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Abstract
In the conditional disclosure of secrets (CDS) problem (Gertner et al., J. Comput. Syst. Sci.,
2000) Alice and Bob, who hold n-bit inputs x and y respectively, wish to release a common secret
z to Carol (who knows both x and y) if and only if the input (x, y) satisfies some predefined
predicate f . Alice and Bob are allowed to send a single message to Carol which may depend
on their inputs and some shared randomness, and the goal is to minimize the communication
complexity while providing information-theoretic security.

Despite the growing interest in this model, very few lower-bounds are known. In this paper,
we relate the CDS complexity of a predicate f to its communication complexity under various
communication games. For several basic predicates our results yield tight, or almost tight, lower-
bounds of Ω(n) or Ω(n1−ε), providing an exponential improvement over previous logarithmic
lower-bounds.

We also define new communication complexity classes that correspond to different variants of
the CDS model and study the relations between them and their complements. Notably, we show
that allowing for imperfect correctness can significantly reduce communication – a seemingly
new phenomenon in the context of information-theoretic cryptography. Finally, our results show
that proving explicit super-logarithmic lower-bounds for imperfect CDS protocols is a necessary
step towards proving explicit lower-bounds against the class AM, or even AM ∩ coAM – a well
known open problem in the theory of communication complexity. Thus imperfect CDS forms
a new minimal class which is placed just beyond the boundaries of the “civilized” part of the
communication complexity world for which explicit lower-bounds are known.
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4:2 Placing CDS in the Communication Complexity universe
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1 Introduction

Understanding the communication complexity of information-theoretically secure protocols
is a fundamental research problem. Despite much effort, we have very little understanding
of the communication complexity of even simple cryptographic tasks, and for most models,
there are exponentially large gaps between the best known upper-bounds and the best known
lower-bounds. In an attempt to simplify the problem, one may try to focus on the most basic
settings with a minimal non-trivial number of players (say two or three) and the simplest
possible communication pattern (e.g., single message protocols). Different cryptographic
tasks have been studied in this minimal setting, including secure computation [17], and
non-interactive zero-knowledge proofs [23]. In this paper we will focus on what seems to be
the simplest task in this model: Conditional Disclosure of Secrets (CDS) [20].3

Conditional Disclosure of Secrets

Consider a pair of computationally unbounded parties, Alice and Bob, each holding an input,
x ∈ X and y ∈ Y respectively, to some public predicate f : X × Y → {0, 1}. Alice and Bob
also hold a joint secret z (say a single bit) and have access to a joint source of randomness
r

R← R. The parties wish to disclose the secret z to a third party, Carol, if and only if
the predicate f(x, y) evaluates to 1. To this end, Alice and Bob should each send a single
message a = a(x, z; r) and b = b(y, z; r) to Carol. Based on the transcript (a, b) and the
inputs (x, y), Carol should be able to recover the secret z if and only if f(x, y) = 1. (Note
that Carol is assumed to know x and y.) That is, we require two properties:

Correctness: There exists a deterministic decoder algorithm Dec that recovers z from
(x, y, a, b) with high probability whenever x, y is a 1-input (i.e., f(x, y) = 1);
Privacy: For every fixed 0-input (x, y) (for which the predicate evaluates to 0), regardless
of the value of the secret z, the joint distribution of the transcript (a, b), induced by a
choice of the shared randomness, is statistically close (up to some small deviation error)
to some canonical distribution Sim(x, y).

The main complexity measure of CDS protocols is their communication complexity which is
taken to be the total bit-length of the messages a and b. (See Figure 1 for a schematic view
and Section A for formal definitions.)

Apart from being a natural basic notion, CDS has turned out to be a useful primitive
with various applications in the context of private information retrieval (PIR) [20], secure
multiparty computation [1, 25], secret sharing schemes [14, 15, 36, 31, 11, 2, 29], and
attribute-based encryption [7, 37]. Correspondingly, the communication complexity of CDS
was extensively studied in the last few years.

3 While we do not wish to define the notions from [17] and [23], let us just mention that the complexity
of a function in these two models upper-bounds the complexity in the CDS model [20, 5]. In this sense,
CDS may be considered as being simpler.
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Figure 1 Schematic of a CDS protocol.

Upper bounds

On the positive side, it is known that the CDS complexity of a predicate f is at most linear
in the formula complexity of f [20]. This result was extended to other (presumably stronger)
computational models such as (arithmetic) branching programs [26], and (arithmetic) span
programs [5]. The latter paper also shows that the CDS complexity of f is at most linear in the
complexity of any zero-information Arthur Merlin (ZAM) protocol for f . (The ZAM model,
introduced by [23], adds a zero-knowledge property to the standard AM communication
complexity model.)4 In a recent breakthrough, Liu, Vaikuntanathan and Wee [30] showed
that the CDS complexity of any predicate f : {0, 1}n×{0, 1}n → {0, 1} over n-bit inputs is at
most 2Õ(

√
n), improving over the exponential upper-bound of O(2n/2) from [10]. Applebaum

et al. [3] showed that when the secret is very long (exponential in the size of the domain
of the predicate) the overhead per each bit of z can be reduced to O(n); a constant-rate
solution (in which the total communication is O(|z|)) was recently given in [2].

The quest for lower bounds

On the lower-bound front much less is known. While we have tight lower bounds for restricted
forms of CDS (e.g., when the computations are restricted to linear functions [19, 9, 12]), only
few, relatively weak, lower-bounds are known for general CDS. It is important to note that
an insecure solution to the problem has a communication cost of 1 bit! (Let Alice send the
secret in the clear regardless of her input.) Hence, any super-constant lower-bound is, in
a sense, non-trivial. Indeed, unlike the case of standard communication games for which
communication lower-bounds are based on the correctness properties of the protocol, the
challenge here is to somehow capture the additional cost of privacy.

The first super-constant lower-bound was proved by Gay, Kerenidis, and Wee [19].

I Theorem 1 ([19]). For every predicate f : X × Y → {0, 1},

CDS(f) ≥ Ω(log(RA→B(f) + RB→A(f))),

where RA→B(f) denotes the one-way randomized communication complexity of f , and CDS(f)
denotes the minimal communication complexity of a CDS protocol for f with privacy and
correctness error of 0.1.5

4 The theorem of [5] actually relates the communication and randomness complexity of CDS for f to
the randomness and communication complexity of a ZAM protocol for the complement of f . However,
using our results in this paper one can conclude that the CDS communication of f is at most linear in
the ZAM communication of f .

5 The theorem was originally proved for perfect CDS, however, the proof generalizes to the imperfect
case (see [3]).
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4:4 Placing CDS in the Communication Complexity universe

For n-bits predicates, Theorem 1 leads, at best, to a logarithmic lower-bound of Ω(logn).
Applebaum et al.. [3] showed that this bound is essentially tight: There are (partial)
functions whose randomized communication complexity is exponentially larger than their
CDS complexity. They also proved a linear n-bit lower-bound for a random (non-explicit) n-bit
predicate f : {0, 1}n × {0, 1}n → {0, 1}. An explicit version of this result was proved by [4].

I Theorem 2 ([4]). For every non-degenerate predicate6 f : X × Y → {0, 1} whose largest
0-monochromatic rectangle is of size at most L,

pCDS(f) ≥ log |f
−1(0)|
L

− log |X × Y|
|f−1(0)| − 1 = 2 log |f−1(0)| − log |X | − log |Y| − logL− 1,

where pCDS(f) denotes the minimal communication complexity of a CDS protocol for f with
perfect privacy and perfect correctness.

The theorem is effective for predicates whose communication matrix is rich in zeroes, and at
the same time avoids large zero-monochromatic rectangles. In particular, for mod-2 inner
product over n-bit inputs, we get a tight lower-bound of n−O(1) and for Set-Intersection a
lower-bound of Ω(n). Unfortunately, the theorem is not robust to errors, leaving the imperfect
CDS complexity of these predicates wide open. Moreover, for many basic predicates the
theorem does not even give logarithmic bounds either due to the lack of many zeroes (e.g., the
Not-Equal predicate) or due to the existence of huge zero-rectangles (e.g., the Greater-Than
predicate).

This paper

Theorems 1 and 2 provide a very partial picture, and fall short of proving meaningful and
robust lower-bounds for many basic predicates, such as Not-equal, Greater-Than, Intersection,
and Index.7 We believe that a full understanding of these simple cases is necessary for the
more ambitious goal of proving stronger lower bounds. Our goal in this paper is to remedy the
situation by providing new lower-bound techniques. Specifically, we enrich our lower-bound
toolbox by relating the CDS complexity of a function to its communication complexity under
various communication games. Our results provide simple, yet effective, ways to leverage
privacy to construct communication protocols. They lead to new lower-bounds for perfect
and imperfect CDS protocols, and allow us to establish new results regarding the relations
between different variants of the CDS model.

2 Our Contribution

2.1 Perfectly-correct CDS and coNP Games
Our first theorem relates the complexity of any perfectly-correct CDS protocol for f to the
non-deterministic communication complexity of f ’s complement.

I Theorem 3. For every predicate f : X × Y → {0, 1},

pcCDS(f) ≥ Ω(coNP(f))−O(log(n)),

where n denotes the total input length of f , and pcCDS(f) denotes the minimal communication
complexity of a CDS protocol for f with perfect correctness and privacy error of 0.1.

6 A predicate is non-degenerate if for every fixing of x ∈ X the residual function f(x, ·) is not the constant
zero function.

7 Apart of being basic examples, these predicates are motivated by some of the applications of CDS.
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Proof idea

To prove the theorem, we first show that the coNP complexity is upper-bounded by the
randomness complexity of the CDS, and then prove that one can always assume that
the randomness complexity is comparable to the communication complexity via a new
sparsification lemma (similar to that of Newman [33]). The first part relies on the following
simple observation: In order to convince Alice and Bob that f(x, y) evaluates to zero it suffices
to prove that the joint distribution of the CDS messages for zero-secret, (a(x, z = 0; r), b(y, z =
0; r)), induced by a random choice of r, and the joint distribution of the messages for one-
secret (a(x, z = 1; r), b(y, z = 1; r)), are not disjoint. A prover can prove this statement by
sending to Alice and Bob a pair of strings r0 and r1 for which (a(x, z = 0; r0), b(y, z = 0; r0))
equals to (a(x, z = 1; r1), b(y, z = 1; r1)). (See full version [6] for details.)

Despite its simplicity, this theorem is quite powerful. In particular, ignoring the constants
in the Omega-notation and the logarithmic loss, the bound provided by Theorem 3 subsumes
the lower-bound of Theorem 2 from [4]. Indeed, the latter lower-bound is at most the
logarithm of the ratio between the zero-mass of f and its largest zero-monochromatic
rectangle – a quantity that cannot be larger than the non-deterministic communication
complexity of the complement of f (i.e., coNP(f)). Moreover, our new theorem can be applied
to predicates that have only few zero entries or to predicates with huge zero-rectangles,
for which Theorem 2 becomes meaningless. For example, by plugging-in classical coNP
lower-bounds, we settle the complexity of the not-equal predicate with respect to perfectly
correct CDS protocols.

I Corollary 4. Let NEQn : {0, 1}n × {0, 1}n → {0, 1} denote the not-equal predicate which
evaluates to 1 if and only if x 6= y. Then,

pcCDS(NEQn) ≥ Ω(n).

Similar tight linear lower-bounds can be obtained for the pcCDS complexity of the Greater-
Than predicate, the Set-Intersection predicate, and the Inner-Product predicate. Previously,
we had no super-logarithmic lower bounds that tolerate privacy error. (As already mentioned,
for Greater-Than and NEQn, we did not have such bounds even for perfect CDS protocols.)

pcCDS is not closed under complement

Interestingly, the equality function EQn has a very succinct perfect CDS protocol: Use the
shared randomness to sample a pair-wise independent hash function h : {0, 1}n → {0, 1}, and
let Alice output h(x) and Bob output h(y)⊕ z. The protocol has a minimal communication
complexity of 2 and randomness complexity of O(n). (The latter can be reduced to O(logn)
by using an almost pair-wise independent hash function and settling for a constant privacy
error.) This yields a strong separation between the complexity of a predicate and its
complement with respect to perfectly-correct perfectly-private CDS protocols (pCDS).

I Corollary 5. pCDS(EQn) = 2 whereas pCDS(NEQn) ≥ pcCDS(NEQn) ≥ Ω(n). In
particular, the classes pCDS and pcCDS are not closed under complement.8

Transformations from CDS protocols for f to its complement were studied in [3]. The
resulting protocols either introduce a privacy error or suffer from a communication overhead
that grows polynomially with the randomness complexity of the original protocol. The NEQn

example shows that at least one of these losses is inherent.

8 We follow the standard communication complexity terminology and write pCDS to denote the class
of predicates that admit a pCDS protocol whose complexity is polylogarithmic in the input length. A
similar convention will be used throughout the paper for all other variants of the CDS model.

ITCS 2019
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The benefit of decoding errors

The results of [3] (together with our randomness sparsification lemma) show that imperfect
CDS is closed under complement. This general result leads to a polylogarithmic CDS protocol
for NEQn with imperfect privacy and imperfect correctness, providing a surprising separation
between general imperfect CDS protocols and ones which have perfect correctness. In fact,
it is not hard to directly design a CDS protocol for NEQn with constant communication,
perfect privacy, and constant correctness error. (See the full version [6] for a more general
statement.) This leads to the following stronger separation.

I Corollary 6. There is an n-bit predicate f for which pcCDS(f) = Ω(n) and ppCDS(f) =
O(1), where ppCDS(f) denotes the minimal communication complexity of a CDS protocol
for f with perfect privacy and correctness error of 0.1. In particular,

ppCDS 6⊆ pcCDS.

As pointed to us by Hoteck Wee, Corollary 6 provides a rare example for an information-
theoretic secure protocol that can significantly benefit from a small correctness error. This
phenomena seems new in the context of information-theoretic secure cryptography, and is
worth further exploration.9

2.2 Perfectly-Private CDS and PP Games
Our next goal is to lower-bound the complexity of CDS protocols with correctness errors.
We begin with the case of perfectly private protocols.

I Theorem 7. For every predicate f : X × Y → {0, 1},

ppCDS(f) ≥ Ω(PP(f))−O(log(n)),

where n denotes the total input length of f , and ppCDS(f) denotes the minimal communica-
tion complexity of a CDS protocol for f with perfect privacy and correctness error of 0.1.

The complexity measure PP(f) essentially corresponds to the sum of the communication
complexity and number of private random bits used by a communication protocol that
computes f correctly with probability more than 1/2, where shared randomness is not
allowed. (See the full version [6] for a formal definition.) The discrepancy method implies
that the PP complexity of the mod-2 inner-product predicate IPn is Ω(n) (cf. [28]) and so
we get the following.

I Corollary 8. Let IPn : {0, 1}n × {0, 1}n → {0, 1} denote the inner-product predicate on
n-bit inputs. Then,

ppCDS(IPn) ≥ Ω(n).

This is the first linear lower-bound on CDS with imperfect correctness. (Previous
arguments fail to achieve such a result even for a non-explicit predicate.)

9 Compare this, for example, to Shannon’s classical lower-bound for perfectly-secure one-time symmetric
encryption [35] in which a constant decryption error has a minor effect on the key/ciphertext length [16].
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Proof idea

In order to prove Theorem 7, we turn a ppCDS protocol into a PP protocol. Loosely
speaking, the idea is to construct a randomized protocol that accepts the input (x, y) based
on collisions between random CDS transcripts that correspond to a zero-secret and random
CDS transcripts that correspond to a one-secret. This idea, which was employed in the query
setting by [13], leads to the desired result. (Details appear in the full version [6].)

2.3 Imperfect CDS, Interactive Proofs, and Zero Knowledge
We move on to the most general case of imperfect CDS protocols with both constant
privacy error and correctness error. We show that the complexity of such protocols is at least
polynomial in the AM communication complexity of f . (The latter class is the communication
complexity analogue of Arthur-Merlin proofs.)

I Theorem 9. There exists some universal constant c > 0, such that for any Boolean
function f it holds that

CDS(f) ≥ AM(f)c − polylog(n),

where n denotes the total input length of f , and CDS(f) denotes the minimal communication
complexity of a CDS protocol for f with correctness and privacy errors of 0.1.

Since (imperfect) CDS is closed under complement (by [3, Theorem 2] and [6, Lemma 1]),
it holds that CDS(f̄) ≤ poly(CDS(f)), and so we conclude the following.

I Corollary 10. There exists some universal constant c > 0, such that for any Boolean
function f it holds that

CDS(f) ≥ max(AM(f), coAM(f))c − polylog(n),

where n denotes the total input length of f .

Explicit CDS lower-bounds?

Corollary 10 can be used to show that the CDS complexity of most n-bit predicates must be
at least polynomial in n, even when the protocol is imperfect. Unfortunately, it falls short
of providing explicit lower-bounds; Finding an explicit function outside AM ∩ coAM is a
central open problem in the theory of communication complexity. In fact, AM∩ coAM forms
a minimal class for which no explicit lower-bounds are known [24]. Corollary 10 places CDS
as a weaker (and perhaps more accessible) target for explicit lower-bounds.

Proof idea

To prove Theorem 9 we show that a CDS protocol can be transformed into a constant-round
private-coins interactive-proof. Then, we note that, just like in the computational setting, such
interactive proofs can be converted to an AM protocol with polynomial overhead [8, 22].10 The
first step is obtained by imitating the standard interactive proof of Graph Nonisomorphism [21].
Indeed, the AM protocol constructed in Theorem 9 turns out to satisfy a statistical zero-
knowledge property; That is, the view of Alice and Bob can be simulated via a low complexity
2-party randomized protocol. (See the full version [6] for details.)

10This reduction has a polynomial dependency in the randomness. In order to avoid such an overhead in
the final statement, we prove a randomness sparsification lemma for constant-round interactive protocols.
This requires some care due to the use of private coins.

ITCS 2019
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CDS vs. SZK

Recall that, by definition, a CDS protocol yields a (distributed mapping) from the input (x, y)
and the secret z to a distribution Dz over the transcript (a, b) such that the distributions,
D0 and D1, are either statistically-close or statistically-far depending on the value of f(x, y).
This resembles the Statistical Difference problem [34], which is known to be complete
for the computational complexity class SZK (consisting of problems that have interactive
proofs that are statistically zero-knowledge). One may therefore hope to prove that in the
communication complexity setting CDS complexity is characterized by SZK complexity. As
already mentioned, Theorem 9 actually shows that CDS ⊆ SZK, however, we do not know
whether the reverse direction holds. Roughly speaking, such a result faces two obstacles.
Firstly, the completeness result from [34] has an overhead that depends on the randomness
complexity of the protocol, and we do not know how to get rid of this dependency. (In
particular, it is not clear how to prove a proper sparsification lemma for SZK without
sacrificing the zero-knowledge property.) Secondly, even if the randomness complexity is
small, we do not know how to obtain a CDS protocol without allowing some interaction
between Alice and Bob. Indeed, in the full version [6] we show that SZK′ ⊆ CDS′ where the
“prime” version of SZK charges randomness towards the total complexity and the “prime”
version of CDS allows short interaction between Alice and Bob. The problem of proving that
SZK ⊆ CDS (and therefore SZK = CDS) remains as an interesting open problem.

The results described so far are summarised in Figure 2, which shows the relationship
between perfect and imperfect CDS and various measures from communication complexity.
In Table 1, we list the current state of knowledge of the various CDS complexities of a
number of commonly studied predicates. (See Section 3.)

2.4 Asymmetry in CDS and One-Way Communication
We shift gears, and turn to study the communication tradeoffs between Alice’s and Bob’s
messages. Suppose that Alice’s message is restricted to a short string of length tA. Can we
prove that Bob’s message must be very long? We prove such tradeoffs based on the one-way
randomized communication complexity of f .

I Theorem 11. In any perfectly correct 0.1-private CDS protocol for f in which Alice and
Bob communicate tA and tB bits respectively and the total input length of the function is n,
it holds that:

2tA(tA + tB + logn) ≥ Ω(RB→A(f)).

(In fact, the result holds even if one considers one-way randomized protocols that err only over
zero inputs.) Recall that Theorem 1 (which is from [19]) shows that the total communication
complexity tA + tB is at least logarithmic in (RA→B(f) + RB→A(f)), which is tight for some
predicates [3]. Theorem 11 provides a more accurate picture. If the total communication
complexity is dominated by tA, then one gets a logarithmic bound, similar to Theorem 1;
however, when tA is small (e.g., constant), we get a strong linear lower-bound of

tB = Ω(RB→A(f))−O(logn).

In fact, when RB→A(f) = Ω(n), for any constant α < 1 if tA ≤ α logn then

tB = Ω(n1−α).
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Concretely, consider the Indexn predicate in which Bob holds an n-bit database x ∈ {0, 1}n

and Alice holds an index i ∈ [n] (encoded as a string of length logn) and the output is the
i-th bit of x. Since RB→A(Indexn) = Ω(n) [27] we get:

I Corollary 12. In any perfectly correct 0.1-private CDS protocol for Indexn in which Alice
communicates at most α logn+O(1) bits for some constant 0 ≤ α < 1, the database owner,
Bob, must communicate at least Ω(n1−α) bits.

Similar results can be obtained for predicates like Greater-Than, Set-Disjointness and
Set-Intersection, based on classical lower-bounds for randomized one-way communication
complexity (cf. [32, 27]).

The Indexn predicate plays an important role in CDS constructions and applications.
First, it is complete for CDS in the sense that any n-bit predicate can be reduced to IndexN
for N = 2n. Indeed, the best known general CDS protocols were obtained by improving the
pCDS complexity of Index [30]. In addition, a CDS for the index function can be viewed as
a one-time version of the well-studied notion of Broadcast Encryption, and the lower-bound
of Corollary 12 becomes especially appealing under this framework. Details follow.

Broadcast Encryption [18]

Suppose that we have a single sender and n receivers. The sender has a private encryption
key r and each receiver i ∈ [n] has its own private decryption key ki. All the keys were
collectively generated and distributed in an offline phase. In an online phase, the sender
gets a message z together with a public list of authorized users y ⊆ [n], represented by an
n-bit characteristic vector. The sender should broadcast a ciphertext b = b(y, z; r) to all
the receivers (who also know y) so that an authorized receiver will be able to decrypt the
ciphertext, and an unauthorized (computationally unbounded) receiver will learn nothing
about the message z. The goal is to minimize the length of the ciphertext b, and the length
of the keys ki.

Information-theoretic one-time secure Broadcast Encryption turns to be equivalent to
the CDS problem with respect to the Indexn predicate: Identify the ciphertext with Bob’s
message b = b(y, z; r) and the i-th key with Alice’s message a(i; r).11 The problem can
be solved with n-bit ciphertext and 1-bit keys, and with 1-bit ciphertext and n-bit keys.
In fact, [19] showed that one can smoothly get any tradeoff as long as the product of the
ciphertext length and the key length is n. Corollary 12 shows that when the key-length is
sub-logarithmic the ciphertext must be almost linear, confirming a conjecture of Wee [38].

Proof idea (of Theorem 11)

The idea is to let Bob send to Alice a pair of random strings r0 and r1 that are mapped to
the same Bob’s message b under the zero-secret and under the one-secret respectively. Alice
then uses the string rz and the secret z to compute a corresponding message az, and accepts
if the zero message a0 equals to the one message a1. Perfect correctness guarantees that
Alice will never err on 0-inputs. We further show that, when f(x, y) = 1, Alice accepts with
probability which is at least inverse-exponential in her message length (up to a loss that is
proportional to the privacy error of the protocol). See the full version [6] for details.

11Here we assume that we have a CDS in which only Bob holds the secret. However, any CDS can be
transformed into this form with an additional communication cost of O(|z|) = O(1).

ITCS 2019



4:10 Placing CDS in the Communication Complexity universe

Table 1 The CDS complexity of some simple functions. By definition, an upper-bound in the
leftmost column (pCDS) implies an upper-bound in all other columns, and a lower-bound in the
rightmost column (CDS) implies a lower-bound in all other columns. All the linear upper-bounds
for pCDS follow from the fact that all of these predicates can be computed by a linear-size formula.
The logarithmic lower-bounds for CDS follow from Theorem 1 (and the fact that the corresponding
predicates have linear randomized one-way communication complexity.) The linear lower-bounds for
pcCDS and ppCDS follow from Theorems 3 and 7 respectively.

Predicate pCDS pcCDS ppCDS CDS

Equality Θ(1) Θ(1) Θ(1) Θ(1)
Non-Equality Θ(n) Θ(n) Θ(1) Θ(1)
Inner-Product Θ(n) Θ(n) Θ(n) O(n) & Ω(log n)
Greater-Than Θ(n) Θ(n) O(n) & Ω(log n) O(n) & Ω(log n)
Set-Intersection Θ(n) Θ(n) O(n) & Ω(log n) O(n) & Ω(log n)
Set-Disjointness O(n) & Ω(log n) O(n) & Ω(log n) O(n) & Ω(log n) O(n) & Ω(log n)

3 Conclusion and Open Questions

In this paper we studied the relations between CDS protocols and standard communication
complexity games. We established new connections between CDS communication complexity
(with perfect and imperfect privacy and correctness) to well-known communication complexity
measures for non-deterministic protocols, randomized unbounded-error protocols, and one-
way protocols. This leads to new CDS bounds for various simple functions. These results
are summarized in Figure 2 and Table 1.

We end by listing the immediate interesting questions left open following our work.

1. Prove an explicit polynomial lower-bound on (imperfect) CDS complexity. (A natural
candidate would be Inner-Product.)

2. Our current ppCDS lower-bounds are based on PP complexity, which corresponds to
discrepancy. Can we derive such bounds on weaker, easier-to-establish, properties? In
particular, can we prove non-trivial ppCDS lower-bounds for predicates that have low
randomized bounded-error communication complexity like Greater-Than?

3. Unlike all the other communication complexity measures considered here, CDS complexity
is not necessarily upper-bounded by the length of the inputs. But we have no super-linear
(or even linear with a large constant factor) lower-bounds for even perfect CDS protocols.
Can any of the existing lower-bound techniques from communication complexity be used
to obtain such bounds?

4. If not, can this difficulty be explained, perhaps by relating the problem of proving such
lower bounds for CDS to more well-studied problems that are still unsolved?

5. Following the paradigm of lifting query complexity lower bounds to the communication
setting, is there a natural query complexity measure that can be lifted to CDS complexity?

6. One simple predicate that has eluded all our bounds is Set-Disjointness, for which the
best (imperfect) CDS protocol we know has O(n) complexity, and the best lower bound
we can prove, even for perfect CDS, is Ω(log(n)). Are either of these tight?
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PPAMcoAM SZK

AM ∩ coAM

coNP CDS

pcCDS ppCDS

pCDSZAM

Figure 2 As is standard, we use the name of a complexity measure to also denote the class
of functions with polylog(n) complexity under the measure. For classes C1 and C2, a solid arrow
C1 → C2 indicates that C1 ⊆ C2, and a dashed arrow C1 99K C2 indicates that C1 6⊆ C2. Red
arrows indicate new results from this paper. Blue text indicates classes for which explicit bounds
are not known.
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A Formal Setup

For a finite set A we write a R← A to denote a random variable which is sampled uniformly
from A. The statistical distance between two discrete random variables, X and Y , denoted by
∆(X;Y ) is defined by ∆(X;Y ) := 1

2
∑
z |Pr[X = z]− Pr[Y = z]|. We will also use statistical

distance for probability distributions, where for a probability distribution D the value
Pr[D = z] is defined to be D(z).

I Definition 13 (CDS). Let f : X × Y → {0, 1} be a predicate. Let FA : X × Z ×R → TA
and FB : Y × Z × R → TB be deterministic encoding algorithms, where Z is the secret
domain. Then, the pair (FA,FB) is a CDS scheme for f with correctness error c and privacy
error s if the function F(x, y, z, r) = (FA(x, z, r),FB(y, z, r)) that corresponds to the joint
computation of FA and FB on a common z and r, satisfies the following properties:
1. (c-Correctness) There exists a deterministic algorithm Dec, called a decoder, such that

for every 1-input (x, y) of f and any secret z ∈ Z we have that:

Pr
r

R←R
[Dec(x, y,F(x, y, z, r)) 6= z] ≤ c

2. (s-Privacy) There exists a randomized simulator Sim such that for every 0-input (x, y) of
f , every secret z ∈ Z, and uniformly chosen randomness r R← R the following holds:

∆ (Sim(x, y) ; F(x, y, z, r)) ≤ s.

The communication complexity of the CDS protocol is (log |TA|+log |TB |) and its randomness
complexity is log |R|. If c and s are zeros, such a CDS scheme is called perfect.
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