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Abstract
Cryptographic hash functions are efficiently computable functions that shrink a long input into
a shorter output while achieving some of the useful security properties of a random function.
The most common type of such hash functions is collision resistant hash functions (CRH), which
prevent an efficient attacker from finding a pair of inputs on which the function has the same
output.

Despite the ubiquitous role of hash functions in cryptography, several of the most basic
questions regarding their computational and algebraic complexity remained open. In this work
we settle most of these questions under new, but arguably quite conservative, cryptographic
assumptions, whose study may be of independent interest. Concretely, we obtain the following
results:

Low-complexity CRH. Assuming the intractability of finding short codewords in natural
families of linear error-correcting codes, there are CRH that shrink the input by a constant
factor and have a constant algebraic degree over Z2 (as low as 3), or even constant output
locality and input locality. Alternatively, CRH with an arbitrary polynomial shrinkage can be
computed by linear-size circuits.
Win-win results. If low-degree CRH with good shrinkage do not exist, this has useful
consequences for learning algorithms and data structures.
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7:2 Low-Complexity Cryptographic Hash Functions

Degree-2 hash functions. Assuming the conjectured intractability of solving a random
system of quadratic equations over Z2, a uniformly random degree-2 mapping is a universal
one-way hash function (UOWHF). UOWHF relaxes CRH by forcing the attacker to find a
collision with a random input picked by a challenger. On the other hand, a uniformly random
degree-2 mapping is not a CRH. We leave the existence of degree-2 CRH open, and relate it
to open questions on the existence of degree-2 randomized encodings of functions.
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1 Introduction

This work studies the problem of minimizing the complexity of cryptographic hash functions.
We start with some relevant background.

Cryptographic hash functions are efficiently computable functions that shrink a long
input into a shorter output while achieving some of the useful security properties of a random
function. The main focus of this work is on collision resistant hash functions (CRH), which
prevent an efficient attacker from finding a pair of distinct inputs x, x′ on which the function
has the same output.1 However, we will also consider universal one-way hash function
(UOWHF) [63], which relax CRH by forcing the attacker to find a collision with a random
input x picked by a challenger.

CRH are among the most useful and well studied cryptographic primitives. They
are commonly used in cryptographic protocols, with applications ranging from sublinear-
communication and statistically hiding commitments [29, 47], via succinct and efficiently
verifiable arguments for NP [54, 62], to protocols that bypass black-box simulation barriers [7].
More directly, they can be used via the “hash and sign” paradigm to reduce the task of
digitally signing a long message x to the easier task of signing a short hash h(x) [28, 61].
Analogously, they can reduce the cost of verifying the correctness of a long NP-statement x
to that of verifying the correctness of a short NP-statement y = h(x) by having the prover
argue that she knows some x′ such that h(x′) = y and x′ is a true statement. Thus, the
amortized cost of signing a long message or verifying a long NP-statement is essentially the
cost of computing a CRH.

While the feasibility of CRH can be based on a variety of standard cryptographic assump-
tions, including the conjectured intractability of factoring, discrete logarithms, and lattice
problems [28, 42, 65, 58], questions about the efficiency of CRH are still quite far from being
settled. In particular, recent progress on the efficiency of other “symmetric” cryptographic
primitives, such as pseudorandom generators, [20, 75], pseudorandom functions [43], and
even UOWHFs, does not seem relevant in light of the known black-box separation between
CRH and these primitives [69, 45]. The goal of the present work is to close some of the
remaining gaps in our understanding of the complexity of CRH and related primitives.

1 Technically speaking, a CRH is defined by a collection of input-shrinking functions hz, where z is a
public evaluation key, and where the security requirement should hold with respect to a randomly
chosen z. This has the advantage of allowing security against non-uniform attackers. In the following
presentation we will treat a CRH as a single deterministic function for simplicity.

http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.7
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We study the following natural complexity measures:
Degree. We say that h : {0, 1}k → {0, 1}m has algebraic degree d if each output can be
written as a multivariate polynomial over Z2 in the inputs of degree at most d. Ideally,
we would like the degree to be constant, where 2 is the best one could hope for.
Locality. We say that h has output locality d if each output depends on at most d inputs.
Ideally, we would like the output locality to be constant, where output locality 3 is the
best one could hope for [41]. If h has output locality d then its degree is at most d.
Similarly, h has input locality d if every input influences at most d outputs.
Circuit size. We say that h has circuit size S if it can be computed by a boolean circuit
of size S over the standard AND/OR/NOT basis (with AND/OR gates of fan-in 2).2
Ideally, we would like the circuit size to be linear in the input length. Linear size is
implied by constant output locality.

The goals of minimizing circuit size and locality can be directly motivated by the goals
of reducing the sequential and parallel time complexity of hashing. Minimizing algebraic
degree, other than being of theoretical interest, is motivated by applications in which
hashing is computed in the encrypted or secret-shared domain. Indeed, it is typically
the case that techniques for secure multiparty computation [12, 26, 66], homomorphic
encryption [39, 22, 40], or homomorphic secret sharing [27, 21] are much more efficient when
applied to low-degree computations over a small field. See [46] for further discussion.

The prior state of the art can be summarized as follows. Standard algebraic or number
theoretic constructions of CRH, as well as (asymptotic versions of) the commonly used
practical designs, do not achieve constant degree or locality, and their circuit size is quasi-
linear or worse. General techniques for randomized encoding of functions can be used to
convert any standard CRH h in NC1 into a CRH ĥ with constant output locality [1]. However,
even if h has very good shrinkage, ĥ only shrinks the input by a sublinear amount, which
limits its usefulness. From here on, we will restrict the attention by default to hash functions
that have linear (or better) shrinkage, namely h : {0, 1}k → {0, 1}ck for some 0 < c < 1.
Every such h with linear circuit size can be converted into a linear-size CRH with polynomial
shrinkage, namely h′ : {0, 1}k → {0, 1}kε for an arbitrary ε > 0, using a tree of invocations
of h [60]. Linear-size UOWHFs were constructed in [52] under strong assumptions. The
assumptions were later improved in [3], who also achieved constant locality. The question of
obtaining similar results for CRH was left open by both works. Finally, heuristic constructions
of CRH with constant algebraic degree have been proposed in the literature [30]. However,
the security of these proposals has not been reduced to a well studied problem.

To summarize, prior to our work, linear-shrinkage CRH candidates with constant algebraic
degree were only proposed as heuristics, and no candidate CRH construction with constant
locality or linear circuit size has been proposed.

1.1 Our Contribution
In this work we settle most of the open questions concerning the complexity of CRH and
related primitives under new, but arguably clean and conservative, cryptographic assumptions.

Concretely, we put forward the following class of binary SVP assumptions. For a
distributionM over m×n binary matrices and a parameter 0 < δ < 1/2, the (M, δ)− bSVP
assumption asserts that given a matrix M drawn fromM, no efficient algorithm can find

2 One could alternatively consider running time on a RAM machine; our upper bounds on circuit size
apply to this model as well.
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7:4 Low-Complexity Cryptographic Hash Functions

a nonzero vector in the kernel of M whose Hamming weight is at most δn, except with
negligible success probability. The matrix M can be thought of as the parity-check matrix of
a binary linear error-correcting code. Thus, bSVP can be viewed as a binary field analogue
of the lattice Shortest Vector Problem (SVP), replacing an integer lattice by a binary code.

We construct low-complexity CRH based on instances of the bSVP assumption with
matrix distributions M that correspond to uniform distributions over natural classes of
linear codes. The parameter δ is chosen such that there are exponentially many codewords
whose relative weight is close to δ, but where such codewords are only an exponentially small
fraction of the set of all codewords, thus ruling out “guessing attacks.” When m = αn andM
is sufficiently rich (in particular, when it is uniform over all m× n matrices), the assumption
is plausible whenever δ < α/2. The assumption does not hold when δ > α/2, since in this
case a codeword of weight δn can be found by solving a system of linear equations.

Despite being a simple and natural cryptographic assumption, we are not aware of any
explicit study or even precise formulation of the bSVP assumption in the literature. While we
were not able to reduce useful instances of bSVP to any standard cryptographic assumption,
we do show that such instances have a “win-win” flavor in the sense that if they are broken,
this would necessarily have useful algorithmic consequences. Natural instances of the bSVP
assumption are likely to find additional applications in cryptography, and their further study
may be of independent interest from both a cryptography and coding theory points of view.

We now give a more detailed account of our results.

Low-complexity CRH

Assuming bSVP for a random linear code with δ >2H−1
2 (α) (where H2 denotes the binary

entropy function), there are CRH that shrink the input by a constant factor and have a
constant algebraic degree. We give a direct construction of degree-5 CRH, and then reduce the
degree to 3 by using a new optimized randomized encoding construction for constant-degree
functions (previous randomized encoding methods from [1] can also reduce the degree to 3,
but at the expense of compromising the linear shrinkage feature).

Assuming bSVP for a random low-density parity-check code (LDPC), we can also get
constant output and input locality, which imply CRH with an arbitrary polynomial shrinkage
that can be computed by linear-size circuits. The assumption that bSVP holds for LDPCs
may look too strong in light of the fact that LDPCs admit efficient decoding algorithms.
However, known decoding techniques seem to have only limited relevance to bSVP. Indeed,
the known reductions from bSVP to unique decoding introduce exponential overhead (cf. [32]).
Moreover, there is a gap between the noise level p for which LDPC’s admit efficient decoding
and the relative distance ∆ of LDPC’s which essentially corresponds to our parameter
δ. This gap grows with the (constant) locality parameter [23], and the LDPC becomes
similar to random linear code both combinatorially [37, 57], and, presumably, in terms of its
intractability.3

Our constructions take the following natural high level approach. First the input is
deterministically encoded into a longer vector that has a low weight. This encoding is done
via a simple function Expand that has constant input and output locality. Then the encoded

3 We further mention that the problem of finding (many) w-weight codewords in LDPC with sub-constant
rate (e.g., when the parity check matrix has m rows and n = O(m7/5) columns and w = O(m0.2)) was
implicitly considered by Feige, Kim and Ofek [34]. In particular, it was shown that if the problem is
easy (for randomly chosen 3-sparse ,matrices) then one can efficiently refute random 3-CNF’s with m
variables and m1.4, beating the state-of-the-art refutation algorithms.
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input is shrunk by applying a random linear mapping M sampled from M, where M is
used as a key specifying the CRH. Finding a collision implies finding a low-weight vector
in the kernel of M (namely, the sum of two images of Expand), which is intractable if the
appropriate instance of the bSVP assumption holds. A practically-oriented hash function
candidate with a similar structure was proposed by Augot et al. [4] (see also [35]). In fact,
our degree-5 construction can be obtained as an instance of their construction (with a specific
choice of parameters). Our other instantiations of this approach are different and are tailored
to different optimization goals.

As an application, our linear-size CRH imply (together with other cryptographic assump-
tions, cf. [16]) the first succinct non-interactive argument system for NP in which the verifier’s
algorithm can be implemented by a linear-size circuit in the statement length. They also
imply the first linear-size implementations of non-interactive statistically hiding commitments
(SHC), a randomized variant of CRH that can be used to hide the input. This follows from
the known constructions of SHC from CRH [29, 47].

Win-win results

To gain more insight on the instances of the bSVP assumption on which we rely, we show that
refuting them would have useful algorithmic consequences. Concretely, we show two types of
such results. First, we show that either (1) there is a linearly-shrinking CRH with logarithmic
degree (a non-trivial object that does not seem to follow from standard assumptions) or (2)
one can achieve an arbitrary polynomial speedup over the celebrated BKW algorithm for
Learning Parities with Noise (LPN) [19]. The latter would be considered a breakthrough in
light of the large body of work on algorithms for LPN and its variants. Second, we show
that breaking useful instances of bSVP, on which a degree-3 linearly-shrinking CRH can be
based, leads to a surprisingly good data structure for learning parities from random (noiseless)
examples in a natural distributed learning model.

Degree-2 hash functions

Finally, we study the case of hash functions that have the minimal possible degree. We
first address the case of UOWHFs, showing that a random shrinking degree-2 mapping is
a UOWHF assuming that it is one-way. The latter is equivalent to a fairly well studied
assumption, known as the “MQ assumption” [59, 73], which asserts that solving a random
system of quadratic equations is intractable.

We then show several results on the existence of a degree-2 CRH. We show that a random
degree-2 shrinking function is not collision resistant, strengthening a claim from [30] that
was restricted to the case of linear-shrinkage. This result can be extended to the case of
SHC, leaving open the possibility of constructing degree-2 CRH and SHC by using other
distributions over degree-2 mappings.

We relate this question to questions on the existence of degree-2 randomized encodings of
functions that were left open by [51]. The high level idea is that while for strong version of
randomized encoding the existence of degree-2 encodings for general functions can be ruled
out, there are relaxed versions for which this question is still open, yet these relaxed versions
are strong enough to respect the security properties of CRH and SHC. Thus, ruling out a
degree-2 implementation of these primitives would require settling the above open questions
in the negative.

ITCS 2017
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Organization

Following some preliminaries (Section 2), in Section 3 we discuss the assumptions on which
we rely, including the bSVP assumption we introduce and the MQ assumption. In Section 4
we present constructions of low-complexity CRH from variants of bSVP. In Section 5 we
present our positive and negative results for degree-2 hash functions. Finally, in Section 6
we present the “win-win” results showing that if low-complexity CRH do not exist, this has
useful algorithmic consequences.

2 Preliminaries

General

We let [n] denote the set {1, . . . , n}. We naturally view n-bit strings as (column) vectors over
the binary field Z2. For a pair of strings x, x′ ∈ {0, 1}n, we let ∆(x, x′) denote the relative
Hamming distance between x and x′, i.e., | {i ∈ [n] : xi 6= x′i} |/n. We let ∆(x) denote the
(relative) Hamming weight of x, i.e., ∆(x) = ∆(x, 0n). By default, logarithms are taken to
base 2. For real p ∈ [0, 1] we let H2(p) := −p log(p)− (1− p) log(1− p) denote the binary
entropy function where 0 log 0 is taken to be 0. The inverse of the binary entropy function,
H−1

2 : [0, 1]→ [0, 1
2 ], maps y ∈ [0, 1] to the unique x ∈ [0, 1

2 ] for which H2(x) = y. It is well
known (cf. [44, Chapter 3]) that for every constant δ ∈ (0, 1/2)

2nH2(δ)−o(n) ≤
(
n

δn

)
and

δn∑
i=1

(
n

i

)
≤ 2nH2(δ). (2.1)

We also use the following approximation taken from [24, Theorem 2.2]:
x

2 log(6/x) ≤ H
−1
2 (x) ≤ x

log(1/x) . (2.2)

A function ε(·) is said to be negligible if ε(k) < k−c for any constant c > 0 and suffi-
ciently large k. We will sometimes use neg(·) to denote an unspecified negligible func-
tion. The statistical distance between two probability distributions X and Y , denoted
SD(X;Y ), is defined as the maximum, over all functions A, of the distinguishing advantage
|Pr[A(X) = 1]− Pr[A(Y ) = 1]|. A pair of distribution ensembles X = {Xk} and Y = {Yk}
is statistically indistinguishable if SD(Xk;Yk) ≤ neg(k).

Locality and Degree

Let f : {0, 1}k → {0, 1}m be a function. We say that the i-th output variable yi depends on
the j-th input variable xj (or equivalently, xj affects the output yi) if there exists a pair of
input strings which differ only on the j-th location whose images differ on the i-th location.
The locality of an output variable (resp., input variable) is the number of input variables on
which it depends (resp., the number of output variables which it affects). We say that an
output has degree d if it can be expressed as a multivariate polynomial of degree d in the
inputs over the binary field Z2. The locality of an output variable trivially upper bounds
its degree. The output locality (resp., degree) of f is the maximum output locality (resp.,
degree) over all outputs of f . Similarly, the input locality of f is the maximal input locality
over all inputs of f .

I Definition 1 (Collision-Resistant Hash Functions). A collection of functions

H =
{
hz : {0, 1}k → {0, 1}m(k)

}
z∈{0,1}s(k)
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is a collision-resistance hash (CRH) function if the following hold:
(Shrinkage) The output length is smaller than the input length: m(k) < k for every k.
(Efficient evaluation and sampling) There exists a pair of efficient algorithms: (a) an
evaluation algorithm H which given (z ∈ {0, 1}s, x ∈ {0, 1}k) outputs hz(x); and (b) a
key-sampling algorithm K which given 1k samples an index z ∈ {0, 1}s(k).
(Collision resistance) For every probabilistic polynomial-time adversary Adv it holds that

Pr
z
R←K(1k)

[Adv(z) = (x, x′) s.t. x′ 6= x and hz(x) = hz(x′)] (2.3)

is negligible in k.
The shrinking factor of H is the ratio m/k. We say that H is linearly shrinking if m/k is
upper-bounded by a constant c < 1. Similarly, H is polynomially shrinking if m/k < 1/kc
for some constant c ∈ (0, 1).

The weaker variant of universal one-way hash function (UOWHF) [63] is defined by
relaxing the third item (collision resistance) with the following requirement (also known as
target collision resistance [11]):

(Target collision resistance) For every pair of probabilistic polynomial-time adversaries
Adv = (Adv1,Adv2) it holds that

Pr
(x,r)R←Adv1(1k)

z
R←K(1k)

[Adv2(z, x, r) = x′ s.t. x′ 6= x and hz(x) = hz(x′)] ≤ neg(k).

That is, first the adversary Adv1 specifies a target string x and a state information r, then a
random hash function hz is selected, and then Adv2 tries to form a collision x′ with x under
hz.
I Remark (Measuring efficiency). When saying that a collection H of hash functions enjoys
some level of efficiency we refer to the complexity of every fixed function hz in the collection
H. For example, H has constant output locality of d if every function hz ∈ H has output
locality of at most d. A stronger form of efficiency guarantees that given the index z and
the input x the function H(z, x) = hz(x) has the required level of efficiency (e.g., constant
locality). Since the index z is selected once and for all we adopt the former (weaker) variant
as our default notion. However, some of our constructions also guarantee the stronger form
of efficiency.
I Remark (Public coins). Our constructions are all in the “public-coin” setting [49], and
so they remain secure even if the adversary gets the coins used to sample the index of the
collection.

2.1 Randomized Encoding of Functions
Roughly speaking, a randomized encoding [51, 1] of a function f(x) is a randomized mapping
f̂(x; r) such that for every input x the output distribution f̂(x; r) (induced by a random
choice of r) depends only on the output of f(x). Throughout the paper we employ perfect
randomized encoding as defined below.

I Definition 2 (Perfect Randomized Encoding). Let f : {0, 1}n → {0, 1}m be a function. We
say that a function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}s is a perfect randomized encoding (PRE) of
f if there exists a deterministic decoding algorithm C and a randomized simulator S which
satisfy the following:

ITCS 2017



7:8 Low-Complexity Cryptographic Hash Functions

(Perfect correctness) For every input x ∈ {0, 1}n and r ∈ {0, 1}ρ, it holds that C(f̂(x; r))
= f(x).
(Perfect privacy) For every x ∈ {0, 1}n, the distribution f̂(x; r), induced by a uniform
choice of r R← {0, 1}ρ, is identical to the distribution S(f(x)).
(Balanced simulation) The distribution S(y) induced by choosing y R← {0, 1}m is identical
to the uniform distribution over {0, 1}s.
(Length preserving) The difference between the output length and the total input length
of the encoding s− (n+ ρ) is equal to the difference m− n between the output length
and the input length of f .

We refer to the second input of f̂ as its random input and to ρ and s as the randomness
complexity and output complexity of f̂ , respectively.

The definition naturally extends to collections of functions
F =

{
fz : {0, 1}n(z) → {0, 1}m(z)}

z∈{0,1}∗ . In particular, we say that

F̂ =
{
f̂z : {0, 1}n(z) × {0, 1}ρ(z) → {0, 1}s(z)

}
z∈{0,1}∗

perfectly encodes F if for every z, f̂z
perfectly encodes fz. Furthermore, we always assume that the encoding is uniform in the
sense that there exists a polynomial-time algorithm which given z outputs a description (say
as a boolean circuit) of the encoding f̂z, its decoder Cz and its simulator Sz.

In [1] it is shown that a PRE of a CRH is also CRH.

I Lemma 3 ([1, Lemma 7.2]). If H =
{
hz : {0, 1}k → {0, 1}m

}
is a CRH then its perfect

encoding Ĥ =
{
ĥz : {0, 1}k × {0, 1}ρ → {0, 1}s

}
is also a CRH, where Ĥ is viewed as a

collection of single-input functions (of input length k + ρ) which uses the key-sampling
algorithm of H.

Observe that if the collection H has linear-shrinkage and the perfect encoding Ĥ has
randomness complexity of O(k), then the collection Ĥ also has linear shrinkage.

The following proposition follows from [1, Section 4].

I Proposition 4. Let f : {0, 1}n → {0, 1}` be a function that each of its outputs can be
computed by a formula of size at most t. Then, f can be encoded by a PRE f̂ with degree
3, output locality 4, randomness/output complexity of ` · poly(t) and input locality of at
most c · poly(t) where c is the input locality of f . In particular, if f has constant output
locality then the randomness complexity of f̂ is O(`), and if, in addition, f has constant
input locality, then f̂ also has constant input locality.

We will also need two standard closure properties of PREs. First, just like in the case of
string-encodings, if we take an encoding f̂ of f , and re-encode it by ˆ̂

f , then the resulting
encoding also encodes the original function f . Second, given an encoding f̂(y; r) of f(y) we
can encode a function of the form f(g(x)) by encoding the outer function and substituting y
with g(x), i.e., f̂(g(x); r). We summarize these properties via the following lemmas (taken
from [1, Lemma 4.11] and [2, Fact 3.1]).

I Lemma 5 (Composition lemma). Suppose that g(x; rg) is a PRE of f(x) and h((x, rg); rh) is
a PRE of g((x, rg)) (viewed as a single-argument function). Then, the function f̂(x; (rg, rh)) ∆=
h((x, rg); rh) is a PRE of f .

I Lemma 6 (Substitution lemma). Suppose that the function f̂(x; r) is a PRE of f(x). Let
h(z) be a function of the form f(g(z)) where z ∈ {0, 1}k and g : {0, 1}k → {0, 1}n. Then,
the function ĥ(z; r) ∆= f̂(g(z); r) is a PRE of h.
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3 Our Assumptions

3.1 The Binary Shortest Vector Problem
In the following the term matrix sampler refers to an algorithmM which, given 1n, samples
m(n)× n binary matrix for some integer-valued function m(n).

I Definition 7 (binary SVP). For a weight parameter δ(n) : N→ (0, 1/2), and an efficient
samplerM(1n) which samplesm(n)×n binary matrices, the (M, δ)-bSVP assumption asserts
that for every efficient algorithm Adv the probability

Pr
MR←M(1n)

[Adv(M) = x such that x 6= 0,Mx = 0 and ∆(x) ≤ δ]

is negligible in n. If m(n)/n ≤ α(n), then we refer to the distribution sampled by M as
(α, δ)-bSVP hard distribution.

Using a coding-theoretic terminology, we can think ofM as specifying an ensemble of
binary linear codes which are represented by their m × n parity-check matrices. We will
always assume that, except with negligible probability, the rows of M R←M(1n) are linearly
independent and so the code has rate of 1−m/n. The binary SVP assumption asserts that it
is hard to find a short codeword (of weight at most δ) in a random member of this ensemble.
For the purpose of constructing hash functions, we will choose δ(n) such that a code sampled
fromM(1n) is likely to contain (exponentially) many codewords of weight at most δ(n) (but
such light codewords capture only exponentially-small fraction of all codewords). Intuitively,
this setting corresponds to the list-decoding regime of the code.4 We mention that in the
worst case, it is NP-hard to compute the distance of a linear code [72] or even to approximate
it by a constant factor [33]. Currently, the best known algorithms run in exponential time
(cf. [71, 31, 8, 36, 14, 10]). Let us present the main distributions used in the paper.

3.1.1 The Random Linear Code Ensemble
The ensemble of random linear codes is probably the most natural choice for bSVP. Formally,
for a length parameter α(n) : N→ (0, 1) and weight parameter δ(n), we let (α, δ)-bSVP denote
the (M, δ)-bSVP assumption whereM(1n) uniformly samples a matrix from Zdα(n)·ne×n

2 . It
is well known that a random linear code of rate R = (1−α) achieves the Gilbert—Varshamov
bound (cf. [44]). Specifically, for any constants δ, α for which δ < H−1

2 (α), a uniformly chosen
matrix M R← Zαn×n2 has no codewords of weight less than δ (except with exponentially small
probability exp(−Ω(n))). Accordingly, we will be interested in the regime where δ > H−1

2 (α).
For this regime we make the following simple observations. For simplicity, we restrict our
attention to the case where α and δ are constants which do not depend on n.

I Observation 8 (Attack based on linear algebra). If δ > α/2 the (α, δ)-bSVP assumption
does not hold. In particular, there is a polynomial-time algorithm that solves the problem
with probability 1

2 .

Proof. Given M, we can always find a set S of m(n) = dαne linearly-independent columns
which span the column space (since the matrix has only m(n) rows). We can therefore find
a solution x of weight αn to the original system by letting xS be the unique vector in the
kernel of the restricted matrix MS , and by letting x[n]\S be the all zero vector.

4 In fact, we show that, over random linear codes, a variant of the list-decoding problem reduces to bSVP
(see Lemma 29).
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To do better, we choose S so that the random variable MS (induced by M) is a random
full rank square matrix (e.g., by choosing the lexicographically-first S). In this case, the
(unique) vector xS in ker(MS) is uniformly distributed over Zαn2 and so with probability 1

2
its relative weight is at most 1

2 . It follows that, with probability 1
2 , the algorithm outputs a

vector in the kernel of M whose Hamming weight is at most α/2. J

We do not know of any polynomial-time attack for the case δ < α/2.

I Observation 9. If (α, δ)-bSVP holds for δ > H−1
2 (α) then one-way functions exist.

Proof. Let m(n) = dαne. Consider the algorithm S which samples a random x ∈ Zn2 of
weight bδnc and then samples a random matrix M ∈ Zm(n)×n

2 subject to M ·x = 0. We claim
that the mapping f that takes the random coins of the algorithm and outputs M is one-way.
Indeed, assume, towards a contradiction, that the mapping can be inverted efficiently by
an adversary Adv with probability ε, then, we can break (α, δ)-bSVP by applying Adv on
M R← Zm(n)×n

2 , get r, and apply the sampler in the forward direction to recover a solution x.
To analyze the success probability it suffices to show that the distribution sampled by S

(on which Adv is promised to succeed) is statistically close to the uniform distribution over
Zm(n)×n

2 . Indeed, this follows by noting that (1) S samples the uniform distribution over all
matrices whose kernel contains a vector of relative weight δ; and (2) The probability that a
uniformly chosen parity-check matrix M R← Zm(n)×n

2 will not have a vector of weight δ in its
kernel is exponentially small (cf. [9]). This completes the proof. J

We will later show (Theorem 14) that hardness for δ > 2H−1
2 (α) implies the existence

of collision-resistance hash functions. Due to the above attack, this means that the weight
parameter δ should be in the interval

(2H−1
2 (α), α/2).

Plugging in the approximation from Eq. (2.2), and letting α = 2−k, we conclude that δ
should live in the interval

(2−k+1/k, 2−k−1),

so the ratio between the upper-bound and the lower-bound grows when α = 2−k decreases.

3.1.2 Random LDPC Ensemble
Instead of taking a uniformly-chosen parity-check matrix, one can use an ensemble of Low-
Density Parity-Check Codes (LDPC) [37]. Concretely, for constant α ∈ (0, 1) and constant
d ∈ N for which c = αd is an integer, we let (d, α, δ)-bSVP denote the (Mα,d, δ) − bSVP
assumption where Mα,d(1n) samples a uniformly chosen α · n × n matrix subject to the
constraint that each column contains exactly c ones and each row contains exactly d ones.5

This ensemble of codes is well studied in the coding theory literature. Most notably, it
is known that, for any fixed α and d > 2, a typical code in the ensemble can be efficiently
decoded in the presence of constant noise rate of p(α, d) > 0 (say over the binary symmetric
channel) [37]. So in some regime of parameters, the unique decoding problem over LDPCs

5 We implicitly restrict our attention to n’s for which (c/d) · n is an integer, and, correspondingly, assume
hardness only for these input lengths. Nevertheless, since this set of inputs is sufficiently dense, we can
derive collision resistant hash functions for all input lengths via standard padding.
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can be solved efficiently. Interestingly, for a fixed α, larger sparsity d reduces the noise rate
p(α, d) for which known efficient decoding techniques work [23], whereas, combinatorially,
when d grows the code becomes better and approaches the performance of a random linear
code [37, 57].

Several methods for finding codewords of minimal weight in LDPC’s have been proposed
(see [48, 50, 74, 53, 32] and references therein). It is typically unknown how to analyze the
complexity of these heuristics but an experimental study seems to suggest that the complexity
grows exponentially with the distance of the code which is linear in the block length n (see
also the discussion in [32]).

Overall, one may conjecture that when sparsity grows the intractability of binary SVP over
LDPC codes “approaches” the intractability of SVP over the random linear code ensemble.
Specifically, it seems plausible that for some constant α and every δ < α/2 there exists a
(sufficiently large) constant d for which (d, α, δ)-bSVP holds.

3.2 Multivariate Quadratic Assumptions
We first define the multivariate quadratic (MQ) assumption that we use in this work.

I Definition 10. Let D = {Dn(λ),m(λ),p(λ)}λ∈N be an ensemble of probability distributions
that output a sequence of m = m(λ) upper triangular matrices Q1, . . . ,Qm ∈ Zn×np (where
we will write p for p(λ) and n for n(λ) from now on), and m vectors L1, . . . ,Lm ∈ Znp . The
D-multivariate quadratic assumption (which we will refer to simply as the MQ assumption,
when the parameter D is obvious from the context) states that it is computationally hard to
find a non-zero solution to a given set of m quadratic equations{

qi(x) ∆= xTQix + LTi x ∆=
∑
j,k∈[n]

qi,j,kxjxk +
∑
j∈[n]

`i,jxj = 0 (mod p)
}
i∈[m]

where qi,j,k are the (j, k)-th entries of the matrix Qi and `i,j are the j-th entries of the vector
Li.

3.2.1 Previous Work on the MQ Problem
It is well-known that the multivariate quadratic (MQ) problem is NP-hard in the worst
case [38]. To the best of our knowledge, the best algorithms for the random MQ problem
with m = O(n) run in 2Ω(n) time. Kipnis, Patarin and Goubin [55] showed that a random
instance of MQ can be solved in polynomial time if m(n) = O(

√
n). Kipnis and Shamir [56]

showed that the MQ problem can be solved in polynomial time when m(n) = Ω(n2). The
hardness of the MQ function for a randomly chosen instance is not known to follow from any
well-studied intractability assumption.

Regarding cryptographic usefulness, it is easy to see that the average-case hardness of
the MQ problem immediately gives us a one-way function. In the regime where m > n, the
same assumption also gives us a pseudorandom generator [13].

The early work using the MQ assumption, starting from Matsumoto and Imai [59], focused
on the (much) harder task of constructing public-key encryption schemes. The hardness of
the MQ problem was necessary but not sufficient for the semantic security of their encryption
scheme. Indeed, their proposal was attacked [64, 56] and fixed many times. However, none of
the attacks break the MQ assumption, but rather were the result of the additional structure
introduced into the assumption to obtain public-key cryptography. We do not go into the
details of this long line of work as public-key cryptography is not the focus of our paper.
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However, a reader interested in the history of this early work is referred to Christopher Wolf’s
Ph.D. thesis [73].

Moving on to hashing, the topic of this paper, Aumasson and Meier [5] showed that a
random and sparse degree-2 function is not collision-resistant. Ding and Yang [30] claim
that the sparsity condition can be removed, namely that a random degree-2 function with
compression level m(n) = n/2 is not collision-resistant; however, no formal proof of this claim
was provided. (Jumping ahead, we will show that indeed, their intuition was correct and that
one can find in polynomial time collisions in the random MQ function with any non-trivial
compression.) Ding and Yang [30] also conjectured that a random degree-3 function with
the same compression level is a CRH. Billet, Robshaw and Peyrin [15] observed that given
the difference between a possible colliding inputs of degree-2 function, the collision can be
found in polynomial time. This method was first presented by Patarin in [64].

We are not aware of any results on universal one-way hashing from MQ-type assumptions.

4 Hash Functions from the Binary SVP Assumption

4.1 A General Template
We show how to construct CRH based on the bSVP assumption. Our CRH is keyed with
a matrix M ∈ Zm×n2 , it first takes an input x ∈ {0, 1}k and expand it into an n-bit vector
y via some preprocessing mapping Expand, and then compresses y to an m-bit vector z by
computing My. Formally, the construction has the following structure.

I Construction 11. Let n = n(k) and m = m(k) be integer valued functions. For a mapping
Expand : {0, 1}k → {0, 1}n, and a matrix-samplerM(1n) which samples m× n matrices, we
define the collection of functions Hk,m = {hM : {0, 1}k → {0, 1}m : M ∈ Zm×n2 } where

hM(x) = M · Expand(x),

and the key-sampling algorithm K(1k) outputs M R←M(1n).

We say that a function Expand : {0, 1}k → {0, 1}n is (b, β)-expanding if (1) the function
is injective; (2) the expansion factor n/k is at most b; and (3) the function outputs strings
whose relative Hamming weight is at most β.

I Lemma 12. Suppose that Construction 11 is instantiated with a matrix samplerM(1n)
which samples an (α, δ)-bSVP hard distribution and with a (b, β)-expanding algorithm Expand
where bα < 1 and 2β ≤ δ. Then, the resulting collection H is a collision-resistance hash
function with shrinkage factor of bα.

Proof. First observe that since bα < 1 the function hM is shrinking, as required. Next,
we show that a collision finder Adv can be used to find a short vector in the kernel of M.
Assume, towards a contradiction, that there exists an efficient collision-finder Adv that given
an m(k) × n(k) matrix M R← K(1k) outputs a collision x 6= x′ ∈ Zk2 with non-negligible
probability ε(k). We show that the vector y = Expand(x)⊕Expand(x′) is (1) non-zero vector
(2) it has relative weight of at most δ, and (3) it is in ker(M). Indeed, (1) follows since
Expand is injective, (2) follows since the image of Expand contains only strings whose relative
Hamming is at most β and so the vector y has Hamming weight of at most 2β ≤ δ. Finally,
since the pair (x,x′) forms a collision, it holds that M · Expand(x) = M · Expand(x′) and
therefore (3) follows as well. J
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In the following we show that one can construct (b, β) expanding algorithm with constant
input and output locality (and therefore also with constant degree and linear circuit size).
The first part of the lemma optimizes the parameters b and β (and achieves large locality
parameters) and the second part optimizes locality (at the expense of a looser relation
between b and β).

I Lemma 13. For every constant β ∈ (0, 1/2) (weight upper-bound) the following holds.
1. For every b > 1/H2(β) there exists an efficiently computable mapping Expand : {0, 1}k →
{0, 1}n(k) which is (b, β)-expanding for all sufficiently large k’s and has constant input
locality c and constant output locality d where c and d depend on β and b.

2. If β is a power of 1/2 then there exists an efficiently computable (b = 1
β log(1/β) , β)-

expanding mapping Expand′ : {0, 1}k → {0, 1}n(k) with output locality of log(1/β) and
input locality of 1/β.

Note that b > 1/H2(β) is a necessary requirement (otherwise by Eq. (2.1) the image of the
mapping contains less than 2k strings and so it cannot be injective). Therefore, the first part
of the lemma achieves an optimal dependency between b and β.

Proof. (1) Without the locality constraint, the algorithm Expandβ,b can be easily imple-
mented. Indeed, given an input x ∈ {0, 1}k interpreted as an integer in [1, 2k], we can
output the lexicographically x-th n-bit string of weight w efficiently by computing the output
y ∈ {0, 1}n in a bit-by-bit manner. (E.g., compute the number T =

(
n−1
w

)
of n-bit word

of weight w that begin with zero, set y1 to zero if x < T and to 1 otherwise, and continue
recursively with the other bits.) Setting n = bkbc and w = bβnc, and recalling that, by
Eq. (2.1), for b > 1/H2(β) and sufficiently large k, there are more than 2k strings of length
n and weight w, we conclude that the mapping is injective.

To get low locality choose sufficiently large constants c and d such that 1/H2(β) < c/d < b

and such that Expandβ,c/d is injective for inputs of length d. Now partition your k-bit input
into k/d-blocks of size d each. Apply Expandβ,c/d to each such block of inputs and generate
an output block of length at most c. Output the concatenation of all k/d output blocks. By
definition, the mapping has the desired expansion and locality. The (b, β)-expansion property
is inherited from the original Expandβ,c/d algorithm.

(2) The procedure Expand′ works as follows: It splits the k input bits into blocks of size
log(1/β) bits. For each block z ∈ {0, 1}log(1/β), compute a block z′ ∈ {0, 1}1/β which is 1
in exactly the zth location. It is easy to check that the output length n is k

β log(1/β) and
that its Hamming weight is k

log(1/β) = βn, as required. It is also clearly injective and can be
computed with output locality of log(1/β) and input locality of 1/β. J

4.2 Degree-3 CRH
Based on Lemmas 12 and 13, we prove the following theorem.

I Theorem 14. Suppose that there exist constants δ ∈ (0, 1/4), α ∈ (0, 1) with δ > 2H−1
2 (α)

and an efficient matrix samplerM which samples some (α, δ)-bSVP hard distribution. Then,
there exists a linearly shrinking CRH with constant degree.

Proof. Fix δ and α and take β = δ/2 and b ∈ (1/H2(β), 1/α) (the interval is non-empty
due to the requirement δ > 2H−1

2 (α)). Instantiate Construction 11 with the matrix sampler
M and the (b, β)-expanding mapping Expand promised in item 1 of Lemma 13. Then, by
Lemma 12, we derive a linearly-shrinking CRH with constant degree. J
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Our next goal is to turn the above construction into a degree-3 CRH with linear shrinkage.
To this end, we show that the CRH constructed in Theorem 14 admits a degree-3 perfect
randomized encoding that uses only linear amount (O(k)) of random bits.

I Lemma 15. Let h(x) be a function of the form M · g(x) where g : Zk2 → Zn2 is an NC0

function and M is an m×n matrix of full rank with m < n. Then, h can be perfectly encoded
by a degree-3 function with randomness complexity of O(n).

Recall that any function can be perfectly encoded by a degree-3 encoding (Proposition 4),
however the randomness complexity of the best known general transformations grows polyno-
mially with the total size of the formulas (or branching programs) that compute the output
bits of the encoded function. Such a blowup will give us only sub-linear shrinkage. The
lemma bypasses this problem by introducing a new randomness-efficient degree-3 encoding
which is tailored to the structure of the CRH constructed in Theorem 14.

Proof. Let ` = n−m and take L ∈ Zn×`2 to be a matrix which spans the kernel of M. We
begin by observing that the function h is perfectly encoded by the function

ĥ(x; r) = g(x) + Lr,

where r ∈ Z`2. Indeed, given z = ĥ(x; r) we can decode h(x) by computing M · z. On the
other direction, given y = h(x) we can perfectly simulate z = ĥ(x; r) by sampling a random
preimage of y under M. Since M has full rank, the resulting simulator is balanced. Finally,
the encoding is stretch preserving since the output-input difference n− (k + `) of ĥ equals to
m− k, the output-input difference of h.

Next consider the NC0 function f(x,y) which takes x ∈ Zk2 and y ∈ Zn2 and outputs
g(x) + y. By Proposition 4, f can be perfectly encoded by a degree-3 encoding f̂(x,y; r′)
with randomness complexity of O(ns2) = O(n).

Finally, observe that the function ĥ(x; r) can be written as f(x,Lr). Therefore, by
the substitution lemma (Lemma 6), the function e(x, r; r′) ∆= f̂(x,Lr; r′) perfectly encodes
the function ĥ(x, r). Hence, by the composition lemma (Lemma 5), the function e(x; r, r′)
perfectly encodes h. Noting that e has degree 3 and randomness complexity of O(n+`) = O(n),
the lemma follows. J

Recall that we always assume that a hard-bSVP-distribution puts all but a negligible
fraction of its mass on matrices whose columns are linearly independent. Hence, we can apply
Lemma 15 to the CRH constructed in Theorem 14, and derive, by Lemma 3, the following
improved version of Theorem 14.

I Theorem 16. Under the hypothesis of Theorem 14, there exists a linearly shrinking CRH
with degree 3.

Instantiating bSVP with the random linear code ensemble, we derive the following corollary.

I Corollary 17. Suppose that there exist constants δ ∈ (0, 1/4), α ∈ (0, 1) which satisfy
δ > 2H−1

2 (α) for which (α, δ)− bSVP holds. Then, there exists a degree-3 linearly-shrinking
CRH.

Corollary 17 serves as a feasibility result for the existence of degree-3 CRH with linear
shrinkage. This statement attempts to optimize the parameters of the underlying intractability
assumption (making it as plausible as possible) and the degree, but yields a poor (constant)
shrinkage factor. By iterating the CRH a sufficiently large (constant) number of times, we
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can reduce the shrinkage factor to an arbitrary constant ε at the expense of increasing the
degree to a large constant d = d(ε). Alternatively, we can get a better tradeoff between the
degree and the shrinkage factor by strengthening the assumption as follows.

I Proposition 18. Suppose that (α, δ)−bSVP holds for every constants δ ∈ (0, 1/4), α ∈ (0, 1)
which satisfy δ < α/2. Then, for every constants d > 4 and γ > 4/d there exists a degree-d
CRH with shrinkage factor of γ.

For example, we can get a degree 5 CRH with shrinkage-factor of 0.81 or degree-8 CRH with
shrinkage factor of 0.51.

Proof. Let β = 2−d and recall that item 2 of Lemma 13 provides a (b, β)-expanding mapping
Expand′ with b = 1

β log(1/β) = 2d/d and output locality (and therefore also degree) of
log(1/β) = d. Let δ = 2β = 2−d+1 and α = γ/b. Since γ > 4/d, it follows that δ < α/2,
which, according to our assumption, implies that (α, δ)− bSVP holds. By plugging Expand′

and the matrix-sampler that samples uniform αn× n matrices into Construction 11, we get,
by Lemma 12, a degree-d CRH with shrinkage factor of γ. The proposition follows. J

I Remark. Recall that we measure the degree of a collection of functions H = {hz} as the
maximal degree of each function in the collection and ignore the degree of the evaluation
algorithm H which maps the collection key z and the input x to hz(x). (See Remark 2.)
Nevertheless, it is not hard to see that all the constructions of this section admit an evaluation
algorithm of constant degree. (In fact, the degree is d+ 1 where d is the degree of hz).

4.3 Locally-Computable CRH
Our next goal is to construct CRH’s with constant output and input locality. To this end,
we instantiate bSVP with the LDPC ensemble.

I Theorem 19. Suppose that there exist constants δ ∈ (0, 1/4), α ∈ (0, 1) with δ > 2H−1
2 (α)

and a constant d ∈ N for which (d, α, δ)− bSVP holds. Then, there exists a linearly-shrinking
CRH with constant input locality and constant output locality. Moreover, one can reduce the
output locality to 4 (while keeping the shrinkage linear and the input locality constant).

Proof. Fix δ and α and take β = δ/2 and b ∈ (1/H2(β), 1/α). Let Expand be the (b, β)-
expanding mapping promised in item 1 of Lemma 13 which has input locality of c′ and
output locality d′. Instantiate Construction 11 with Expand and with the LDPC matrix
samplerM which samples a uniformly chosen α · n× n matrix subject to the constraint that
each column contains exactly c = αd ones and each row contains exactly d ones. Then, by
Lemma 12, we derive CRH H = {hM} with linear shrinkage, output locality of D = d · d′
and input locality of C = c · c′. This proves the first part of the theorem.

For the second part, take the CRH H =
{
hz : {0, 1}k → {0, 1}m

}
constructed in the first

part of the theorem, and apply the 4-local perfect encoding promised in Proposition 4. The
resulting collection Ĥ has the required syntactic properties, and, by Lemma 3, it forms a
CRH. J

Since any NC0 function can be computed by a circuit of linear size, Theorem 14 yields
a linear-time computable CRH with linear-shrinkage. Such a function can be turned into
a linear-time computable CRH with arbitrary polynomial-stretch (using a hash-tree), we
therefore derive the following corollary.

I Corollary 20. Under the assumption of Theorem 19, for every constant c < 1 there exists
a CRH H =

{
hz : {0, 1}k → {0, 1}kc

}
which can be computed by a circuit of size O(k).
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5 Degree-2 Hash Functions

In Section 5.1, we construct a universal one-way hash function family under the MQ
assumption (see Definition 10 for the definition of the Dn,m,p-MQ assumption). We then
turn our attention to collision-resistance. In Section 5.2, we show that a natural family
of uniformly random quadratic functions is not collision-resistant, by showing an explicit
polynomial-time attack. An intriguing question left open by our work is the existence of a
degree-2 CRH family. In Section 5.3, we show how this question (and a related question
on statistically hiding commitments) relates to a long-standing question on constructing
degree-2 randomized encodings.

5.1 Universal One-way Hash Function
I Construction 21. Let λ be the security parameter, and let n = n(λ), m = m(λ), p = p(λ)
(with m < n) be the MQ parameters. Let the MQ distribution D = Dn,m,p be the uniform
distribution that outputs a set of m uniformly random upper-triangular matrices Qi and m
vectors Li.

Define the family of hash functions Hn,m,p = {h~Q,~L : Znp → Zmp : ~Q ∈ (Zn×np )m, ~L ∈
(Znp )m} as follows:

h~Q,~L(x) =
(

xTQix + LTi x
)m
i=1

We now show that under the MQ assumption, this family is universal one-way.

I Theorem 22. Let n = n(λ), m = m(λ), p = p(λ) and Dn,m,p be such that (a) m < n and
(b) Dn,m,p is the uniform distribution. Then, under the Dn,m,p-MQ assumption, the family
Hn,m,p is universal one-way.

The construction and proof immediately generalize to other families of distributions where
the distribution of Qi is arbitrary but Li is still uniformly random. In this exposition, we
choose to present the simpler version where both Qi and Li are uniformly random.

Proof. First, since m < n, Hn,m,p is a compressing family of functions.
We now show that it is universally one-way. Assume that there is a PPT UOWHF-breaker

algorithm (Adv1,Adv2). We will construct an algorithm B that breaks the D-MQ assumption.
B gets as input an MQ challenge (Qi,Li)mi=1 and does the following.

Run Adv1 to get a target input x and state information r.
Define the UOWHF family using the matrices Q∗i and L∗i where:

Q∗i = Qi and L∗i = Li − (Q∗i + (Q∗i )T )x (5.1)

Feed ~Q := (Q∗1, . . . ,Q∗m) and ~L := (L∗1, . . . ,L∗m) to Adv2 together with the state informa-
tion r. Get back a colliding input y, output y− x and halt.

First note that the distribution of Qi and Li from equation 5.1 are uniformly random
and hence, the adversary Adv = (Adv1,Adv2) will find a colliding input y with non-negligible
probability 1/q(λ).

Let ∆ := y− x. Since x and y are colliding inputs, we have

(x + ∆)TQ∗i (x + ∆) + (L∗i )T (x + ∆) = xTQ∗ix + (L∗i )Tx

for all i ∈ [m]. A quick calculation then tells us that
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∆TQi∆ + ∆TQix + xTQi∆ + (L∗i )T∆ = ∆TQi∆ +
(

xTQT
i + xTQi + (L∗i )T

)
∆ = 0

which in turn gives us

∆TQi∆ + LTi ∆ = 0 ,

by our definition of Li := L∗i + (Q∗i + (Q∗)T )x. Thus, B outputs a solution to the challenge
MQ instance with probability 1/p(λ) as well, which shows that Hn,m,p is a universal one-way
hash family. J

Generalizing to Other MQ Distributions

Our proof readily generalizes to distributions for the MQ problem which output an arbitrary
distribution of the quadratic forms Qi and a uniformly random distribution of the linear
forms Li.

Generalizing to Larger Degrees

Our construction and proof also generalize to the setting where the hash function has degree
d and can be based on the hardness of solving random degree-d polynomial equations, a
generalization of the MQ assumption. The reason for considering this generalization is to
achieve better shrinkage. The MQ construction can shrink n bits to no less than m =

√
n

bits, since the MQ assumption is false for smaller m. Since we do not know attacks against
the degree-d assumption with shrinkage m = nΩ(1/d), this variant will give us larger shrinkage
at the expense of larger degree (and a different assumption).

5.2 Finding Collisions in Random Degree-2 Functions
We now show that the hash function family Hn,m,p is not collision-resistant. We remind the
reader that Hn,m,p refers to the function where Qi are uniformly random upper-triangular
matrices and Li are uniformly random vectors. The attack we describe below was discovered
by Ding and Yang [30] but without a proof of correctness.

I Theorem 23. For every n,m < n and p, there is a poly(n,m, log p)-time algorithm
ColFinder such that

Pr
h←Hn,m,p

[ColFinder(h) = (x,y) : h(x) = h(y) ∧ x 6= y] = Ω(1)

In other words, the family Hn,m,p is not collision-resistant.

Proof. The strategy of ColFinder is simple. It chooses a uniformly random ∆ ∈ Znp and
solves the system of equations{

(x + ∆)TQi(x + ∆) + LTi (x + ∆) = xTQix + LTi x
}
i∈[m]

This is in fact a linear system of equations in the unknown x:{
Li : xT (QT

i + Qi)∆ + LTi ∆ = 0
}
i∈[m]
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where all computations are done mod p. Any solution x to this system of linear equations
gives us a collision (x,x + ∆). Conversely, if there exists a collision with difference ∆,
ColFinder will find such a collision.

It remains to show that for uniformly random upper-triangular matrices Qi (and possibly
uniformly random ∆ and Li), this system has a solution with high probability. We show a
stronger statement: namely, that the n-by-m matrix Q̃ defined as

Q̃ =


|

... |

(QT
1 + Q1)∆

... (QT
m + Qm)∆

|
... |


has full rank, namely rank m a constant probability. This in turn implies that the equations
Li are guaranteed to have a solution with constant probability.

Let us now bound the probability that Q̃ has rank less thanm. To do so, let us understand
the distribution of Q̃ using the following observations.

Fix an i ∈ [m] be such that ∆i 6= 0. Such an i is guaranteed to exist as ∆ 6= 0.
We now claim that for each j ∈ [m], the entries of (Qj + QT

j )∆ are uniformly random
except possibly for the i-th entry. This follows from the fact that the i-th column of
(Qj + QT

j ) is uniformly random (except for its i-th entry) and uncorrelated to the rest of
the matrix except the i-th row (which is identical to the i-th column by symmetry).
This implies, in turn, that Q̃ has a uniformly random (n − 1)-by-m submatrix. The
probability that this is full-rank, namely rank min(n − 1,m) = m, is a constant (see,
e.g., [17]).

Put together, we see that ColFinder succeeds with constant probability in finding a
collision. We remark that this argument did not use the randomness of Li or ∆, but rather
only the fact that the Qi are uniformly random upper-triangular matrices. J

5.3 Degree-2 CRH via Randomized Encoding?
An intriguing question left open by our work is the existence of a degree-2 CRH. The
same question is open also for the related primitive of non-interactive statistically hiding
commitments (SHC), which can be easily constructed from a CRH (see Appendix A). We
relate these questions to questions about the existence of degree-2 statistically private
randomized encodings that were left open by [51].

We start by defining a relaxation of the perfect notion of randomized encoding from
Definition 2 that allows for statistical privacy error and eliminates the balanced simulation
and length requirements.

I Definition 24 (Statistically-Private, Perfectly Correct Randomized Encoding). Let f :
{0, 1}n → {0, 1}m be a function. We say that a function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}s is an
ε-private, perfectly correct randomized encoding (ε-RE) of f if there exists a deterministic
decoding algorithm C and a randomized simulator S which satisfy the following:

(Perfect correctness.) For every input x ∈ {0, 1}n and r ∈ {0, 1}ρ, it holds that C(f̂(x; r))
= f(x).
(ε-privacy) For every x ∈ {0, 1}n, the distribution f̂(x; r), induced by a uniform choice of
r
R← {0, 1}ρ, satisfies SD(f̂(x; r), S(f(x))) ≤ ε, where SD denotes statistical distance.

For the dual notion of ε-correct, perfectly-private RE, it is shown in [51] that only very
special functions admit such an encoding with a degree-2 f̂ (in the Boolean case, this class
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of functions includes only degree-2 polynomials in the input and functions that test whether
the input is in an affine subspace of {0, 1}n). It is open whether the same holds for the above
notion of ε-RE.

I Question 25. Does every finite f : {0, 1}n → {0, 1} admit a family of degree-2, εt-private,
perfectly correct randomized encodings f̂t : {0, 1}n×{0, 1}ρt → {0, 1}st with εt = neg(t) and
ρt, st = poly(t)?

This question is open even for the specific function f : {0, 1}4 → {0, 1} defined by
f(a, b, c, d) = abc⊕ d and even with fixed ε (say ε = 1/3). In fact, it follows from [1] that the
latter function is complete in the sense that an affirmative answer to Question 25 for this
function implies an affirmative answer for all functions.

We show that an affirmative answer to Question 25 together with standard cryptographic
assumptions would imply the existence of a degree-2 SHC. Thus, ruling out such an SHC
would effectively require settling Question 25 in the negative.

A (non-interactive) SHC is defined by a collection Cz(x, σ), which given a public random
string z (that can be reused for many commitments) maps an input x and secret randomness
σ to a commitment c. The commitment c should statistically hide x. It should also be
computationally binding in the sense that given z it is infeasible to find a pair (x, σ) and
(x′, σ′) which are consistent with the same c, where x 6= x′. See Appendix A for a formal
definition.

I Theorem 26. Suppose there is a CRH or SHC in NC1. Moreover, suppose that the answer
to Question 25 is affirmative. Then there is a degree-2 SHC.

Proof. Using Theorem 37, a CRH in NC1 implies an SHC in NC1, which in turn implies
an SHC Cz(x, σ) in NC0 [1]. Since every output bit of Cz(x, σ) depends on a constant
number of input bits, we can apply the degree-2 encoding implied by an affirmative answer
to Question 25, independently to every output bit of Cz and with t = |x|, viewing it as a
deterministic function of (x, σ). This yields a polynomial-size degree-2 function Ĉz(x, σ; τ)
which is an ε-RE of Cz with ε negligible in k = |x|. We view Ĉz as a commitment scheme
with input x and secret randomness (σ, τ). The perfect correctness requirement of the ε-RE
implies that Ĉz is computationally binding (since if (x, (σ, τ)) and (x′, (σ′, τ ′)) violate the
binding of Ĉz then (x, σ) and (x′, σ′) violate the binding of Cz). The statistical hiding
property is implied by the fact that the error ε of the ε-RE is negligible in the input length.
Indeed, for every x 6= x′ we have

Ĉz(x;σ, τ) ≈ Sz(Cz(x;σ)) ≈ Sz(Cz(x′;σ)) ≈ Ĉz(x′;σ, τ),

where σ, τ are uniformly distributed, ≈ denotes statistical indistinguishability, and Sz is the
simulator of the encoding. J

For the case of CRH, even an affirmative answer to Question 25 does not seem to suffice
for a degree-2 construction, since an ε-RE of a CRH may lose the shrinking property. Instead,
we formulate an ad-hoc variant of randomized encoding that captures a minimal set of
requirements needed for respecting the CRH properties.

I Definition 27 (CRH-Respecting Randomized Encoding). Let f : {0, 1}n → {0, 1}m be a
function with m < n. We say that a function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}s is a CRH-
respecting randomized encoding of f if the following hold:

(Perfect correctness.) There exists a deterministic decoding algorithm C such that for
every input x ∈ {0, 1}n and r ∈ {0, 1}ρ, it holds that C(f̂(x; r)) = f(x).
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(Injective randomness) For any fixed x, the function f̂(x; ·) is injective; namely for any
r 6= r′ we have f̂(x; r) 6= f̂(x; r′).
(Shrinkage) The encoding f̂(x; r) is shrinking, namely s < n+ ρ.

Note that given the perfect correctness and injective randomness requirements, the best
one can hope for is to match the shrinkage of f , namely the shortest possible encoding
output is of size s = ρ+m. If the shrinkage requirement of Definition 27 is strengthened to
require this optimal shrinkage, the definition becomes equivalent to the notion of PRE from
Definition 2 [1]. In particular, perfect privacy is implied by the perfect correctness, injective
randomness, and optimal shrinkage.

On the other hand, even the relaxed requirements of Definition 27 do imply some weak
form of “average-case privacy.” Indeed, if the input x could always be recovered from f̂(x, r),
then injective randomness guarantees that r can also be recovered, and since s < n + ρ

we get a contradiction. Thus, the notion of CRH-respecting randomized encoding crudely
has the same flavor of perfect correctness and partial privacy as the notion of ε-RE from
Definition 24.

We now show that applying a CRH-respecting randomized encoding to a CRH indeed
yields a CRH. (We use concrete function notation instead of infinite collections of functions
for simplicity.)

I Claim 1. Suppose hz : {0, 1}n → {0, 1}m is a CRH and ĥz : {0, 1}n × {0, 1}ρ → {0, 1}s is
an efficient, CRH-respecting randomized encoding of hz. Then the function ĥz, viewed as a
mapping from n+ ρ input bits to s output bits, is a CRH.

Proof. First, the shrinkage requirement directly guarantees that ĥ is shrinking its input
(x, r). We show that ĥ inherits the collision resistance of h. Suppose that Adv(z), given
a random z, finds a collision (x, r), (x, r′) for ĥz, where (x, r) 6= (x′, r′). By the injective
randomness requirement we must have x 6= x′ and by perfect correctness we must have
h(x) = h(x′). Hence, Adv can be used to find a collision (x, x′) for h with the same success
probability. J

Finally, we pose a concrete question about the existence of CRH-respecting randomized
encodings which is related to the existence of degree-2 CRH.

I Question 28. Does every f : {0, 1}n → {0, 1}bn/10c in NC0 admit (an efficiently com-
putable) degree-2 CRH-respecting randomized encoding?

Under the assumptions of Theorem 19, ruling out a degree-2 CRH would require proving
a negative answer to Question 28.

6 Win-Win Results

In this section we prove that a failure of our constructions leads to interesting algorithmic
consequences. Both of our results are based on the following observation.

I Lemma 29. Suppose that there exists an algorithm Adv with complexity T for which

Pr
MR←Zm×n2

[Adv(M) = x such that x 6= 0,Mx = 0 and ∆(x) ≤ δ] ≥ ε.

Then there exists an algorithm Adv′ with complexity T ′ = T + poly(m) such that for every
y ∈ Zm2 it holds

Pr
MR←Zm×n2

[Adv′(M,y) = x such that Mx = y and ∆(x) ≤ δ] ≥ ε/2.
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That is, an algorithm Adv that finds a small subset of the columns of M that spans the
all-zero vector, can be transformed into an algorithm Adv′ that finds a small subset of the
columns that spans any given target vector y.

Proof. The algorithm Adv′ is given a random matrix M R← Zm×n2 and an arbitrary target
vector y ∈ Zm2 . It samples a vector u R← Zn2 and calls Adv with the input M′ = M + y · uT
(note that this is an outer-product). Note that if the output x of Adv is (1) a valid solution
(i.e., it is a non-zero vector of weight at most δn and is in the Kernel of M); and (2) is
non-orthogonal to u (i.e., 〈x,u〉 = 1), then Mx = Mx + (y · uT )x = y and so Adv′ succeeds.

To analyze the success probability, note that the joint distribution of (M,u) is uniform
and therefore (1) happens with probability ε, by assumption. Moreover, conditioned on (1),
the probability of (2) is exactly 1

2 . The lemma follows. J

6.1 bSVP and Distributed Parity-Learning

In this section we show that if the bSVP assumption (as phrased in Corollary 17) does not
hold, one can learn parities in a distributed setting with non-trivial memory/communication
tradeoffs. The influence of memory and communication restrictions on learning in distributed
environments has been studied recently by several works (cf. [6, 68, 70, 67] and references
therein). We consider here another variant of this question.

Let us first recall the standard notion of PAC-learning parity functions over uniformly
sampled examples. For a secret parity function fs (s is an m-bit vector), the learner is given
random (non-noisy) labeled samples of the form (ri, bi) where ri

R← Zm2 is a random example
and bi = fs(ri) = 〈ri, s〉 is a binary label. The goal is to predict fs on a random vector
r∗

R← Zm2 with probability, say, 2/3. We consider the case where the learner is composed of
two parties: a measurement device W that collects the samples and has only limited memory
of S bits and no computational power, and an analyst A who runs in polynomial-time and,
given r∗, attempts to predict fs(r∗). We assume that A sees the vectors ri’s but can access
a bit bi only by reading it from W ’s memory.6 Our goal is to minimize the number of bit
probes that A makes (subject to the given memory bound S).

In the following we think of a memory-bound of S = cm for some c > 1. In this case, W
can store cm labels (b1, . . . , bS) and A can trivially achieve a communication of m bits by
finding an m-size subset R′ ⊂ R

∆= {r1, . . . , rm} of linearly-independent examples and ask
for the corresponding labels. At this point A can recover s and compute fs(r∗). In fact, A
can reduce the communication to m/2: first write r∗ as a linear combination

∑
viR
′
i of the

vectors in R′, then ask only for the bi for which vi 6= 0, and finally compute fs(r∗) by
∑
vibi.

It is not hard to show (similarly to Observation 8) that the expected communication is m/2.
More generally, the analyst A can achieve a communication of w bits if she can write the
challenge vector r∗ as a w-weight linear combination of the example vectors R. As shown in
Lemma 29, this problem reduces to the bSVP problem. In particular, we prove the following
lemma.

6 This captures a scenario where the inputs ri are public (e.g., generated by some environment) but only
the measurement device gets to see how the function reacts to it and measure fs(ri). We mention that
the results of this section carry over (with minor adaptations) to a setting where the ri’s are only given
to W .
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I Lemma 30. Given an efficient algorithm B that solves the (α, δ) − bSVP problem with
probability 2/3 there exists an efficient algorithm that solves the distributed parity-learning
problem with memory limitation of m/α and with m(δ/α) bit probes.

Proof. The analyst A is given a random matrix of examples R R← Zm×S2 , where S = m/α,
and a random challenge r∗ R← Zm2 . It calls the algorithm B′ promised in Lemma 29 with
input R and target vector r∗. If the algorithm succeeds (which happens with probability
1/3), the analyst gets a vector v of weight δS for which Rv = r∗, and can predict fs(r∗)
using δS = m(δ/α) bit probes. Otherwise, the analysis outputs a random bit. The overall
success probability is ≥ 1/3 + 2/3 · (1/2) = 2/3, as required. J

Recall that in Corollary 17 we showed that if there exist constants δ ∈ (0, 1/4), α ∈ (0, 1)
with δ > 2H−1

2 (α) for which (α, δ) − bSVP holds, then degree-3 linearly-shrinking CRH
exist. Using standard amplification techniques, one can prove a similar result even under the
assumption that (α, δ)− bSVP cannot be solved in polynomial time with probability better
than 2/3.7 Overall, by combining this with Lemma 30 and the approximation of the inverse
entropy function from Eq. (2.2), we conclude the following “win-win” result.

I Corollary 31. At least one of the following holds:
There exists a degree-3 linearly-shrinking CRH.
For any constant c > 1 and any γ > (2/ log c), the distributed parity problem can be solved
efficiently with memory-bound of cm and γm bit probes for infinitely many m.

Note that the bit probe rate γ tends to zero when c grows – we are not aware of any efficient
solution which achieves such a dependency.

6.2 Speeding-up the BKW algorithm
We move on to the more traditional setting of learning parity with noise (LPN) [18]. Recall
that in this setting the learner is given random noisy labeled samples of the form (ri, bi)
where ri

R← Zm2 is a random example and bi = fs(ri) + χi is a binary label where fs is a
parity function (specified by a secret s ∈ {0, 1}m) and χi is a random variable which takes
the value 1 with probability τ for some noise parameter τ ∈ (0, 1

2 ). The learner should be
able to recover s with, say, probability 2/3 while minimizing the running time and the sample
complexity.8

The best known algorithm for solving the LPN problem (i.e., to recover s), due to Blum,
Kalai and Wasserman [19], runs in time (and sample) complexity of 2O(m/ logm). We show
that either the complexity can be reduced to 2cm/ logm for arbitrary small constant c > 0,
or linearly-shrinking CRH of logarithmic degree exist. To this end, we consider the bSVP
assumption (for random linear codes) in the polynomial regime, i.e., when the number of
columns n is polynomially larger than the number of rows m.

7 Indeed, by plugging the weaker assumption in our construction, we get a linearly-shrinking degree-3
“weak”-CRH in which the probability of finding collisions (as defined in Eq. (2.3)) is at most 2/3 as
opposed to negligible. Such a CRH can be amplified into standard CRH while preserving the degree
and the linear-shrinkage by expanding the k-bit input x into an O(k)-bit vector y via a linear (fixed)
error correcting code and then shrinking y down to (1− ε)k-long vector, by applying independent copies
of the weak CRH to distinct blocks of size

√
k, see [25] for further details. (In fact, one can even get a

locality-preserving transformation [3, Lemma 5.7].)
8 Again, we could define the goal as predicting the value fs(r∗) for random r∗ with non-trivial success
probability. However, in this setting the two goals reduces to each other with polynomial overhead.
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I Assumption 32. There exists a positive constant a > 1 for which (α, δ)-bSVP holds for
α = 1/n1/a and δ = 8α/(log(1/α)).

The constant 8 in the above is somewhat arbitrary and any constant larger than 2 suffices.
It will be useful to state the above assumption in terms of the parameter m (and not n as
usual). That is, the assumption asserts that, given a random m× (n = ma) binary matrix
M, it is hard to find a vector of weight w = δn = 8m

(a−1) logm in the kernel of M . Note that,
unlike in the previous sections, now the dimensions of the matrix are polynomially related
(and not linear) and correspondingly we can ask for a kernel vector of sub-linear weight.

I Lemma 33. Suppose that Assumption 32 does not hold. Then, for every constant c > 0
and constant noise rate τ ∈ (0, 1

2 ) there exists an algorithm that for infinitely many m’s,
solves the m-dimensional LPN problem with noise rate τ (i.e., recovers the secret s) in time
(and sample complexity) of N = poly(m) · 2cm/ logm.

Proof. We describe an algorithm that in time N computes s1, the first bit of s, with
probability 2/3. Using standard amplification, and by exploiting the symmetry of the LPN
problem, such an algorithm can be converted to an algorithm that recovers s with, say,
probability 2/3 at the expense of increasing the time and sample complexity by a factor
of q(m) for some fixed (universal) polynomial q(·). (First reduce the error below 1/3m via
repetition and majority vote, and then apply the amplified algorithm m times where in each
iteration we recover the i-bit of s by rotating the examples i− 1 coordinates to the left.)

Let a > 1 be a constant whose value will be determined later, and let w = 8m
(a−1) logm .

Since Assumption 32 does not hold, there exists, by Lemma 29, a polynomial-time algorithm
Adva such that for infinitely many m’s, for all y ∈ Zm2

Pr
MR←Zm×ma2

[Adva(M,y) = x such that Mx = y and x has Hamming weight of at most w],

is larger than some inverse polynomial ε(m).
Let n = ma, µ = 1− 2τ , t = O(µ2w) and t′ = O(t/ε). The algorithm asks for nt′ labeled

examples and partitions them into t′ sets Ti each of n examples. For each set Ti, let Si
denote the set of examples without their noisy labels. We apply Adva to Si and set the target
vector y to be the first unit vector e1. If Adva succeeds (i.e., returns a subset S′i ⊆ Si of size
bm

logm whose sum is e1) then we XOR together the labels that correspond to the vectors in S′i
and record the result as a vote vj (which serves as a guess for s1). If the algorithm fails, we
do not record the vote. Finally, we output the majority of all recorded votes vj .

Analysis: First we claim that each recorded vote is correct (equals to s1) independently
with probability 1/2 + µw. Indeed, each vote is of the form s1 +

∑w
i=1 χi where the χi’s

are independent Bernoulli variables each with expectation τ . It is well known (e.g., [19,
Lemma 4]) that χ =

∑w
i=1 χi is a Bernoulli random variable with expectation of (1− µw)/2

for µ = 1− 2τ .
Next, we argue that, except with probability 1/10, there is a large number of votes. Indeed,

each invocation of Adva succeeds with at least ε probability hence, by Markov’s inequality, the
probability that there are less than t successful invocations out of, say t′ = 10t/ε attempts,
is at most 1/10.

Finally, conditioned on having t votes, by a Chernoff bound, the probability that the
final outcome is wrong is 1/10. The claim follows by a union bound.

Overall, the time complexity of the algorithm is

O(nt′) = O(ma · (1− 2τ)
20m

(a−1) logm ) = O(ma · e
8m

τ(a−1) logm ),

ITCS 2017



7:24 Low-Complexity Cryptographic Hash Functions

where e is the natural exponent. Hence, we get the desired running time by taking a = a(τ, c)
to be a sufficiently large constant. J

Next we show that if Assumption 32 holds then we get CRH of logarithmic degree.

I Lemma 34. Under Assumption 32, there exists a linearly-shrinking CRH with logarithmic
degree.

Proof. Let a > 1 be the constant promised by Assumption 32 and let α = 1
n1/a , δ = 8α

log(1/α) .
Also, let

d = log(2/δ) = log(n1/a) + log log(n1/a)− 2, β = 2−d,

b = 2d

d
= n1/a log(n1/a)

4(log(n1/a) + log log(n1/a)− 2)
.

We instantiate Construction 11 with the (α, δ)-bSVP sampler and with the (b, β)-expanding
mapping promised in the second item of Lemma 13. (This part of the lemma holds for
non-constant β as well.) Since β ≤ δ/2 and bα < 1/4, we get, by Lemma 12, a linearly
shrinking CRH with degree of d = O(logn). The lemma follows. J

We conclude the following corollary.

I Corollary 35. At least one of the following holds:
There exists a linearly-shrinking CRH with logarithmic degree.
For any constant c > 0 and any constant noise rate τ ∈ (0, 1

2 ) there exists an algorithm
that, for infinitely many m, solves the m-dimensional LPN problem with noise rate τ in
time and sample complexity of poly(m) · 2cm/ logm.

7 Conclusions and Open Questions

Under plausible intractability assumptions, we establish the existence of low-complexity
cryptographic hash functions that compress the input by (at least) a constant factor. In
particular, we construct CRH with linear circuit size, constant locality, or algebraic degree 3
over Z2 under different flavors of the newly introduced binary SVP (bSVP) assumption.
We also establish connections with other problems that either support our assumptions or
indicate that further progress may be difficult.

While we provide some evidence supporting the validity of the flavors of bSVP we rely
on, including a weak connection with the LPN problem, it is left open to obtain a better
understanding of the relation between bSVP and LPN or other well studied cryptographic
assumptions. It would also be interesting to obtain similar positive results under better or
incomparable assumptions, such as the MQ assumption (that we use to construct degree-2
UOWHFs) or the one-wayness of random local functions (used in [3] for constructing local
UOWHFs).

Our work leaves open several other natural questions. One such question is the existence
of CRH (or even 2-message statistically hiding commitments) with degree 2 or output locality
3. Another is the maximal achievable compression of a degree-d CRH: The bSVP-based
security analysis of our construction can only support a constant compression factor, which
seems unlikely to be optimal. (In contrast, for linear-size CRH we can provide an arbitrary
polynomial compression.) A final question is to understand the collision resistance properties
of random degree-d mappings. While we rule out collision resistance for d = 2 with any
non-trivial compression, the question is wide open for d ≥ 3. It would be interesting to study
the maximal compression (if any) for which a random degree-d mapping can be a CRH.
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A Statistically Hiding Commitments

In this section we define a non-interactive notion of statistically hiding commitments (SHC),
which can be viewed as a randomized version of CRH that achieves an input hiding property.
We then show that positive results for CRH apply also to the case of SHC.

Similarly to a CRH, an SHC is defined by a public random string z (which can be
reused for many commitments). The string z defines a mapping from an input x and secret
randomness σ to a commitment string c. The commitment c should statistically hide x. It
should also be computationally binding in the sense that given z it is infeasible to find a pair
(x, σ) and (x′, σ′) which are consistent with the same c, where x 6= x′. We formalize these
requirements below.

I Definition 36 (Statistically Hiding Commitment). A collection of functions

C =
{
Cz : {0, 1}k × {0, 1}ρ(k) → {0, 1}m(k)

}
z∈{0,1}s(k)

is a (non-interactive) statistically hiding commitment (SHC) if the following hold:
(Efficient evaluation and sampling) There exists a pair of efficient algorithms: (a) a
commitment algorithm C which given (z ∈ {0, 1}s, x ∈ {0, 1}k, σ ∈ {0, 1}ρ) outputs
Cz(x, σ); and (b) a key-sampling algorithm K which given 1k samples a index z ∈
{0, 1}s(z).
(Statistical hiding) For every pair of inputs x, x′ ∈ {0, 1}k we have

SD((z, Cz(x, σ)), (z, Cz(x′, σ))) ≤ neg(k),

where SD denotes statistical distance, z is picked by K(1k), and σ is picked uniformly
from {0, 1}ρ(k).
(Computational binding) For every probabilistic polynomial-time adversary Adv it
holds that

Pr
z
R←K(1k)

[Adv(z) = ((x, σ), (x′, σ′)) s.t. x′ 6= x and Cz(x, σ) = Cz(x′, σ′)] ≤ neg(k).

As in the case of CRH, we consider the efficiency of SHC for any fixed public challenge
z, namely z defines a function of x and s. This is justified by the fact that the same z can
reused.

We now show a simple transformation of a CRH into an SHC using a randomness
extractor [29, 47]. The high level idea is to apply a CRH to a secret random input α, and
then mask the SHC input with randomness extracted from α. Since the CRH shrinks the
input, there is residual entropy in α even when conditioned on the output of the CRH.

I Theorem 37. Suppose H =
{
hz : {0, 1}k → {0, 1}m(k)}

z∈{0,1}s(k) is a CRH, where m(k) =
b(1− c)kc for some constant 0 < c < 1. Let Extk : {0, 1}k × {0, 1}d → {0, 1}bck/3c be a
strong (ck/2, ε) randomness extractor with error ε(k) = neg(k).
Then C =

{
Cz : {0, 1}k′ × {0, 1}k+d → {0, 1}m(k)

}
z∈{0,1}s(k)

, where k(k′) is chosen such that

bck/3c = k′ and Cz(x′, (α, β)) = (hz(α), β, x′ ⊕ Extk(α, β)) for α ∈ {0, 1}k and β ∈ {0, 1}d,
is an SHC.

Implementing Ext by a random linear function, the SHC obtained in Theorem 37 has
the same algebraic degree as the underlying CRH. Moreover, if Ext is implemented by the
linear-size pairwise independent hash function from [52], the SHC additionally maintains
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the asymptotic circuit size of the CRH. Thus, we get a linear-size (degree-3) SHC under the
assumptions of Theorem 19.

Unlike the case of CRH, there is no shrinkage requirement for SHC, hence a degree-3
SHC with locality 4 is implied by the existence of any SHC or CRH in NC1, which is in turn
implied by most standard cryptographic assumptions [1]. However, the existence of degree-2
SHC is left open. Using Theorem 37, a degree-2 SHC would be implied by the existence of a
degree-2 CRH, which is one of the main questions left open by this work.
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