145 research outputs found

    Internet of Hybrid Energy Harvesting Things

    Get PDF
    © 2017 IEEE. Internet of Things (IoT) is a perfect candidate to realize efficient observation and management for Smart City concept. This requires deployment of large number of wireless devices. However, replenishing batteries of thousands, maybe millions of devices may be hard or even impossible. In order to solve this problem, Internet of Energy Harvesting Things (IoEHT) is proposed. Although the first studies on IoEHT focused on energy harvesting (EH) as an auxiliary power provisioning method, now completely battery-free and self-sufficient systems are envisioned. Taking advantage of diverse sources that the concept of Smart City offers helps us to fully appreciate the capacity of EH. In this way, we address the primary shortcomings of IoEHT; availability, unreliability, and insufficiency by the Internet of Hybrid EH Things (IoHEHT). In this paper, we survey the various EH opportunities, propose an hybrid EH system, and discuss energy and data management issues for battery-free operation. We mathematically prove advantages of hybrid EH compared to single source harvesting as well. We also point out to hardware requirements and present the open research directions for different network layers specific to IoHEHT for Smart City concept

    Sulautettu ohjelmistototeutus reaaliaikaiseen paikannusjärjestelmään

    Get PDF
    Asset tracking often necessitates wireless, radio-frequency identification (RFID). In practice, situations often arise where plain inventory operations are not sufficient, and methods to estimate movement trajectory are needed for making reliable observations, classification and report generation. In this thesis, an embedded software application for an industrial, resource-constrained off-the-shelf RFID reader device in the UHF frequency range is designed and implemented. The software is used to configure the reader and its air-interface operations, accumulate read reports and generate events to be reported over network connections. Integrating location estimation methods to the application facilitates the possibility to make deploying middleware RFID solutions more streamlined and robust while reducing network bandwidth requirements. The result of this thesis is a functional embedded software application running on top of an embedded Linux distribution on an ARM processor. The reader software is used commercially in industrial and logistics applications. Non-linear state estimation features are applied, and their performance is evaluated in empirical experiments.Tavaroiden seuranta edellyttää usein langatonta radiotaajuustunnistustekniikkaa (RFID). Käytännön sovelluksissa tulee monesti tilanteita joissa pelkkä inventointi ei riitä, vaan tarvitaan menetelmiä liikeradan estimointiin luotettavien havaintojen ja luokittelun tekemiseksi sekä raporttien generoimiseksi. Tässä työssä on suunniteltu ja toteutettu sulautettu ohjelmistosovellus teolliseen, resursseiltaan rajoitettuun ja kaupallisesti saatavaan UHF-taajuusalueen RFID-lukijalaitteeseen. Ohjelmistoa käytetään lukijalaitteen ja sen ilmarajapinnan toimintojen konfigurointiin, lukutapahtumien keräämiseen ja raporttien lähettämiseen verkkoyhteyksiä pitkin. Paikkatiedon estimointimenetelmien integroiminen ohjelmistoon mahdollistaa välitason RFID-sovellusten toteuttamisen aiempaa suoraviivaisemin ja luotettavammin, vähentäen samalla vaatimuksia tietoverkon kaistanleveydelle. Työn tuloksena on toimiva sulautettu ohjelmistosovellus, jota ajetaan sulautetussa Linux-käyttöjärjestelmässä ARM-arkkitehtuurilla. Lukijaohjelmistoa käytetään kaupallisesti teollisuuden ja logistiikan sovelluskohteissa. Epälineaarisia estimointiominaisuuksia hyödynnetään, ja niiden toimivuutta arvioidaan empiirisin kokein

    A Low Cost Automated Livestock Tracking System

    Get PDF
    Successful farming has always required intense manual labor and acute management skills. The technological advancements of two agricultural revolutions reduced the quantity of manual labor required but human direction is still necessary (Rasmussen, 1962). In the last recent years, the level of automation in farming processes has increased significantly. A main component of these new strategies is livestock monitoring information. Animal tracking provides valuable information including recent location, movement and feeding patterns, and land usage. The collection and storage of this information as well as actions based upon the information are becoming more automated. Technologies such as global positioning system (GPS), radio frequency identification (RFID), wireless networking, and mobile computing systems are being utilized to target specific needs of farmers (Barbari, Conti, & Simonini, 2010). This research will develop and evaluate a prototype data acquisition system for tracking livestock. Open source, freely distributed technologies will be utilized whenever possible in an effort to reduce cost. This study will evaluate the performance and cost of this livestock management system

    Efficient Wireless Power Transfer For Low Power Wide Area Networks

    Get PDF
    DissertationWireless power transfer (WPT) technologies for small devices and low power sensors have drawn substantial research attention in recent years. Traditional near and far- eld WPT systems cannot provide e cient-high power transfer while at the same time maintaining long range power transfer. A possible candidate to overcome these challenges is the strongly coupled magnetic resonance (SCMR) WPT technique which can transfer power at higher transmission e ciency in the medium range. Heretofore, the focus has been to improve the e ciency and range of the SCMR system. On the other hand, the study to develop optimal coils or loops of the WPT system utilising less computational resources as well as using co-simulations between less and high intense software has been limited. More so, the existing WPT systems are complex and bulky in size making it a challenge to use these technologies for small footprint applications. Therefore, innovative SCMR systems that are designed to be easy to fabricate and with low losses and of small footprint will notably improve various technologies in a variety of applications. The optimal and small footprint SCMR WPT systems are studied in this work. The analytical models of the Conformal-SCMR (CSCMR) system are presented rst through design methodology and analysis. The designed CSCMR systems' performance is envisaged from the identi ed optimal design parameters through this analysis. Furthermore, the derived optimal parameters are fabricated, analysed and compared in a 3D simulator, a conventional CSCMR model and a 2-layer self-resonant resonator model. It was noted that the 2-layer self-resonant model performed better than the conventional model and this was veri ed by mathematical formulae and equivalent circuit models. The two models were then optimised using their derived physical parameters. This was done through a co-simulation. The results showed that the co-simulation increased the simulation speeds, therefore saving computational resources. In conclusion, the two optimised model's transmission e ciency was improved by 30% and 4% for the conventional derived and the 2-layer self-resonant CSCMR-WPT systems. This was achieved while the footprint of these systems was reduced

    A wireless 802.11 condition monitoring sensor for electrical substation environments

    Get PDF
    The work reported in this thesis is concerned with the design, development and testing of a wireless 802.11 condition monitoring sensor for an electrical substation environments. The work includes a comprehensive literature review and the design and development of a novel continuous wireless data acquisition sensor. Laboratory and field tests were performed to evaluate the data acquisition performance of the developed wireless sensor. The sensor‟s wireless immunity to interference performance was also evaluated in laboratory and field tests. The literature survey reviews current condition monitoring practices in electrical substation environments with a focus on monitoring high voltage insulators and substation earth impedance. The data acquisition performance of the wireless sensor was tested in a laboratory using two artificially polluted insulators, in a fog chamber that applied clean fog. Analysis of the test results were found to be in good agreement with those recorded directly through a data acquisition card and transmitted via coaxial cable. The wireless impedance measurement of a 275kV transmission earth tower base field test was also performed and was found to be in agreement with previous published results from standard earth measurements. The sensor‟s wireless interference performance was evaluated at a field test site when no high voltage experiments were taking place. The sensors wireless interference performance was then tested in a laboratory environment before and during high voltage tests taking place. The results of these tests were compared to each other and to published results. These tests demonstrate the suitability of the sensor‟s design and its immunity to interference. The experimental work conducted using the developed wireless sensor has led to an understanding that continuous wireless data acquisition is possible in high voltage environments. However, novel condition monitoring systems that make use of such wireless sensors, have to take into account data losses and delays adequately. Furthermore, a solar power source was designed and constructed to be used for outdoor substation applications and the solar battery charging performance of the wireless sensor was tested in a solar laboratory.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Integrated control of next generation power system

    Full text link

    A wireless 802.11 condition monitoring sensor for electrical substation environments

    Get PDF
    The work reported in this thesis is concerned with the design, development and testing of a wireless 802.11 condition monitoring sensor for an electrical substation environments. The work includes a comprehensive literature review and the design and development of a novel continuous wireless data acquisition sensor. Laboratory and field tests were performed to evaluate the data acquisition performance of the developed wireless sensor. The sensor‟s wireless immunity to interference performance was also evaluated in laboratory and field tests. The literature survey reviews current condition monitoring practices in electrical substation environments with a focus on monitoring high voltage insulators and substation earth impedance. The data acquisition performance of the wireless sensor was tested in a laboratory using two artificially polluted insulators, in a fog chamber that applied clean fog. Analysis of the test results were found to be in good agreement with those recorded directly through a data acquisition card and transmitted via coaxial cable. The wireless impedance measurement of a 275kV transmission earth tower base field test was also performed and was found to be in agreement with previous published results from standard earth measurements. The sensor‟s wireless interference performance was evaluated at a field test site when no high voltage experiments were taking place. The sensors wireless interference performance was then tested in a laboratory environment before and during high voltage tests taking place. The results of these tests were compared to each other and to published results. These tests demonstrate the suitability of the sensor‟s design and its immunity to interference. The experimental work conducted using the developed wireless sensor has led to an understanding that continuous wireless data acquisition is possible in high voltage environments. However, novel condition monitoring systems that make use of such wireless sensors, have to take into account data losses and delays adequately. Furthermore, a solar power source was designed and constructed to be used for outdoor substation applications and the solar battery charging performance of the wireless sensor was tested in a solar laboratory

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore