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—— Abstract

Consider the following problem: You have a device that is supposed to compute a linear combination

of its inputs, which are taken from some finite field. However, the device may be faulty and compute
arbitrary functions of its inputs. Is it possible to encode the inputs in such a way that only linear
functions can be evaluated over the encodings? I.e., learning an arbitrary function of the encodings
will not reveal more information about the inputs than a linear combination.

In this work, we introduce the notion of algebraic restriction codes (AR codes), which constrain
adversaries who might compute any function to computing a linear function. Our main result is
an information-theoretic construction AR codes that restrict any class of function with a bounded
number of output bits to linear functions. Our construction relies on a seed which is not provided to
the adversary.

While interesting and natural on its own, we show an application of this notion in cryptography.
In particular, we show that AR codes lead to the first construction of rate-1 oblivious transfer
with statistical sender security from the Decisional Diffie-Hellman assumption, and the first-ever
construction that makes black-box use of cryptography. Previously, such protocols were known
only from the LWE assumption, using non-black-box cryptographic techniques. We expect our new
notion of AR codes to find further applications, e.g., in the context of non-malleability, in the future.
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Algebraic Restriction Codes and Their Applications

1 Introduction

In this work we consider leakage problems of the following kind: Assume we have a device
which takes an input = and is supposed to compute a function f(z) from a certain class
of legitimate functions F. For concreteness, assume that the class F consists of functions
computing linear combinations, e.g., f(x1,z2) = a121 + asxo. However, the device might be
faulty and instead of computing f it might compute another function g. We want to find a
way to encode x into an & such that the following two properties hold:

If the device correctly implements a linear function f, then we can efficiently decode the
output y to f(x).

If, on the other hand, the device implements a non-linear function g, then the output
g(Z) does not reveal more information about z than f(z) for some linear function f.

First, note that this notion is trivially achievable if F includes the identity function, or in
fact any invertible function, as in this case we can simulate ¢g(Z) from f(z) by first recovering
z from f(z), encoding = to & and finally evaluating g on &. For this reason, in this work
we will focus on function classes F whose output-length is smaller than their input-length,
such as the linear combination functions mentioned above. In general, we will allow both
the encoding and decoding procedure to depend on a secret seed, which is not given to the
evaluating device/adversary.

It is worthwhile comparing the type of security this notion provides to tamper-resilient
primitives such as non-malleable codes (NM-codes) [14, 13, 1] and non-malleable extractors [11,
10, 26, 9]. Such notions are geared towards prohibiting tampering altogether. Moreover,
a central aspect for security for such notions is that the decoder tries to detect if some
tampering happened, and indeed the decoder plays a crucial role in modeling security of
non-malleable codes. In contrast, AR codes do and should allow manipulation by benign
functions from the class F. Furthermore, we only require a decoder for correctness purposes,
whereas security is defined independently of the decoder.

One motivation to study the above problem comes from cryptography, specifically secure
computation, where this is in fact a natural scenario. Indeed, a typical blueprint for secure
two-party computation [32] in two rounds proceeds as follows: One party, called the receiver,
encrypts his input y under a homomorphic encryption scheme [29, 17, 8, 19] obtaining a
ciphertext ¢, and sends both the public key pk and the ciphertext ¢ to the other party,
called the sender. The sender, in possession of an input x homomorphically performs a
computation f on input x and ciphertext ¢, obtaining a ciphertext ¢’ which encrypts f(z,y).
The ciphertext ¢’ is sent back to the receiver who can then decrypt it to f(x,y).

For the case of a malicious receiver, the security of this blueprint breaks down completely:
A malicious receiver can choose both the public key pk and the ciphertext ¢ maliciously, i.e.
they are generally not well-formed. Effectively, this means that the sender’s homomorphic
evaluation will result in some value f (z) (where f will be specified by the receiver’s pro-
tocol message) instead of an encryption of f(z,y). Critically, the value f(z) might reveal
substantially more information about z than f(z,y) and compromise the sender’s security.

Generally speaking, in this situation there is no direct way for the sender to enforce which
information about z the receiver obtains. A typical cryptographic solution for achieving
malicious security involves using zero-knowledge proofs to enforce honest behavior for the
receiver. This technique, however, is typically undesirable as it often leads to less efficient
protocols (due to these tools using non-black-box techniques) and the need for several rounds
of interaction or a trusted setup. Our goal is to upgrade such protocols to achieve security
against malicious receivers without additional cryptographic machinery.
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To see how algebraic restriction codes will help in this scenario, consider the following.

Upon receiving a public key pk and a ciphertext ¢ from the receiver (who potentially generated
them in a malicious way) the sender proceeds as follows. First, he encodes his own input
into Z using a suitable AR code with a fresh seed s. Next, also then sender evaluates the
function f(&,-) homomorphically on the ciphertext ¢ (which encrypts the receiver’s input
y), resulting in a ciphertext ¢’ = Eval(pk, f(&,-),¢). For simplicity’s sake, assume that the
sender now sends ¢’ and the seed s back to the receiver, who decrypts ¢’ to 2 = f(Z,y) and
uses the seed s to decode Z to his output z using the decoding algorithm of the AR code.

How can we argue that even a malicious receiver cannot learn more than the legitimate
output z? Let’s take a closer look on the computation which is actually performed on the
encoding #. The output ciphertext ¢’ is computed via ¢/ = Eval(pk, f(Z,-),¢). Thus, if we
can assure that the function ¢g(z) = Eval(pk, f(Z,-), ¢) is in the class G which is restricted
by the AR code, then security of the AR code guarantees that ¢’ does not leak more than
z = f(x,y) about x, irrespective of the choice of pk and c.

1.1 Roadmap

In the following we will discuss our results in Subsection 1.2. Then, we will outline our
techniques in Section 2 and discuss related work in Section 3. For full proofs and formal
statements we refer to the full version [2].

1.2 Our Results

In this work, we formalize the notion of algebraic restriction codes and provide constructions
which restrict general function classes to linear functions over finite fields. Let G and F
be two function classes. Roughly, a G-F AR code provides a way to encode an x in the
domain of the functions in F into a codeword % in the domain of the functions in G, in a
way that any function f € F can still be evaluated on Z, by evaluating a function f’ € G on
Z. Furthermore, given f’(Z) we can decode to f(x). Security-wise, we require that for any
g € G there exists a function f € F, such that g(Z) can be simulated given only the legitimate
output f(x). AR codes provide an information-theoretic interface to limit the capabilities of
an unbounded adversary in protocols in which some weak restrictions (characterized by the
class G) are already in place. In this way, AR codes will allow us to harness simple structural
restrictions of protocols to implement very strong security guarantees.

In this work we consider seeded AR codes, where both the encoding and decoding
procedures of the AR code have access to a random seed s, which is not provided to the
function g.

Our first construction of AR-codes restricts general linear functions to linear combinations.

» Theorem 1 (Formal: Theorem 4, Page 14, Full Version [2]). Let F, be a finite field, let F
be the class of functions IF’; X IF’; — F’; of the form (x,y) — ax +y, and let G be the class of
all linear functions Fy x Ty — Fy of the form (x,y) — Ax +y. There exists a seeded AR
code ARy which restricts G to F.

Our main contribution is a construction of seeded AR codes restricting arbitrary functions
with bounded output length to linear functions.

» Theorem 2 (Formal: Theorem 5, Page 19, Full Version [2]). Let F, be a finite field, let F
be the class of functions Fy x Fy — F, of the form (x,y) — ax + by, and let G be the class of
all functions Fy x Fy — {0, 1}19n1o8(a) - There exists a seeded AR code ARy which restricts
G to F.
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We note that the constant 1.9 in the Theorem is arbitrary and can in fact be replaced with
any constant smaller than 2.

The main ingredient of this construction is the following theorem, which may be of
independent interest and which we will discuss in some greater detail. The theorem exhibits
a new correlation-breaking property of the inner-product extractor.

In essence, it states that for a suitable parameter choice, if X1, . . ., x; are uniformly random
vectors in a finite vector space and s is a random seed (in the same vector space), then
anything that can be inferred about the (x1,s),..., (x¢,s) via a joint leak f(x1,...,x:) of
bounded length can also be inferred from a linear combination ), a;(x;,s), i.e. f(x1,...,%¢)
does not leak more than . a;(x;,s).

» Theorem 3 (Formal: Theorem 5, Page 19, Full Version [2]). Let q be a prime power,
let t,s be positive integers, and ¢ > 0 and n = O(t + s/log(q) + (log 2)/log(q)). Let

X1,...,X¢ be uniform in Fy and s is uniform in Fy and independent of the x;. For any
f: IFfI" — {0, 1}1o89+s  there erists a simulator Sim and random variables a1, ...,a; € F,
such that
S,f(Xh...,Xt),<X1,S>,...,<Xt,S>,Cl1,...,Clt
t
~o. Sim [ s, a1,..., a4, g Qi | ULy e Uy A1y e vy G
i=1

where u1,...,us are uniform and independent random variables in Fy, independent of
(a1, a0).

One way to interpret the theorem is that the inner product extractor breaks all correlations
(induced by a leak f(xi,...,%¢)), except linear ones. Recall that our notion of AR codes it
is crucial that linear relations are preserved.

We then demonstrate an application of AR codes in upgrading the security of oblivious
transfer (OT) protocols while simultaneously achieving optimal communication, a question
that had remained opened due to insurmountable difficulties, explained later. Specifically,
we obtain the first rate-1 OT protocol with statistical sender privacy from the decisional
Diffie Hellman (DDH) assumption. While our motivation to study AR codes is to construct
efficient and high rate statistically sender private OT protocols, we expect AR codes and in
particular the ideas used to construct them to be useful in a broader sense.

2  Technical Qutline

In what follows, we provide an informal overview of the techniques developed in this work.

2.1 Warmup: Algebraic Restriction Codes for General Linear Functions

Before discussing the ideas leading up to our main result, we will first discuss the instructive
case of AR codes restricting general linear functions to simple linear functions. Specifically,
fix a finite field F, and let G be the class of linear functions F 31’71 — Fgl of the form
g(X1,%X2) = A%y + X, where A € F"*™ is an arbitrary matrix. We want to restrict G to the
class F consisting of linear functions Fg" — ™ of the form f(x1,%X2) = a- X1 + X2, where
a € F, is a scalar.

Our construction proceeds as follows. The seed s specifies a random matrix R € Fg*™,
such a matrix has full rank except with probability < 2-(™=") To encode a pair of input

. ~ ~ 3 ~
vectors X1, X2 € F', the encoder samples uniformly random X;, X2 <= Fy* such that RX; = x;
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and RXy = x2, and outputs the codeword (X1,%2). To evaluate a scalar linear function given
by a € F, on such a codeword, we (unsurprisingly) compute ¥ = aX; + %X2. To decode § we
compute y = Ry. Correctness of this AR code construction follows routinely:

y=Ry= R(afcl +§(2) = Rax; + Rxy = aRX + Rxy = ax; + xs.

i.e. correctness holds as the scalar a commutes with the matrix R.
In this case it will also be more convenient to look at the problem from the angle of

. . ~ o 8 .
randomness extraction; Specifically, assume that X1, X2 <= F{" are chosen uniformly random.

We want to show that for any matrix A € F"*™ anything that can be learned about Rx;
and R%, from A%; + X, can also be learned from a - R%; + RX, for some a € F,.

How can we find such an a for any given A7 First notice that if X; happens to be an
eigenvector of A with respect to an eigenvalue a;, then it indeed holds that Ax; + xo =
a;x; + x2. Thus, a reasonable approach is to set the extracted scalar a € [F; to one of the
eigenvalues of A (or 0 if there are no eigenvalues). If the matrix A has several distinct

eigenvalues a;, we will set a to be the eigenvalue whose eigenspace V; has maximal dimension.

Note that since the sum of the dimensions of all eigenspaces of A is at most n, there can be
at most one eigenspace whose dimension is larger than m/2. Furthermore, the eigenvalue a;
corresponding to this eigenspace will necessarily be the extracted value a.

Rather than showing how we can simulate ¥ = AX; 4+ X2 in general, in this sketch
we will only briefly argue the following special case. Namely, if all the eigenspaces of A
have dimension smaller than or equal to m/2, then with high probability over the choice

of the random matrix R ¢ [y ™ it holds that x; = R%; and x3 = RX3 are uniform and
independent of . Thus assume that ¥ = AX; + X5 was not independent of x; = Rx; and
x5 = RX5. Since these three variables are linear functions of the uniformly random %; and
Xo there must exist a non-zero linear relation given by vectors u,v € Fy and w € Fi* such
that u'x; + v 'xo + w'§ = 0 for all choices of %; and Xo. But this means that it holds
that u"R+w'A=0and v R+w' = 0. Eliminating w ', this simplifies to the equation
u'R=v'RA.

We will now argue that for any such matrix A € F**™ (whose eigenspaces all have
dimension < m/2) with high probability over the choice of the random matrix R, such a
relation given by (u,v) # 0 does not exist. We will take a union bound over all non-zero
u, v and distinguish the following cases:

If u and v are linearly independent, then u'R and v'R are uniformly random and

independent (over the random choice of R). Thus the probability that u' R and v RA

collide is 1/¢™.

If u and v are linearly dependent, then (say) u = av. In this case u' R = v RA is

equivalent to av'R = v RA, i.e. the uniformly random vector v' R is an eigenvector

of the matrix A with respect to the eigenvalue a. However, since all eigenspaces of A

have dimension at most m/2, the probability that v’ R lands in one of the eigenspaces

bounded by m/q™/2.

q 9
large (e.g. m > 5n) implies that the probability that such u,v € Fy exist is negligible. The

full proof is provided in Section 6 in the full version [2].

Since there are ¢?" possible choices for the vectors u,v € F?, choosing m sufficiently

2.2 Algebraic Restriction Codes for Bounded Output Functions

We will now turn to algebraic restriction codes for arbitrary functions with bounded output
length. Now let F;, be the finite field of size ¢, let G be the class of all functions from
F2m — {0,1}15718(0) and let F be the class of linear functions F2 — Fy, i.e. al; functions

2:5
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of the form f(z1,22) = a1x1 + agxy for some a1,a2 € Fy. Our AR code construction
follows naturally from the inner product extractor. The seed s consists of a random vector
s & [y, to encode z1,z2 € Fy we choose uniformly random x;,x, € Fy with (x1,s) = 3
and (xs,s) = x9. Likewise, to decode a value y we compute y = (y,s), correctness follows
immediately as above. To show that this construction restricts G to F, we will again take
the extractor perspective. Thus, assume that x;,x € Fy are distributed uniformly random
and let g : F? x F — {0,1}!-*"1°¢(?) be an arbitrary function.

We need to argue that for any g € G there exist exist a1, as € F; such that g(x1,x2) can
be simulated given y = a;(x1,8) + a2(X2,s), but no further information about (x;,s) and
(x2,8). Our analysis distinguishes two cases.

In the first case, both (x1,s) and (x2,s) are statistically close to uniform given g(x1,x2).

In other words, it directly holds that g(x1,X2) contains no information about (x;,s) and

(x2,s). We can simulate g(x1, x2) by choosing two independent x; and x/ and computing

g(x,x5).

In the second case (x1,s) and (x2,s) are (jointly) statistically far from uniform given

9(X1,%2). In this case we will rely on a variant of the XOR Lemma [31] to conclude

that there must exist a;,as € F; such that ayz; + azxs is also far from uniform given
g(x1,x%2). Roughly, the XOR Lemma states that if it holds for two (correlated) random
variables z1, zo that for all a1, as € F, (such that one of them is non-zero) that a3 21 +as22
are statistically close to uniform, then (21, z2) must be statistically close to uniform in
IE"g. Consequently, the existence of such aq,as € IFy in our setting follows directly from
the contrapositive of the XOR Lemma. But this implies that a1x; 4+ asXx2 must have
very low min-entropy given g(x1,x2). Otherwise, the leftover hash lemma would imply
that a1x1 + asxe = (a1X1 + asXa,s) is close to uniform given g(x1,x2), in contradiction
to the conclusion above. But this means that a1x; + asxs is essentially fully specified
by g(x1,%2). In other words g(x1,X2) carries essentially the entire information about
a1X1 + agx2. But now recall that the bit size of g(x1,x2) is 1.5nlog(g) bits and the bit
size of a1X1 + asxg is nlog(q) bits. Thus, there is essentially not enough room in g(x1,X2)
to carry significant further information about x; or xs. Again relying on the leftover
hash lemma, we then conclude that given g(x1,x2), (x1,s) and (x2,s) are statistically
close to uniform subject to aj(x1,s) + az(x2,8) = y.

While this sketch captures the very high level ideas of our proof, the actual proof needs to
overcome some additional technical challenges and relies on a careful partitioning argument.
The proof can be found in Section 7 in the full version [2].

2.3 From AR Codes to Efficient Oblivious Transfer

We display the usefulness of AR codes in cryptography by constructing a new oblivious
transfer (OT) [30, 15] protocol. OT is a protocol between two parties, a sender, who has a
pair of messages (mg, m1), and a receiver who has a bit b, where at the end, the receiver
learns my,, while the sender should learn nothing. OT is a central primitive of study in the
field of secure computation: Any multiparty functionality can be securely computed given a
secure OT protocol [33, 24]. In particular, statistically-sender private (SSP) [27, 3] 2-message
OT has recently received a lot of attention due to its wide array of applications, such as
statistical ZAPs [4, 21] and maliciously circuit-private homomorphic encryption [28]. While
the standard security definitions for OT are simulation-based (via efficient simulators), SSP
OT settles for a weaker indistinguishability-based security notion for the receiver and an
inefficient simulation notion for the sender. On the other hand, SSP OT can be realized in
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just two messages, without a setup and from standard assumptions, a regime in which no
OT protocols with simulation-based security are known'!. In this work, we obtain the first
OT protocol that simultaneously satisfies the following properties:

(1) It is round-optimal (2 messages) and it does not assume a trusted setup.

(2) It satisfies the notion of statistical sender privacy (and computational receiver privacy).

That is, a receiver who may (potentially) choose her first round message maliciously will
be statistically oblivious to at least one of the two messages of the sender.

(3) It achieves optimal rate for information transfer (i.e., it is rate-1).

(4) Tt makes only black-box use of cryptographic primitives, in the sense that our protocol

does not depend on circuit-level implementations of the underlying primitives.
Prior to our work, we did not know any OT protocol that simultaneously satisfied all of
the above properties from any assumption. The only previous construction was based on
LWE (using expensive fully-homomorphic encryption techniques), which only satisfies the
first three conditions, but not the last one. (See Section 3.) We obtain constructions that
satisfy all the above conditions from DDH/LWE. Optimal-rate OT is an indispensable tool in
relazing various MPC functionalities with sublinear communication [23]. As direct corollaries,
we obtain two-message maliciously secure protocols for keyword search [23] and symmetric
private information retrieval (PIR) protocols [25] with statistical server privacy and with
asymptotically optimal communication complexity from DDH/LWE. Our scheme is the first
that makes only black-bozx use of cryptography, which we view as an important step towards
the practical applicability of these protocols.

Packed ElGamal

Before delving into the description of our scheme, we recall the vectorized variant of the
ElGamal encryption scheme [16]. Let G be an Abelian group of prime order p and let g
be a generator of G. In the packed ElGamal scheme, a public key pk consists of a vector
h = (hy,...,h,) € G™ where h; = g% for random x; ﬁ Z,. The secret sk is the vector
X = (21,...,2,) € Zy. To encrypt a m = (my,...,m,) € {0,1}", we choose a uniformly

random 7 ¢- Z, and set the ciphertext c to
¢ = (dO,d) = (grv h"- gm)

where both exponentiations and group operations of vectors are component-wise. We call d
the header of the ciphertext and d = (dy,...,d,) the payload of ¢, we further call dy,...,d,
the slots. To decrypt a ciphertext ¢, we compute m = dlog,(d, ™ - d). If we disregard the
need for efficient decryption, we can encrypt arbitrary Z; vectors rather than just binary
vectors. For such full range plaintexts the rate of packed ElGamal, i.e. the ratio between
plaintext size and ciphertext size comes down to (1 —1/(n + 1)) log(p)/), assuming a group
element can be described using A bits. If A & log(p), as is the case for dense groups, the rate
approaches 1, for sufficiently large n. Finally, for a matrix X € {0,1}"** we encrypt X
column-wise, to obtain a ciphertext-matrix C.

1 In fact, it can be shown that any simulator for such a protocol would need to make non-black-box use of
the adversary, as it would immediately imply a two-message zero-knowledge protocol, which was shown
black-box impossible in [20]

2:7
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Homomorphism and Ciphertext Compression

Packed ElGamal supports two types of homomorphism. It is linearly homomorphic with
respect to Z,-linear combinations. Namely, if ¢ is an encryption of a vector m € Z; and ¢’
is an encryption of a vector m’ € Z7, then for any «, 8 € Z,, it holds that c¢” = ¢ - ?isa
well-formed encryption of am + Sm’ (again, disregarding the need for efficient decryption
for large plaintexts). This routinely generalizes to arbitrary linear combinations, namely we
can define a homomorphic evaluation algorithm Eval; which takes as input a public key pk,
a ciphertext matrix C encrypting a matrix X € Z;*™, and two vectors a € Z;' and b € Zj
and outputs an encryption of Xa + b. By re-randomizing the resulting ciphertext this can
be made function private, i.e. the output ciphertext leaks nothing beyond Xa + b about a
and b.

The second type of homomorphism supported by packed ElGamal is a limited type of
homomorphism across the slots. Specifically, let ¢ = (dp,d) be an encryption of a message
m € Zy; and let M € Z;»*" be a matrix. Then there is a homomorphic evaluation algorithm
Evalz which takes the public key pk, the ciphertext ¢ and a matrix M € Z;**" and outputs
a ciphertext ¢/, such that ¢’ encrypts the message m’ = Mm under a modified public key
pk’ = ¢gM*. Furthermore, if the decrypter knows the matrix M, it can derive the modified
secret sk’ = Mx and decrypt ¢’ to m’ (given that m’ € {0,1}™).

Finally, the packed ElGamal scheme supports ciphertext compression for bit encryp-
tions [12]. There is an efficient algorithm Shrink which takes a ciphertext ¢ = (dop,d) and
produces a compressed ciphertext € = (do, K, b), where K is a (short) key and b € {0,1}" is
a binary vector. Consequently, compressed ciphertexts are of size n + poly bits and therefore
have rate 1 — poly/n, which approaches 1 for a sufficiently large n (independent of the
description size of group elements). Such compressed ciphertexts can then be decrypted
using a special algorithm ShrinkDec, using the same secret key sk. Compressed ciphertexts
generally do not support any further homomorphic operations, so ciphertext compression is
performed after all homomorphic operations.

Semi-Honest Rate-1 OT from Packed ElGamal

The packed ElGamal encryption scheme with ciphertext compression immediately gives rise
to a semi-honestly secure OT protocol with download rate 1. Specifically, the receiver whose
choice-bit is b generates a key-pair pk, sk, encrypts the matrix b - I to a ciphertext matrix
C, and sends ot; = (pk, C) to the sender. The sender, whose input are two strings mg and
m; € {0,1}" uses Eval; to homomorphically evaluate the function

f(X) = X(m; —my) +myg

on the ciphertext C, obtaining a ciphertext c. It then compresses the ciphertext c to
a compressed ciphertext ¢ and sends ot; = ¢ back to the receiver who can decrypt it
to a value m’ using the ShrinkDec algorithm. By homomorphic correctness it holds that
b-I-(m; —mg)+my=my.

However, note that the sender privacy of this protocol completely breaks down against
malicious receivers. Specifically, a malicious receiver is not bound to encrypting the scalar
matrix b - I, but could instead encrypt an arbitrary matrix A € Zp*", thereby learning
A(m; —mg) + my instead of m;. By e.g. choosing

S

the receiver could learn half of the bits of mg and half of the bits of m;, thus breaking sender
privacy.



D. Aggarwal et al. 2:9

Malicious Security via AR Codes

Next we show how to make the above protocol statistically sender private against malicious
receivers using AR codes. The protocol follows the same outline as above, except that the
sender samples a seed R for an AR code and encodes its inputs

%1 = Encode(R, m; — mg) and %, = Encode(R, my).

Then it computes a ciphertext ¢ = Evaly (pk, C, X1, X2). If the sender were to transmit directly
this ciphertext, the rate of the scheme would degrade (due to the size of the encodings) and
the decryption would not be efficient, since ¢ contains an encoding y € Z;'. To deal with
this issue, we observe that decoding ¥ to y via y = Ry is exactly the type of operation
supported by the homomorphic evaluation Evaly. Thus, we let the sender further compute
¢’ = Evals(pk, ¢, R). By homomorphic correctness of Evals, it holds that ¢’ is an encryption
of Ry = y = my; € {0,1}" under a modified public key pk’ (which depends on R). Since ¢’
encrypts a binary message, the sender can further use the ciphertext compression algorithm
Shrink to shrink ¢’ into a rate-1 ciphertext ¢. The sender now sends R and € back to the
receiver, who derives a key from sk and R, and uses it to decrypt ¢ via ShrinkDec.

If we were to do things naively, the protocol would still not achieve rate-1 since we have to
also attach to the OT second message a potentially large matrix R. This can be resolved via
a standard trick: By reusing the same matrix R in several parallel instances of the protocol,
we can amortize the cost of sending the matrix R. Note that R can be reused as we only
need to ensure that the matrix A does not depend on R. Thus, we have achieved a rate-1
protocol.

There is one subtle aspect that we need to address before declaring victory: The security
of AR codes only guarantees that a malicious receiver may learn a(mj; — mg) + mg for some
a € Zy, rather than b(m; — mg) + my = my, for b € {0,1}. To address this last issue, we let
the sender compute x; and X5 by

%1 = Encode(R, x1)

%5 = Encode(R,, x2),

m; —mg + Iy my .
where x| = and xo = and rg,r; are uniformly random.
m; —mg+rg mgp—1r;

Consequently, instead of a(m; — mg) + mg the ciphertext ¢ now encrypts

. m; —mg + ro my
f(XhXQ) =a (ml —my —|—I'1> + (mo _ I'1> )
and by the security of the AR code ¢ does not leak more information about x; and x5 then
f(x1,%x2). Now, note that if a = 0, then

o) = (, ™ )

where we note that rf = mgy — r; is uniformly random. On the other hand, if @ = 1, then

f(XhXQ) = <m1 +r0) )

m;

where we note that rj, = m; + rg is uniformly random. Finally, if a ¢ {0,1}, then
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_ m; —mg +ro my _ {am; + (1 —a)mg a-ro
f(XO7X1) -a (ml — Mo + rl) T (mo — I‘1> o (am1 + (1 — a)mo> T ((1 — a) . I'1> ’
which is uniformly random as the last term is uniformly random. I.e. if a ¢ {0, 1} the receiver
will learn nothing about my and m;. Thus, we can conclude that even for a malformed

public key pk and ciphertext C the view of the receiver can be simulated given at most one
my, and statistical sender privacy follows.

Back to Rate-1

Note that now the ciphertext c is twice as long as before, which again ruins the rate of our
scheme. However, note that in order to get a correct scheme, if a = 0 the receiver only needs

to recover the first half zg of the vector f(xi,x2) = (;0)7 whereas if a = 1 she needs the
1

second part z;. Our final idea is to facilitate this by additionally using a rate-1 OT protocol
OT' = (0T}, 0T5, OT}) with semi-honest security (e.g. as given in [12]). We will further
use the fact that the packed ElGamal ciphertext € can be written as (h, &g, €1), where h is
the ciphertext header, ¢y is a rate-1 ciphertext encrypting z¢ and ¢; is a rate-1 ciphertext
encrypts z; (both with respect to the header h).

We modify the above protocol such that the receiver additionally includes a first message
ot} computed using his choice bit b. Instead of sending both &, and €; to the receiver (which
would ruin the rate), we compute the sender message oty for OT' as oty < OTa(ot}, &g, €1)
and send (h, ot}) to the receiver. The receiver can now recover ¢, from ot, and decrypt the
ciphertext (h, €p) as above. Note that now the communication rate from sender to receiver is
1. Note that we do not require any form of sender security from the rate-1 OT. Finally, note
that as discussed above the the protocol can be made overall rate-1 by amortizing for the
size of the receiver’s message (i.e. repeating the protocol in parallel for the same receiver
message but independent blocks of the sender message).

Certified vs Uncertified Groups

We conclude this overview by discussing two variants of groups where we can implement the
OT as specified above. In certified groups, we can assume that G in fact implements a group
of prime order p, even if maliciously chosen. In these settings, our simpler variant of AR
codes suffices, since we are warranted that a malicious receiver can only obtain information
of the form A%y + X (for an arbitrarily chosen matrix A). In non-certified groups, the
linearity of the group is no longer checkable by just looking at its description G. Here we can
only appeal to the fact that have a bound on the size of the output learned by the receiver,
enforced by the fact that our OT achieves rate-1: The second OT message is too short to
encode both %x; and Xs. In these settings, we need the full power of bounded-output AR
codes, in order to show the statistical privacy of the above protocol.

3 Related Work

A recent line of works [12] proposed a new approach to constructing semi-honest OT with
a rate approaching 1. This framework can be instantiated from a wide range of standard
assumptions, such as the DDH, QR and LWE problems. The core idea of this approach is to
construct OT from a special type of packed linearly homomorphic encryption scheme which
allows compressing ciphertexts after homomorphic evaluation. Pre-evaluation ciphertexts in
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such packed encryption schemes typically need to encrypt a structured plaintext containing
redundant information to guarantee correctness of homomorphic evaluation. In the context
of statistical sender privacy, this presents an issue as a malicious receiver may deviate from
the structure required by the protocol to (potentially) learn correlated information about mg
and mq.

Regarding the construction of SSP OT, all current schemes roughly follow one of three
approaches sketched below.

The Two Keys Approach [27, 3, 22, 6]

In this construction blueprint, the receiver message oty specifies two (correlated) public
keys pk, and pk} under potentially different public key encryption schemes. The sender’s

message oty now consists of two ciphertexts ¢g = Enc(pky,mg) and ¢; = Enc’(pk},m;).

Statistical sender privacy is established by choosing the correlation between the keys pkg
and pk) in such a way that one of these keys must be lossy, and that this is either directly
enforced by the underlying structure or checkable by the sender. Here, lossiness means that
either ¢y or ¢; loses information about their respective encrypted message. In group-based
constructions following this paradigm [27, 3, 22], the sender must trust that the structure
on which the encryption schemes are defined actually implements a group in order to be

convinced that either pk, or pk] is lossy. We say that the group G must be a certified group.

This is problematic if the group G is chosen by the receiver, as the group G could e.g. have
non-trivial subgroups which prevent lossiness.

Furthermore, note that since the sender’s message oty contains two ciphertexts, each
of which should, from the sender’s perspective be potentially decryptable, this approach is
inherently limited to rates below 1/2.

The Compactness Approach [5]

The second approach to construct SSP OT is based on high rate OT. Specifically, assume we
are starting with any two round OT protocol with a (download) rate greater than 1/2; say for
the sake of simplicity with rate close to 1. This means that the sender’s message oty is shorter
than the concatenation of mg and mq. But this means that, from an information theoretic
perspective oty must lose information about either mg or my. This lossiness can now be used
to bootstrap statistical sender privacy as follows. The sender chooses two random messages
ro and 71 and uses them as his input to the OT. Moreover, he uses a randomness extractor
to derive a key kg from o and k; from r; respectively. Now the sender provides two one-time
pad encrypted ciphertexts ¢y = ko @ mo and ¢; = k1 @ my to the receiver. A receiver with
choice bit b can then recover r from the OT, derive the key k;, via the randomness extractor
and obtain my by decrypting cp.

To argue statistical sender privacy using this approach, we need to ensure that one of
the keys kg or ki is uniformly random from a malicious receivers perspective. Roughly
speaking, due to the discussion above the second OT message ots needs to lose either half
of the information in rg or r1. Thus, in the worst case, the receiver could learn half of the
information in each rg and r; from ots. Consequently, we need a randomness extractor which
produces a uniformly random output as long as its input has n/2 bits of min-entropy. Thus,
we can prove statistical sender privacy for messages of length smaller than n/2.

But in terms of communication efficiency, this means that we used a high rate n-bit string
OT to implement a string OT of length < n/2, which means that the rate of the SSP OT
we've constructed is less than 1/2. This is true without even taking into account the addition
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communication cost required to transmit the ciphertexts ¢y and c¢;. Thus, this approach
effectively trades high rate for statistical sender privacy at the expense of falling back to a
lower rate. We conclude that this approach is also fundamentally stuck at rate 1/2.

The Non Black-Box Approach [7, 18]

While the above discussion seems to imply that there might be an inherent barrier in
achieving SSP OT with rate > 1/2, there is in fact a way to convert any SSP OT protocol
into a rate-1 SSP OT protocol using sufficiently powerful tools. Specifically, using a rate-1
fully-homomorphic encryption (FHE) scheme [7, 18], the receiver can delegate the decryption
of ots to the sender. In more detail, assume that OT3(st, ots) is the decryption operation
which is performed by the receiver at the end of the SSP OT protocol. By providing an FHE
encryption F'HE.Enc(st) of the OT receiver state st along with the first message ot;, the
receiver enables the sender to perform OTs(st, ot2) homomorphically, resulting in an FHE
encryption ¢ of the receivers output m;. Now the receiver merely has to decrypt ¢ to recover
mp. In terms of rate, note that the OT sender message now merely consists of ¢, which is
rate-1 as the FHE scheme is rate-1. Further note that this transformation does not harm
SSP security, as from the sender’s view the critical part of the protocol is over once ots has
been computed. I.e. for the sender performing the homomorphic decryption is merely a
post-processing operation. On the downside, this transformation uses quite heavy tools. In
particular, this transformation needs to make non black-box use of the underlying SSP OT
protocol by performing the OTj3 operation homomorphically.

In summary, to the best of our knowledge, all previous approaches to construct SSP OT
are either fundamentally stuck at rate 1/2 or make non black-box usage of the underlying
cryptographic machinery, making it prohibitively expensive to run such a protocol in practice.

Finally, we mention that if one wishes to settle on a computational instead of statistical
privacy for the sender, it is possible to build rate-1 OT using existing techniques by relying
on super-polynomial hardness assumptions. The idea is that the parties will first engage
in a (low-rate) OT protocol OTy, so that the receiver will learn one of the two random
PRG seeds (sg, s1) sampled by the sender. In parallel, the sender prepares two ciphertexts
(cto := PRG(sg) ® mo,ct; := PRG(s1) @ my) for his two input messages (mg, m1), and
communicates one of them to the receiver using a semi-honest rate-1 OT protocol. Even
given both (ctg, cty) the receiver cannot recover both mg and m;y, because OT; will guarantee
at least one of the seeds remains computationally hidden to the receiver. The above protocol
is rate-1 because the added communication of obliviously transferring (sg, s1) is independent
of the size of mg. The main drawback of this above protocol is that, since we do not rely
on a trusted setup, we cannot extract the choice bit in polynomial time from the receiver,
and hence we will have to rely on complexity leveraging to establish sender security. In
particular, the best we can guarantee is that a malicious computationally-bounded receiver
cannot compute both messages of the sender. This notion will fall short in replacing rate-1
SSP OT in the aforementioned applications.

—— References

1 Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 201/, pages 774-783. ACM, 2014. doi:
10.1145/2591796.2591804.


https://doi.org/10.1145/2591796.2591804
https://doi.org/10.1145/2591796.2591804

D. Aggarwal et al.

10

11

12

Divesh Aggarwal, Nico Doéttling, Jesko Dujmovic, Mohammad Hajiabadi, Giulio Malavolta,
and Maciej Obremski. Algebraic restriction codes and their applications. IJACR Cryptol. ePrint
Arch., page 1177, 2021. URL: https://eprint.iacr.org/2021/1177.

William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital
goods. In Birgit Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001, International
Conference on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria,
May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Computer Science, pages 119-135.
Springer, 2001. doi:10.1007/3-540-44987-6_8.

Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and Amit Sahai.
Statistical ZAP arguments. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology
- EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part III, volume
12107 of Lecture Notes in Computer Science, pages 642—667. Springer, 2020. doi:10.1007/
978-3-030-45727-3_22.

Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia.
Two-message witness indistinguishability and secure computation in the plain model from
new assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part 111, volume 10626 of Lecture Notes in Computer Science, pages 275-303. Springer, 2017.
d0i:10.1007/978-3-319-70700-6_10.

Zvika Brakerski and Nico Déttling. Two-message statistically sender-private OT from LWE.
In Amos Beimel and Stefan Dziembowski, editors, Theory of Cryptography - 16th International
Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part II, volume
11240 of Lecture Notes in Computer Science, pages 370-390. Springer, 2018. doi:10.1007/
978-3-030-03810-6_14.

Zvika Brakerski, Nico Dottling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Dennis Hofheinz
and Alon Rosen, editors, Theory of Cryptography - 17th International Conference, TCC 2019,
Nuremberg, Germany, December 1-5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes
in Computer Science, pages 407-437. Springer, 2019. doi:10.1007/978-3-030-36033-7_16.
Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 97-106.
IEEE Computer Society, 2011. doi:10.1109/F0CS.2011.12.

Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In Yehuda Lindell, editor, Theory of Cryptography - 11th Theory of
Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 201. Proceedings,
volume 8349 of Lecture Notes in Computer Science, pages 440-464. Springer, 2014. doi:
10.1007/978-3-642-54242-8_19.

Yevgeniy Dodis, Xin Li, Trevor D. Wooley, and David Zuckerman. Privacy amplification
and non-malleable extractors via character sums. In Rafail Ostrovsky, editor, IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011, pages 668—677. IEEE Computer Society, 2011. doi:10.1109/F0CS.
2011.67.

Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptography
from weak secrets. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2,
2009, pages 601-610. ACM, 2009. doi:10.1145/1536414.1536496.

Nico Déttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky.
Trapdoor hash functions and their applications. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology

2:13

ITCS 2022


https://eprint.iacr.org/2021/1177
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1109/FOCS.2011.67
https://doi.org/10.1109/FOCS.2011.67
https://doi.org/10.1145/1536414.1536496

2:14

Algebraic Restriction Codes and Their Applications

13

14

15

16

17

18

19

20

21

22

23

24

25

Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III, volume
11694 of Lecture Notes in Computer Science, pages 3—32. Springer, 2019. doi:10.1007/
978-3-030-26954-8_1.

Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from
two-source extractors. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology -
CRYPTO 2013 - 83rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part II, volume 8043 of Lecture Notes in Computer Science, pages 239-257.
Springer, 2013. doi:10.1007/978-3-642-40084-1_14.

Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. J. ACM,
65(4):20:1-20:32, 2018. doi:10.1145/3178432.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, Advances in
Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA, August 23-25,
1982, pages 205—210. Plenum Press, New York, 1982. doi:10.1007/978-1-4757-0602-4_19.
Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, Advances in Cryptology, Proceedings
of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, volume
196 of Lecture Notes in Computer Science, pages 10-18. Springer, 1984. doi:10.1007/
3-540-39568-7_2.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169-178. ACM, 2009. doi:
10.1145/1536414.1536440.

Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In Dennis Hofheinz
and Alon Rosen, editors, Theory of Cryptography - 17th International Conference, TCC 2019,
Nuremberg, Germany, December 1-5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes
in Computer Science, pages 438—464. Springer, 2019. doi:10.1007/978-3-030-36033-7_17.
Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume
8042 of Lecture Notes in Computer Science, pages 75-92. Springer, 2013. doi:10.1007/
978-3-642-40041-4_5.

Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. J.
Cryptol., 7(1):1-32, 1994.

Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Statistical zaps and
new oblivious transfer protocols. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part 111, volume 12107 of Lecture Notes in Computer Science, pages 668-699. Springer, 2020.
doi:10.1007/978-3-030-45727-3_23.

Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message oblivious
transfer. J. Cryptol., 25(1):158-193, 2012. doi:10.1007/s00145-010-9092-8.

Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In Salil P.
Vadhan, editor, Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007,
Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, volume 4392 of Lecture Notes
in Computer Science, pages 575-594. Springer, 2007. doi:10.1007/978-3-540-70936-7_31.
Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, editor, Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, pages 20-31. ACM, 1988. doi:10.1145/62212.62215.

Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th Annual Symposium on Foundations


https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1145/3178432
https://doi.org/10.1007/978-1-4757-0602-4_19
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/s00145-010-9092-8
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1145/62212.62215

D. Aggarwal et al.

26

27

28

29

30

31

32

33

of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages
364-373. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.646125.

Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In 53rd
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick,
NJ, USA, October 20-23, 2012, pages 688-697. IEEE Computer Society, 2012. doi:10.1109/
FO0CS.2012.26.

Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju,
editor, Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9,
2001, Washington, DC, USA, pages 448-457. ACM/SIAM, 2001. URL: http://dl.acm.org/
citation.cfm?id=365411.365502.

Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Maliciously circuit-
private FHE. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology -
CRYPTO 2014 - 84th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, volume 8616 of Lecture Notes in Computer Science, pages 536-553.
Springer, 2014. doi:10.1007/978-3-662-44371-2_30.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International Conference
on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6,
1999, Proceeding, volume 1592 of Lecture Notes in Computer Science, pages 223-238. Springer,
1999. doi:10.1007/3-540-48910-X_16.

Michael O. Rabin. How to exchange secrets with oblivious transfer. JACR Cryptol. ePrint
Arch., page 187, 2005. URL: http://eprint.iacr.org/2005/187.

Umesh Vazirani. Randomness, Adversaries and Computation. PhD thesis, EECS, UC Berkeley,
1986. Ph.D. Thesis.

Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 80-91. IEEE Computer Society, 1982. doi:10.1109/SFCS.1982.45.
Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October
1986, pages 162-167. IEEE Computer Society, 1986. doi:10.1109/SFCS.1986.25.

2:15

ITCS 2022


https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1109/FOCS.2012.26
https://doi.org/10.1109/FOCS.2012.26
http://dl.acm.org/citation.cfm?id=365411.365502
http://dl.acm.org/citation.cfm?id=365411.365502
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/3-540-48910-X_16
http://eprint.iacr.org/2005/187
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1986.25

	1 Introduction
	1.1 Roadmap
	1.2 Our Results

	2 Technical Outline
	2.1 Warmup: Algebraic Restriction Codes for General Linear Functions
	2.2 Algebraic Restriction Codes for Bounded Output Functions
	2.3 From AR Codes to Efficient Oblivious Transfer

	3 Related Work

