2 research outputs found

    Intelligent systems for efficiency and security

    Get PDF
    As computing becomes ubiquitous and personalized, resources like energy, storage and time are becoming increasingly scarce and, at the same time, computing systems must deliver in multiple dimensions, such as high performance, quality of service, reliability, security and low power. Building such computers is hard, particularly when the operating environment is becoming more dynamic, and systems are becoming heterogeneous and distributed. Unfortunately, computers today manage resources with many ad hoc heuristics that are suboptimal, unsafe, and cannot be composed across the computer’s subsystems. Continuing this approach has severe consequences: underperforming systems, resource waste, information loss, and even life endangerment. This dissertation research develops computing systems which, through intelligent adaptation, deliver efficiency along multiple dimensions. The key idea is to manage computers with principled methods from formal control. It is with these methods that the multiple subsystems of a computer sense their environment and configure themselves to meet system-wide goals. To achieve the goal of intelligent systems, this dissertation makes a series of contributions, each building on the previous. First, it introduces the use of formal MIMO (Multiple Input Multiple Output) control for processors, to simultaneously optimize many goals like performance, power, and temperature. Second, it develops the Yukta control system, which uses coordinated formal controllers in different layers of the stack (hardware and operating system). Third, it uses robust control to develop a fast, globally coordinated and decentralized control framework called Tangram, for heterogeneous computers. Finally, it presents Maya, a defense against power side-channel attacks that uses formal control to reshape the power dissipated by a computer, confusing the attacker. The ideas in the dissertation have been demonstrated successfully with several prototypes, including one built along with AMD (Advanced Micro Devices, Inc.) engineers. These designs significantly outperformed the state of the art. The research in this dissertation brought formal control closer to computer architecture and has been well-received in both domains. It has the first application of full-fledged MIMO control for processors, the first use of robust control in computer systems, and the first application of formal control for side-channel defense. It makes a significant stride towards intelligent systems that are efficient, secure and reliable

    Reliability for exascale computing : system modelling and error mitigation for task-parallel HPC applications

    Get PDF
    As high performance computing (HPC) systems continue to grow, their fault rate increases. Applications running on these systems have to deal with rates on the order of hours or days. Furthermore, some studies for future Exascale systems predict the rates to be on the order of minutes. As a result, efficient fault tolerance solutions are needed to be able to tolerate frequent failures. A fault tolerance solution for future HPC and Exascale systems must be low-cost, efficient and highly scalable. It should have low overhead in fault-free execution and provide fast restart because long-running applications are expected to experience many faults during the execution. Meanwhile task-based dataflow parallel programming models (PM) are becoming a popular paradigm in HPC applications at large scale. For instance, we see the adaptation of task-based dataflow parallelism in OpenMP 4.0, OmpSs PM, Argobots and Intel Threading Building Blocks. In this thesis we propose fault-tolerance solutions for task-parallel dataflow HPC applications. Specifically, first we design and implement a checkpoint/restart and message-logging framework to recover from errors. We then develop performance models to investigate the benefits of our task-level frameworks when integrated with system-wide checkpointing. Moreover, we design and implement selective task replication mechanisms to detect and recover from silent data corruptions in task-parallel dataflow HPC applications. Finally, we introduce a runtime-based coding scheme to detect and recover from memory errors in these applications. Considering the span of all of our schemes, we see that they provide a fairly high failure coverage where both computation and memory is protected against errors.A medida que los Sistemas de Cómputo de Alto rendimiento (HPC por sus siglas en inglés) siguen creciendo, también las tasas de fallos aumentan. Las aplicaciones que se ejecutan en estos sistemas tienen una tasa de fallos que pueden estar en el orden de horas o días. Además, algunos estudios predicen que los fallos estarán en el orden de minutos en los Sistemas Exascale. Por lo tanto, son necesarias soluciones eficientes para la tolerancia a fallos que puedan tolerar fallos frecuentes. Las soluciones para tolerancia a fallos en los Sistemas futuros de HPC y Exascale tienen que ser de bajo costo, eficientes y altamente escalable. El sobrecosto en la ejecución sin fallos debe ser bajo y también se debe proporcionar reinicio rápido, ya que se espera que las aplicaciones de larga duración experimenten muchos fallos durante la ejecución. Por otra parte, los modelos de programación paralelas basados en tareas ordenadas de acuerdo a sus dependencias de datos, se están convirtiendo en un paradigma popular en aplicaciones HPC a gran escala. Por ejemplo, los siguientes modelos de programación paralela incluyen este tipo de modelo de programación OpenMP 4.0, OmpSs, Argobots e Intel Threading Building Blocks. En esta tesis proponemos soluciones de tolerancia a fallos para aplicaciones de HPC programadas en un modelo de programación paralelo basado tareas. Específicamente, en primer lugar, diseñamos e implementamos mecanismos “checkpoint/restart” y “message-logging” para recuperarse de los errores. Para investigar los beneficios de nuestras herramientas a nivel de tarea cuando se integra con los “system-wide checkpointing” se han desarrollado modelos de rendimiento. Por otra parte, diseñamos e implementamos mecanismos de replicación selectiva de tareas que permiten detectar y recuperarse de daños de datos silenciosos en aplicaciones programadas siguiendo el modelo de programación paralela basadas en tareas. Por último, se introduce un esquema de codificación que funciona en tiempo de ejecución para detectar y recuperarse de los errores de la memoria en estas aplicaciones. Todos los esquemas propuestos, en conjunto, proporcionan una cobertura bastante alta a los fallos tanto si estos se producen el cálculo o en la memoria.Postprint (published version
    corecore