we can give examples for which there are two RSs
Si =< U,Fi >,S2 =< U,F2 > such that KSl = but F^ / F2+. Clearly, for
relations this consider is the same.

We give the following notion.

Definition 3.7 Let S =< U,F > be a RS, R be a relation over U. We call S
(R, respectively) is an unique RS (relation,respectively) if for all RS S' =< U, F' >
(relation R'¡respectively) : KS = KS• (KR = KR>¡respectively) then F+ = F'+

[FR = FRI,respectively).

Propos i t ion 3.8 The time complexity of deciding whether a given relation R over
U is unique is polynomial in the sizes of R and U.

Proo f : Let R a relation over U. By [13] from R we can compute KR in polynomial
time in the sizes of R and U, where KR is a set of all minimal keys of R.

Denote elements of KR~1 by AX,...., AT. Set MR = {Ai~a:a 6 U,i = 1,, .., i } .
Denote elements of MR by Bi,...,Bt. We construct a relation R' —

{h0, hi,..., h,} as follows:
For all a € U, h0(a) = 0, for each t = 1, . . . , s h{(a) = 0 if a e Bi, in the

converse case we set hi (a) = t.
By [10] R' is in BCNF and KR = KR>.
We construct a relation R" = {Zo> h , - - - , l t } as follows:
l0(a) = 0 for all o e U. For all j = 1 , . . . , t then l, (a) = j if a & Ay,
in the converse case set Zy(a) = 0.
It can be seen that KR '= KR• and Z(FR•) = (see Definition 1.5).
It is easy to see that MR, R and R are constructed in polynomial time in the

sizes of U and R.
Based on Theorem 3.5 we see that R is unique iff FR> = FR». Clearly,^» = FR"

can be tested in polynomial time in the sises of R' and R". The proposition is
proved.

Definition 3.9 [4] Let K be a Sperner system over U. We say that K is saturated
if for any A £ K, {A} U K is not a Sperner system.

44 J. Demetrovics, V. D. Thi

Theorem S.10 [4] Let S =< U,F> be a RS. If Ks is a saturated Sperner system,
then S is an unique RS:

Examples show that there is a Sperner system K (/ i r respect ive ly) such that
K r K - 1 , respectively) is saturated, but K~l (A",respectively) is not saturated.

Now we define the next notion.

Definition S . l l Let K be a Sperner system over U. We say that K is inclusive,
if for every A € K there is a B & K~1 such that B C A. We call K is embedded
if for each A € K there exists a B G H:A C B, where H~l = K.

Theorem 3.12 [13] Let K be a Sperner system over U. Denote H a Sperner system
for which H = K. The following facts are equivalent:

(1) K is saturated,

(2) K~l is embedded,

(S) H is inclusive.

Let S =< U, F > be a RS in BCNF,i? be a relation in BCNF. Then we say
that S is an inclusive RS if Ks is inclusive and R an embedded relation if K^1 is
embedded.

It can be seen that the BCNF property of S is polynomially recognizable. By
[13] we can compute KR1 in polynomial time in the size of R, and based on poly-
nomial time algorithm finding minimal cover we also construct Ks from a given
BCNF relation scheme. On the other hand, by definitions of embedded,inclusive
Sperner systems we obtain the following proposition.

Propos i t ion 3.13 Let S — < U,F > be a RS ,R be a relation over U. Then

1. Deciding whether S is an inclusive RS is solved in polynomial time in the size
of S.

2. There exists an algorithm deciding whether R is an embedded relation and the
time complexity of it is polynomial in the sizes of U and R.

It is easy to see that if S =< U, F >, S' =< U, F' > are two RSs then deciding
whether F+ = F'+ can be tested in polynomial time in the sizes of S and S'.

Now we introduct the next problem.
Let S =< U, F >,S' =< U,F' > be two RSs. Decide whether Ks = Ks<•

The following proposition is clear.

Propos i t ion 3;14 Let S, S' be two RSs.If S is unique then deciding whether Ks =
Ks1 is polynomially recognizable.

In [10] the FD-relation equivalence problem is introduced as follows:
Let S =< U,F > be a RS, R be a relation over U. Decide whether F+ = FR,

i.e. Ji is an Armstrong relation of S.

Definit ion 3.15 Let Ki,K2 be two Sperner system over U. We set K = K\ U
and TK = {A e K: fiB € K: A C B}. We say that the union K = Kx U K2 is
equality if VAi, A2 G Tff: |Ai| = |A2|.

Some problems concerning Armstrong relations 45

Based on Definition 3.15 we give the next theorem related to the FD-relation
equivalence problem .

Propos i t i on 3.16 Let S =< U,F> be a relation scheme in BCNF and R a
relation over U in BCNF. Ks = {Ai Ap} (K^1 = {B1,...,Bq}) is the set of
minimal keys of S (the set of antikeys of R). Then if Ks U K^1 is equality then
the FD-relation equivalence problem is solved in polynomial time in the sizes of S
and R.

P r o o f : Clearly, by [13] from R we compute K^1 in polynomial time in the size
of R, and from S we find a ¿-relation scheme that is a minimum cover of S.
The minimum cover is constructed in polynomial time in the size of S, We set
K = KS U KFT1. Because K is equality,we assume that = m, and |f/| = n. We
compute the number C™. Clearly, K and K~l are uniquely determined by each
other. By definitions of KS and K^1 we can see that if \TK | ^ C™ then KS ^ KR.
Thus, in BCNF class we obtain F+ ^ FR.

Now we assume that \TK\ — C™. If there is A , (l < i < p) such that AI C
B){ 1 < j < q) then Ks KR. Consequently,we can assume that AI g By for
all i, j. For each j = 1,... ,q we compute B'f. It can be seen that for all D C U
D+ is computed in polynomial time in the size of S. We set M = {Bj U {a } : a G
U — Bj} = {Mi,..., Mt}. It is obvious that M is computed in polynomial time.
If B t ± U and for all I = 1 , . . . , t Af,+ = U hold then Bj E Kg1 holds, otherwise
we obtain Bj & Kg 1 . If there is a Bj: Bj & Kg 1 then by the definition of antikeys
KR t̂ Ks.We assume that for all j=l , . . . ,q Bj E Kg1. For each i = 1 p we
set N = {A ; — {a} : a E Ai} = {Ni,..., N,}. It can be seen that N is computed in
polynomial time. If there is a iV„(l < n < s) such that Nn g Bj for all j = 1 , . . . , q
then AI KR holds. In the converse case we obtain AI G KR. Clearly, if there
is an AI ^ KR then Ks j1 KR. We assume that for each i = l , . . . , p we have
AI E KR. We set

Z = {Ai - {a}: a G Ait i = 1 , . . . , p) ,

W = {A G Q: A = A+, {A U { a }) + - U, Va G U - A),

J = {Bj U {a } : a G U - Bj,j = 1 , . . . , q},
I = {B E J:B+ = U, {B - a}+ ± UWa G B}.

Based on definition of -Ks and definition of K w e can see that if either there
is an A G W such that A £ KZ1 or there exists a B E I but B 0 Ks then
KS KR. It can be seen that W, I are constructed in polynomial time in the
sizes of S,R, KS,K~L. Finally, we see that if for all t = 1 , . . . , p, j = 1 , . . . , q
Ai G KR,Bj E Kg1, W C K~l, I C Ks hold then by \TK\ = C™ and according
to definition of set of minimal keys and definition of set of antikeys we obtain
KR = KS- Since S, R are in BCNF we have FR = F+. The proof is complete.

Let K be a Sperner system over U. We say that K is pseudo-monotonous if for
each Sperner system K' : K N K' = 0 and KU K' is a Sperner system over U then
K'1 C {K U K'}"1 •

We say that K is a changed Sperner system if for each H' : H' C H then there
are AE K,B E H1-1 such that Ac. B, where i f - 1 = K.

46 J. Demetrovics, V. D. Thi

Propos i t ion 3.1T Let S be a RS in BCNF, R be a relation in BCNF. Then if
either Ks is pseudo-monotonous or K^1 is changed, then FD-relation equivalence
problem is solved in polynomial time in the sizez of S and R.

Proo f : First we assume that K ^ 1 is a changed Sperner system. Based on a
polynomial time algorithm finding a minimal cover,we construct a set of all minimal
keys Ks . It is known [13] that from R we compute K ^ 1 in polynomial time in the
size of R.

If there are A € Ks and B € K^1 such that AC B, then Ks ± KR. Thus,for
all A G KS,B G KR1 we can assume that A £ B. We set X = {A - {a}: A G
Ks, a G A } . If for all C G X, B G K w e obtain C C B then Ks C KR. In the
converse case we have Ks KR. It is easy to see that X is computed in polynomial
time. We assume that Ks C KR.

For each B G KJ^1 we compute . If there is a B such that B+ = U then
Ks t* KR. We assume that B+ ? U for all B G K^1. We set Y = {B U { a } : B G
K^,a G U — B}. It is obvious that Y is computed in polynomial time. If for
all- D G Y we have D+ = U then K^1 C Kg1. In the converse case we obtain
Kx1 ± K^Because K and K'1 are uniquely determined by each other, we have
KR ^ Ks- Now assume that K^1 C Kg1' and Kg Q KR. By hypothesis K^1 is a
changed Sperner system. Consequently,if Ks C KR then there are B G K^1 and
E € K^1 such that B C E. Hence, K^1 % Kg1 holds.Thus, Ks = KR. Because
S, R are in BCNF, we obtain FR = F+.

If 5 is pseudo-monotonous then the proof is the same. The proof is complete.

4 Conclusion
Our further research will be devoted to the following problems:

1. What is the time complexity of finding a dual scheme P from a given relation
R such that D+ = DR

2. G.iven a relation scheme S and a relation R. What is the time complexity of
deciding whether Ks = KR.

3. Let Si, S2 be two relation schemes over U. What is the time complexity of
deciding whether Ksx = K$2 .

4. Let S be a RS. What is the time complexity of deciding whether 5 is an
unique RS.

Acknowledgments : The authors are grateful to Dr. Uhrin Bela for useful
comments to the first version of the manuscript.

References
[l] Armstrong W.W. Depèndency Structures of Database Relationships. Informa-

tion Processing 74, Holland publ. Co. (1974) pp. 580-583.

Some problems concerning Armstrong relations 47

[2] Beeri C., Bernstein P.A. Computational problems related to the design of
normal form relational schémas. ACM TVans. on Database syst.4,l,(1979)pp.30-
59.

[3] Berman J., Blok W, Positive Boolean Dependencies. Infor.Procès. Letters 27
(1988) pp. 147-150.

[4] Burosch G., Demetrovics J., Katona G.O.H. The poset of closures as a model
of changing databases, Order 4 (1987) pp. 127-142.

[5] Czédli G. d-dependency structures in the relational model of data. Acta Cy-
bernetica Hungary V / I (1980) pp.49-57.

[6] Czédli G. On Dependencies in the relational model of data.EIK 17 (1981) 2/3
pp.103-112.

[7] Demetrovics J. Relációs adatmodell logikai es strukturális vizsgalata MTA-
SZTAKI Tanulmanyok,Budapest, 114 (1980) pp.1-97.

[8] Demetrovics J.,Gyepesi G. On the functional dependency and some generaliza-
tions of it. Acta Cybernetica Hungary, Tom. 5, Fasc. 3 (1981), pp. 295-305.

[9] Demetrovics J.,Gyepesi G. Some generalized type functional dependencies for-
malized as equality set in matrices.Discrete Appl.Math. 6 (1983) pp.35-47.

[10] Gottlob G. , Libkin L. Investigations on Armstrong relations, dependency
inference, and excluded functional dependencies. Acta Cybernetica Hungary
Tom.9 Fasc.4 (1990) pp. 385-402.

[11] V.D.Thi. Logical dependencies and irredundant relations. Computers and Ar-
tificial Intelligence 7 (1988), pp.165-184.

[12] Thi V.D. Funkcionális fuggoseggel kapcsolatos nehany kombinatorikai jellegű
vizsgalat a relációs adatmodellben. MTA-SZTAKI Tanulmanyok, Budapest,
191 (1986) pp. 1-157. Ph.D. Dissertation.

[13] Thi V.D. Minimal keys and Antikeys.Acta Cybernetica Hungary Tom.7 Fasc.4
(1986) pp.361-371.

Received October 21, 1992

Acta Cybernetics Vol. 11, No. 1-2, Szeged, 1993

Fundamental Concepts of Object Oriented
Databases

K.-D. Schewe* B. Thalheim*

Abstract
It is claimed that object oriented databases (O O D B s) overcome many

of the limitations of the relational model. However, the formal foundation of
O O D B concepts is still an open problem. Even worse, for relational databases
a commonly accepted datamodel existed very early on whereas for O O D B s the
unification of concepts is missing. The work reported in this paper contains
the results of our first investigations on a formally founded object oriented
datamodel (O O D M) and is intended to contribute to the development of a
uniform mathematical theory of OODBs.

A clear distinction between objects and values turns out to be essential
in the O O D M . Types and Classes are used to structure values and objects
repectively. Then the problem of unique object identification occurs. We show
that this problem can be be solved for classes with extents that are completely
representable by values. Such classes are called value-representable.

Another advantage of the relational approach is the existence of struc-
turally determined generic update operations. We show that this prop-
erty can be carried over to object-oriented datamodels if classes are value-
representable. Moreover, in this case database consistency with respect to
implicitly specified referential and inclusion constraints will be automatically
preserved.

This result can be generalized with respect to distinguished classes of
explicitly stated static constraints. Given some arbitrary method and some
integrity constraint there exists a greatest consistent specialization (GCS) that
behaves nice in that it is compatible with the conjunction of constraints. We
present an algorithm for the GCS construction of user-defined methods and
describe the GCSs of generic update operations that are required herein.

1 Introduction
The shortcomings of the relational database approach encouraged much research
aimed at achieving more appropriate data models. It has been claimed that the
object-oriented approach will be the key technology for future database systems
and languages [8]. Several systems [4,6,7,9,15,16,17,19,26,36,37,38] arose from these

•Cottbus Technical University, Computer Science Institute, P .O.Box 101344, D-03013 Cottbus

49

50 K.-D. Schewe, B. Thalheim

efforts. However, in contrast to research in the relational area there is no common
formal agreement on what constitutes an object-oriented database [10,11,13].

The basic question "What is an object?" seems to be trivial, but already here
the variety of answers is large. In object oriented programming the notion of an
object was intended as a generalization of the abstract data type concept with
the additional feature of inheritance. In this sense object orientation involves the
isolation of data in semi-independent modules in order to promote high software
development productivity. The development of object oriented databases regarded
an object also as a basic unit of persistent data, a view that is heavily influenced
by existing semantic datamodels (SDMs) [2,29,31,39,40,60]. Thus, object oriented
databases are composed of independent objects but must also provide for the main-
tenance of inter-object consistency, a demand that is to some degree in dissonance
with the basic style of object orientation.

A view that is common in OODB research is that objects are abstractions of real
world entities and should have an identity [8]. This leads to a distinction between
values and .objects [10,11]. A value is identified by itself whereas an object has an
identity independent of its value. This object identity is usually encoded by object
identifiers [1,3,34]. Abstracting from the pure physical level the identifier of an
object can be regarded as being immutable during the object's lifetime. Identifiers
ease the sharing and update of data. However, such abstract identifiers do not
relieve us from the task to provide unique identification mechanisms for objects. In
object oriented programming object names are sufficient, but retrieving mass data
by name is senseless.

In most approaches to OODBs an object is coupled with a value of some fixed
structure. To our point of view this contradicts already the goal of objects being
abstractions of reality. In real situations an object has several and also changing
aspects that should be captured by the object model. Therefore, in our object
model each object o consists of a unique identifier id, a set of (type-, value-)pairs
(Ti, v,-), a set of (reference-, object-)pairs (refy,o}) and a set of methods meth^.

Types are used to structure values. Classes serve as structuring primitive for
objects having the same structure and behaviour. It is obvious that the multiple
aspects view of an object allows them to be simultaneously members of more than
one class and to change class memberships. This setting also makes every discussion
on "object migration" unnessecary, as migration is only a specific form of value
change.

In our model a class structure uniformly combines aspects of object values and
references. The extent of classes varies over time, whereas types are immutable.
Relationships between classes are represented by references together with referential
constraints on the object identifiers involved. Moreover, each class is accompanied
by a collection of methods. A schema is given by a collection of class definitions
together with explicit integrity constraints.

The Identification Prob lem. One important concept of object-oriented
databases is object identity. Following [1,12] the immutable identity of an ob-
ject can be encoded by the concept of abstract object-identifiers. The advantages
of this approach are that sharing, mutability of values and cyclic structures can be
represented easily [42]. On the other hand, object identifiers do not have a meaning
for the user and should therefore be hidden.

We study whether equality of identifiers can be derived from the equality of
values. In the literature the notion of "deep" equality has been introduced for
objects with equal values and references to objects that are also "deeply" equal.
This recursive definition becomes interesting in the case of cyclic references.

Fundamenta] Concepts of Object Oriented Databases 51

Therefore, we introduce uniqueness constraints, which express equality on iden-
tifiers as a consequence of the equality of some values or references. On this basis
we can address the problem how to characterize those classes that are completely
representable (and hence also identifiable) by values.

Generic U p d a t e Operations. The success of the relational data model is due
certainly to. the existence of simple query and update-languages. Preserving the
advantages of the relational in OODBs is a serious goal.

The generic querying of objects has been approached in [1,12]. While querying is
per se a set-oriented operation, i.e. it is not necessary to select just one single object,
and hence does not raise any specific problems with object identifiers, things change
completely in case of updates. If an object with a given value is to be updated (or
deleted), this is only defined unambigously, if there does not exist another object
with the same value. If more than one object exists with the same value or more
generally with the same value and the same references to other objects, then the
user has to decide, whether an update- or delete-operation is applied to all these
objects, to only one of these objects selected non-deterministically or to none of
them, i.e. to reject the operation. However, it is not possible to specify a priori
such an operation that works in the same way for all objects in all situations. The
same applies to insert-operations. Hence the problem, in which cases operations
for the insertion, deletion and update of objects can be defined generically.

Some authors [43] have chosen the solution to abandon generic operations. Oth-
ers [6,7,9] use identifying values to represent object identity, thus embody a strict
concept of surrogate keys to avoid the problem. Our approach is different from
both solutions in that we use the concept of hidden abstract identifiers, but at the
same time formally characterize those classes for which unique generic operations
for the insertion, deletion and update of single objects can be derived automatically.
It turns out that these are exactly the value-representable ones.

The Consistency Prob lem. One of the primary benefits that database sys-
tems offer is automatic enforcement of database integrity. One type of integrity is
maintained through automatic concurrency control and recovery mechanisms; an-
other one is the automatic enforcement of user-specified integrity constraints. Most
commercial database systems, especially relational database management systems
enforce only a bare minimum of constraints, largely because of the performance
overhead associated with updates.

The maintenance problem is the problem how to ensure that the database sat-
isfies its constraints after certain actions. There are at present two approaches
to this maintenance problem. The first one, more classical is the modification of
methods in accordance to the specified integrity constaints. The second approach
uses generation mechanisms for the specified events. Upon occurrence of certain
database events like update operations the management component is activated
for integrity maintenance. The first research direction did not succeed because of
some limitations within the approach. The second one is at present one of the most
active database research are sis. One of our objectives is to show that the first ap-
proach can be extended to object-oriented databases using stronger mathematical
fundamentals.

Accuracy is an obviously important and desirable feature of any database. To
this end, integrity constraints, conditions that data must satisfy before a database is
updated, are commonly employed as a means of helping to maintain consistency. In
relational databases the specification and enforcement of integrity constraints has
a long tradition [61], whereas in OODBs the integrity problem has only recently
drawn attention [48].

52 K.-D. Schewe, B. Thalheim

In object oriented databases, integrity maintenance can be based on two different
approaches. The first one uses blind update_operations. In this case, any update is
allowed and the system organizes the maintenance. The second approach is based
on methods rewriting. This approach is more effective. Assuming a consistent
database state the modified method can not lead to an inconsistent state.

In relational databases distinguished classes of static integrity constraints have
been discussed such as inclusion, exclusion, functional, key and multi-valued de-
pendencies. All these constraints can be generalized to the object oriented case.
Then the result on the existence of integrity preserving methods can be generalized
to capture also these constraints. We shall also describe the resulting methods.

T h e O r g a n i z a t i o n o f the P a p e r . We start with a motivating example in Sec-
tion 2 then introduce in Section 3 a core OODM to formalize the concepts used
intuitively in the example. In Section 4 the notions of (weak) value-representabi-
lity are introduced in order to handle the identification problem. The genericity
problem will be approached in Section 5. We show the relationship between value-
representability and the unique existence of generic update operations. The consis-
tency problem is dealt with in Section 6. We outline an operational approach based
on the computation of greatest consistent specializations (GCSs). Since the used
algorithm allows the problem to be reduced to basic update operations, we describe
the GCSs hereof. We summarize our results and describe some open problems in
Section 7.

2 A Motivating Example
In this section we start giving a completely informal introduction to the O O D M
on the basis of a simple university example. We first introduce types and classes,
then show an example of a database instance, i.e. the content of the database at a
given timepoint. The representation of an instance requires object identifiers. Then
we extend the example by introducing user-defined constraints. We shall see that
this enables alternative representations without using identifiers, hence leads to the
notion of value-representability. Finally, we indicate the definition of methods as a
means to model database dynamics. For the sake of simplicity we only describe a
generic update method that can be generated by the system.

As already said in the introduction, we distinguish between values and objects
with the main difference defined by values identifying themselves whereas objects
require an additional external identification mechanism. Types are used to struc-
ture values. Thus, let us first give some examples of types.

Example Basically, every type can be built from a few predefined basic types such
as BOOL, NAT, STRING, etc. and also predefined type constructors for records,
finite sets, lists, unions, etc.

The type definition for PERSONNAME uses both a set constructor {•} and
a (tagged) record constructor (•):

Type PERSONNAME
= (FirstName : STRING ,

SecondName : STRING ,
Titles : STRING)

End PERSONNAME

Fundamenta] Concepts of Object Oriented Databases 53

The definition of a type PERSON uses the type PERSONNAME.

Type PERSON
= (PersonldentityNo : NAT ,

Name : PERSONNAME)
End PERSON

The following defines STUDENT as a subtype of PERSON, i.e. we can naturally
project each value of type STUDENT onto a value of type PERSON.

Type STUDENT
= (PersonldentityNo : NAT ,

StudNo : NAT ,
Name : PERSONNAME)

End STUDENT

Besides these definitions of types as sets of values we may also define new type
constructors as follows, where a is a parameter for this new constructor:

Type MPERSON{ot)
= (PersonldentityNo : NAT ,

Spouse : a)
End MPERSON •

Next we use these types to build the structural part of an OODM schema. We
define a schema as a collection of classes and a class as a variable collection of
objects.

Example Each object in a class has a structure, which combines aspects of values
associated with the object and references to other objects. This structure can be
based on a type definition as above or involve itself a (nameless) type definition.
Moreover, class definitions involve IsA relations in order to model objects in more
than one class. We use o to indicate concatenation for record types.

Schema University
Class PERSONC

Structure PERSON
End PERSONC
Class MARRIEDPERSONC

IsA PERSONC
Structure (PersonldentityNo : NAT ,

Spouse : MARRIEDPERSONC)
End MARRIEDPERSONC
Class STUDENTC

IsA PERSONC
Structure STUDENT o

(Supervisor : PROFESSORC ,
Major : DEPARTMENTC .
Minor : D E P A R T M E N T C) End S T U D E N T C

Class PROFESSORC
IsA PERSONC

54 K.-D. Schewe, B. Thalheim

Structure (PersonldentityNo : NAT ,
Age : NAT ,
Salary : NAT ,
Faculty : D E P A R T M E N T C) End P R O F E S S O R C

C l a s s D E P A R T M E N T C
I s A P E R S O N C
Structure (DeptName : STRING)

End D E P A R T M E N T C •

In principle, we are now able to describe the content of the database at a given
timepoint. For such database instances we need a type I D of object identifiers that
is used for two purposes, first as a unique and efficient internal identification mecha-
nism for objects and second for modelling objects in different classes and references
to other objects. In this case each class will be associated with a representation
type that can be used directly for storing objects.

Example We use P as a name for the instance.
P(PERSONC) =

{ (t ! , (123 , ("John" , "Denver" , { "Professor" , "Dr" }))) ,
(i 2 , (124 , ("Mary" , "Stuart" , { "Dr" }))) ,
(»3 , (456 , ("John" , "Stuart" , { }))) ,
(i 4 , (567 , ("Laura" , "James" , { }))) ,
(i 5 , (987, ("Dave" , "Ford" , { }))) }

¿ » (M ARRIED P E R S O N C) =
{ (tx , (123 , i3)) ,

(¿2 , (124 , H)) }
P (P R O F E S S O R C) =

{ (»! , (123, 48,8000, t6)) }
P (S T U D E N T C) =

{ (t3 , (456 , 1023 , ("John" , "Stuart" , { }) , »'i , t'e , »7)) ,
(i4 , (567 , 2134 , ("Laura" , "James" , { }) , t'i , i6 , »7)) }

P (D E P A R T M E N T C) =
{ (t6 , ("Computer Science")) ,

(t7 , ("Philosophy")) ,
(i 8 , ("Music")) }

•

Note that the following three conditions are satisfied by the instance:

• The object identifiers are unique within a class,

• the IsA relations in the schema give rise to set inclusion relationships for the
underlying sets of identifiers (inclusion integrity), and

• the identifiers occurring within an object's value at a place corresponding
to a reference, always occur as an object identifier in the referenced class
(referential integrity).

We shall always refer to these conditions as model inherent constraints that must
be- satisfied by each instance. Other integrity constraints can be defined by the user

Fundamenta] Concepts of Object Oriented Databases 55

and added to the schema in order to capture more application semantics as shown
in the next example.

Example First let us express that there are no two persons with the same Per-
sonldentityNo, no two students with the same StudentNo and no two departments
with the same name. In order to formulate this, use xp, xs and to refer to
the content of the classes P E R S O N C , S T U D E N T C and D E P A R T M E N T C , and let
cP : PERSON — (PersonldentityNo : NAT) and c s : STUDENT x ID3 —
(StudNo : NAT) be functions that arise from the natural projection to the compo-
nents PersonldentityNo and StudNo in PERSON and STUDENT respectively.
This gives the following uniqueness constraints.

-Vi,y :: ID.Vv, w ::
PERSON. (i,v) e xP A (j, w) exP AcP(v) = cP(w) => i = j.
Vi,j :: ID.Vv,w ::
STUDENT x ID3. (t>) 6 xs A {j,w) 6 xs A c s (v) = cs(w) => i = j

:: ID.Vv, w ::
(DeptName : STRING), (i, v) e xD A (j, w) € xD A v = w => i = j . (l)

Let us further assume that the salary of a professor is determined by his/her age.
For this purpose, let Age, Salary : Tpro/ —NAT be the natural projections to
the Age- and Salary-values respectively. Then we have the following functional
constraint on the class PROFESSORC:

Vt,j :: ID.Vv, w :: TProi. (i,v) € xPro} A [j,w) G xProJ A Age(u) = Age(iu) =5-
Salary(v) = Salary(ui) . (2)

Next assume that we want to guarantee that the spouse of a person's spouse is the
person itself, which gives (with the abbreviations understood) the formula

Vt, j :: ID. Vt>, w ::

Tmp• (*I V) € XMP A (j, w) E xmp A Spouse(u) = j' => Spouse(ty) = i .(3)

Note that all these constraints are also satisfied by the instance above. •

Now we have added uniqueness constraints, the object identifiers used in instances
correspond one-to-one to values of some types associated with the classes. These
are the so-called value identification types Vc- Hence we could remove identifiers
and represent the same information in a purely value-based fashion. In our example
the value representation type for the class PERSONC is simply PERSON, but for
the class MARRIED PERSONC we need the recursive type

VMP = PERSON O (Spouse :VMP)

with values that are rational trees [45,47].
So far only structural aspects (types, classes, constraints) have been considered.

Let us now add methods to classes in order to model the dynamics of the database.
In the OODM methods will be modelled in a simple procedural style.

56 K.-D. Schewe, B. Thalheim

Example Let us describe an insert-method for the class PERSONC.

insert P e r < o n C (in: P :: PERSON, out: I :: ID) =
IF 3 0 e PERSONC . value(O) = P
THEN I : = ident(O)
ELSE I : = Newld ;

PERSONC : = PERSONC U { (I,P)}
ENDIF

For an insertion into the class MARRIED PERSONC we need a more complex input
type V recursively defined as

V = PERSON o (V U ID)

For each P :: V let f(P) :: PERSON be the projection onto PERSON corre-
sponding to the subtype relation between V and PERSON. Then we have

insert*iarriedPcrsonC (in: P :: V, out: I :: ID) =
I : = insert J>ER,0FLC(/(P)) ;
IF V O e MARRIEDPERSONC . ident(O) ± I
THEN P' := substitute^,P,Spouse(P)) ;

IF P' :: ID
THEN J := P'
ELSE J := insertMarriedPerionC {P')
ENDIF ;

MARRIEDPERSONC : = MARRIEDPERSONC U { (I J (P) O (J)) }
ENDIF

We used the global method Newld to denote the selection of a new identifier. The
expression substitute(/ ,P,T) denotes the result of replacing the value I for P in the
expression T. Later we shall use a more abstract syntax oriented toward guarded
commands [20,41,46]. •
Later we shall see that methods as described in this example are canonical and can
be automatically derived from the schema. Corresponding generic update methods
look quite similar with the only difference that there is no output. Such generic
update methods only exist for value representable classes in which case, however,
they enforce integrity with respect to the model inherent constraints. However,
generic update methods need not be consistent with respect to the user-defined
constraints. To achieve this, we have to apply the GCS algorithm to user-defined
methods.

In the following sections we formally define the concepts above and proof the
main results on value representation, generic updates and integrity enforcement.

3 A Core Object Oriented Datamodel
In this section we present a slightly modified version of the object oriented data-
model (OODM) of [45,47,49]. We observe that an object in the real world always
has an identity. Therefore, abstract (i.e. system-provided) object identifiers are
introduced to capture identity. However, neither the" real world object that was the
basis of the abstraction nor the abstract identifier can be used for the identification
of an object.

In contrast to existing object oriented datamodels [1,3,4,6,7,8,9,16,17,26,36,37,
42,43,54] an object is not coupled with a unique type. In contrast, we observe that

Fundamenta] Concepts of Object Oriented Databases 57

real world objects can have different aspects that may change over time. Therefore,
a primary decision was taken to let an object be associated with more than one
type and to let these types even change during the object's lifetime. The same
applies to references to other objects.

In the following let NP, NT, NO, NR, NP, NM and V denote arbitrary pair-
wise disjoint, denumerable sets representing parameter-, type-, class-, reference-,
function-, method- and variable-names respectively.

3.1 A Simple Type System
Relational approaches to data modelling are called value-oriented since in these
models real world entities are completely represented by their values. In the object-
oriented approach we distinguish between objects and values. Values can be gouped
into types. In general, a type may be regarded as an immutable set of values of
a uniform structure together with operations defined on such values. Subtyping is
used to relate values in different types.

In [12,47,49] algebraic type specifications as in [21,23] have been used to allow
open type systems. For the sake of simplicity we deviate here from this approach
and follow the more classical view of [14,15,45] using a type system that consists of
some basic types such as BOOL, NATURAL, INTEGER, STRING, etc., and
type constructors for records, finite sets, bags, lists, etc. and a subtyping relation.
Moreover, assume the existence of recursive types, i.e. types defined by (a system
of) domain equations. In principle we could use one of the type systems defined in
[4,5,14,15,19,24,38]. In addition we suppose the existence of an abstract identifier
type ID in T without any non-trivial supertype. Arbitrary types can then be
defined by nesting. A type T without occurrence of ID will be called a value-type.
We shall proceed giving a more formal definition of types.

Definition 1 1. A base type is either BOOL, NAT, INT, FLOAT,
STRING, ID or L.

2. Let a{ e Np and a, f), a,- € Np (i = 1 ,...,n). A type constructor is either
(ai : <*i , . . . , a„ : a n) (record), {a} (finite set), [a] (list), (a) (bag) or a U ft
(union).

S. A type t is either a base type, a type constructor, a generalized constructor
that results from replacing some parameters in a type constructor by types or
a recursive type defined by an equation t = {a/i}.^, where t' is a generalized
constructor and one of its parameters a is replaced by t G Nx-
In the latter two cases the remaining parameters of the type constructor
together with the parameters of the replacing types yield the parameters
ai,..., an oft.

4- A type t is called proper iff the number of its parameters is 0. t is called a
value type iff there is no occurrence of ID in t.

5. A type form consists of a type name t 6= NT and a type t' with possibly some
of its parameters replaced by type names.

6. A type specification T is a finite collection of type forms t 1 (. . . , t„ such that
the only type names occurring herein are the names of t\,... ,tn.

The semantics of such types as sets of values is defined as usual. Moreover, we
assume the standard operators on base types and on records, sets, bags, . . . We
omit the details here.

58 K.-D. Schewe, B. Thalheim

If t' is a proper type occurring in a type i, then there exists a corresponding
occurrence relation

o : t X t' -> BOOL .

Finally, we introduce subtypes. For a more detailed introduction to types see either
[14] or [49].

Definit ion 2 1. A subtype relation < on types is given by the following rules:

(a) Every type t is its own subtype and a subtype of _L.
(b) NAT < INT < FLOAT .
(c) (. ..,a,_i : ai-i.ai : a,-,a<+1 : ai+1,...) < (....a,-! : aj^.aj-n :

Q»'+i> • • •) whenever ctj < a'..

({ a } < W }
(d) { [a] < [P\ J iff a < ft.

I («) < W J
(e) { a } < (a) and [a] < (a).
(f) aJ<aU0.

2. A subtype function is a function t' —* t from a subtype to its supertype ft' < t)
defined by (a)-(f) above.

3.2 The Class Concept as a Structural Primitive
The class concept provides the grouping of objects having the same structure which
uniformly combines aspects of object values and references. Moreover, generic
operations on objects such as object creation, deletion and update of its values
and references are associated with classes provided these operations can be defined
unambigously. Objects can belong to different classes, which guarantees each object
of our abstract object model to be captured by the collection of possible classes. As
for values that are only defined via types, objects can only be defined via classes.

Each object in a class consists of an identifier, a collection of values and refer-
ences to objects in other classes. Identifiers can be represented using the unique
identifier type ID. Values and references can be combined into a representation
type, where each occurence of ID denotes references to some other classes. There-
fore, we may define the structure of a class using parameterized types.

Definit ion 3 1. Let t be a value type with parameters ai,..., an. For distinct
reference names ri,...,rn £ Nr and class names C\,..., Cn G Nq the ex-
pression derived from t by replacing each aj in t by r,- : C{ for i = 1 , . . . , n is
called a structure expression.

2. A structural class consists of a class name C £ Nc, a structure expression
S and a set of class names Di,... ,Dm € Nq (in the following called the set
of superclasses^. We call r,- the reference named r̂ from class C to class C{.
The type derived from S by replacing each reference ri : C{ by the type ID
is called the representation type Tc of the class C, the type Uc = (ident :
ID, value :: Tc) is called the class type of C.

S. A (structural) schema S is a finite collection of structural classes C\,... ,Cn
closed under references and superclasses.

Fundamenta] Concepts of Object Oriented Databases 59

4- An instance P of a structural schema S assigns to each class C a value P(C)
of type Uc such that the following conditions are satisfied:

uniqueness o f identifiers: For every class C we have

Vi' :: ID.Vv,w :: r c . (t >) 6 P{C) A (i,w) e P(C) = • « = »». (4)

inclusion integrity: For a subclass C of C' we have

Vi :: ID.i 6 dom(P(C)) => i e dom(P{C')) . (5)

Moreover, if Tc is a subtype ofT'c with subtype function f : Tc T'c,
then we have

Vi :: ID.Vv :: Tc. (t,«) e P(C) =» (i, /(«)) € P(C') . (6)

referential integrity: For each reference from C to C' with corresponding
occurrence relation or we have

Vi,j :: ID.Vv :: Tc. (»,») S P{C) A or{v,j) => 3 E d o m { P (C ')) . (7)

3.3 User Defined Integrity Constraints
Let us now extend the notion of schema by the introduction of explicit user-defined
integrity constraints. First we define the notion of constraint schema in general,
then we restrict ourselves to distinguished classes of constraints that arise as gener-
alizations of constraints known from the relational model, e.g. functional and key
constraints, inclusion and exclusion constraints [48,52].
Definition 4 Let S = , . . . , C „ } be a structural schema.

1. An integrity constraint on S is a formula J over the underlying type system
with free variables fr(I) C {xcl,..., xcn}, where each %c{ is a variable of
type {Uc\ }. We call xc, the class variable of C,-.

2. A constrained schema consists of a structural schema S and a finite set of
integrity constraints on S.

3. An instance of a constrained schema is an instance of the underlying structural
schema. An instance P is said to be consistent with respect to the integrity
constraint I iff substituting P(C) for each class variable xc in I evaluates to
true, when interpreted in the usual way.

Note that the conditions for an instance in Definition 4 correspond to model inher-
ent integrity constraints. We refer to these constraints as implicit identifier, IsA
and referential constraints on the schema S. Let us now define some distinguished
classes of user-defined constraints.

Definition 5 Let C, C1,C ,2 be classes in a schema S and let c* : TQ —* T{ (i —
1,2,3^ and Ci : Tc- —• T (i = 1 ,2) be subtype functions.

1. A functional constraint on C is a constraint of the form

:: ID.Vv,v'::
Tc.c1{v) = c1{v') A {i,v)exc A {i',v') exc => c2{v) =c2(v').(8)

60 K.-D. Schewe, B. Thalheim

2. A uniqueness constraint on C is a constraint of the form

Vi',t' :: ID.Wv,v' ::
Tc. C1^) = C V) A (» » E xc A (T',T/) E I C = > I = »•'. (9)

A uniqueness constraint on C is called trivial iff Tc = Ti and c1 = id hold.

S. An inclusion constraint on Cj and C 2 13 a constraint of the form

Vi :: T. 3t'i :: ID, uj :: Tcx. (»i, « i) S i c , A ci(i>x) = t =•
3»2 :: ID, v2 :: T C j . (i2 j t>2) e xCt A c2(t>2) = t . (10)

4- An exclusion constraint on C\, C2 is a constraint of the form

Vi'i,i'2 :: ID.Vvi :: Tc1 .^v2 ::

Tc,-(»i, f i) 6 xCl A (t'2l v2) e xc, => cifwx) ^ c2(v2) . (11)

3.4 Methods as a Basis for Behaviour Modelling
So far, only static aspects have been considered. A structural schema is simply a
collection of data structures called classes. Let us now turn to adding dynamics
to this picture. As required in the object oriented approach operations will be
associated with classes. This gives us the notion of a method.

We shall distinguish between visible and hidden methods to emphasize those
methods that can be invoked by the user and others. This is not intended to define
an interface of a class, since for the moment all methods of a class including the
hidden ones can be accessed by other methods. The justification for such a weak
hiding concept is due to two reasons.

• Visible methods serve as a means to specify (nested) transactions. In order
to build sequences of database instances we only regard these transactions
assuming a linear invocation order on them.

• Hidden methods can be used to handle identifiers. Since these identifiers do
not have any meaning for the user, they must not occur within the input or
output of a transaction.

Definit ion 6 Let S be a structural schema.
Let Ti,..., Tn, T[,..., T'm be types, M € NM and t.\,...,

1. A method signature consists of a method name M, a set of input-parameter
/ input-type pairs tj :: Ti and a set of output-parameter / output-type pairs
Oj :: TV. We write

oi •.•.T[,...,om:-.rm <- M{ti::T1,...,in'::Tn) .

2. Let C be some structural class in S. A method M on C consists of a method
signature with name M and a body that is recursively built from the following
constructs:

(a) assignment x := E, where x is either the class variable xc or a local
variable wit,iin S, and E is a term of the same type as x,

Fundamenta.] Concepts of Object Oriented Databases 61

(bj 3kip, fail, loop,
(c) sequential composition Si] choice Si • projection x :: T | S, guard

P —• S, restricted choice SiftS?, where P is a well-formed formula and
x is a variable of type T, and

(d) instantiation x\,..., x'- «- C' : S'(E'1}..., E'-), where S' is a method
on class C' with input-parameters i'lt..., iy and output-parameters
o\,..., o'i, such that the variables o'j, x'j have the same type and the
term E'g has the same type as the variable i'g.

8. A method M on a class C with signature oi :: T[,..., om :: T^ *— M(ti ::
Ti,...,Ln :: Tn) is called value-defined iff all T< (t = 1 ...n) and T} (j =
1 , m) are proper value types.

As already mentioned the OODM distinguishes between transactions, i.e. methods
visible to the user, and hidden methods. We require each transaction to be value-
defined.

Subclasses inherit the methods of their superclasses, but overriding is allowed
as long as the new method is a specialization of all its corresponding methods in
its superclasses. Overriding becomes mandatory in the case of multiple inheritance
with name conflicts. A method that overrides a hidden method on some superclass
must also be hidden.

Definition 7 Let S be a structural schema and C £ S be a structural class
as in Definition S with superclasses Di,..., Dk- A method specification on C
consists of two sets of methods S — {Mi,...,Mn} (called transactions^ and
U — {M[,..., M^} (called hidden methods^ such that the following properties
hold:

1. Each Mi (i = 1 ,...,n) is value-defined.

2. For each transaction Ml on some superclass Di there exists some i E
{1,..., n} such that Mi specializes M1.

3. For each hidden method Ml on some superclass Di there exists some j 6
{1,..., m) such that Mj specializes Ml.

Let us briefly discuss what specialization means for the input- and output-types.
Sometimes it is required that the input-type for an overriding method should be a
subtype of the original one (covariance rule), sometimes the opposite (contravari-
ance rule) is required. The first rule applies e.g. if we want to override an insert
method. In this case the inherited method has no effect on the subclass, but sim-
ply calls the "old" method. The second rule applies if input-types required on the
superclass can be omitted on the subclass. Both rules are captured by the for-
mal notion of specialization. We omit the details [44]. Now we are prepared- to
generalize the definition of classes and schemata.

Definition 8 1. A class consists of a class name C G Nc, a structure expression
S, a set of class names Di,... ,Dm G Nc (called the set of superclasses^ and
a method specification (S = {Mi,..., Mh) , M {M'u ..., M„,}) on C.

62 K.-D. Schewe, B. Thalheim

2. A (behavioural) schema S is a finite collection of classes {Ci,... ,C„ closed
under references, superclasses and method call together with a collection of
integrity constraints Ii,...,In on $.

S. An instance P of a behavioural schema S is an instance of the underlying
structural schema. A database history on S is a sequence Po,Pi,... of in-
stances such that each transition from P,_i to Pi is due to some transaction
on some class C €E S.

Note the relation between database histories used here and the work on the seman-
tics of object bases in [22,28].

3.5 Queries and Views
Roughly speaking the querying of a database is an operation on the database with-
out changing its state. The emphasis of a query is on the output. While such
a general view of queries can be subsumed by transactions, hence by methods in
the OODM, query languages are in particular intended to be declarative in or-
der to support an ad-hoc querying of a database without the need to write new
transactions [8].

Querying a relational database can be expressed by terms in relational algebra.
This view can be easily generalized to the OODM using its type system. Therefore,
terms over such types occur naturally. Moreover, type specifications are based on
other type specifications via constructors, selectors and functions. Hence, T allows
arbitrary terms involving more than one class variable xc to be built. Then a query
turns out be be represented by term t over some type T such that the free variables
of t are all class variables. This approach is in accordance with the algebraic
approach in [12] and with so called universal traversal combinators [25].

In relational algebra a view may be regarded simply as a stored query (or derived
relation). We shall try to generalize also this view to the OODM.

However, things change dramatically, when object identifiers come into play
[13], since now we have to distinguish between queries that result in values and
those that result in (collections of) objects. Therefore we distinguish in the OODM
between value queries and general access expressions.

A value query on a schema S can then be represented by a term t of some value
type T with fr(t) C (x c | C & 5 } . Ad-hoc querying of a database should then
be restricted to value queries. This is no loss of generality, because for any type
T in T involving identifiers there exists a corresponding type T' allowing multiple
occurrences. Take e.g. a class C. If we want to get all the objects in that class no
matter whether they have the same values or not, the corresponding term would
be xc- This is not a value query, but if Tc is a value type, we may take T' = (Tc)
and the natural projection given by the subtype functions

{(ident: ID, value : a) } ((ident: ID, Value : a)) —» (a) .

In the case of arbitrary access expressions another problem, occurs [13]. So far,
we can only build terms t that involve identifiers already existing in tne database.
Thus, such queries are called object preserving. If we want the result of a query to
represent "new" objects, i.e. if we want to have object generating queries, we have
to apply a mechanism to create new object identifiers. This can be achieved by
object creating functions on the type ID with arity ID X . . . X ID —» ID [32,35].

The idea that a view is a stored query then carries over easily. However, the
structure of a view should be compatible with the structure of the schema, i.e. each
view may be regarded as a derived class. Summarizing, we get the following formal
definition.

Fundamenta.] Concepts of Object Oriented Databases 63

Definition 9 Let S = {Cy,...,Cn} be some schema.

1. A value query on S is a term t over some proper value type T with fr(t) C

&. An access expression on S is a term t over some proper type T with fr(t) C
{xCl,- •• ,xcJ.

S. A view on $ consists of a view name v 6 NQ such that there is no class
C <E S with this name, a structure expression S(v) containing references to
classes in S or to views on S and a defining access expression t(v) of type
{Uv}, where T„ is the representation type corresponding to S(v).

4- A (complete) schema is a behavioural schema together with a finite set of
views. An instance of a complete schema is an instance of the underlying
structural schema such that for every view v replacing each class variable
IQ in the access expressions of v yields a value of type {[/„} satisfying the
uniqueness property for identifiers.

4 The Object Identification Problem
From an object oriented point of view a database may be considered as a huge
collection of objects of arbitrary complex structure. Hence the problem to uniquely
identify and retrieve objects in such collections.

Each object in a database is an abstraction of a real world object that has a
unique identity. The representation of such objects in the OODM uses an abstract
identifier I of type I D to encode this identity. Such an identifier may be considered
as being immutable. However, from a systems oriented view permutations or col-
lapses of identifiers without changing anything else should not affect the behaviour
of the database.

For the user the abstract identifier of an object has no meaning. Therefore,
a different access to the 'identification problem is required. We show that the
unique identification of an object in a class leads to the notion of (weak) value-
identifiability, where weak value-representability can be used to capture also objects
that do not exists for there own, but depend on other objects. This is related
to weak entities in entity-relationship models [62]. The stronger notion of value-
representability is required for the unique definition of generic update operations.

4.1 The Notion of Value- Represent ability
According to our definitions two objects in a class C are identical iff they have the
same identifier. By the use of constraints, especially uniqueness constraints, we
could restrict this notion of equality.

Let us address the characterization of those classes, the objects in which are
completely representable by values, i.e. we could drop the object identifiers and
replace references by values of the referred object.. We shall see in Section 5 that
in case of value-representable classes we are able to preserve an important advan-
tage of relational databases, i.e. the existence of structurally-determined update
operations.

64 K.-D. Schewe, B. Thalheim

Definition 10 Let C be a class in a schema S with representation type Tc-

1. C is called value-identifiable iff there exists a proper value type Ic such that for
all instances D of S there is a function c : Tc —* Ic such that the uniqueness
constraint on C defined by c holds for D.

2. C is called value-representable iff there exists a proper value type Vc such
that for all instances D of S there is a function c : Tc —• Vc such that for P

(a) the uniqueness constraint on C defined by c holds and
(b) for each uniqueness constraint on C defined by some function c' : Tc —»

VQ with proper value type VQ there exists a function c" : VC —> VQ that
is unique on c[codom(D(C))) with c' = c" o c.

It is easy to see that each value-representable class C is also value-identifiable.
Moreover, the value-representation type Vc in Definition 10 is unique up to isomor-
phism.

4.2 Value-Representability in the Case of Acyclic Reference
Graphs

Since value-representability is defined by the existence of a certain proper value
type, it is hard to decide, whether an arbitrary class is value-representable or not.
In case of simple classes the problem is easier, since we only have to deal with
uniqueness and value constraints. In this case it is helpful to analyse the reference
structure of the class. Hence the following graph-theoretic definitions.

Definition 11 The reference graph of a class C in a schema S is the smallest
labelled graph Grep = (V, E, I) satisfying:

1. There exists a vertex tic £ V with l(vc) = {t,C}, where t is the top-level type
in the structure expression S of C.

2. For each proper occurrence of a type t / ID in Tc there exists a unique vertex
vt € V with l{vt) = {i}.

S. For each reference ri : C,- in the structure expression S of C the reference
graph G*rej is a subgraph of Gref.

4• For each vertex vt or t>c corresponding to t(xi,..., x n) in S there exist unique
edges froth vt or vc respectively to vti in case x» is the type t,- or to vc,
in case Xi is the reference r^ : C{. In the first case = {SA, where Si is
the corresponding selector name; in the latter case the label is {Sj,r,}.

Definition 12 1. Let S — {Clt...,Cn} be a schema. Let S' = {C[,... ,C'n}
be another schema such that for all i there exists a uniqueness constraint on
Ci defined by some Ci : Tci —* Tc1.. Then an identification graph Ga of the
class Ci is obtained from the reference graph of C{ by changing each label C'}-
to C,-.

2. The identification graph Gid resulting from the use of trivial uniqueness con-
straints is called the standard identification graph.

Fundamenta.] Concepts of Object Oriented Databases 65

Clearly, there need not exist any identification graph nor does the existence of
one identification graph imply the existence of the standard one. However, if the
standard identification graph exist, then it is equal to the reference graph.

Proposition 13 Let C be a class in a schema S with acyclic reference graph Gref
such that there exist uniqueness constraints for C and each Ci such that Ci occurs
as a label in GTej. Then C is value-representable.

Proof . We use induction on the maximum length of a path in Grej. If there are
no references in the structure expression S of C the type Tc is a proper value type.
Since there exists a uniqueness constraint on C, the identity function id on Tc
also defines a uniqueness constraint. Hence Vc = Tc satisfies the requirements of
Definition 10.

If there are references u : Ci in the structure expression S of C, then the
induction hypothesis holds for each such C<, because GTef is acyclic. Let Vc result
from S by replacing each r,- : Ci by Vc i • Then Vc satisfies the requirements of
Definition 10. •

Corollary 14 Let C be a class in a schema S such that there exist an acyclic
identification graph Gid and uniqueness constraints for C and each Ci occuring as
a label in Gid• Then C is value-identifiable.

4.3 Computation of Value Representation Types
We want to address the more general case where cyclic references may occur in
the schema S = { C i , . . . , C„ } . In this case a simple induction argument as in
the proof of Proposition 13 is not applicable. So we take another approach. We
define algorithms to compute types Vc and I c that turn out to be proper value
types under certain conditions. In the next subsection we then show that these
types are the value representation type and the value identification type required
by Definition 10.

Algor i thm 15 Let F(Ci) = T; provided there exists a uniqueness constraint on Ci
defined by c; : Tc, —* Ti, otherwise let F(Ci) be undefined. If ID occurs in some
F{Ci) corresponding to ry : Cy (j i), we write IDj.

Then iterate as long as possible using the following rules:

1. If F(Cj) is a proper value type and IDj occurs in some F(Ci) (j ^ i), then
replace this corresponding IDj in F(Ci) by F(Cj).

2. If IDi occurs in some F(Ci), then let F(Ci) be recursively defined by
F[Ci) == Si, where 5,- is the result of replacing IDi in F(Ci) by the type
name F(Ci).

This iteration terminates, since there exists only a finite collection of classes. If
these rules are no longer applicable, replace each, remaining occurrence of IDj in
F(Ci) by the type name F(Cj) provided F(Cj) is defined. •

Note that the the algorithm computes (mutually) recursive types. Now we give a
sufficient condition for the result of Algorithm 15 to be a proper value type.

Lemma 16 Let C be a class in a schema S such that there exists a uniqueness
constraint for all classes Ci occurring as a label in some identification graph Gid °f
C. Let Ic be the type F(C) computed by Algorithm 15 with respect to the uniqueness
constraints used in the definition of Gid• Then Ic is a proper value type.

66 K.-D. Schewe, B. Thalheim

Proo f . Suppose Ic were not a proper value type. Then there exists at least
one occurrence of ID in Ic- This corresponds to a class C,- without uniqueness
constraint occurring as a label in G,<j, hence contradicts the assumption of the
lemma. •

4.4 The Finiteness Property
Let us now address the general case. The basic idea is that there is always only
a finite number of objects in a database. Assuming the database being consistent
with respect to inclusion and referential constraints yields that there can not exist
infinite cyclic references. This will be expressed by the finiteness property. We
show that this property allows the computation of value representation types.

Definition 17 Let C be a class in a schema S and let denote a path in GTej
from vck to i>c, provided there is a reference ri : Ci in the structure expression of
Cfc. Then a cycle in Grej is a sequence go,i•'' 9n-i,n with Cq = Cn and Cf. ^ C/
otherwise.

Note that we use paths instead of edges, because the edges in G r e / do not always
correspond to references. According to our definition of a class there exists a
referential constraint on Cfc, Ct defined by Ok,i : Tck X ID —> BOOL corresponding
to pfc j. Therefore, to each cycle there exists a corresponding sequence of functions
oo,i ' ' -On-i.n- This can be used as follows to define a function eye : ID X ID —•
BOOL corresponding to a cycle in Gref.

Definition 18 Let C be a class in a schema S and let <70,i ' " 9n-i,n be a cycle
in Grej. The corresponding cycle relation eye : ID x ID —+ BOOL is defined by
cyc{itj) = true iff there exists a sequence i = t 'o ,t i , . . . , i n = j (n ^ 0) such that
(ii,vi)€Ci and 0/^+1(11+1, vi) = true for all I = 0 , . . . , n — 1.

Given a cycle relation eye, let cycm the m-th power of eye.

Lemma 19 Let C be a class in a schema S. Then C satisfies the finiteness
property, i.e. for each instance V of S and for each cycle in Grej the corresponding
cycle relation eye satisfies

Vi S dom(C). 3n. Vj € dom[C).3m < n. (cycn(i,j) = true =>• cycm(i,j) = true) .

Proo f . Suppose the finiteness property were not satisfied. Then there exist an
instance D, a cycle relation eye and an object identifier »o such that

Vn. 3j & dom(C).Vm < n. (cycn(i0,j) = true A cycm(i0,j) — false)

holds. Let such a j corresponding to n > 0 be tn . Then the elements to, »1, *2> • • • are
pairwise distinct. Hence there would be infinitely many objects in P contradicting
the finiteness of a database. •

Lemma 20 Let P be an instance of schema S = {Cy,... ,Cn}. Then P satisfies
at each stage of Algorithm 15 uniqueness constraints for all i = 1,..., n defined by
some ¿¡-.TatF(Ci).

Fundamenta.] Concepts of Object Oriented Databases 67

Proo f . It is sufficient to show that whenever a rule is applied replacing F(Ci) by
F(Ci)', then F[Ci)' also defines a uniqueness constraint on G,-.

Suppose that (z, u) e G, holds in P. Since it is possible to apply a rule to F(Ci),
there exists at least one value j :: ID occurring in c,-(u). Replacing ID, in F(Ci)
corresponds to replacing j by some value t)y :: F(C}). Because of the finiteness
property such a value must exist. Moreover, due to the uniqueness constraint
defined by cy the function / : F(Ci) —• F(Ci)' representing this replacement must
be injective on Ci(codo(P(Ci))). Hence, cj- = / o c< defines a uniqueness constraint
on G,-. •
Now assume that we use only trivial uniqueness constraints in Algorithm 15. In
order to distinguish this situation from the general case we write G(C,) instead of
F(C{) to refer to this special case.

L e m m a 21 Let P be an instance of schema S = {Ci,... ,Cn). Then at each stage
of Algorithm 15 (applied with arbitrary uniqueness constraints and in parallel with
trivial ones) there exists for all i = l , . . . , n a function Ci : G(Ci) —+ F(C{) that is
unique on Ci(codom(P[Ci))) with c(- = c,- o c,-.

P r o o f . As in the proof of Lemma 20 it is sufficient to show that the required
property is preserved by the application of a rule from any of the two versions of
Algorithm 15. Therefore, let c,- satisfy the required property and let g : G(C,) —>
G(G,)' and / : F(Ci) —• F[Ci)' be functions corresponding to the application of
a rule to G[Ci) and F(C{) respectively. Such functions were constructed in the
proofs of Lemma 20 and Lemma 20 respectively.

Then f o c{ satisfies the required property with respect to the application of
/ . In the case of applying g we know that g is injective on Ci(codom(P(Ci))). Let
h : G(G,)' G(G,) be any continuation of g~l : g[ci(codom(P(Ci)))) — G(G,).
Then c,- o h satisfies the required property. •

Theorem 22 Let C be a class in a schema S such that there exists a uniqueness
constraint for all classes Ci occurring as a label in the reference graph Grej of
C. Let Vc be the type G(C) computed by Algorithm 15 with respect to trivial
uniqueness constraints and let Ic be the type F(C) computed by Algorithm 15 with
respect to arbitrary uniqueness constraints. Then G is value-representable with value
representation type VQ and each such IQ is a value identification type.

Proo f . Vc is a proper value type by Lemma 16. From Lemma 20 it follows that
if P. is an instance of S, then there exists a function c : Tc —* Vc such that the
uniqueness constraint defined by c holds for P. The same applies to Ic-

If Vc is another proper value type and P satisfies a uniqueness constraint defined
by c' : Tc VQ, then V'c is some value-identification type Ic- Hence by Lemma
21 there exists a function c" : Vc —» V'c that is unique on c[codom(P(C))) with
c' = c" o c. This proves the Theorem. •

Corol lary 23 Let S be a schema such that all classes C in S are value-identifiable.
Then all classes C in S are also value-representable.

•

4.5 Weak Value-Representability
Let us now ask whether there exist also weaker identification mechanisms other than
value-represent ability. In several papers, e.g. [42] a navigational approach on the

68 K.-D. Schewe, B. Thalheim

basis of the reference structure has been favoured. This leads to dependent classes
similar to "weak entities" -in the entity-relationship model_[62]. We shall.show that
such an approach requires at least a value-identifiable "entrance" of some path and
the hard restriction on references to be representable by surjective functions.

Definition 24 Let S be some schema.

1. If r is a reference from class C to D in S and o : Tc x ID —• BOOL is the
function of Definition 4 expressing the corresponding referential constraint,
then r satisfies the (SF)-condition iff

(a) o(v,i) A o(v,j) => i = j and
(b) j € dom(xD) =$> 3t> :: Tc-v G codom(xc) Ao(v,j)

hold for all i, j :: ID, v::Tc.

2. An (SF)-chain from class D to C in S is a sequence of classes D =
C o , . . . , Cn = C such that for all i (t = 1 , . . . , n) either Cj is a subclass of Ci-i
or there exists a reference r,- from C,_i to C,- satisfying the (SF)-condition.

3. A class C in S is called weakly value-identifiable iff there exists a value-
identifiable class D and an (SF)-chain from D to C.

The notation (SF)-condition has been chosen to emphasize that such a reference
represents a surjective function. It is easy to see taking n = 0 that each value-
identifiable class is also weakly value-identifiable.

Lemma 25 If C is a weakly value-identifiable class in a schema S, then there
exists a proper value type IQ such that for each instance D of S there exists a
function c : ID —• Ic such that c is infective on dom(D(C)).

Call Ic a weak value-identification type of the class C.

Proo f . Let D = Cq, ... ,Cn = C be an (SF)-chain from the value-identifiable
class D to C with corresponding references r,- (i = 1, . . . , n) . If r̂ satisfies the
fSF)-condition, there exists a function Ci : ID —• ID such that j G <iom(P(Ct)) =>
(c, (y),ti) G xci_! for some v with Oi(v,j) (just take some inverse image of j under
the surjective reference function). Since r,- defines a function, c,- is clearly injective.
If Ci is a subclass of Cj_i , then take Cj = id.

If c' : ID —• ID is the function defined by the uniqueness constraint on D and
c" -. ID — ID is the concatenation C io . . . o c n , then c — c ' o c " satisfies the required
property. •

Definition 26 A class C in a schema S is called weakly value-representable iff
there exists a proper value type Vc such that for each instance D of S the following
properties hold.

1. There is a function c : ID —* Vc that is infective on dom(P(C)).

2. For each proper value type V'c and each function c' : ID —> V'c that is injec-
tive on dom(D(C)) there exists a function c" : Vc —* V'G that is unique on
c(dom(D{C))) with c' = c" o c.

We call Vc the weak v ilue-representation type of the class C.

Fundamenta.] Concepts of Object Oriented Databases 69

Note that the weak value-representation type is unique provided it exists. Again it
is easy to see that value-representability implies weak value-representability. More-
over, due to Lemma 25 each weakly value-representable class is also weakly value-
identifiable. We shall see that also the converse of this fact is true.

We want to compute weak value representation types. This can be done using a
slight modification of Algorithm 15 that completely ignores uniqueness constraints.
We refer to this algorithm as the blind version of Algorithm 15 and to emphasize
this, we write H(CA instead of F(Ci). Analogous to Lemmata 16 and 20 the
following results holds.

Lemma 27 Let C be a class in a schema S and let IQ be the type H(C) computed
by the blind version of Algorithm 15. Then Ic is a proper value type.

Lemma 28 Let P be an instance of the schema S = { C i , . . . , Cn}. Let C, D be
classes such that C is weakly value-identifiable, D is value-identifiable and there
exists some (SF)-chain from D to C. Let c : ID —* Ic be the function of Lemma
25 corresponding to this chain. Let c' : ID —• H(D) be a function corresponding
to the uniqueness constraint on D and the instance P. Then at each stage of the
blind version of Algorithm 15 there exists a function c : H(D) —• Ic that is unique
on c'(domp(C)) with c = c o c'.

Based on these two lemmata we can now state the main result on weak value
representability.

Theorem 29 Let C be a weakly value-identifiable class in a schema S andlet Vc
be the product of all types H(D), where D is the leading value-identifiable class in
some maximal (SF)-chain corresponding to C and H(D) is the result of the blind
version of Algorithm 15. Then C is weakly value-representable with weak value-
representation type Vc.

Proo f . Vc is a proper value type by Lemma 27. From Lemmata 20 and 25 it
follows that there exists a function c' : ID —• Vc that is injective on domp(C).

From Lemma 28 it follows that there exists a function c : Vc —• Ic that is
unique on c'(dom(P(C))) with c = c o c'. This proves the Theorem. •

5 The Genericity Problem
The preservation of advantages of relational databases requires generic operations
for querying and for the insertion, deletion and update of single objects. While
querying [1,12,30,55] is per se a set-oriented operation, i.e. it is not necessary to
select just one single object, and hence does not raise any specific problems with
object identifiers, things change completely in case of updates. If an object with
a given value is to be updated (or deleted), this is only defined unambigously, if
there does not" exist another object with the same value. If more than one object
exists with the same value or more generally with the same value and the same
references to other objects, then the user has to decide, whether an update- or
delete-operation is applied to all these objects, to only one of these objects selected
non-deterministically or to none of them, i.e. to reject the operation. However, it
is not possible to specify a priori such an operation that works in the same way
for all objects in all situations. The same applies to insert-operations. Hence the
problem, in which cases operations for the insertion, deletion and update of objects
can be defined generically.

70 K.-D. Schewe, B. Thalheim

Some authors [43] have chosen the solution to abandon generic operations. Oth-
ers [6,7,9] use "identifying values to represent object identity, thus embody a strict
concept of surrogate keys to avoid the problem. Our approach is different from-both
solutions in that we use the concept of hidden abstract identifiers, but at the same
time formally characterize those classes for which unique generic methods for the
insertion, deletion and update of single objects exist. At the same time inclusion
and referential integrity have to be enforced. We show that these classes are the
value-representable ones.

5.1 Generic Update Methods
The requirement that object-identifiers have to be hidden from the user imposes
the restriction on canonical update operations to be value-defined in the sense that
the identifier of a new object has to be chosen by the system whereas all input- and
output-data have to be values of proper value types.

We now formally define what we mean by generic update methods. For this
purpose regard an instance P of a schema S as a set of objects. For each recursively
defined type T let T denote by replacing each occurrence of a recursive type T ' in
T by UNION(T', ID).

Definition 30 Let C be a class in a schema S. Generic update methods on C are
insertc, deletec and updatec satisfying the following properties:

1. Their input types are proper value types; their output type is the trivial type
1.

2. In the case of insert applied to an instance P there exists some o :: Uc such
that

(a) the result is an instance P' with o <E P' and P C P' hold and

(b) if P is any instance with P C P and o 6 P, then P' C P.

3. In the case of delete applied to an instance P there exists some o :: UQ such
that

(a) the result is an instance P' with o £ P' and P' C P hold and

(b) if P is any instance with P C P and o P, then P C P'.

4- In the case of update applied to an instance P = Pi LI P2, where P2 — {o}
if o £ of and P2 — 0 otherwise there exist o,o' :: Uc with o = (t, v) and
o' = (i,v') such that

(a) the result is on instance P' = Pi U P2 with P2C\ P2 = 0,
(b) oeP.o' S P',

(c) if D is any instance with Pi C P and o' £ P, then P' C P.

Canonical update methods on C are insert'c, delete'c and update'c defined anal-
ogously with the only difference of their output type being ID and their input-type
being T for some value-type T.

Fundamenta.] Concepts of Object Oriented Databases 71

Note that this definition of genericity includes the consistency with respect to the
implicit constraints on S. We show that value-representability is necessary and
sufficient for the existence and uniqueness of such operations.

Lemma 31 Let C be a class in a schema S such that there exist canonical update
methods on C. Then also generic update methods exist on C.

Proo f . In the case of inserí define insertc^V :: Vg) == I <— insert'c(V), i.e. call
the corresponding canonical operation and ignore its output. The same argument
applies to delete and update. •

T h e o r e m 32 Let C be a class in a schema S such that there exist generic update
methods on C. Then C is value-representable. Moreover, all super- and subclasses
of C are also value-representable.

Proo f . First consider the delete method with input type Ic which is by definition
a proper value type. We show that it is already a value identification type.

If not, then for all instances P and all functions c : Tc —* Ic there exist i, j :: ID
and v, w :: Tc with

i ± jA (i >) 6 P(C) A (; » S P(C) Ac(u) = c(ty) . (12)

Now take o = [i,v) and o' = (j ,w) . Then there exist two distinct instances
9' and P" satisfying the conditions of Definition 30(iii) with respect to o and o'
respectively, hence contradict the assumption of a unique generic delete-method on
C.

The same argument applies to the input-type Vc- Moreover, since insertion
requires all values of referenced object to be provided, we derive from Algorithm
15 and Theorem 22 that Vc is a value representation type. Therefore, C is value-
representable.

The value-representability on superclasses is implied, since insert (and update)
on C involve the corresponding method on each superclass. The value-
representability of subclasses follows from the propagation of update through them.
We omit the technical details. •

5.2 Generic Updates in the Case of Value-Representability
Our next goal is to reduce the existence problem of canonical update operations to
schemata without IsA relations.

Lemma 33 Let C, D be value-representable classes in a schema S such that C is
a subclass of D with subtype function g : Tc —> Tp. Then there exists a function
h : Vc —• Vx? such that for each instance D of S with corresponding functions
c :Tc Vc and d : Tp VD we have /i(c(v)) = cf(sr(t;)) for all v € codom(P(C)).

Proo f . By Definition 10 c is injective on codom(P(C)), hence any continuation h
of d o g o c - 1 satisfies the required property.

It remains to show that h does not depend on P. Suppose Pi, P2 are two
instances such that to = ci(t>i) = c2(v2) € Vc, where c\,d\,hi correspond to P\
and C2, d2, h.2 correspond to P2. Then there exists a permutation ir on I D such
that V2 = T(I>I). We may extend ir to a permutation on any type. Since I D has no
non-trivial supertype. g permutes with tt, hence g(v2) = 7r(p(t;i)). From Definition
10 it follows d2{g(v2)j = di(g(vi)), i.e. h2(w) = hi(w). •
In the following let 5o be a schema derived from a schema S by omitting all IsA
relations.

72 K.-D. Schewe, B. Thalheim

Lemma 34 Let C be a value-representable class in S such that all its superclasses
and subclasses Di ... Dn are also value-representable. Then canonical update oper-
ations exist on C in S iff they exist on C and all Di in So.

P r o o f . By Theorem 22 the value-representation type Vc is the result of Algorithm
15, hence Vc does not depend on the inclusion constraints of S. Then we have

I :: ID «- insert'c{V :: Vc) ==
I - insert'Dl (M^));insert'DJhn(V))-1 - insert°c(V)

where hi : Vc —* Vp. is the function of Lemma 33 and insertdenotes a canonical
insert on C in S0- ftence in this case the result for the insert follows by structural
induction on the IsA-hierarchy.

If the subtype function g required in Lemma 33 does not exist for some su-
perclass D then simply add VJJ to the input type. We omit the details for this
case.

The arguments for delete and update are analogous. The value-representability
of subclasses is required for the update case. •
Prom now on we use a global operation Newld that produces a fresh identifier
I :: ID. This can be represented as a method using projection.

Lemma 35 Let C be a value-representable class in SQ. Then there exist unique
quasi-canonical update operations on C.

P r o o f . Let r¿ : C{ (i = 1 . . . n) denote the references in the structure expression of
C. If V be a value of type VQ, then there' exist values V¿y :: Vci (i = 1.. . n, j =
1 . . . ki) occurring in V. Let V = { V ¿ y / | i = 1 . . . n,j = 1 . . . ki}.V denote the
value of type Tc that results from replacing each V,' j by some J,- y :: ID. Moreover,
for I:: ID let

v(n = ({V/J}-ViJ ^ y o c c u r s Vi,j
•'•> \ V i j else

Then the canonical insert operation can be defined as follows:
I:: ID <— insert'dV :: Vc) ==

3 T-.-.ID, V' :: Tc..{Pair{I',V') eC A c{V') = V) —/:=/'

B 3V' :: TC.V = V — I *— Newld-, xc := xc U { (/ , V) }
B I«— Newld ; Jhl — insert'Ci);...; J„,fc„ ^ insert'Cn () ;

xc~xcU {(I,V)}
It remains to show that this operation is indeed canonical. Apply the method to
some instance P. If there already exists some o = (I',V') in C with c(V') — V,
the result is P' = P and the requirements of Definition 30 are trivially satisfied.
Otherwise let o = (I, V). If P is an instance with P C P and o & P, we have J{¿ e
dom(Ci) for all i = 1... n, j = I. ..ki, since P satisfies the referential constraints.
Hence P contains the distinguished objects corresponding to the involved quasi-
canonical operations insert'c_. By induction on the length of call-sequences Pij C P

for all t = 1 n, j = 1 ...ki, where Pit]- is the result of J,-y «— insert'Ci(V¿ '.
Hence P' — (J PÍJ U {o } C P. The uniqueness follows from the uniqueness of Vc-

The definitions and proofs for delete and update are analogous. •

Fundamenta.] Concepts of Object Oriented Databases 73

Theorem 36 Let C be a value-representable class in a schema S such that all its
super- and subclasses are also value-representable. Then there exist unique generic
update operations on C.

Proo f . By Lemma 31 and Lemma 34 it is sufficient to show the existence of
canonical update operations on C and all its super- and subclasses in the schema
So- This follows from Lemma 35. •
In ¡50] it has been shown, how linguistic reflection [56] can be exploited to generate
the generic update operations for value-representable classes in an OODM schema.

6 The Consistency Problem
In general a database may be considered as a triplet (S , 0 , C) , where S defines
a structure, 0 denotes a collection of state changing operations and C is a set
of constraints. Then the consistency problem is to guarantee that each specified
operation o € 0 will never violate any constraint I S C. Integrity enforcement
aims at the derivation of a new set 0' with | O' |=| O | of operations such that
(5, 0',C) satisfies this property.

Suppose we are given a database schema S and a static integrity constraint
I on that schema. Regard I as a logical formula defined on S. Consistency
requires that only those instances P of S are allowed that satisfy I. Call the set
of such instances sat(S, J). Each transaction is a database transformation. Such a
database transformation T takes an arbitrary instance P and possibly some input
values « ! , . . . , « „ and produces a new instance P' and possibly some output values
Uj,..., v'm. T is consistent with respect to I iff for each P €= sat(S, I) we also have
P' € sat{S, I).

Classically consistency is maintained at run-time by transaction monitors.
Whenever an inconsistent instance is produced the transaction that caused the
inconsistency will be rolled back. This "everything or nothing" approach has been
critized, since it causes enormous run-time overhead for consistency checking and
rollback. Moreover, it leaves the burden of writing consistent transactions to the
user. In principle the first problem vanishes, if verification techniques are used at
design time [44,57,58], whereas the second one still'remains.

As an alternative a lot of attention has been paid to integrity enforcement.
In most cases the envisioned solution is an active database [18,27,59,64,65], where
production rules are used to repair inconsistencies instead of rolling back. Although
this is sometimes coupled with design time (or even run-time) analysis of the rules
[18,27,33,63], the approach is not always successfull. Moreover, a satisfying theory
for rule triggering systems with respect to the integrity enforcement problem is still
missing. Therefore, we favour an operational approach [51,48,52,53], which aims at
replacing inconsistent database transactions by consistent specializations.

6.1 Greatest Consistent Specializations
In general non-deterministic partial state transitions S as used in our method lan-
guage can be described by a subset of P X where P denotes the set of possible
states and P± = P U {-L}, where _L is a special symbol used to indicate non-
termination. It can be shown [20,41,46,44] that this is equivalent to defining two
predicate transformers wp(S) and wlp(S) associated with 5 satisfying the pairing
condition wp(S)(Z) •<=> wlp[S)(R) Awp(S)(true) and the universal conjunctivity of
wlp(S),i.e.

u>lp(S)(Vi e I. Zi) o V» e I. wlp(S)(Zi) .

74 K.-D. Schewe, B. Thalheim

The predicate transformers assign to some postcondition R the weakest (liberal)
precondition of 5 to establish R. Clearly, pre- and postconditions are X-constraints.
Informally these conditions can be characterized as follows:

• wlp(S)(R) characterizes those initial states such that all terminating execu-
tions of S will reach a final state characterized by R provided 5 is defined in
that initial state, and

• wp(S)(R) characterizes those initial states such that all executions of S ter-
minate and will reach a final state characterized by R provided 5 is defined.

The use of these predicate transformers for the definition of language semantics is
usually called "axiomatic semantics". Based on this consistency and specialization
can be formally defined and used for the formal description of the consistency
problem. For this purpose we define "extended operations" and therefore need to
know for each operation S the set of classes S' such that S does neither read nor
change the class variables xc with C ^ 5 ' . In this case we call S a S'-operation.
We omit the formal definition [41,51].

Definition 37 Let S be a schema, I a constraint and S, T methods defined on
Si C S and £ S respectively with Si C

1. S is consistent with respect to I iff I => tvlp(S)(J) holds.

2. T specializes S iff wp(S)(true) => wp(T)(true) and wlp(S){R) =>
wlp(T)(R) hold for ail constraints R with free variables XQ such that C 6 Si
(denoted T C S).

Hence the following definition of a greatest consistent specialization:

Definition 38 Let S be a schema, I a constraint and S a method defined on
Si C S. A method Sj is a Greatest Consistent Specialization (GCS) of S with
respect to J iff

1. Sj Q S ,

2. Sj is consistent with respect to I and

S. for each method T satisfying properties (i) and (ii) (instead of Sj) we have
T Q Sj .

If only properties (i) and (ii) are satisfied, we simply talk of a consistent special-
ization.

Let us first state the main results from [48].

Theorem 39 Let S be a schema, I, J constraints and S a method defined on
SXCS.

1. There exists a greatest consistent specialization Sj of S with respect to I.
Moreover, Sj is uniquely determined (up to semantic equivalence) by S and

2. The GCSs (Sj)j and S^JAJ) coincide on initial states satisfying I A J.

Fundamenta.] Concepts of Object Oriented Databases 75

The proof of these results heavily uses predicate transformers and is therefore omit-
ted here.

In [51] it has been shown that a GCS—that is in general non-deterministic—
can be written as a finite choice of maximal quasi-deterministic specializations
(MQCSs), where quasi-determinism means determinism up to the selection of some
values. In most cases this value selection can be shifted to the input, but the se-
lection of object identifiers should be left to the system.

Next, we formally define quasi-determinism and then present the main result
from [51], an algorithm for the computation of MQCSs.

Definition 40 A method S is called quasi-deterministic iff there exist types
Ti,...,Tn such that S is semantically equivalent to

Vl ::2\ | ...y„::Tn | S' ,

where S' is a deterministic method.

Algorithm 41 In: An X-operation S and constraints Ii,...,In defined on exten-
sions Yi,..., Yn of X.

Let I be the list of the constraints. As long as t ^ nil proceed as follows:

1. Set S'j = S.

2. Choose and remove one constraint Ii from t.

S. Check whether S'j is Ii-reduced. If not, stop with no result, otherwise con-
tinue.

4- Make S'j B -free by replacing each occurring S1B.S2 by S1 Dwlp[Si)(f alse)

5. Replace each basic assignment in S'j by some fsubsumption-free) MQCS with
respect to

6. Compute P{Sj) as

P{Sl) = izi/xi,. •• ,zn/xn}.wlp({x1/zl!...
...,xn/zn}.^j)(-^wlp(S)(z1 ^ X l V... VZN ± *„)) ,

where the Xi are the class variables occurring in J or in S and the Zi are used
as a disjoint copy of these.

7. SetS - P{Sj) S'j.

Set S'j = S.

Out: An operation I S'j, where J3'j is a (subsumption-free) MQCS of the
original S with respect to the conjunction I of the constraints.

•
An extension of the GCS algorithm to compute all (subsumption-free) MQCSs is
easy.

It has been shown in [51] that Algorithm 41 is correct. However, it depends on
checking a very technical condition, J-reducedness. We omit this condition liere.

76 K.-D. Schewe, B. Thalheim

6.2 Enforcing Integrity in the O O D M
Since Algorithm 41 allows integrity enforcement to be reduced to the-case-of-as-
signments, we may restrict ourselves to the case of a single explicit constraint in
addition to the trivial uniqueness constraints that are required to assure value-
representability and that are used to construct generic update operations. In the
following we describe MQCSs with respect to the constraints introduced in Defini-
tion 5.

6.2.1 Inclusion Constraints.

Let I be an inclusion constraint on Ci, C2 defined via c,- : Tc, —• T (t = 1, 2). Then
each insertion into requires an additional insertion into C 2 whereas a deletion
on C2 requires a deletion on C\. Update on one of the Ci requires an additional
update on the other class.

Let us first concentrate on the insert-operation on Cj (for an insert on C2
there is nothing to do). Insertion into C\ requires an input-value of type Vc,," an
additional insert on C2 then requires an input-value of type Vc , . However, these
input-values are not independent, because the corresponding values of type Tcl
and Tc , must satisfy the general inclusion constraint. Therefore we first show that
the constraint can be "lifted" to a constraint on the value-representation types.
Note that this is similar to the handling of IsA-constraints in Lemma 33.

L e m m a 42 Let Cx, C2 be classes, ct- : Tc, —* T functions and let Vc, be the
value-representation type of Ci (i = 1,2). Then there exist functions fi : Vc, —* T
such that for all database instances D

/ i (d ? (« 0) = / 2 (4 M) o C1(«1) = c2(u2) (13)
for all Vi G codom(P(xCi)) (i = l , 2 j holds. Here df : TC{ —> VQ. denotes the
function used in the uniqueness constraint on Ci with respect to P.

P r o o f . Due to Definition 10 we may define fi = c , o (d ?) _ 1 on c,(co<iom(i ,(xc1)))
(¿ = 1 . 2) .

Then we have to show that this definition is independent of the instance P.
Suppose PI, P2 are two different instances. Then there exists a permutation IT on
ID such that d?3 = df1 o n, where n is extended to Tc, . Then

ao(d^)-1 = CiOK-toid?*)-1 = TT^OC-O (dfl)-l ,

since Ci permutes with TT-1. Then the stated equality follows. •
Now let Vci,Oi — VCl X Vci and define the new insert-operation on Ci by
[insertCl)j({vi,v2) ::VCuCi) ==

/i(«Ji) = /2(^2) -+ insertCl{vi) ; insertc,(v2) , (14)

where the /,• are the functions of Lemma 42. Note there there is no need to require
C2. Delete- and update-operations can be defined analogously.

Fundamenta.] Concepts of Object Oriented Databases 77

6.2.2 Functional and Uniqueness Constraints.

Now let J be a functional constraint on C defined via c1 : Tc Ti and c2 : Tc
T?. In this case nothing is required for the delete operation whereas for inserts (and
updates) we have to add a postcondition. Moreover, let c p : Tc —* Vc denote the
function associated with the value-representability of C and the database instance
D and let all other notations be as before. Let us again concentrate on the insert-
operation. Let insert'c denote the canonical insert on C. Then we define

(insertc)j(V ::VC) ==
I:: ID | I <— insert'ci
V' ::TC | {I,V')exc -

(VJ:: ID,W ::TC. ({J,W) € xc

Ac1{W) = c1{V') => c2(W) = c2(V')) — skip . (15)

Note that in this case there is no change of input-type. For delete- and update-
operations we have analogous definitions.

A uniqueness constraint defined via c1 : Tc —* T\ is equivalent to a functional
constraint defined via c1 and c2 = id : Tc —+ Tc plus the trivial uniqueness con-
straint. Since trivial uniqueness constraints are already enforced by the canonical
update operations, there is no need to handle separately arbitrary uniqueness con-
straints.

6.2.3 Exclusion Constraints.

The handling of exclusion constraints is analogous to the handling of inclusion
constraints. This means that an insert (update) on one class may cause a delete
on the other, whereas delete-operations remain unchanged.

We concentrate again on the insert-operation. Let I be an exclusion constraint
on Ci and C 2 defined via c< : TCi —• T (t = 1, 2). Let / , : Vc, T denote the
functions from Lemma 42. Then we define a new insert-operation on Cj by

[insertCl)j{V :: V C l) = =
insertc1 (V) ;

US. ((I :: ID | V' ::TC, | (I,V')exc,

Ac2{V') = friV) deletecAV) i S) 81 skiP) • (16)
For delete- and update-operations an analogous result holds.

Theorem 43 The methods Sj in (14), (15) and (16) are MQCSs of generic
insert-methods with respect to inclusion, functional and exclusion constraints re-
spectively.

The proof involves detailed use of predicate transformers and is therefore omitted
here [48,49]. Analogous results hold for delete and update.

7 Conclusion
In this paper we describe first results concerning the formal foundations of object
oriented database concepts. For this purpose we introduced a formal object oriented
datamodel (OODM) with the following characteristics.

78 K.-D. Schewe, B. Thalheim

• Objects are considered to be abstractions of real world entities, hence they
have an immutable identity. This identity is encoded by abstract identifiers
that are assumed to form some type ID. This identifier concept eases the
modelling of shared data and cyclic references, however, it does not relieve us
from the problem to provide unique identification mechanisms for objects in
a database.

• In our approach there is not only one value of a given type that is associated
with an object. In contrast we allow several values of possibly different types
to belong to an object, and even this collection of types may change.

• Classes are used to structure objects. At each time a class corresponds to a
collection of objects with values of the same type and references to objects in
a fixed set of classes. Inheritance is based on IsA relations that express an
inclusion at each time of the sets of objects. Moreover, referential integrity is
supported.

• We associate with each class a collection of methods. Methods are specified by
guarded commands, hence the method language is computationally complete.
In order to allow the handling of identifiers that are always hidden from the
user as well as user-accessible transactions a hiding operator on methods is
introduced. Generic update operations, i.e. insert, delete and update on a
class are assumed to be automatically derived whenever this is possible.

• We associate integrity constraints to schemata. Certain kinds of such con-
straints can be obtained by generalizing corresponding constraints in the re-
lational model. We assume that methods are automatically changed in order
to enforce integrity.

On this basis of this formal OODM we study the problems of identification, gener-
icity and integrity. We show that the unique identification of objects in a class
requires the class to be value-representable.

An advantage of database systems is to provide generic update operations.
We show that the unique existence of such generic methods requires also value-
representability. However, in this case referential and inclusion integrity can be en-
forced automatically. This result can be generalized with respect to distinguished
classes of user-defined integrity constraints. Given some arbitrary method S and
some constraint I there exists a greatest consistent specialization (GCS) Sj of S
with respect to I . Such a GCS behaves nice in that it is compatible with the
conjunction of constraints. For the GCS construction of a user-defined transaction
we apply the GCS algorithm developped in [48,51,52,53].

This work on mathematical foundations of OODB concepts is not yet completed.
A lot of problems are still left open and are the matter of current investigations
and future research.

• In our approach classes are sets. What are other bulk types? Does it make
sense to abstract from classes in this way?

• The problem of updatable views is still open.

• Our approach to genericity only handles the worst case expressed by the value
representation type. We assume that polymorphism will help to generalize
our results to the general case.. Moreover, we must integrate communication
aspects at least with respect to the user.

Fundamenta.] Concepts of Object Oriented Databases 79

• The usual axiomatic semantics for guarded commands abstracts from an exe-
cution model. All results are true for semantic equivalence classes. However,
we also need optimization, especially with respect to the derived GCSs.

• We only presented a formal OODM without looking into methodological as-
pects such as the characterization of good designs.

We express the hope that others will also contribute to solve open problems in
OODB foundation or in the implementation of more sophisticated object oriented
database languages on a sound mathematical basis.

Acknowledgement
We would like to thank Catriel Beeri, Joachim W. Schmidt, and Ingrid Wetzel for
many stimulating discussions especially concerning object identification. We also
want to thank David Stemple and Kasimierz Subieta for questioning the theme
from an engineering point of view.

References
[1] S. Abiteboul: Towards a deductive object-oriented database language, Data &:

Knowledge Engineering, vol. 5, 1990, pp. 263 - 287

[2] S. Abiteboul, R. Hull: IFO: A Formal Semantic Database Model, ACM ToDS,
vol. 12 (4), December 1987, pp. 525 - 565

[3j S. Abiteboul, P. Kanellakis: Object Identity as a Query Language Primitive,
in Proc. SIGMOD, Portland Oregon, 1989, pp. 159 - 173

[4] A. Albano, G. Ghelli, R. Orsini: Types for Databases: The Galileo Experience,
in Type Systems and Datahase Programming Languages, University of St. An-
drews, Dept. of Mathematical and Computational Sciences, Research Report
CS/90/3, 27 - 37

[5] A. Albano, A. Dearie, G. Ghelli, C. Marlin, R. Morrison, R. Orsini, D. Stemple:
A Framework for Comparing Type Systems for Database Programming Lan-
guages, in Type Systems and Database Programming Languages, University
of St. Andrews, Dept. of Mathematical and Computational Sciences, Research
Report CS/90/3, 1990

[6] A. Albano, G. Ghelli, R. Orsini: Objects and Classes for a Database Program-
ming Language, FIDE technical report 91/16, 1991

[7] A. Albano, G. Ghelli, R. Orsini: A Relationship Mechanism for a Strongly
Typed Object-Oriented Database Programming Language, in A. Sernadas (Ed.):
Proc. VLDB 91, Barcelona 1991

[8] M. Atkinson, F. Bancilhon, D. De Witt, K. Dittrich, D. Maier, S. Zdonik: The
Object-Oriented Database. System Manifesto,' Proc. 1st DOOD, Kyoto 1989

[9] F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman,
C. Lecluse, P.: Pfeffer, P. Richard, F. Velez: The Design and Implementation
of 02, an Object-Oriented Database System, Proc. of the ooDBS II workshop,
Bad Münster, FRG, September 1988

80 K.-D. Schewe, B. Thalheim

[10] C. Beeri: Formal Models for Object-Oriented Databases, Proc. 1st D O O D 1989,
pp. 370 - 395

[11] C. Beeri: A formal approach to object-oriented databases, Data and Knowledge
Engineering, vol. 5 (4), 1990, pp. 353 - 382

[12] C. Beeri, Y. Kornatzky: Algebraic Optimization of Object-Oriented Query Lan-
guages, in S. Abiteboul, P. C. Kanellakis (Eds.): Proc. ICDT '90, Springer
LNCS 470, pp. 72 - 88

[13] C. Beeri: New Data Models and Languages - the Challange in Proc. PODS '92

[14] L. Cardelli, P. Wegner: On Understanding Types, Data Abstraction and Poly-
morphism, ACM Computing Suerveys 17,4, pp 471 - 522

[15] L. Cardelli: Typeful Programming, Digital Systems Research Center Reports
45, DEC SRC Palo Alto, May 1989

[16] M. Carey, D. DeWitt, S. Vandenberg: A Data Model and Query Language for
EXODUS, Proc. ACM SIGMOD 88

[17] M. Caruso, E. Sciore: The VISION Object-Oriented Database Management
System, Proc. of the Workshop on Database Programming Languages, Roscoff,
FVance, September 1987

[18] S. Ceri, J. Widom: Deriving Production Rules for Constraint Maintenance,
Proc. 16th Conf. on VLDB, Brisbane (Australia), August 1990, pp. 566 - 577

[19] A. Dearie, R. Connor, F. Brown, R. Morrison: Napier88 - A Database Pro-
gramming Language?, in Type Systems and Database Programming Lan-
guages, University of St. Andrews, Dept. of Mathematical and Computational
Sciences, Research Report CS/90 /3 , 10 - 26

[20] E. W. Dijkstra, C. S. Schölten: Predicate Calculus and Program Semantics,
Springer-Verlag, 1989

[21] H.-D. Ehrich, M. Gogolla, U. Lipeck: Algebraische Spezifikation abstrakter
Datentypen, Teubner-Verlag, 1989

[22] H.-D. Ehrich, A. Sernadas: Fundamental Object Concepts and Constructors,
in G. Saake, A. Sernadas (Eds.): Information Systems - Correctness and
Reusability, TU Braunschweig, Informatik Berichte 91-03, 1991

[23] H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification, vol.1, Springer
1985

[24] L. Fegaras, T . Sheard, D. Stemple: The ADABTPL Type System, in Type Sys-
tems and Database Programming Languages, University of St. Andrews, Dept.
of Mathematical and Computational Sciences, Research Report C S / 9 0 / 3 , 45
- 56

[25] L. Fegaras, T . Sheard, D. Stemple: Uniform Traversal Combinators: Defini-
tion, Use and Properties, University of Massachusetts, 1992

[26] D. FishJnan, D. Beech, H. Cate, E. Chow et al.: IRIS: An Object-Oriented
Database Management System, ACM ToIS, vol. 5(1), January 1987

Fundamenta.] Concepts of Object Oriented Databases 81

P. Fraternali, S. Paraboschi, L. Tanca: Automatic Rule Generation for Con-
straint Enforcement in Active Databases, in U. Lipeck (Ed.): Proc. 4th Int.
Workshop on Foundations of Models and Languages for Data and Objects
"MODELLING DATABASE DYNAMICS", Volkse (Germany), October 19-
22, 1992

G. Gottlob, G. Kappel, M. Schrefl: Semantics of Object-Oriented Data Models
- The Evolving Algebra Approach, in J. W. Schmidt, A. A. Stognij (Eds.):
Proc. Next Generation Information Systems Technology, Springer LNCS, vol.
504, 1991

M. Hammer, D. McLeod: Database Description with SDM: A Semantic
Database Model, J. ACM, vol. 31 (3), 1984, pp. 351 - 386

A. Heuer, P. Sander: Classifying Object-Oriented Results in a Class/Type Lat-
tice, in B. Thalheim et al. (Ed.): Proceedings MFDBS 91, Springer LNCS 495,
pp. 1 4 - 2 8

R. Hull, R. King: Semantic Database Modeling: Survey, Applications and
Research Issues, ACM Computing Surveys, vol. 19(3), September 1987

R. Hull, M. Yoshikawa: ILOG: Declarative Creation and Manipulation of Ob-
ject Identifiers, in Proc. 16th VLDB, Brisbane (Australia), 1990, pp. 455 -
467

A. P. Karadimce, S. D. Urban, Diagnosing Anomalous Rule Behaviour in
Databases with Integrity Maintenance Production Rules, in Proc. 3rd Int.
Workshop on Foundations of Models and Languages for Data and Objects,
Aigen (Austria), September 1991, pp. 77 - 102

S. Khoshafian, G. Copeland: Object Identity, Proc. 1st Int. Conf. on OOPSLA,
Portland, Oregon, 1986 •

M. Kifer, J. Wu: A Logic for Object-Oriented Logic Programming (Maier's
O-Logic Revisited), in PODS'89, pp. 379 - 393

W. Kim, N. Ballou, J. Banerjee, H. T. Chou, J. Garza, D. Woelk: Integrating
an Object-Oriented Programming System with a Database System, in Proc.
OOPSLA 1988

D. Maier, J. Stein, A. Ottis, A. Purdy: Development of an Object-Oriented
DBMS, OOPSLA, September 1986

F. Matthes, J. W. Schmidt: Bulk Types - Add-On or Built-in?, in Proc. DBPL
III, Nafplion 1991

J. Mylopoulos, P. A. Bernstein, H. K. T. Wong: A Language Facility for
Designing Interactive Database-Intensive Applications, ACM ToDS, vol. 5 (2),
April 1980, pp. 185 - 207

J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos: Representing
Knowledge About Information Systems, ACM ToIS, vol. 8 (4), October 1990
pp. 325 - 362

G. Nelson: A Generalization of Dijkstra's Calculus, ACM TOPLAS, vol. 11
(4), October 1989, pp. 517 - 561

82 K.-D. Schewe, B. Thalheim

¡42] A. Ohori: Representing Object Identity in a Pure Functional Language, Proc.
ICDT 90, Springer LNCS, pp. 41 - 55

[43] G. Saake, R. Jungclaus: Specification of Database Applications in the TROLL
Language, in Proc. Int. Workshop on the Specification of Database Systems,
Glasgow, 1991

[44] K.-D. Schewe, I. Wetzel, J. W . Schmidt: Towards a Structured Specification
Language for Database Applications, in D. Harper, M. Norrie (Eds.): Proc. Int.
Workshop on the Specification of Database Systems, Springer WICS, 1991, pp.
255 - 274 (an extended version appeared as FIDE technical report 1991/30,
October 1991)

[45] K.-D. Schewe, B. Thalheim, I. Wetzel, J. W. Schmidt: Extensible Safe Object-
Oriented Design of Database Applications, University of Rostock, Preprint
CS-09-91, September 1991

[46] K.-D. Schewe: Spezifikation datenintensiver Anwendungssysteme (in German),
lecture manuscript, University of Hamburg, Winter 1991/92

[47] K.-D. Schewe, J. W. Schmidt, I. Wetzel: Identification, Genericity and Consis-
tency in Object-Oriented Databases, in J. Biskup, R. Hull (Elds.): Proc. ICDT
'92, Springer LNCS 646, pp. 341-356

[48] K.-D. Schewe, B. Thalheim, J! W . Schmidt, I. Wetzel: Integrity Enforcement
in Object-Oriented Databases, in U. Lipeck, B. Thalheim (Eds.): Proc. 4th
Int. Workshop on Foundations of Models and Languages for Data and Objects
"MODELLING DATABASE DYNAMICS" , Volkse (Germany), October 19-
22, 1992

[49] K.-D. Schewe, B. Thalheim, I. Wetzel: Foundations of Object Oriented
Database Concepts, University of Hamburg, Report FBI-HH-B-157/92, Oc-
tober 1992

[50] K.-D. Schewe, J. W. Schmidt, D. Stemple, B. Thalheim, I. Wetzel: A Reflective
Approach to Method Generation in Object Oriented Databases, University of
Rostock, Rostocker Informatik Berichte, no. 14, 1992

[51] K.-D. Schewe, B. Thalheim: Computing Consistent Transactions, University
of Rostock, Preprint CS-08-92, December 1992

[52] K.-D. Schewe, B. Thalheim, I. Wetzel: Integrity Preserving Updates in Object
Oriented Databases, in M. Orlowska, M. Papazoglou (Eds.) : Proc. 4th Aus-
tralian Database Conference, Brisbane, February 1993, World Scientific, pp.
171-185

[53] K.-D. Schewe, B. Thalheim: Exceeding the Limits of Rule Triggering Systems
to Achieve Consistent Transactions, submitted for publication

[54] M. H. Scholl, H.-J. Schek: A Relational Object Model, in Proc. ICDT 90,
Springer LNCS, pp. 89 - 105

[55] G. M. Shaw, S. B. Zdonik: An Object-Oriented Query-Algebra, IEEE Data
Engineering, vol. 12 (3), 1989, pp. 2 9 - 3 6

[56] D. Stemple, T. Sheard, L. Fegaras: Reflection: A Bridge from Programming
to Database Languages, in Proc. HICSS '92

Fundamenta.] Concepts of Object Oriented Databases 83

D. Stemple, S. Mazumdar, T. Sheard: On the Modes and Meaning of Feedback
to Transaction Designer, in Proc. SIGMOD 1987, pp. 375 - 386

D. Stemple, T. Sheard: Automatic Verification of Database Transaction
Safety, ACM ToDS vol. 14 (3), September 1989

M. Stonebraker, A. Juin gran, J. Goh, S. Potaminos: On Rules, Procedures,
Caching and Views in Database Systems, in Proc. SIDMOD 1990, pp. 281 -
290

S. Y. W. Su: SAM*: A Semantic Association Model for Corporate and
Scientific-Statistical Databases, Inf. Sei., vol. 29, 1983, pp. 151 - 199

B. Thalheim: Dependencies in Relational Databases, Teubner Leipzig, 1991

B. Thalheim: The Higher-Order Entity-Relationship Model, in J. W. Schmidt,
A. A. Stognij (Eds.): Proc. Next Generation Information Systems Technology,
Springer LNCS, vol. 504, 1991

S. D. Urban, L. Delcambre: Constraint Analysis: a Design Process for Specify-
ing Operations on Objects, IEEE Trans, on Knowledge and Data Engineering,
vol. 2 (4), December 1990

J. Widom, S. J. Finkelstein: Set-oriented Production Rules in Relational
Database Systems, in Proc. SIGMOD 1990, pp. 259 - 270

Y. Zhou, M. Hsu: A Theory for Rule Triggering Systems, in Proc. EDBT '90,
Springer LNCS 416, pp. 407 - 421

(Received April 7, 199S)

Acta Cybernetica, Vol. 11, No. 1-2, Szeged, 1993

On the characterization of the integers: The
hidden function problem revisited

R. Berghammer*

Abstract
In this paper the hidden function problem studied so far only for equa-

tional (e.g., in [9] and [l l]) or conditional equational (e.g., in [3]) algebraic
specifications is considered for arbitrary first-order theories. It is shown that
a unique characterization of the integers with zero, successor and predeces-
sor as term-generated model of a finite first-order theory needs at least one
hidden function or relation.
Keywords: Hidden function problem, algebraic specifications, first-order the-
ories.

1 Introduction
In mathematical logic, a structure for a first-order language is said to be a model for
a set T of sentences over the same language, if each sentence of T holds in it. The
algebraic specification approach of computer science uses a restricted definition.
Here it is often additionally demanded that each element of the carrier sets can
finitely be "described" by a closed term, i.e., that the model of the specification is
term-generated (see e.g., [l], [12], [6], or [13]). The main reason for the restriction
to term-generated models of specifications is the necessity of finite descriptions
of algorithms. As an essential advantage one obtains the proof principle of term
induction. Furthermore, by using only term-generated models one is able to extend
the expressiveness of first-order theories (resp. algebraic specifications).

In this paper we deal with the question, whether and how the structure Z :=
[Z , 0, succ, pred) can - up to isomorphism - be characterized as the only term-
generated model of a set of first-order sentences over a first-order language with
symbols foi°0, the successor function succ(u) := tt + 1 , and the predecessor function
pred(u) := u — 1. First, we give a positive answer using an infinite set of sentences.
Then we show, and this is the main result of the paper, that there is no finite set
of first-order sentences with the same property. Finally, we extend the language by
a symbol for the "usual" ordering relation on the integers 2Z and present a finite
set of sentences, which has the structure Z := {22,0, succ, pred, <) as - up to
isomorphism - only term-generated model.

The relation < simplifies the specification of the constant and operations of
interest 0, succ, and pred. In the terminology of algebraic specifications it is called

"Fakultät für Informatik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39,
D-85579 Neubiberg

85

86 R. Berghammer

a "hidden function", since the way to specify Z is structured by first specifying Z
and then to forget or hide the auxiliary relation < .

Strictly speaking, < is a hidden relation. The-term "hidden function" (which we
will use in the remainder of the paper, too) results from the fact that the algebraic
specification approach considers relations as functions to the truth values.

Given a class C of first-order formulae and a semantic mechanism S which
determines the meaning of a specification, the so-called hidden function problem
for C and S asks whether the use of hidden functions extends the expressiveness of
specifications. All the known examples deal with the following question: Is there a
structure that fails to possess a unique characterization (this notion depends on S)
using finite subsets of C only, but the same is not true if auxiliary functions may
be used? In the case of C being the class of universally quantified equations and
S being initial algebra semantics, a solution - the first example which requires the
use of a hidden function - can be found in [9j. This paper contains no formal proof,
but based on Majster's example in [l l j a simple structure, called "toy stack", is
constructed and carefully proved that it cannot be specified using initial algebra
semantics and finitely many equations unless hidden functions are permitted. This
proof is mainly based on regular sets and their properties. Independently of [11],
in [2] another solution of the hidden function problem for equational specifications
and initial algebra semantics is given. It is shown that the structure N := (IN, 0,
succ, sqr), where succ is again the successor function and sqr(u) := u2, does not
possess a finitary equational specification without the use of hidden machinery.
The (rather complicated) proof can also be found in [3j. Obviously, N admits a
very natural finite equational specification involving addition and multiplication as
auxiliary functions. Using the so-called sparsity property of predicates on natural
numbers, in the same paper [3] the hidden function problem is also solved for
conditional equational specifications and initial algebra semantics.

Our examples Z and Z solve also a hidden function problem for certain C and
S. In comparison to the papers just mentioned, we do not restrict the class of
formulae and consider all term-generated models. This means that C is the class
of all first-order formulae and that a structure M is (uniquely) characterized by
a set T of sentences under S if and only if M is a term-generated model of T
and all these models are isomorphic. Furthermore, we use proof principles from
"classical" model theory, viz. the use of the compactness theorem and elimination
of quantifiers.

2 Preliminaries
Throughout this paper we use first-order logic with the equality symbol « as a
logical symbol. In this section, we briefly recall some basic definitions of first-order
logic. Further details can be found in, for instance, [7] or [10].

Assume L to be a first-order language. A structure M for L (also called L-
structure) consists of a non-empty carrier set \M\, an n-ary function /A/ : J-W|" —*
\M\ for every n-place function symbol / , and an n-ary predicate PM : \M\n — IB
for every n-place predicate symbol p, where IB denotes the set {0 ,1 } representing
truth values. If n = 0, then JM is an element of \M\ and PM is a truth value.

Assume M and N to be two structures for the same first-order language. A
bijective function $: |M| —• |iV| is said to be an isomorphism from M to N, if

Oil the characterization of the integers 87

* (/ « (« ! , • • •, U„)) = / W (* (U l) , . . . , * (« „))

for all n-place function symbols / and all u i , . . . , un G \M\ and

PAi (« i , . . . , u „) = 1 O p j v ($ (u i) , . . . , $ (u „)) = 1
\

for all n-place predicate symbols p and all u i , . . . , url G |M|. If there is an isomor-
phism from M to N, then we say that M and N art isomorphic.

Let M be a structure for a first-order language L and ty : V —• \M\ be an
assignment for the variables x G V with values from \M\. Furthermore, let t be a
term and A be a formula built up over L. By t^ we denote the value of t in M
under by M (= A[,ir] we denote that A holds in M under SP. Both notations are
inductively defined as usual. In particular, we have M |= i j « if and only if
'i® = ^f both t and A are closed, then tqf as well as M \= do not depend
on the assignment 1ir. Therefore, in this case we use the notations tM and M \= A
instead. The notation M [= A is also used to indicate that M -A['®r] for every
assignment vf.

Let L be a first-order language. A set T of sentences (i.e., closed formulae) built
up over L is called a theory over L. A structure M for L is said to be a model of
T, if M [= A for all sentences A G T. In addition, M is called term-generated, if
for every element u G \M\ there exists a closed term t (also built up over L) such
that u - t M .

3 An infinite characterization of the integers
without hidden functions

In the following, we give a characterization of the integers with 0, succ, and pred as
- up to isomorphism - only term-generated model of an infinite first-order theory.
This result will also be used in the next section.

Let Lz be the first-order language consisting of a 0-place function symbol (con-
stant symbol) z and two 1-place function symbols s,p, and let Tz denote the fol-
lowing infinite theory:

(1) Vx(3(p(x)) « x)
(2) Vx(p(s(x)) M x)

(3.1) V x H s (x) . « x))
(3.2) Vx(->(s(s(x)) « x))

(3.n) Vx(-i(s(s(. . . s (s (x)) . . .)) » x) (exactly n occurrences of s).

Obviously, we have: The structure Z := (Z,0, succ, pred) is a term-generated
model of Tz- We call Z the standard model of the theory Tz- In the following, we
show that it is - up to isomorphism - the only term-generated model of Tz • To this
end, we assume for the rest of this Section 3 an arbitrarily chosen (but fixed) term-
generated model M :— (|M|, zm, sm,pm) of Tz and construct an isomorphism
from M to the standard model.

88 R. Berghammer

Define s^f (resp. P^) as nth power of sm (resp. Pm)- Fundamental for the
construction of the just mentioned isomorphism is the following representation of
the elements of \M\.

L e m m a 3.1 Let u G \M\. Then there exists exactly one natural number n € IN
such that u = or u = PM{zM)-

P r o o f , a) In the first step we prove the existence of the number n.
As the model M is term-generated, for all u £ \M\ there exists a closed term t

built up over Lz such that tM = u. Thus, it suffices to show that for all closed terms
t built up over Lz there exists a natural number n € IN such that tM = s^i^Af)
or tM = PM{zM)- This can be done by term induction.

Induction base: The case of t being the symbol z is trivial; choose n = 0.

Induction step: By the induction hypothesis, tM = SM(zM) o r TM = PM(ZM)-

First, suppose tM = S ^ Z M) - Then we have

S(t)M = oU{tU) = sM(s"M(zM)) = s«M+i(zu).

Furthermore, due to the validity of sentence (2) in M ,

p(t)M = PM(tM) = PM(snM(zM)) = PM(*M (S ^ ' M)) = i 1 ^) ,

provided n > 0. Finally, in the case n = 0 we obtain

p(t)M =PM{tM) = PMM-

This shows that also s(t)M and p(t)M have the stated representation.
The remaining case tM = PM(ZM) is handled similarly using the validity of (l)

in M.

b) In a second step, now we prove the uniqueness of the representation. To this
end, suppose u = s^(zm) = s ^ z * /) and m ^ n. W.l.o.g, let m < n. Then there
exists a positive natural number k fulfilling the equation m + k = n. Sentence (2)
is true in M. Thus,

sZM = >m{*m) = Sm('mM) ^zm = sku{zu).

However, S^ (ZM) = ZM contradicts the validity of sentence (3.k) in M . In the
same manner one deals with the remaining cases. •

With the help of this lemma, we are able to define a function $ from the carrier
set \M| to the integers by

I - » if U = Pm(zM)-

Oil the characterization of the integers 89

We then have the following property:

Lemma 3.2 The function $ is an isomorphism from the fixed model M to the
standard model Z.

P r o o f . Bijectivity of $ is obvious; the inverse from the integers to \M\ is
given as •".,.,:-{£<£}
It remains to prove that $ preserves the interpretations of the three symbols z, s,
and p. This is done in the following. Note, that we have zz = 0, sz = succ, and
pz = pred.

Obviously, 3>(zm) = 0 holds. Now, assume u 6 |M|. For a proof of $(sjii(u)) =
succ($(tt)) we distinguish two cases. If u = s ^ (ZM), then we obtain

$ M u) l = = n + 1 = + 1 = * («) + 1 - succ($(u)).

In the case u — PM (zM) w e h a v e

*(«A/(U)) = H P ^ M) R=~N+L = *{PMM) + 1 = * (") + 1 = succ($(u)),

provided n > 0 (here we have used that sentence (1) is true in M), and

$ (s m H) = $(sm(zm)) = 1 = + 1 = * («) + 1 = succ($(u)),

provided n = 0. Equation $(pw(u)) = pred($(u)) is proved analogously to the
latter one. •

Summing up, we have the desired result that the structure Z is characterized
by the theory Tz:

Theorem 3.3 The standard model Z is - up to isomorphism - the only term-
generated model of Tz • •

4 There is no finite characterization of the inte-
gers without hidden functions

In this section we show (Theorem 4.3 below) that there is no finite theory of ar-
bitrary sentences built up over the language Lz of Section 3 which has Z as - up
to isomorphism - only term-generated model. The crucial point of this proof is the
use of the compactness theorem of first-order logic which implies that a theory T
has a model if every finite subset of T has a model. However, to conclude the proof
it is additionally necessary to get a term-generated model for the chosen theory.
Here elimination of quantifiers plays an important role.

A theory T over a first-order language L admits elimination of quantifiers if
and only if for every formula A built up over L there is a quantifier-free formula B
built up over the same language such that M f= A «-» B for every model M of T. In
model theory elimination of quantifiers is one of the methods for proving theories
decidable. Some examples can e.g., be found in [10], Section 13. The next lemma
shows that the theory Tz of Section 3 admits elimination of quantifiers, whereby
no additional free variables are introduced.

90 R. Berghammer

Lemma 4.1 Assume A to be a formula built up over the language Lz• Then there
exists a quantifier-free formula B, also built up over Lz, such that M \= A *-* B
for every model M of Tz and, furthermore', the set of the free variables of B is
contained in the set of the free variables of A.

Proo f , a) In a first step we prove the existence of a quantifier-free formula B over
Lz such that M t= A «-• B for every model M of Tz •

We are allowed to assume the given formula A to be of the form 3x(Ai A.. .A A m) ,
where each Ai, 1 < t < m, is an atomic formula or the negation of an atomic
formula. A proof of this well-known fact can e.g., be found in [7], Section 3.1.
Furthermore, we may suppose that the variable x occurs in each Ai. For. if x
does not occur in some A,0 , then we use the equivalence of 3x(Ai A . . . A A m) and
Ai0 A 3x(Ai A . . . A Ai 0_i A A,0 + i A . . . A A m) .

Assume y,-, 1 < i < k, to denote the free variables of 3x(Ai A . . . A Am). For
a being an element from { z , x , y i , . . . , y j c } , we abbreviate the term s (. . . a (a) . . .)
(resp. p(. . -p(a) • •.)) with n > 0 occurrences of a (resp. p) by 3n(a) (resp. pn(a)).
Particularly, we have s°(a) := p°(o) := a.

Now, suppose M to be a model of the theory Tz- Each atomic sub-formula of
A is an equation ii « t2, where the terms t,-, 1 < t < 2, are built up using the
variables y,-, 1 < » < k, the variable x, and the function symbols z, s, and p. Since

i the variable x occurs in at least one of the terms and the sentences (l) and (2) are
true in M, there exist natural numbers m and n and o G {z, x, y i , . . . , y*} such
that 11 « £2 is equivalent to one of the following equations:

(i) a m (x) « sn(a) (ii) s m (x) « p n (a)
(iii) p m (x) « s " (a) (iv) p m (x) « pn(a).

In the case m < n, the first equation is equivalent to x « s n - m (o) ; otherwise
it is equivalent to s m _ n (x) « a, i.e., to i k p m - , 1 (a) . The proofs that also for
the remaining equations there exist equivalent formulae of this specific form are
identical and follow likewise from the validity of (1) and (2) in M.

Hence, we may suppose that every atomic formula occurring in A is of the form
x « ^ (a) or i « p"(a), where a G {z, x, y j , . . . , y/t}. However, we may further
suppose that a is different from x. This is due to the fact that x m s"(x) as well
as x « pn(x) can be replaced by z « z if n = 0, and by ->(z « z) if n 0, and that
the latter closed formulae can again be moved out-side of quantification.

Summing up, we may assume the given formula A to be of the form (1 < m, 1 <
3 < m) 3x(x « ti A . . . A x « A —i(x » ty) A . . . A ->(x « t m)) ,

where the terms tj, 1 < » < m, are of the form sn(a) or p"(a) and a G {zj y i , . . . , yjt}.
Now, we distinguish three cases:

Case 1: j = 1, i.e, the formula A has the form 3x(->(x » i i) A . . . A ->(x » im))- It
can easily be shown that the carrier set of each model of the theory Tz is infinite.
Now

M is a model of Tz => |M| is infinite
=> M (= V y i . . . Vym(3x(-i(x « yi) A . . . A ->(x « y m)))
=> M \= 3x(->(x » i i) A . . . A ->(x » t m))

implies that A is true in M. Since M |= z « z holds, too, we may choose B as
z « z and obtain, thuL, M f= A B.

Oil the characterization of the integers 91

Case £: j > 1 and m— 1, i.e., A has the form 3x(x « ti) . Then A is also valid in
M and we may again choose B as formula z « z.

Case S: j > 1 and m > 2, i.e., A contains an equation and there is at last a further
equation and/or negation of an equation:

3x(x » ti A . . . A X « ty_i A ->(a: « £y) A . . . A ->(x « tm)).

In this case, first, we delete the equation x » ti from A and then replace in the
resulting formula every occurrence of the variable x by the term Since x does
not occur in the terms t,-, 1 < t < m, this leads to

3x(i! « t2 A ... A tx » ty_! A ->(ti « ty) A ... A -^(tj « tm)),

a formula, which is equivalent to the original one. (Note, that the matrix of the
original formula A is quantifier-free.) We have now a formula in the matrix of
which x no longer occurs, so the quantifier may be omitted. Now, we choose B as
formula

ii « i 2 A . . . A ti « fy_i A —i(fi w iy) A . . . A —i(ti « t m) .

With this choice, we have again that M |= A «-+ B holds.
b) The additional property is an immediate consequence of the construction of B.
Either B is closed (cases 1 and 2) or the sets of the free variables of A and B are
identical (case 3). •

Let L be a first-order language with at least one constant symbol. Furthermore,
let T be a theory over L such that each sentence of T is a prenex universal formula,
i.e., of the form Vxi . . . Vx„A, where n > 0 and A (the "matrix" of the formula) is
quantifier-free. If T has a model, then it has also a term-generated one. For a logic
without equality a proof of this well-known fact can e.g., be found in [8], p. 19; the
generalization of this proof to a logic with equality is trivial.

As an immediate consequence, we obtain:

L e m m a 4.2 Assume A to be a sentence built up over the language L'z. If there is
a model of the theory Tz U {A}, then there is also a term-generated one.

P r o o f . We use Lemma 4.1 and obtain that for every sentence A over there
exists a quantifier-free sentence B over the same language such that the class of all
models of Tz U { A } equals the class of all models of Tz U {B}. Each sentence of
Tz is a prenex universal formula. Since B is a prenex universal formula, too, the
above mentioned property of the class of these formulae applies. •

After these preparations, we are now able to prove the desired result.

Theorem 4.3 There is no finite theory over the first-order language Lz which has
the structure Z as - up to isomorphism - only term-generated model.

P r o o f . Suppose, for a contradiction, that we are given a finite theory { j 4 i , . . . , A m }
over the language Lz which Has - up to isomorphism - the structure Z as only term-
generated model. We define the sentence A by A := A\ A ... A Am.

92 R. Berghammer

Claim: Each finite subset S of the theory Tz U { - "A} has a model.

Proof: If -iA £ S, then Z is a model. Otherwise, let k := max{n : (3.n) e S}.
We define a structure M for the language Lz as a "loop of size k + 1", i.e., by
\M\ := { 0 , . . . , * : } and

n J u + 1 ifu Jik , , J u - 1 i f u ^ O
zU:=0 »«(«):= | Q i f u = fc pw(«) := | fc jf u = q.

It is obvious that the sentences (l) , (2) and (3,n), where 1 < n < k, are true in
M. Also M f= -*A holds. Otherwise, we would have M (= A which implies (the
structure M is term-generated) that M and Z were isomorphic. Thus, we have a
contradiction. Summing up, M is a model of S.

Now, we use the compactness theorem of first-order logic to deduce that the
theory Tz U has a model. In combination with Lemma 4.2 this implies the
existence of a term-generated model M of Tz U M is also a term-generated
model of Tz- From this fact and Theorem 3.3 we obtain that the two models M
and Z of Tz are isomorphic. As a consequence, M \= A holds. But this is a
contradiction to M \= ->A. •

Consider the sub-theory of Tz containing the two sentences (1) and (2) only. It
can be shown that each term-generated model of this theory is either isomorphic to
Z or to a "loop of size n". In the manner of speaking of algebraic specifications or
universal algebra, Z is initial in the class of all term-generated models of {(1), (2)}.
To obtain this model as - up to isomorphism - only term-generated model, one has
to extend the theory in such a way that loops are prevented, i.e., infinitely many
inequalities can be derived. Theorem 4.3 states that the language used so far is too
"poor" to do this in a finite manner.

5 A finite characterization of the integers using
a hidden function

As just mentioned, a finite extension of the theory {(1), (2)} which prevents loops
requires an extension of the language Lz, i.e., the use of hidden machinery. In this
section we show, that a symbol for the usual ordering on the integers suffices. To
this end, we extend the language Lz to Lz Lz U { « c } , where < is a 2-place
predicate symbol. Furthermore, we consider the three sentences (the symbol C is
used in infix notation)

(3) Vz(->(a(x) <C x)) (4) Vx(x <C x) (5) VsVy(s(x) < y - . K y) .

And, finally, we define the finite theory Tz over Lz to consist of the sentences (1)
and (2) of Tz and the sentences (3), (4), and (5).

Clearly, the structure Z := (Z,0, succ, pred, <) for Lz is a term-generated
model of Tz - In the rest of this section we prove that each other term-
generated model is isomorphic to this model. As in Section 3, therefore, we
assume in the sequel an arbitrarily chosen (but fixed) term-generated model
M := [\ M \ , Z M o f Tz- In the following, we write tz <CM V (resp.
u «) instead of C m (u, V) = 1 (resp: < w (u, u) = 0). As in the case of Tz
we obtain:'

Oil the characterization of the integers 93

Lemma 5.1 Let u e \M\. Then there exists exactly one natural number n e IN
such that u = or u = p£i(z.kr).

P r o o f . As the existence of n follows from the validity of (1) and (2) in M (cf. the
proof of Lemma 3.1), it remains to show uniqueness.

If u = s j } (z M) = s^{zM) and m + k = n (where k > 0), then

) M = sZ(skM{zM)) => skM(ZM) = ZM ^ skM{zM) Z M

=> SM(ZM) < M Z M ,

since (2), (4), and (5) are true in M. However, SM(ZM) z m is a contradiction
to the validity of formula (3) in M.

The remaining cases are handled similarly. •

The proof of the fact that the function $ of the third section is an isomorphism
from M to Z, too, is prepared by a simple

L e m m a 5.2 If u 6 \M\ and n e IN, then n > 0 implies s^ («) ^fM "«•

We use induction on n. The induction base n = 1 holds since sentence (3) is true in
M ; the induction step proceeds as follows: From the validity of (5) in M we obtain

u »J, (u) < M «

and, thus, contraposition in conjunction with the induction hypothesis applies.
•

Now, we are able to prove:

L e m m a 5.S The function $ of Section S is also an isomorphism from the fixed
model M to the model Z.

P r o o f . Due to Lemma 3.2 of the third section, we have only to prove that
preserves the two interpretations and < of the predicate symbol <C, i.e., that
for all u, v £ \M|

u C m v $(«) < $(v).

Assume u = s ^ (z j y) and t; = «^ (z j^) . For a proof of direction "=>" we show that
3>(u) ^ implies u u. FVom $(u) ^ $(u) we get m > n, hence m = k + n,
where A; > 0. Thus,

« = >kJnM = 'ui'TiM) = skM(v).

Due to this result, u « is equivalent to aj i (v) and Lemma 5.2 applies.
Now, we prove direction "<=". FVom $(u) < $(v) we obtain that m < n holds, i.e.,
k + m = n, where k > 0. This shows the equation

& («) = *M(°ZM) = skM+mM =

In combination with the validity of (4) in M , this result yields s^r (u) ^ M v which
in turn implies (since (5) is true in M) that u Cjif v.

94 R. Berghammer

Next, let u = and v - (z.w). For a proof of " =>" we distinguish
between m + n = 0 and m + n > 0. The first case is trivial. In the second case we
use that (1) is true in M and get

PMM O *Z+n(PMM) « M PM(ZM).

Now, Lemma 5.2 shows that the premise of the implication to be proven does not
hold. A proof of is trivial.

The remaining cases can be shown analogously. •

We now have that the structure Z is characterized by the theory Tz-

Theorem 5.4 The model Z is - up to isomorphism - the only term-generated
model of Tz- •

It is obvious that the use of a predicate symbol for the ordering (in combination
with an extension of the theory { (l) , (2) }) is not the only way to prevent loops.
E.g., one can also extend, the langauge Lz by a predicate symbol n and {(1) , (2)}
by the four sentences

(6) -m(z) (7) n(p(z))
(8) Vx(n(x) ^ n(P(x))) (9) Vx(n(s(x)) - n(x))

which specify the interpretation of n to test a given integer for being negative or
not. Another possibility is to introduce inductively (using z,s, and p) a 2-place
function symbol / that describes the repeated application of the symbols s and p,
resp. A natural way to specify / is

(10) V x (/ (x , z) « x)
(11) V x V y (/ (x , S (y)) « S (/ (x , y)))
(12) V x V y (/ (x , p (y)) « p (/ (x , y))) .

We may then substitute in the theory Tz the infinite set (3.n), n > 1, of sentences
by a single one, viz.

(13) VxVy(-i(y » z) - - (/ (x , y) « z)).

In both cases, the proof of isomorphism is mainly a consequence of (the validity
of) Lemma 3.1.

We finish this section with a remark concerning our proof method. Certain,
our " model-oriented" approach is not the only way to solve the given problem. For
instance, a proof which argues algebraically can proceed as follows: One shows
that the initial term-generated model Z of the theory { (l) , (2) } can be extended
by the ordering relation < in such a way that the resulting structure Z for Lz is
initial wrt. Tz- Since the truth values 0 and 1 are different, the ordering relation
cannot identify elements. Now, the desired isomorphism result is an immediate
consequence of .the initiality of Z. This remark shows also: For a translation of
the proof of this section into the notation of algebraic specifications a specification
of the truth values is required which has T up to isomorphism - the two element
Boolean algebra as only model.'

Oil the characterization of the integers 95

6 Concluding remarks
FVom a theoretical point of view, hidding machinery is used to overcome the lack of
expressive power. In the present paper we have shown its necessity even in the case
of full first-order specifications. To this end, first, we have presented an infinite first-
order theory Tz whose term-generated models are exactly the structures isomorphic
to Z = succ, pred). Then we have shown that there is no finite set of first-
order sentences which has the same property. And, finally, we have given unique
characterizations of Z using hidding machinery.

For the proof of the main result (Theorem 4.3) we have used the argument that
the theory Tz U { - "A} has a term-generated model if every of its finite subsets has
a model. It seems that this argument (an extension of the compactness theorem of
first-order logic) can also be used to prove that there is no finite characterization
of more complex data types without hidden functions.

For the description of large structures and systems it is necessary to compose
specifications in a modular way from smaller ones to master complexity. Hidding is
one of these so-called specification-building operations and contained in almost all
modern specification languages; see [13] for an overview. FVequently, its use makes
specifications more readable and understandable. Furthermore, in various case
studies it has proven advantageous to use hidding if specifications are transformed,
e.g., into versions which provide algorithmic solutions. As two examples for this
latter application we mention the papers [5] and [4]. In all these cases the decisive
question is how to find suitable hidden functions and their defining formulae. This
aspect of hidding was not addressed here, but some work can be found in the
literature. However, it seems that a general methodology for the practical use of
hidden machinery remains to be developed.

Acknowledgement . This paper benefited from valuable discussions with Ulf
Schmerl. I am also grateful to the referees for their helpful comments.

References
[1] Bauer F.L., Wossner H.: Algorithmic Language and Program Development.

Springer Verlag, Berlin-Heidelberg-New York (1982)

[2] Bergstra J.A., Tucker J.V.: Algebraic Specifications of Computable and
Semicomputable Data Structures. Research Report IW 115, Department of
Computer Science, Mathematical Centre, Amsterdam (1979)

[3] Bergstra J.A., Tucker J.V.: Algebraic Specifications of Computable and
Semicomputable Data Types. Theoretical Computer Science 50, 137-181
(1987)

[4] Broy M.: Deductive Program Development: Evaluation in Reverse Polish
Notation as an Example. In: Broy M., Wirsing M. (eds.): Methods of Pro-
gramming. LNCS 544, Springer Verlag, Berlin-Heidelberg-New York, 79-99
(1991)

[5] Dosch W., Wirsing M., Ausiello G., Mascari G.F.: Polynomials - The Spec-
ification, Analysis and Development of an Abstract Data Type. In: Wilhelm
R. (ed.): GI - 10. Jahrestagung, Informatik Fachberichte 33, Springer Verlag,
Berlin-Heidelberg-New York, 306-320 (1991)

96 R. Berghammer

Ehrig H., Mahr B.: Fundamentals of Algebraic Specifications 1. Equations
and Initial Semantics. EATCS Monographs in Theoretical Computer Sci-
ence, Vol. 6, Springer Verlag, Berlin-Heidelberg-New York (1985) -

Enderton H.B.: A Mathematical Introduction to Logic. Academic Press,
London (1972)

Kreisel G., Krivine J.-L.: Modelltheorie - Eine Einführung in die mathema-
tische Logik. Hochschultexte, Springer Verlag, Berlin-Heidelberg-New York
(1972)

Majster M.: Data Types, Abstract Data Types and their Specification Prob-
lem. Report TUM-I7740, Institut für Informatik, TU München (1977) Also
in: Theoretical Computer Science 8, 89-127 (1979)

Monk J.D.: Mathematical Logic. Springer Verlag, New York-Heidelberg-
Berlin (1976)

Thatcher J.W., Wagner E. G., Wright J.B.: Data Type Specification:
Parameterization and the Power of Specification Techniques. Proc. 10th

SIGACT Symp. Theory of Computing, 119-132 (1978)

Wirsing M., Pepper P., Partsch H., Dosch D., Broy M.: On Hierarchies of
Abstract J3ata Types. Acta Informática 20, 1-33 (1983)

Wirsing M.: Algebraic Specifications. In: van Leeuwen J. (ed.): Handbook
of Theoretical Computer Science B, North-Holland, 675-788 (1990)

Received October 22, 1992

Acta Cybernetica, Vol. 11, No. 1-2, Szeged, 1993

On codes concerning bi-infinite words
Do Long Van* Nguyen Huong Lam* Phan Trung Huy*

Abstract
In this paper we consider a subclass of circular codes called Z-codes. Some

tests of Sardinas-Patterson type for Z-codes are given when they are finite ,
or regular languages. As consequences, we prove again the results of Beal
and Restivo, relating regular Z-codes to circular codes and codes with finite
synchronization delay. Also, we describe the structure of two-element Z-
codes.

1 Preliminary
In this paper only very basic notions of free monoids and formal languages are
needed. As a general reference we mention [7], and for the facts concerning codes
we always refer to [3] silently. In addition to this we use also notions concerning
infinite and bi-infinite words without very formal definitions because of a wide
availability of papers on the subject. To fix our notations we want to specify the
following. Throughout this paper A denotes a finite alphabet. The free monoid
generated by A, or the set of finite words, is denoted by A* and its neutral element,
the empty word, by e. As usual we set A + = A* — e. For a word x in A*, |z| means
the length of x. We call a nonempty word x primitive if it is not a proper power of
any word, otherwise x is imprimitive. We call two words x and y copower if they
are powers of the same word. For example, as well known two different words are
copower if and only if the set they form is not a code. For two finite words x and
y the notation y x _ 1 and x _ 1 y are used to denote the right and the left quotient of
y by x respectively. Naturally, the quotient and the product of two words can be
extended to languages, i.e. subsets of A* :

X~lY = { x _ 1 y : x e X,y <=Y), YX'1 = { y x _ 1 : x € X , y € F } .
XY = {xy:xeX,yeY},X2=XX,...-,

and X* = Un>o Kleene closure of X) .
In the following, our consideration is mainly based on the notion of infinite and

bi-infinite words on A. Let NA, AN,AZ be the sets of left infinite, right- infinite
and bi-infinite words on A respectively. For a language X of A*, we denote u X , X"
arid U X U the left infinite, the right infinite and the bi-infinite product of nonempty
words of X respectively, i.e. their elements are obtained by concatenation of words
of X—e carried out infinitely to the left, to the right or infinitely in both directions.
For example,

w X = {... U2U1 : ti{ e X — e,i = 1,2,...}.

•Institute of Mathematics, P .O.Box 631, 10000 Hanoi, Vietnam

97

98 Do Long Van, Nguyen Huong Lam, Ph an Trun g Huy

Factorizations in elements of X (over X, on X) of a left or right infinite word are
understood customarily (see [JLO] for details), but factorizations of a bi-infinite word
need a special treatment as follows. Let w £ Az be in the form:

w = ... a_2a_iOoOia2 ...

with a,- € A. A factorization on elements of X of the bi-infinite word w is a strictly
increasing function p : Z —• Z satisfying x,- = oM(,) + 1 . . . a^f+i) € X for all t e Z.
Two factorizations ¡x and A are said to be equal, denoted p = A if there is t £ Z
such that A(i + t) = ¿t(i) for all t 6 Z. Otherwise, A and \i. are distinct, denoted
H / A. It is easy to verify that fi ^ A iff n{Z) / A(Z), or equivalently, there exist a
word u 6 A+, two bi-infinite sequences of words of X : . . . , x_2, x~i, xo> xi, • • •
and • •., y~ 2 , y — i , Vo, yi, J/2 > • • • such that

. . . 2 _ 2 I _ i U = . . . y _ i y 0 , |u|<|x0|,
2 0 i i . . . = uyxy2..., |u| < |s/o|

with u j i i o or u ji t/o-
If every rigth infinite word of AN has at most one factorization on elements of

X then X is said to be an N-code (see [10], where in a wider context JV-code is
called strict code). Analogously, if every left infinite word possesses this property,
we call X an N-code. Obviously, X is an N-code iff X = [x : x € X } is an iV-code,
where i is the mirror image of the word x. For the bi-infinite words, we have our
basic

Definition 1 A language X of A+ is a Z-code if all factorizations on X of every
bi-infinite word are equal.

Example 1 Every singleton {u} is always both an TV-code and an TV-code but it
is a Z-code if and only if u is primitive. The two-word language X = {06, 6a} is
both an iV-code and an TV-code, but it is not a Z-code since the word u(ab)u has
two factorizations . . . ab.ab.ab ... and . . . ba.ba.ba..., which are verified directly to
be distinct.

The family of Z-codes is closely connected with the so-called circular code [3].
A language X of A* is said to be circular if for any xo, x i , . . . xm, yo, y i , . . . yn of X
and s, t of A* the equalities

X i X 2 . . . X m = tyo . . . ym s,

xo = st

imply s = e, m = n and x0 = y0, x m = ym.
It is easy to see that every circular language is a code and that every Z-code is

a circular code. But not always a circular code is a Z-code, as the following code
[4] X = U {a6*a6'+1,t = 0 ,1 ,2 , . . . } shows that. Nevertheless, every regular
circular code is a Z-code i.e. the families of regular Z-codes and regular circular
codes coincide, as shown by Beal [2]. Therefore, results and algorithms invented
for circular codes can be applied to Z-codes. However, in the next section we
work independently with Z-codes, proposing some tests for regular and finite Z -
codes. As consequences of that, we can obtain a result of A. Restivo on codes with
finite (bounded) synchronization delay [l l] and the aforementioned Beal's result.
Also, for completeness, as an easy consequence of [l], we describe the structure of
two-word Z-codes.

On codes concerning bi-infinite words 99

2 Tests for Z-codes
We develop now a criterion to verify whether a finite subset X of A+ is a Z-code.
Our procedure is something like the Sardirias- Patterson one (cp. [10]), but actually
instead of one sequence of subsets associated to X we need two sequences associated
to each overlap of elements of X. Precisely, we define first the subset:

W(X) = {ty G A+ : 3u, u G A*\3x, y € X : uw = x, wv = y, tiv / e }

whose element is called an overlap of elements of X. For each w G W(X), we define
two sequences Ui(w,X) an V,(w, X) of subsets of A* as follows

U0(w,X) = w-'X-ie},
Ui+1(w,X) = Uiiw.X^XuX^Uiiw.X),

V0{w,X) = ^ " ' - { e } ,
Vi+1(w,X) = XVi(w,X)-1UVi(w,X)X-\

i = 0,1, 2 , Further, if there is no risk of confusion, instead of W(X), U{(tu, X),.
Vy(w,X) we write simply W,Ui,Vj. The following property of Ut(u>,X), V}(w,X)
is useful in the sequel.

Lemma 1 For every N > 0 and for any word u, u G Upf(w,X) iff there exist
xi,..., xn, t / i , . . . , ym G X such that m + n — 1 = N and either

wxi ...xn=yl ...ymu, |u| < |i„|, |tw| < |j/i|

or
wx1...xnu = y1...ym, |u| < |ym|, |to| < |yi|.

Remark. Similarly, the symmetrical statement holds for Vy.

Proo f . By induction on N. For N = O we have

u G U0 -O- (3 y i G X : w~1y1 = u wu = ylt |u| < |t/iU < IS/i!)-

Suppose the lemma is true for some N > 0, we prove it true for N + 1. We have

u G UN+i 3u' G UN, 3x G X : tt'u = x V xu - u'.

By induction hypothesis, u' G Un iff there exist x\,..., x„ , yx , . . . , ym G X such
that n + m — 1 = N and either

wx1...xnu' = y i . . . y m , |u'|<|ym|, |w| < |yi| (1)

or
wx1...xn = y1...ymu.', |u'|<|i„|, < |J/1.t• (2)

Therefore u G C/jv+i is equivalent to the fact that there exist xi,...,xn, x,
S/ii • • • > ym in X such that

((« ' « = x) & ((l) V (2))) V ((x u = « ') & ((!) V (2)))

100 Do Long Van, Nguyen Huong Lam, Ph an Trun g Huy

or equivalently
((u'tt = x)&(l)) V (u'u = x)&(2))V
((xu = u')&(l)) V ((xu = u')&(2)).

The last, in its turn, as it is easy to verily, is equivalent to the fact that there exist
x i , . . . , x„>, y i , . . . , ymi in X such that n+m'—1 = N+1 and

wxi ...xn> = y1 . ..ym<u, |u|<|z„>|, |to| < |yi|
or

wxl...xn>u=y1...ym>, |u|<|xm-|, |to| < |t/iI,
i.e. the lemma is true also for N + 1.

Now we state a sufficient condition for a language to be a Z-code.
Propos i t ion 1 A finite subset X of A+ is a Z-code if for every overlap to of
elements of X, the following conditions hold:

(i) ifw G W n X then Ui = Q and V}- = 0 for some i,j > 0;
(ii) ifweW-X then Ui — 0 or Vy = 0 for some i„j > 0.

P r o o f . We suppose that X is not a Z-code, i.e. at least one word of Az possesses
two distinct factorizations on X, therefore we have two equalities:

. . . x _ 2 x _ i i y = . . . y _ i y 0 (1)

X 0 X ! . . . = wyj.y-2... (2)

for some w G A+, |u;| < |y0| and |u>| <.|xo|, w ^ x0 or to / y0, hence w G W.
If w G W n X and, say, w ^ x0, then U0 0. By (2), for every N > 0 there is

the least integer n > 0 such that |xo • • • xn| > |iwyi . . . yjv |> that is
x0xi ...xn — u>yi ... yjvii

for some word u G A*, |u| < |x„|. By Lemma 1, u G £///+„. Thus UM ^ 0: (i) does
not hold. For the case w ^ y0, by (l) and the symmetrical version of Lemma 1 we
get VJV 0 for all N > 0 : (i) does not hold again.

Now let to G W — X then we have both w ^ xo and to / y0. By the same
argument as above we obtain U{ 0 and Vj / 0 for all i, j > 0 : (ii) does not hold.
The proof is completed.

In order to make a converse of Proposition 1 for finite languages we prove a
lemma, which places an upperbound on the least i such that Ui — 0. For a finite
subset X = { x i , 22j • • • , i n } of A* we define || X ||=]C?=i lx»l- Note that each Ui
consists only of right factors (i.e. suffices) of words in X and if Uk = Ui ^ 0 for
k ^ I then Ui / 0 for all t > 0. Since the set of right factors of words in X is of
cardinality at most || X ||, such an upperbound obviously exists and we can take it
as 2llxH. In the following lemma a more refined estimation is given.

Lemma 2 For any finite subset X of A* and w G W, the following assertions are
equivalent

(i) Ui(w, X) jt 0 for some i >|| X ||;
(ii) Ui (to, X) ^ 0 for all i > 0;
(Hi) There exist infinite sequences Xi, X2, -. •; yi, y21 ••• of words in X

such that
XOX\%2 •••- yiy2 • • •

with |to| < |yi|.

On codes concerning bi-infinite words 101

Remark. The symmetrical statement holds for VJ(w,X).

P r o o f , (iii) => (ii): already done in the proof of Proposition 1.

iii) fi): obvious.

i) =» (iii): Let uN E UN{W,X),N >|| X ||. Then there exist u< € UI{W,X)
such that u0 = to, u,+ i € uJxX or X - 1 U i , t = 0 , 1 , . . . , N — 1. It is easy to see
that uq, t t i , . . . , ujv are suffices of words in X and the cardinality of the set of the
suffices of the finite set X does not exceed || X || and thus is less than N + 1.
Therefore, there are p and q,0 < p < q < N such that up = uq. Let I be the largest
number not exceeding q—p such that u p + i = yj"1up, up+2 = (yiJ/2) - 1«p, • ••, «p+1 =
(yi •••yj)~1"p.i where yi,...,yi 6 X; otherwise I = 0. Then u p + , + 1 6 "p+j-X"
and we apply Lemma 1 to the case uq € Uq-p-i(up+i, X) to obtain some words
xi,... ,xn and z\ , . . . , z m of X such that

Up+jXi ...xn = zi... zmuq

or
Up+tXl .. .xnuq = Zx .. .zm.

Whence
u p x i . . . xn = yi ... yizx ... zmuq

or
UpZl ...xnuq = yi ...yiZx ...zm.

Since up = uq, these equalities lead respectively to the infinite words

up(xi... xn)w = (t/i ... yizx ... zm)u (1)

or

up(a:i ...xnyi ...ytzi...zm)u = (yx ...yizx ... zmxi... xn)w. (2)

On the other hand, since up S Up(u),X), again by Lemma 1 we have

tux = y'yup, < |y'| (3)

or

wxiip = y'y, |w|<|y'| (4)

where y' G X, x, y € X*. Combining (3) and (4) with (1) and (2), we get four
possibilities that all lead to the desired infinite equality in (iii). Lemma 2 is proved.

Now we are ready to state our criterion.

T h e o r e m 1 A finite subset x of A+ is a Z-code if and only if for every overlap w
of elements of X, the following conditions hold:

(i) ifw&WC\X then Ui{ w, X) = 0 and Vs{w, X) = 0 for some i,j <|| X ||;
(ii) • if w. e W - X then Ui{w,X) = 0 or v/(w,X) = 0 for some i,j <|| X ||.

102 Do Long Van, Nguyen Huong Lam, Ph an Trun g Huy

Proo f . The sufficient part is Proposition 1, we have to prove only the. necessary
one. Suppose that (i) or (ii) does not hold. We shall derive from this two equalities
which show that X is not a Z-code. In fact, by Lemma 2 and its symmetrical
version, we have two cases: there exist

(1) weW C\X and x,-, yy e X, i, j = 0 ,1 ,2 , . . . such that

x0X! • • • = uiy0yi..., |to| < |x0|

or
. . .XIXO = • ..yiyoui, |u>| < |sco|;

(2) w e W - X and x,-,yy € X,i,j = 2 , - 1 , 0 , 1 , 2 , . . . such that

x 0 x! • • • = u>y0yi. . . , M < |x0|

and
. . . x_ ix 0 = . . .y_iy0w, ¡u>| < |x0|

regarding (i) or (ii) does not hold.
The first case together with the obvious equalities . . . ww = . . . tutu and ioto . . . —

ww . . . show that X is not a Z-code.
The equalities in the second case themselves ensure that X is not a Z-code.

The proof is completed.
We give now some examples illustrating the execution of the algorithm.

Example 2 (a) Consider X = {a2b,b2a}. We apply Theorem 1 to show that X is
a Z-code.

W = {a,b},
U0{a,X) = {ab}, £Ma,X) = 0,
U0(b, X) = {6a}, U\(b, X) = 0.

Since a, 6 ^ X, we conclude that X is a Z-code.
(b) Let-X - { u } with u imprimitive, u = Xn(n > 2). Clearly A S W - X,

U0{X,X) = { A " " 1 } , which impUes A e t/i(A, X) , A " - 1 € U2(X, X),.... Thus
TJi{A, X) ± 0 for all »' > 0. So {u} is not a Z-code.

Conversely, let X = {u } not be a Z-code and let A be an overlap of X such that
Ui(X, X) ^ 0 for all i ^ 0. Since A is an overlap of u, we have xA = u for some
x e A+. Further, if A0 G Uo(X,X) then AA0 = 11. Hence U0(X,X) = {A 0 } . Let
•̂ l G Ĉ i (A, AT) then AoAi = it. Thus |Aj| = |A| and from xA = u it follows A = A^
Consequently AoA = AAo = u, which with Ao, Ai ^ e yield that u is imprimitive.
Thus {u } is a z-code if and only if u is primitive.

The main setback of Theorem 1 is that it is unfit for infinite (even regular)
languages.

Example 3 Consider X = {a,cab,c,bc+d} on the alphabet A = {a,b,c,d}. It is
an infinite regular Z-code, but for all t > 0 : Ui(c,X) ^ 0.

Nevertheless, for the important class of regular languages we can work out
another algorithm close to the previous one, also of Sardinas-Patterson type. Let

On codes concerning bi-infinite words 103

X be a regular language and as before W be the set of overlaps. First, for each
overlap w S W we construct two sequences:

U0 = w~lX - {*}, Ui+1 = U^X*,

Vo = Xw-1 - {e}, Vi+1 = X'V;1

for all i > 0, which, if needed, will be referred to as U{(w,X) and Vy(tu,X) . Of
course there is no need to compute Ui(w, X) , Vj(tv, X) for all w € W, it is sufficient
to take representatives modulo the right and left principal congruence defined by
X * or X . Recall that for a subset X of A* the following equivalence relation

u =R v u _ 1 X = t i - 1 X , ti, ti € A " ,

called right principal congruence defined by X . Analogously is defined the left
principal congruence =]_,• When X is regular, the number of right (left) principal
congruence classes, called right index (resp. left index) of X , is finite and equal to
the number of states of the minimal automaton recognizing X . Now we state

T h e o r e m 2 Let X be a regular subset of A+ and m, e be the right and left index
of X*. Then X is a Z-code if and only if for all w EW the following conditions hold

(i) weWnX implies Ui(w,X) = 0 and Vy(to ,X) = 0 for some i < m,j < e;
(ii) w € W — X implies U{(w, X) = 0 or Vy(to, X) = 0 for some i < m, j < e.

Remark. As seen from the proof below, (i) and (ii) are sufficient for any language
of A* to be a Z-code.

Proof . In fact, we prove an equivalent statement: X is not a Z-code iff (i) or (ii)
does not hold.

First, let X not be a Z-code. Then there exist two equalities:

. . . x _ 2 x - i t o ' = . . . y - i y o , (1)

x0xi ... = wy1y2... (2)

with |u>| < ¡xq|, |u)| < |t/o|j xii Vj G X , w XQ or to yo> hence w 6 W.

If w G W fl X , we assume for certainty that w / yo and consider (l) , putting
wo = you>-1 6 V0. From (1) we get

. . . x _ 2 x _ i = . . . y _ 2 y _ iv0.

Choose n € N such that | x _ „ . . . x _ 2 x _ i | > |uo| and put again t>i =

(x _ i . . . x - i ju j * 1 , hence t^ 6 X 'v^ " 1 C X * V 0 = V i and

• • • z - (n-i -2)2 : - (n+i)w i = • • • y - 2 y - i -

We apply this argument over and over again to see that Vy ^ 0 for all j > 0, i.e
(i) does not hold.

If now w € W — X , we have both w ^ xo and w ^ yo- Similarly, we apply the
argument above to (l) and (2) to verify I/j ^ 0 and Vy ^ 0 for all t, j > 0 : (ii)
does not hold.

104 Do Long Van, Nguyen Huong Lam, Ph an Trun g Huy

Conversely, let ¡7, ^ 0 for all » > 0 and N be any integer not less than m,
and UN £ UN- There exist u, € Ui,x = 0 , 1 , . . . ,N — 1 such that u0 6 vu~1X,
Ui+1 £ ut^X*,» = 0, 1 , . . . , N — 1, or equivalently, WUQ £ X , £ X*, ¿ =
0,1 N — 1. Among u0, • • • > VN we can pick out u, and up such that p < q
and uq =r Up mod X*. We define now an infinite sequence of words u'Q, u^ , . . . by
putting

«i = , 0 < » < g — 1
and

u'<t+i = up+t, ¿ = 0 , 1 , . . . ,

where t is the least nonnegative residue of ¿ mod q — p.
It is easy to verify that

for t = 0,1, 2 , . . . and
x1 = WU'Q = WUO € X.

Consider now the infinite product wu'Qu\ ... written in two ways

(umoKrijUa) • • • = u>(uou'i)(u2u3)

or

x0xi • • • = wyxy-2 ... (3)

with xq £ X, |tu| < |xo|;x,-,yy € X*.
Analogously, if V j ^ 0 for all t > 0, we have the equality

. . .x_2x_iu> = . . . y_ iyo , (4)

where y0 £ X, |to| < |y0|; Xj, yy £ X*. _
If now tu EW n X and (i) does not hold, for instance, £/,• / 0 for all t. Then (3)

together with the obvious equality . . . ww = ... ww show that X is not a Z-code.
If w £ W - X and (ii) does not hold, i.e. Ui,V}- ji 0 for all i,j > 0. Then (3)

and (4) will give rise to two distinct factorizations on X of some bi-infinite word:
X is not a Z-code and the theorem follows.

Example 4 We use Theorem 2 to show that the language X = {a, cab, c, bc+d}
given in Example 3 is in fact a Z-code.

W = {c,b},
U0(c,X) = {ab},U1(c,X) = c+dX*,U2(c,X) = &,
V 0 (C , X) = 0,
U0(b,X) = c+d,Ui(b,X) = 0.

Since c £ W n X , beW - X , X i s a Z-code.

In general Theorem 2 is not true for arbitrary languages, as shown in the fol-
lowing

On codes concerning bi-infinite words 105

Example 5 Consider X = {a i+26a<6 : t = 0 ,1 ,2 , . . . }u{6a2 i + 16_: t" = 0 , 1 , 2 , . . . } C
{a, 6}*. Clearly, b is an overlap and for all t > 0, we have ab 6 U<(b, X), o2(i+1)fc e
VAb, X), i.e. Ui,Vj ^ 0 for all i,j > 0, but a simple verification ensures that X is
a Z-code.

We should mention two other algorithms to verify whether a regular code X is a
Z-code. Both of them consist in checking the emptiness problem for some automata
(Devolder and Timmerman [4], Beal (2j) that has as well known a polynomial time
complexity in the number of states of automata.

Using Theorem 2 we give alternative proofs of the results of M.P. Beal and A.
Restivo. First, we prove

Corollary 1 (M.P. Beal [l]) Let X be a regular code. Then X is a Z-code if and
only if it is a circular code.

P r o o f . First, observe that if X is a code then

(1) for any to 6 W n X : Ui(w,X) n X* = 0 and Vi{w,X) n X* = 0 for all
t' = 0 ,1 ,2 , . . . ;

(2) for any w € W - X : Ui(w,X) D X* = 0 or Vi(w,X) n X* = 0 for all
» = 0 ,1 ,2 , . . .

that are trivially to be verified using Lemma 1 or its symmetrical version.
Let now X be a regular circular code, hence a code: (l) and (2) are satisfied.
Suppose that for some to G W fl X we have, say, Ui ^ 0 for all t = 0,1,2

For any N > 0 there exist uo, « i , . . . , «at such that tii € UQ1X*, . . . , ujv 6
u ^ ^ X * . Since X* is of finite right index m, if we take N sufficiently large, we can
find i,j : 0 < i < j, such that t i ^ X * = uJ1X* and j — 1 is even. Consider the
words

U = Ui+1 . . .Uj , v = U i + 2 - - - « j - l >
it follows ityu,+i 6 X*, v S X* and u = u,+1uuy € X*. By circularity of X we get
uy, u , + i € X*, in particular, Uy £ t/y 0 X* 0 contradicting (1). Therefore for
any w £ W n X we have Ui = 0 for some t and analogously Vy = 0 for some j.

As for any to € W — X, by the same way, we can conclude that either J7,- = 0
fpr some t or V j = 0 for some j. By virtue of Theorem 2, X is a Z-code. The proof is completed.

We now deduce another statement concerning codes with bounded synchro-
nization delay. Recall that a subset X of A* is said to be a code with bounded
synchronization delay provided it is a code and for some integer p > . 0, for all
«,»£ Xp, and for all g, f (E A*,

gu, vf e X*

whenever
guvfeX*.

The least number p satisfying this condition is the synchronization delay of X. The
fact that every code with bounded synchronization delay is a Z-code is obvious, but
the reverse conclusion is not always valid. A lot of interesting properties of these
codes have been discovered, for example, in the finite case, these codes are exactly
the very pure codes, i.e. circular codes (see [ll], [12]). We have the following

106 Do Long Van, Nguyen Huong Lam, Ph an Trun g Huy

Corol lary 2 (A. Restivo [11]) Let X be a regular subset of A+,X is a code with
bounded delay if and only if it is a Z-code satisfying A*XdA* fl X = 0 for some
positive integer d. - — _

Proo f . "Only if" part: first, the fact that each code with bounded synchronization
delay is a Z-code is easy. Further, we show that A'XdA*nX = 0 for all d exceeding
the right index of X. Suppose on the contrary that

u x i . . . XdV € A*XdA* n X

for some xi, x2,.. •, xd 6 X and u, v € A*. Then, indeed, there exist » and j, i <
j < d, such that u i i . . . X{ =R XIX\ . . . xy mod X which implies that for all k =
0 , 1 , 2 , . . . :

UXI... x ; (x , + 1 . . . Xj)k =R UXi... x; (x ; + i . . . xy) f c+1 mod X

and consequently

uxx ... xi(xi+1 ... xj)kxj+1 ...xdv&X.

Hence the synchronization delay of X cannot be bounded.
Conversely, let X be a regular Z-code and A*XdA* D X = 0 for some positive

integer d, hence d > 2. By Theorem 2, for all overlaps w € W, Um(w, X) — 0 or
Ve(tu, X) = 0, where m and e are the right and left index of X*, respectively. We
show that X is of bounded synchronization delay not greater than p = (m + l)ci
(the value in [l l] is 2(m + l)<i). If that is not so, there must exist some words
g, h e A', xlt..., xp, x p + 1 , . . . x2 p , y i , . . . , yq € X such that

gx1...xpxp+1...x2ph = y1...yq (1)

and for all k = 1, 2 , . . . , q
gxx . . . xp ^ yx... yk.

Thus, it has to exist a unique positive integer I < q such that
yi ...yi-i < gxx ...xp < yi ...yi

and the largest positive integer t < p— 1 and the smallest positive integer j > p+ 1
satisfying

gxi.. .n < yx .. .yi-i < gxx.. .xp < yx.. ,yt < gxx . . . x y (2)

(abusing language, we write for words x,y,x < y,x < y to indicate that x is a
prefix, a proper prefix of y, respectively). Since yt £ A*XdA*,j < d + p and
i > p — d.

Further, if in (2) gxx... x» = y i . . - JU-i and gxx • • • xy = yx . . . yt then

' yi = xi+1...Xj, j - i > 2

that is a contradiction with the fact that X is a code.
Alternatively, assume that gxx.. .xy ^ yx'... yi which gives rise to

On codes concerning bi-infinite words 107

g x x . . . x j - i w = y i - . - y i , (3.1)

xJx}+1...x2ph = wyt+i...yq, (3.2)

where to G W and |t/>| < |J/I|, |ti/| < |xy|. Similarly, the case gxi... xt- ^ y i . . . yi-i
gives rise to

gxi...x{+1-yi... yi-!W, (4.1)

wxi+2...X2Ph = yiyi+i...yq, (4.2)

where w & W and |to| < |yj|, |to| < |x,+i|.
We will show that (3.2) or (4.2) equally leads to U2m{to, X) ^ 0 and (3.1) or

(4.1) - to Vfc(to, X) ^ 0 with fc abitrarily large, in particular k > e that is quite a
contradiction.

First, suppose that we have (3.2), setting

U1 = x] +1 • • • Xj+d, • • •, um = xj+(m-l)d+l • • • Xy + md

and let q{k) the smallest integer such that for k = 0 , 1 , . . . , m

X j i < toy (+ 1 . . .y i (f c) (5)

(for compactness, we set by convention that xyui . . .Ufc = xy when k = 0). Since
A*XdA*CiX = 0, to < xy and t i i , . . . , u m e it follows /+1 < q(0) < q(1) < <
g(m), Putting ufc = y (+ i . . . y , (f c) , f c = 0,1,2, . . . , m , by (5) and A*XdA* n X = 0
we get

XyUi...Ufc < WVK < Xytlj . . . u f c + i (6)

for fc = 1 , 2 , . . . , m — 1 and

toufc_i < xyu i . . . ufc < toufc (7)

for fc = 1 , . . . , m .

It is easy to verify that (6), (7) together with w < xy yield

(tOUo)~^(xyUi) e U2l - •. , (u;um_i) _ 1 (xyui . . . tlm) e t/2m,

i.e. U2m f 0. Likewise, since t + 2 < j , (4.2) leads also to C / 2 m / 0.
Now, as far as Ve is concerned, we treat (3.1) and (4.1) as above, only in the

symmetrical way. Directly, (3.1) or (4.1) cannot lead to Vc ^ 0, but we can "pump"
them up to some equalities "long" enough by proceeding as follows. Suppose, for
example, that we have (4.1). Among m + 1 numbers 1, d + 1 , . . . , md + 1 there
must exist o, b such that grxi . . .x0 gx% ...if, mod X* with a < b. Note that
b — a > d > 2 and o, 6 < md + 1 < p — d + l < t + 1. Further, for some integer
s < t < I we must have

yi---y.-l "a = 9*1 •••Xa,
gx i...xava = yi ...y„

108 Do Long Van, Nguyen Huong Lam, Ph an Trun g Huy

and

yi-yt-i«6 = gxi...xb,
gxl...xbvb = yi...yt,

«6«6 = tk,

where u0 , u„, ub , «6 € A*. Hence x a + i . . . x j + i € vaX*w. Prom gx i...xa =r
gx i . . . xt, mod X* it follows

gxi. ..xa =R gii... x a (x „ + i . . . xb)k mod X*

for all k — 0 ,1 ,2 , Since gxi ... xava £ X* we have gxi... x a (x a + i . . . Xb)kva £
X\ Therefore

gx1...xa(xa+1...xb)kxa+1...xi+i &X*w, (8)

where, as before,
Looking into

< R + i l - , ,
8) we see that the left-hand side of (4.1) is pumped up by a

product of k(b — a — 1) words. We take k large enough to obtain a sufficiently
"long" equality of the form (4.1). Now proceeding as is done for U2m , we conclude
that V e is nonempty. This contradiction with Theorem 2 completes the proof.

The regularity condition is essential for Theorem 3 to be valid. Indeed, consider
the following

E x a m p l e 6 The Z- code X = {ai+1baib :i = 0,1, 2 , . . . } C {a, b}* is not a regular
language. It is not a code with bounded synchronization delay, although A* X2 A* n
X = 9.

" Concluding, from [8] or [l] we deduce the following statement.

Theorem 3 Let X = {x,y}(|x! > |t/|) be a two-word language of A* then
X is not a Z-code if and only if one of the following assertions holds

(i) x or y is imprimitive;
(ii) x and y are conjugate;
(Hi) xyn is imprimitive for some positive integer n < + 1;
(iv) x2y is a square.

P r o o f . Obviously, if one of (i)-(iv) holds, X is not a Z-code.
Conversely, suppose that X is not a Z-code (thus not a circular code, not a very

pure code) and besides x and y are primitive and not conjugate. We show that (iii)
or (iv) must occur.

Indeed, by [8] or [l], x*y U xy* contains an imprimitive word u = vm, m > 2:

- if u = xyn then in — l)|y| cannot excceed |u| — 1 otherwise by Fine and Wilf
Theorem (see [9] or [5]) x and y are copower that contradicts the assumption. Thus
(n - l) | y | < H t o r 2 (n - l) | y | < 2 H < H + »|y| = |®y»|.i.e. |n| < |f| + 1;

- if u — xny = vm we can suppose n > 2. Further, if the inequality

. n + 1 m > T. n — 1

On codes concerning bi-infinite words 109

holds, then m (n - l) | i | > (n+l)|x| > njx|+|!/| = m|w|. Therefore, (n - l)|z| > |«|,
or, n|x| > |x|+ |u|. Again by Fine and Wiif Theorem x, v and thus x, y are copower
that contradicts the assumption. So, we always have m < Since m, n > 2 it
follows m = n = 2.

Acknowledgements The authors acknowledge their great indebtedness to the
referees for their valuable comments and suggestions.

References
[1] E. Barbin Le Rest and M. Barbin Le Rest, Sur la combinatoire des codes à

deux mots, Theoretical Computer Science 41 (1985), 61-81.

[2] M.P. Beal, "Codages, automates locaux et entropie," Publications du LITP
(Paris), No. 38 (1988).

[3] J. Berstel and D. Perrin, "Theory of Codes", Academic Press, Nèw York, 1985.

[4] J. Devolder and E. Timmerman, "Codes for Bi-infinite Words", Publications
du LIFL (Lille), No I.T. 16 (1990).

[5] N.J. Fine and H.S. Wilf, Uniqueness Theorems for Periodic Functions, Pro-
ceedings of the American Mathematical Society 16 (1965), 109-114.

[6] S. Golomb and B. Gordon, Codes with Bounded Synchronization Delay, In-
formation and Control 8 (1965), 355-372.

[7] G. Lallement, "Semigroups and Combinatorial Applications," John Wiley,
New York, 1979.

[8] A. Lentin and M.P. S.hutzenberger, A Combinatorial Problem in the Theory of
FVee Monoids, "Combinatorial Mathematics and Its Applications," Proceed-
ings of the Conference held at the University of North Carolina (R.C. Bose
and T.A. Dowlings, eds.), Chapell Hill, pp. 128-144.

[9] M. Lothaire, "Combinatorics on Words," Addison-Wesley, Reading, Mas-
sachusetts, 1983.

[10] Nguyen Huong Lam and Do Long Van, On a Class of Infinitary Codes, Theo-
retical Informatics and Applications 24 (1990), 441-458.

[11] A. Restivo, A Combinatorial Property of Codes Having Finite Synchronization
Delay, Theoretical Computer Science 1 (1975), 95-101.

[12] A. Restivo, On a Question of McNaughton and Papert, Information and Con-
trol 25 (1974), 93-101.

Received May 9, 1992

Acta Cybernetica, Vol. 11, No. 1-2, Szeged, 1993

Market Oriented Integration of
MS-Windows-Based Tools for Distributed

Decision Support*
M. Biro* P. Danyi* P. Gelleri*

Abstract
In this paper, we discuss the meaningfulness of value added systems in-

tegration for distributed decision support from a market oriented primary
perspective. The issues to be analysed are derived from all pairwise interre-
lationships of the entities involved in a decision situation. These are the task
logic, the decision culture, and the decision environment. Keeping these con-
siderations in focus, we summarize experiments with commercially available
products for the Microsoft Windows environment which is undisputably the
most popular operating environment for personal computers.

Keywords : Systems integration, Decision support systems, Model de-
sign, Distributed decisions.

1 Introduction
The purpose of this paper is to give a structured guide to the design of distributed
decision support systems. Since our primary objective is the supply of the market,
we are concentrating on Microsoft Windows based tools which can be used on the
most popular type of personal computers worldwide.

Our approach is derived from practical experiences in building and installing
decision support systems to orders. One of our recent observations is that users are
less keen on accepting a clever but custom made software tool than well established
commercial products. We also see however, that commercial products alone are
most of the time inappropriate for the support of specific decision circumstances.
Our answer is value added systems integration.

The universal validity of our conclusion is supported by the report of a colo-
quium held by the U.S. Computer Science and Telecommunications Board, the
Commission on Physical Sciences, Mathematics, and Applications, and the Na-
tional Research Council in 1991. There, "systems integration was identified as a

•Supported by O T K A grants No. 2571 and .2575.
^Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Kende u.

13-17. H - l l l l Hungary
*Dept. of Information Engineering, Technical University of Budapest, Budapest, Műegyetem

rkp. 3. H - l l l l Hungary

111

112 M. Biro, P. Danyi, P. Gelleri

large and rapidly growing market in which the United States was a clear leader"
[l] [Keeping the U.S. Computer Industry Competitive... 1992].

In this paper, we are not going into the details of systems integration issues
in general. We are rather concentrating on the structuring of ideas based on our
practical experiences in building and installing decision support systems and our
pioneering role in introducing object- oriented windows based software and decision
support technology in Hungary [2], [3].

2 A Model for Mapping Decision Situations
A DSS must always refer to the particular decision situation. However, decision
situations are not only determined by the decision problem itself, but also by the
problem owner and the available decision techniques. Let us formulate a model
which, according to our experiences, provides an appropriate guidance for our anal-
ysis (Figure 1.). A DSS stands in the intersection of the entities of the basic model
which means that a DSS can only be built if we bring together the contexts of these
entities.

A - Problem or task
B - Problem owner
C - Decision techniques

m Tasklogic

[2] - Decision culture

i!| - Decision circumstances

Figure 1.

Examples could be brought from an infinitely 'wide range of areas including
money allocation, tender evaluation, personnel selection. Let us consider the fol-
lowing specific example. A DSS is being designed for managing catastrophe situa-
tions in a power plant. The system must not only contain decision techniques in
themselves, sis e.g. MCDM, fuzzy logic or AHP. Decision models should be set up
concerning

Market Orlented Integration of MS-Windows-Based 113

• different kinds of problem (or task) situations, e.g. earthquake, computer
virus, etc...

• problem owners with different levels of decision authority ranging from a
guard to the president.

The entities do never occur apart but in a colorful amalgamation which we are
interested in. Let us consider the intersections of all pairs of entities:

Task logic. The intersection of decision technique and problem (or task) is related
to the abstract types of decision problems which reflects different decision models
and have logically different solution algorithms. The most typical task logics are
as follows: selection among discrete (well defined) alternatives, task monitoring,
resource allocation, etc. It is obvious that any DSS supports some of the possible
task logics but not all of the logics. Different DSSs must be built for the catastrophe
example in the different warning phases with dissimilar levels of danger.

Decision culture. The intersection of problem owner and decision technique
is related to the decision culture. This means the problem owner's experience
in solving decision problems that is capability of using various kinds of decision
methods and tools, and his skill level at using them. More specifically, e.g. some
people prefer using probabilities, others do odds or utilities. On the other hand,
some people are risk-averse, some are risk-prone. Japanese and American managers
hardly ever look similarly at the very same problem. What kind of presumptions
can we have about cultures? First, some people may be homogeneous as fax as
their decision thinking is concerned. Second, if they think differently, classes must
be defined. Our goal is to help the problem owner in finding his real role i.e. his
class.

Decision circumstances. Finally, let us consider the concept of decision cir-
cumstances, which is related to the intersection of problem and problem owner in
the model. First, decision circumstances include the constraints and goals of the
problem owner together with his or her attitude to the task. This also means time
and resource constraints, and considerations coming from personal interests on the
other hand. Second, the environment of the given problem has a huge influence on
the design of the DSS. Some of the important issues are the individual or group
nature of the decision environment, the chance for a compromise in the group case,
the equality or inequality of voting powers, etc.

3 The M S - W I N D O W S Based Toolkit Approach
In our opinion the most effective way of building a DSS satisfying particular re-
quirements is using a toolkit. When we build a DSS from parts, we can excellently
track the needs of the user, the environment, etc. In addition, the toolkit approach
provides some technical advantages:

• modularity

• all of the pieces are exchangeable

• interfaces between units must be precisely elaborated.

114 M. Biro, P. Danyi, P. Gelleri

The tools that we shall inspect are commercially available products for the Mi-
crosoft Windows operating environment. The interface between the units is natu-
rally provided by DDE (Dynamic Data Exchange) and OLE (Object Linking and
Embedding) which are defined in general within tne environment.

However, while the above features significantly facilitate systems integration, we
have to extend the commercial tools with new capabilities in order to supporting
specific decision circumstances. These extensions will be highlighted below as well.

Tools covering significant task logics
The tools that can be mentioned here must include at least group scheduling capa-
bilities which are necessary for monitoring the group decision making process and
for allocating the necessary resources. There aire many Windows based products
belonging to this category. One of them is Schedule-f included with Windows for
Workgroups and the future Windows NT as well.

Windows for workgroups has another important characteristic from the task
logic point of view, which differentiates it from other groupware tools like Lotus
Notes available today. It supports peer-to-peer networking with network dynamic
data exchange facility as opposed to the client- server paradigm inherent to other
tools. This feature opens new possibilities for distributed decision support where
each personal computer on the network can operate both as a client and a server,
obviating the need for a dedicated server. These networks are not only inexpensive
but also easy to set up. A useful exploitation of this technology for distributed
negotiation support (DINE) is described in [4]. This application was based on a
prototype network dynamic data exchange facility developed with the participation
of one of the authors one year before the release of the commercial Microsoft tool.

Tools covering significant decision cultures
Experts participating in a distributed decision making process may have different
professional backgrounds which basically determine their decision culture. Differ-
ent professional backgrounds implie that their professional cognitive patterns are
different as well. A tool supporting distributed decision making must provide sup-
port for each individual expert and for the group as a whole. Thus, the model
representations offerred by the system must be appealing to all of the participants,
which implies that they must be as close as possible to everyday cognitive patterns.
Tabular (relational) representations in spreadsheets for example satisfy this require-
ment, since tables are incorporated among our cognitive patterns at the elementary
school level. This is in fact the fundamental reason of their general success [5].

Spreadsheet products for Windows are numerous again. They include Lotus
1-2-3, Borland Quattro, and Microsoft Excel.

The already mentioned application (DINE) [4], [6] is based on Microsoft Excel,
which was extended with several features in order to accomodating experts from
various professional backgrounds and still providing a high level of decision sup-
port. These features include optimisation and multiple criteria decision making
capabilities in an environment where dynamically changing data originating from
shared data bases or other members of the decision making group are permanently
taken into account.

Market Orlented Integration of MS-Windows-Based 115

Tools covering significant decision circumstances
Groupsystems and Lotus Notes are commercial tools that are relevent to different
decision circumstances. Groupsystems provides anonymous, real-time interaction
with the help of a facilitator in an electronic meeting room. Lotus Notes pro-
vides workgroup electronic mail, distributed databases, bulletin boards, document
management, etc... in an environment distributed in time and space.

It is a characteristic property of DINE that it provides integrated support for
both the group as a whole and the individual user while privately evaluating the
positions of other group members. This support is independent on the cooperative
or competitive nature of the decision circumstances.

4 DINE
The DINE model supports simultaneous, multiple issue, independent peer-to-peer
negotiations. It allows the integration of existing negotiation support techniques
which, as opposed to DINE, mostly focus on scenarios where the negotiation is-
sues are shared by all negotiators. The latter techniques are used to support the
independent peer- to-peer negotiations in DINE. Negotiators may in fact use any
tool even without DINE, as long as it supports the same peer-to-peer informa-
tion sharing protocol. At the same time, DINE is a generalized multiple criteria
decision making model where the alternatives to be ranked are compound sub-
sets of negotiated offers. DINE naturally integrates asynchronous and synchronous
communication requirements, intuitive judgement and deep knowledge based tech-
niques. The implementation is based on the Microsoft Windows environment and
some of its value added features have already been mentioned.

Our objective here is the critical description of the value- added features re-
lated to model-based deep knowledge generation wich bring the Microsoft Excel
commercial tool closer to a wide range of task logics, decision cultures and decision
circumstances.

The cunstruction of models in general is well supported in spreadsheet envi-
ronments. There is even integrated support for the specification and solution of
optimization models within a spreadsheet (What's Best, IFPS/Optimum, Microsoft
Excel Solver). The advantages of such systems over algebraic languages have been
analysed in detail [8], [18], we will not go into these issues here.

What difficulties do arise however with existing tools and what kind of fur-
ther support can be provided for optimization modeling and model experiments in
spreadsheets which can improve their scope of usability? Let us list some of these
below.

1. The first problem is that while changing most parameters of the model is
natural and easy, changing the size of the model involves spreadsheet ma-
nipulations which are error prone and external to the world of the model
itself.

2. The second problem is also related to the size of the model. There are two ma-
jor reasons why large models are increasingly difficult to handle with spread-
sheets. The first reason is memory limitation which is a question of money
and technology scaling only. The other reason is our cognitive limitation. The
power of the spreadsheet in visualizing data relationships may decrease with
larger models unless appropriate data are stored in relational databases and
the display structures of the model are carefully chosen in the beginning.

116 M. Biro, P. Danyi, P. Gelleri

3. The third problem is that existing spreadsheet model building schemes are
essentially jilgebraic which means that a transformation of real world objects
and relationships into "algebraic entities and expressions is necessary. - A- re-
markable possibility for integrating iconic and other representation schemes
including spreadsheets is described in jl4]. This issue is not discussed any
further in this paper, it will be the subject of a further study.

The purpose of the meta-model building tool in DINE is the provision of relief to
the first two difficulties above. The solutions provided by DINE are best illustrated
in the light of an example.

An example
The example is a simple multiperiod investment problem similar to the one provided
as a sample application for Microsoft Excel Solver. The point is not on the validity
of the assumptions, but on the new spreadsheet representation and underlying
meta-model building tool which solves the first two problems above.

Determine how to invest cash into certificates of deposit (CD) with fixed in-
terest rate and fixed term, so as to maximize interest income while meeting given
periodical cash requirements (plus a safety margin). The algebraic formulation of
this problem is a typical textbook exercise. The spreadsheet formulation provided
as a sample application for Microsoft Excel Solver has its advantages, however it
strongly suffers from the above listed difficulties. The DINE approach will preserve
the advantages, while resolving the problems.

The primary concepts that appear to be necessary for the formulation of the
model are the following:

• Date

• Cash requirement

. CD

• Interest

• Term

• Investment
These concepts will be extended during meta-model building with a few sec-

ondary quantities which contribute to a better visualization of the data relation-
ships.

The meta-model building tool
The quantities in our example which are appropriate for database storage are the
cash requirements with the corresponding dates (a private database) and the CD's
with their interest rates and terms (public database). The decision variables are
clearly the amounts invested into different CD's at the specified dates (Investment).

CD Interest rate Term Date Cash
requirement

The meta-model of the problem is placed into the first line of a table whose
field headings are the primary concepts and some further interesting secondary

Market Orlented Integration of MS-Windows-Based 117

quantities. On request, our macros interpret the meta-model and replace the line
with a table which is then the final model still hot linked to the underlying databases
and automatically responding to any intuitive or optimization based changes.

The purpose of the meta-model is the definition of the way the actual model
will be automatically built as soon as the underlying databases are available and
the user requests it. The meta-model by consequent is independent on the sizes of
any databases which determine the siae of the model itself, it depends however on
the fields of those databases.

The functional decomposition of the model into databases and meta-model pro-
vides a solwtion to the first problem above. It allows an easy reconstruction of the
model any time the size of any database changes. The use of the relational database
paradigm means a solution to the second problem (keeping a clear view of relation-
ships) from the side of the primary data the model refers to. The databases may
even reside on remote servers.

Fils f.rtii l -iimulo jama) Dil» (¡[»«ion» Msrro Window Byrentnl.tofr Mode) flelp

B B S m i ^ P f r 'T'l'Mi'i ' runn
M0Dtl15.XLS

'SUMflntetest) R1C5

jTolol [nietest]
Cash Usesjlnit Cash jMetuiCDs ;lnte'6st
™ i IPJo r'wöäöDö'f »öT"" '»' Ö

jmKû;! »156.009 t3'. 91C-' " »358
»50.083 »«"boV : »«8

»80.000; >10.000 »133.126'- »¡025

Dev<sliun
Dote
\JjWi 2/1/St »

-V1/S3

(Of o'
to 3<36tG SS
to ! <S603 8<:
»3Ï 2S9Ë-Î2]
« ' 35461 0"<"
to';

Gosh Uses! inil Ossh

Figure 2. Model, underlying databases,
and chart showing model characteristics.

The solution to the second problem from the side of the model, that is keeping
a clear view of relationships within the model, is a question of careful design of

118 M. Bíró, P. Danyi, P. G eltéri

the model structure in the spreadsheet, and of the most useful decomposition of
calculations into secondary result tables. The secondary result tables should in
particular include quantities which will serve as constraints to the optimization
problem, and should at the same time be useful for the evaluation of the effect of
intuitive changes made with the decision variables. From the technical point of
view, the primary and secondary result tables have to be defined in such a way
that the same spreadsheet formula can provide all required quantities in any given
column of the table when the meta-model is expanded into the final model.

5 CONCLUSION
In this paper, we gave a structured guide to the design of distributed decision
support systems from a market oriented perspective. We concentrated on Microsoft
Windows based tools which can be used on the most popular type of personal
computers worldwide.

We illustrated the power of value added systems integration with new features
incorporated into a prototype distributed negotiation support application exploit-
ing the advanced capabilities of the Microsoft Excel commercial spreadsheet envi-
ronment.

References
[1] L.A.Belady: Software Engineering: Beyond Software and Beyond Engineering.

In: Shifting Paradigms in Software Engineering (ed. R. Mittermeir). (Springer-
Verlag, Wien, New York, 1992) pp.2.

[2] Hernádi,A; Biró,M.; Horváth,T.; Hutter.O.; Király.L.; Knuth.E.; Remzső.T.
Window Systems. (Typotex Kft, Budapest, 1990). (in Hungarian)

¡3] Biró,M.; Csáki,P.; Vermes,M. WINGDSS Group Decision Support System un-
der MS-Windows. In: Proceedings of the Second Conference on Artificial In-
telligence (ed. by I.Fekete and P.Koch). (John von Neumann Society for Com-
puter Sciences, Budapest, Hungary, 1991) pp.263-274.

[4] M. Biró, E. Bodroghy, A. Bor, E. Knuth, L. Kovács, The Design of DINE: a
Distributed NEgotiation Support Shell. In: Decision Support Systems: Expe-
riences and Expectations, (ed. by T. Jelassi, M.R. Klein, W.M. Mayon-White).
IFIP Transactions A-9 (North- Holland, 1992) pp. 103-114.

[5] M. Biró and I. Maros, The Use of Deep Knowledge from the Perspectives of
Cooperative Problem Solving, Systems Modeling, and Cognitive Psychology.
In: Shifting Paradigms in Software Engineering (ed. R. Mittermeir). (Springer-
Verlag, Wien, New York, 1992) pp.56- 67.

[6] M. Biró, A. Bor, E. Knuth, T. Remzso, A. Szilléry: Spreadsheet-Based Model
Building and Multiple Criteria Group Decision Support, MTA SzTAKI Work-
ing Paper, 1993.

[7] J. Bisschop and A. Meeraus, On the Development of a General Algebraic
Modeling System in a Strategic Planning Environment, Mathematical Pro-
gramming Study, 20(1982)1-20.

Market Orlented Integration of MS-Windows-Based 119

[8] S.E. Bodily, Spreadsheet Modeling as a Stepping Stone, Interfaces, 16,
no.5(1986)34-52.

[9] J.M. Bowers and S.D. Benford, Studies in Computer Supported Cooperative
Work, North- Holland, 1991.

[10] Brookes, C.H.P. (1986) Requirements Elicitation for Knowledge Based Deci-
sion Support Systems, in:McLean, E.R. and Sol, H.G.(eds): Decision Sup-
port Systems: A Decade in Perspective, Elsevier Science Publ. B.V. (North-
Holland)

[11] T.X. Bui, Co-oP - A Group Decision Support System for Cooperative Multi-
ple Criteria Group Decision Making. Lecture Notes in Computer Science 290.
Springer-Verlag, 1987.

[12] S.I. Gass, Model World: Danger, Beware the User as Modeler, Interfaces, 20,
no.3(1990)60-64.

[13] Gelleri, P. and Martinez, F. (1988): How to Handle Differences in Importance
among Participants with GDSS, in: Lee, R.M., McCosh, A.M. and Migliarese,
P.: Organizational Decision Support Systems, North-Holland.

[14] J. Gerlach and F. Kuo, An Approach to Dialog Management for Presentation
and Manipulation of Composite Models in Decision Support Systems, Decision
Support Systems, 6(1990)227-242.

[15] Holt, C.C. Conceptual Environment for Organization Support Systems: De-
sign and Use of Information Technology in Organization, in:Conf. 'Environ-
ments for Supporting Decision Processes', Budapest, Hungary, 18-21 lune,
1990.

[16] Huber, G.P. (1984): Issues in the Design of Group Decision Support Systems,
MIS Quarterly, 8.pp.l95- 204.

[17] T. Hurlimann, LPL, A Structured Language for Modeling Linear-Programs
(Verlag Peter Lang AG, Bern, 1987). Keeping the U.S. Computer Industry
Competitive: Systems Integration. (National Academy Press, Washington,
D.C., 1992).

[18] A. Roy, L. Lasdon and D. Plane, End-user optimization with spreadsheet
models, European Journal of Operational Research, 39(1989)131-137.

[19] Sol, H.G. Information Systems to Support-Decision Processes, in:Conf. 'Envi-
ronments for Supporting Decision Processes', Budapest, Hungary, 18-21 lune,
1990.

[20] Yazdani M. Shells Versus Toolkits. Expert System User, January 1989, pp.13.

Received June £8, 199S

Készítette a JATEPress
6722 Szeged, Petőfi Sándor sugárút 30—34.

Felelős vezető: Szőnyi Etelka
Méret: B/5, példányszám: 350, munkaszám: 27/94.

Subscription information and mailing address for editorial correspondence:

Acta Cybernetica
Árpád tér 2.
Szeged
H-6720 Hungary

C O N T E N T S

H. L. Bodlaender: A Tourist Guide trough Treewidth I

G. Galambos, H. Kellerer and G. Wdginger: A Lower Bound for On-Line Vector-Packing Al -
gorithms 23

J. Demetrovics, V. D. Thi: Some problems concerning Armstrong relations of dual schemes
and relation schemes in the relational datamodel 35

K. D. Schewe, B. Thalheim: Fundamental Concepts of Object Oriented Databases 49
R. Berghammer: On the characterization of the integers: The hidden function problem revi-

sited 85

Do Long Van, Nguyen Houng Lam, Phan Trung Huy: On codes concerning bi-infinite words . . 97

M. Biro, P. Danyi, P. Gelleri: Market Oriented Integration of MS-Windows-Based Tools for
Distributed Decision Support I l l

| I S S N 0324—721 X |

Felelős szerkesztő és kiadó: Gécseg Ferenc
A kézirat a nyomdába érkezett: 1993. december

Terjedelem: 7,12(B/5)ív

