352 research outputs found

    Post-quantum cryptography

    Get PDF
    Cryptography is essential for the security of online communication, cars and implanted medical devices. However, many commonly used cryptosystems will be completely broken once large quantum computers exist. Post-quantum cryptography is cryptography under the assumption that the attacker has a large quantum computer; post-quantum cryptosystems strive to remain secure even in this scenario. This relatively young research area has seen some successes in identifying mathematical operations for which quantum algorithms offer little advantage in speed, and then building cryptographic systems around those. The central challenge in post-quantum cryptography is to meet demands for cryptographic usability and flexibility without sacrificing confidence.</p

    On the Duality of Probing and Fault Attacks

    Get PDF
    In this work we investigate the problem of simultaneous privacy and integrity protection in cryptographic circuits. We consider a white-box scenario with a powerful, yet limited attacker. A concise metric for the level of probing and fault security is introduced, which is directly related to the capabilities of a realistic attacker. In order to investigate the interrelation of probing and fault security we introduce a common mathematical framework based on the formalism of information and coding theory. The framework unifies the known linear masking schemes. We proof a central theorem about the properties of linear codes which leads to optimal secret sharing schemes. These schemes provide the lower bound for the number of masks needed to counteract an attacker with a given strength. The new formalism reveals an intriguing duality principle between the problems of probing and fault security, and provides a unified view on privacy and integrity protection using error detecting codes. Finally, we introduce a new class of linear tamper-resistant codes. These are eligible to preserve security against an attacker mounting simultaneous probing and fault attacks

    Algebraic Restriction Codes and Their Applications

    Get PDF
    Consider the following problem: You have a device that is supposed to compute a linear combination of its inputs, which are taken from some finite field. However, the device may be faulty and compute arbitrary functions of its inputs. Is it possible to encode the inputs in such a way that only linear functions can be evaluated over the encodings? I.e., learning an arbitrary function of the encodings will not reveal more information about the inputs than a linear combination. In this work, we introduce the notion of algebraic restriction codes (AR codes), which constrain adversaries who might compute any function to computing a linear function. Our main result is an information-theoretic construction AR codes that restrict any class of function with a bounded number of output bits to linear functions. Our construction relies on a seed which is not provided to the adversary. While interesting and natural on its own, we show an application of this notion in cryptography. In particular, we show that AR codes lead to the first construction of rate-1 oblivious transfer with statistical sender security from the Decisional Diffie-Hellman assumption, and the first-ever construction that makes black-box use of cryptography. Previously, such protocols were known only from the LWE assumption, using non-black-box cryptographic techniques. We expect our new notion of AR codes to find further applications, e.g., in the context of non-malleability, in the future

    Cryptographic Assumptions: A Position Paper

    Get PDF
    The mission of theoretical cryptography is to define and construct provably secure cryptographic protocols and schemes. Without proofs of security, cryptographic constructs offer no guarantees whatsoever and no basis for evaluation and comparison. As most security proofs necessarily come in the form of a reduction between the security claim and an intractability assumption, such proofs are ultimately only as good as the assumptions they are based on. Thus, the complexity implications of every assumption we utilize should be of significant substance, and serve as the yard stick for the value of our proposals. Lately, the field of cryptography has seen a sharp increase in the number of new assumptions that are often complex to define and difficult to interpret. At times, these assumptions are hard to untangle from the constructions which utilize them. We believe that the lack of standards of what is accepted as a reasonable cryptographic assumption can be harmful to the credibility of our field. Therefore, there is a great need for {\em measures} according to which we classify and compare assumptions, as to which are {\it safe} and which are not. In this paper, we propose such a classification and review recently suggested assumptions in this light. This follows the footsteps of Naor (Crypto 2003). Our governing principle is relying on hardness assumptions that are independent of the cryptographic constructions

    Low-Complexity Cryptographic Hash Functions

    Get PDF
    Cryptographic hash functions are efficiently computable functions that shrink a long input into a shorter output while achieving some of the useful security properties of a random function. The most common type of such hash functions is collision resistant hash functions (CRH), which prevent an efficient attacker from finding a pair of inputs on which the function has the same output

    Fast Privacy-Preserving Punch Cards

    Get PDF
    Loyalty programs in the form of punch cards that can be redeemed for benefits have long been a ubiquitous element of the consumer landscape. However, their increasingly popular digital equivalents, while providing more convenience and better bookkeeping, pose a considerable privacy risk. This paper introduces a privacy-preserving punch card protocol that allows firms to digitize their loyalty programs without forcing customers to submit to corporate surveillance. We also present a number of extensions that allow our scheme to provide other privacy-preserving customer loyalty features. Compared to the best prior work, we achieve a 14×14\times reduction in the computation and a 11×11\times reduction in the communication required to perform a "hole punch," a 55×55\times reduction in the communication required to redeem a punch card, and a 128×128\times reduction in the computation time required to redeem a card. Much of our performance improvement can be attributed to removing the reliance on pairings or range proofs present in prior work, which has only addressed this problem in the context of more general loyalty systems. By tailoring our scheme to punch cards and related loyalty systems, we demonstrate that we can reduce communication and computation costs by orders of magnitude

    A Generic Construction of an Anonymous Reputation System and Instantiations from Lattices

    Get PDF
    With an anonymous reputation system one can realize the process of rating sellers anonymously in an online shop. While raters can stay anonymous, sellers still have the guarantee that they can be only be reviewed by raters who bought their product.We present the first generic construction of a reputation system from basic building blocks, namely digital signatures, encryption schemes, non-interactive zero-knowledge proofs, and linking indistinguishable tags. We then show the security of the reputation system in a strong security model. Among others, we instantiate the generic construction with building blocks based on lattice problems, leading to the first module lattice-based reputation system

    Placing Conditional Disclosure of Secrets in the Communication Complexity Universe

    Get PDF
    In the conditional disclosure of secrets (CDS) problem (Gertner et al., J. Comput. Syst. Sci., 2000) Alice and Bob, who hold n-bit inputs x and y respectively, wish to release a common secret z to Carol (who knows both x and y) if and only if the input (x,y) satisfies some predefined predicate f. Alice and Bob are allowed to send a single message to Carol which may depend on their inputs and some shared randomness, and the goal is to minimize the communication complexity while providing information-theoretic security. Despite the growing interest in this model, very few lower-bounds are known. In this paper, we relate the CDS complexity of a predicate f to its communication complexity under various communication games. For several basic predicates our results yield tight, or almost tight, lower-bounds of Omega(n) or Omega(n^{1-epsilon}), providing an exponential improvement over previous logarithmic lower-bounds. We also define new communication complexity classes that correspond to different variants of the CDS model and study the relations between them and their complements. Notably, we show that allowing for imperfect correctness can significantly reduce communication - a seemingly new phenomenon in the context of information-theoretic cryptography. Finally, our results show that proving explicit super-logarithmic lower-bounds for imperfect CDS protocols is a necessary step towards proving explicit lower-bounds against the class AM, or even AM cap coAM - a well known open problem in the theory of communication complexity. Thus imperfect CDS forms a new minimal class which is placed just beyond the boundaries of the "civilized" part of the communication complexity world for which explicit lower-bounds are known
    • …
    corecore