370 research outputs found

    Database and System Design for Emerging Storage Technologies

    Full text link
    Emerging storage technologies offer an alternative to disk that is durable and allows faster data access. Flash memory, made popular by mobile devices, provides block access with low latency random reads. New nonvolatile memories (NVRAM) are expected in upcoming years, presenting DRAM-like performance alongside persistent storage. Whereas both technologies accelerate data accesses due to increased raw speed, used merely as disk replacements they may fail to achieve their full potentials. Flash’s asymmetric read/write access (i.e., reads execute faster than writes opens new opportunities to optimize Flash-specific access. Similarly, NVRAM’s low latency persistent accesses allow new designs for high performance failure-resistant applications. This dissertation addresses software and hardware system design for such storage technologies. First, I investigate analytics query optimization for Flash, expecting Flash’s fast random access to require new query planning. While intuition suggests scan and join selection should shift between disk and Flash, I find that query plans chosen assuming disk are already near-optimal for Flash. Second, I examine new opportunities for durable, recoverable transaction processing with NVRAM. Existing disk-based recovery mechanisms impose large software overheads, yet updating data in-place requires frequent device synchronization that limits throughput. I introduce a new design, NVRAM Group Commit, to amortize synchronization delays over many transactions, increasing throughput at some cost to transaction latency. Finally, I propose a new framework for persistent programming and memory systems to enable high performance recoverable data structures with NVRAM, extending memory consistency with persistent semantics to introduce memory persistency.PhDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107114/1/spelley_1.pd

    Advanced analytics through FPGA based query processing and deep reinforcement learning

    Get PDF
    Today, vast streams of structured and unstructured data have been incorporated in databases, and analytical processes are applied to discover patterns, correlations, trends and other useful relationships that help to take part in a broad range of decision-making processes. The amount of generated data has grown very large over the years, and conventional database processing methods from previous generations have not been sufficient to provide satisfactory results regarding analytics performance and prediction accuracy metrics. Thus, new methods are needed in a wide array of fields from computer architectures, storage systems, network design to statistics and physics. This thesis proposes two methods to address the current challenges and meet the future demands of advanced analytics. First, we present AxleDB, a Field Programmable Gate Array based query processing system which constitutes the frontend of an advanced analytics system. AxleDB melds highly-efficient accelerators with memory, storage and provides a unified programmable environment. AxleDB is capable of offloading complex Structured Query Language queries from host CPU. The experiments have shown that running a set of TPC-H queries, AxleDB can perform full queries between 1.8x and 34.2x faster and 2.8x to 62.1x more energy efficient compared to MonetDB, and PostgreSQL on a single workstation node. Second, we introduce TauRieL, a novel deep reinforcement learning (DRL) based method for combinatorial problems. The design idea behind combining DRL and combinatorial problems is to apply the prediction capabilities of deep reinforcement learning and to use the universality of combinatorial optimization problems to explore general purpose predictive methods. TauRieL utilizes an actor-critic inspired DRL architecture that adopts ordinary feedforward nets. Furthermore, TauRieL performs online training which unifies training and state space exploration. The experiments show that TauRieL can generate solutions two orders of magnitude faster and performs within 3% of accuracy compared to the state-of-the-art DRL on the Traveling Salesman Problem while searching for the shortest tour. Also, we present that TauRieL can be adapted to the Knapsack combinatorial problem. With a very minimal problem specific modification, TauRieL can outperform a Knapsack specific greedy heuristics.Hoy en día, se han incorporado grandes cantidades de datos estructurados y no estructurados en las bases de datos, y se les aplican procesos analíticos para descubrir patrones, correlaciones, tendencias y otras relaciones útiles que se utilizan mayormente para la toma de decisiones. La cantidad de datos generados ha crecido enormemente a lo largo de los años, y los métodos de procesamiento de bases de datos convencionales utilizados en las generaciones anteriores no son suficientes para proporcionar resultados satisfactorios respecto al rendimiento del análisis y respecto de la precisión de las predicciones. Por lo tanto, se necesitan nuevos métodos en una amplia gama de campos, desde arquitecturas de computadoras, sistemas de almacenamiento, diseño de redes hasta estadísticas y física. Esta tesis propone dos métodos para abordar los desafíos actuales y satisfacer las demandas futuras de análisis avanzado. Primero, presentamos AxleDB, un sistema de procesamiento de consultas basado en FPGAs (Field Programmable Gate Array) que constituye la interfaz de un sistema de análisis avanzado. AxleDB combina aceleradores altamente eficientes con memoria, almacenamiento y proporciona un entorno programable unificado. AxleDB es capaz de descargar consultas complejas de lenguaje de consulta estructurado desde la CPU del host. Los experimentos han demostrado que al ejecutar un conjunto de consultas TPC-H, AxleDB puede realizar consultas completas entre 1.8x y 34.2x más rápido y 2.8x a 62.1x más eficiente energéticamente que MonetDB, y PostgreSQL en un solo nodo de una estación de trabajo. En segundo lugar, presentamos TauRieL, un nuevo método basado en Deep Reinforcement Learning (DRL) para problemas combinatorios. La idea central que está detrás de la combinación de DRL y problemas combinatorios, es aplicar las capacidades de predicción del aprendizaje de refuerzo profundo y el uso de la universalidad de los problemas de optimización combinatoria para explorar métodos predictivos de propósito general. TauRieL utiliza una arquitectura DRL inspirada en el actor-crítico que se adapta a redes feedforward. Además, TauRieL realiza el entrenamieton en línea que unifica el entrenamiento y la exploración espacial de los estados. Los experimentos muestran que TauRieL puede generar soluciones dos órdenes de magnitud más rápido y funciona con un 3% de precisión en comparación con el estado del arte en DRL aplicado al problema del viajante mientras busca el recorrido más corto. Además, presentamos que TauRieL puede adaptarse al problema de la Mochila. Con una modificación específica muy mínima del problema, TauRieL puede superar a una heurística codiciosa de Knapsack Problem.Postprint (published version

    Advanced analytics through FPGA based query processing and deep reinforcement learning

    Get PDF
    Today, vast streams of structured and unstructured data have been incorporated in databases, and analytical processes are applied to discover patterns, correlations, trends and other useful relationships that help to take part in a broad range of decision-making processes. The amount of generated data has grown very large over the years, and conventional database processing methods from previous generations have not been sufficient to provide satisfactory results regarding analytics performance and prediction accuracy metrics. Thus, new methods are needed in a wide array of fields from computer architectures, storage systems, network design to statistics and physics. This thesis proposes two methods to address the current challenges and meet the future demands of advanced analytics. First, we present AxleDB, a Field Programmable Gate Array based query processing system which constitutes the frontend of an advanced analytics system. AxleDB melds highly-efficient accelerators with memory, storage and provides a unified programmable environment. AxleDB is capable of offloading complex Structured Query Language queries from host CPU. The experiments have shown that running a set of TPC-H queries, AxleDB can perform full queries between 1.8x and 34.2x faster and 2.8x to 62.1x more energy efficient compared to MonetDB, and PostgreSQL on a single workstation node. Second, we introduce TauRieL, a novel deep reinforcement learning (DRL) based method for combinatorial problems. The design idea behind combining DRL and combinatorial problems is to apply the prediction capabilities of deep reinforcement learning and to use the universality of combinatorial optimization problems to explore general purpose predictive methods. TauRieL utilizes an actor-critic inspired DRL architecture that adopts ordinary feedforward nets. Furthermore, TauRieL performs online training which unifies training and state space exploration. The experiments show that TauRieL can generate solutions two orders of magnitude faster and performs within 3% of accuracy compared to the state-of-the-art DRL on the Traveling Salesman Problem while searching for the shortest tour. Also, we present that TauRieL can be adapted to the Knapsack combinatorial problem. With a very minimal problem specific modification, TauRieL can outperform a Knapsack specific greedy heuristics.Hoy en día, se han incorporado grandes cantidades de datos estructurados y no estructurados en las bases de datos, y se les aplican procesos analíticos para descubrir patrones, correlaciones, tendencias y otras relaciones útiles que se utilizan mayormente para la toma de decisiones. La cantidad de datos generados ha crecido enormemente a lo largo de los años, y los métodos de procesamiento de bases de datos convencionales utilizados en las generaciones anteriores no son suficientes para proporcionar resultados satisfactorios respecto al rendimiento del análisis y respecto de la precisión de las predicciones. Por lo tanto, se necesitan nuevos métodos en una amplia gama de campos, desde arquitecturas de computadoras, sistemas de almacenamiento, diseño de redes hasta estadísticas y física. Esta tesis propone dos métodos para abordar los desafíos actuales y satisfacer las demandas futuras de análisis avanzado. Primero, presentamos AxleDB, un sistema de procesamiento de consultas basado en FPGAs (Field Programmable Gate Array) que constituye la interfaz de un sistema de análisis avanzado. AxleDB combina aceleradores altamente eficientes con memoria, almacenamiento y proporciona un entorno programable unificado. AxleDB es capaz de descargar consultas complejas de lenguaje de consulta estructurado desde la CPU del host. Los experimentos han demostrado que al ejecutar un conjunto de consultas TPC-H, AxleDB puede realizar consultas completas entre 1.8x y 34.2x más rápido y 2.8x a 62.1x más eficiente energéticamente que MonetDB, y PostgreSQL en un solo nodo de una estación de trabajo. En segundo lugar, presentamos TauRieL, un nuevo método basado en Deep Reinforcement Learning (DRL) para problemas combinatorios. La idea central que está detrás de la combinación de DRL y problemas combinatorios, es aplicar las capacidades de predicción del aprendizaje de refuerzo profundo y el uso de la universalidad de los problemas de optimización combinatoria para explorar métodos predictivos de propósito general. TauRieL utiliza una arquitectura DRL inspirada en el actor-crítico que se adapta a redes feedforward. Además, TauRieL realiza el entrenamieton en línea que unifica el entrenamiento y la exploración espacial de los estados. Los experimentos muestran que TauRieL puede generar soluciones dos órdenes de magnitud más rápido y funciona con un 3% de precisión en comparación con el estado del arte en DRL aplicado al problema del viajante mientras busca el recorrido más corto. Además, presentamos que TauRieL puede adaptarse al problema de la Mochila. Con una modificación específica muy mínima del problema, TauRieL puede superar a una heurística codiciosa de Knapsack Problem

    Architectural Principles for Database Systems on Storage-Class Memory

    Get PDF
    Database systems have long been optimized to hide the higher latency of storage media, yielding complex persistence mechanisms. With the advent of large DRAM capacities, it became possible to keep a full copy of the data in DRAM. Systems that leverage this possibility, such as main-memory databases, keep two copies of the data in two different formats: one in main memory and the other one in storage. The two copies are kept synchronized using snapshotting and logging. This main-memory-centric architecture yields nearly two orders of magnitude faster analytical processing than traditional, disk-centric ones. The rise of Big Data emphasized the importance of such systems with an ever-increasing need for more main memory. However, DRAM is hitting its scalability limits: It is intrinsically hard to further increase its density. Storage-Class Memory (SCM) is a group of novel memory technologies that promise to alleviate DRAM’s scalability limits. They combine the non-volatility, density, and economic characteristics of storage media with the byte-addressability and a latency close to that of DRAM. Therefore, SCM can serve as persistent main memory, thereby bridging the gap between main memory and storage. In this dissertation, we explore the impact of SCM as persistent main memory on database systems. Assuming a hybrid SCM-DRAM hardware architecture, we propose a novel software architecture for database systems that places primary data in SCM and directly operates on it, eliminating the need for explicit IO. This architecture yields many benefits: First, it obviates the need to reload data from storage to main memory during recovery, as data is discovered and accessed directly in SCM. Second, it allows replacing the traditional logging infrastructure by fine-grained, cheap micro-logging at data-structure level. Third, secondary data can be stored in DRAM and reconstructed during recovery. Fourth, system runtime information can be stored in SCM to improve recovery time. Finally, the system may retain and continue in-flight transactions in case of system failures. However, SCM is no panacea as it raises unprecedented programming challenges. Given its byte-addressability and low latency, processors can access, read, modify, and persist data in SCM using load/store instructions at a CPU cache line granularity. The path from CPU registers to SCM is long and mostly volatile, including store buffers and CPU caches, leaving the programmer with little control over when data is persisted. Therefore, there is a need to enforce the order and durability of SCM writes using persistence primitives, such as cache line flushing instructions. This in turn creates new failure scenarios, such as missing or misplaced persistence primitives. We devise several building blocks to overcome these challenges. First, we identify the programming challenges of SCM and present a sound programming model that solves them. Then, we tackle memory management, as the first required building block to build a database system, by designing a highly scalable SCM allocator, named PAllocator, that fulfills the versatile needs of database systems. Thereafter, we propose the FPTree, a highly scalable hybrid SCM-DRAM persistent B+-Tree that bridges the gap between the performance of transient and persistent B+-Trees. Using these building blocks, we realize our envisioned database architecture in SOFORT, a hybrid SCM-DRAM columnar transactional engine. We propose an SCM-optimized MVCC scheme that eliminates write-ahead logging from the critical path of transactions. Since SCM -resident data is near-instantly available upon recovery, the new recovery bottleneck is rebuilding DRAM-based data. To alleviate this bottleneck, we propose a novel recovery technique that achieves nearly instant responsiveness of the database by accepting queries right after recovering SCM -based data, while rebuilding DRAM -based data in the background. Additionally, SCM brings new failure scenarios that existing testing tools cannot detect. Hence, we propose an online testing framework that is able to automatically simulate power failures and detect missing or misplaced persistence primitives. Finally, our proposed building blocks can serve to build more complex systems, paving the way for future database systems on SCM

    Toward timely, predictable and cost-effective data analytics

    Get PDF
    Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely, predictable and cost-effective analytical processing of such large data sets in order to extract deep insights is now a key ingredient for success. Traditional database systems (DBMS) are, however, not the first choice for servicing these modern applications, despite 40 years of database research. This is due to the fact that modern applications exhibit different behavior from the one assumed by DBMS: a) timely data exploration as a new trend is characterized by ad-hoc queries and a short user interaction period, leaving little time for DBMS to do good performance tuning, b) accurate statistics representing relevant summary information about distributions of ever increasing data are frequently missing, resulting in suboptimal plan decisions and consequently poor and unpredictable query execution performance, and c) cloud service providers - a major winner in the data analytics game due to the low cost of (shared) storage - have shifted the control over data storage from DBMS to the cloud providers, making it harder for DBMS to optimize data access. This thesis demonstrates that database systems can still provide timely, predictable and cost-effective analytical processing, if they use an agile and adaptive approach. In particular, DBMS need to adapt at three levels (to workload, data and hardware characteristics) in order to stabilize and optimize performance and cost when faced with requirements posed by modern data analytics applications. Workload-driven data ingestion is introduced with NoDB as a means to enable efficient data exploration and reduce the data-to-insight time (i.e., the time to load the data and tune the system) by doing these steps lazily and incrementally as a side-effect of posed queries as opposed to mandatory first steps. Data-driven runtime access path decision making introduced with Smooth Scan alleviates suboptimal query execution, postponing the decision on access paths from query optimization, where statistics are heavily exploited, to query execution, where the system can obtain more details about data distributions. Smooth Scan uses access path morphing from one physical alternative to another to fit the observed data distributions, which removes the need for a priori access path decisions and substantially improves the predictability of DBMS. Hardware-driven query execution introduced with Skipper enables the usage of cold storage devices (CSD) as a cost-effective solution for storing the ever increasing customer data. Skipper uses an out-of-order CSD-driven query execution model based on multi-way joins coupled with efficient cache and I/O scheduling policies to hide the non-uniform access latencies of CSD. This thesis advocates runtime adaptivity as a key to dealing with raising uncertainty about workload characteristics that modern data analytics applications exhibit. Overall, the techniques introduced in this thesis through the three levels of adaptivity (workload, data and hardware-driven adaptivity) increase the usability of database systems and the user satisfaction in the case of big data exploration, making low-cost data analytics reality

    Standardized development of computer software. Part 1: Methods

    Get PDF
    This work is a two-volume set on standards for modern software engineering methodology. This volume presents a tutorial and practical guide to the efficient development of reliable computer software, a unified and coordinated discipline for design, coding, testing, documentation, and project organization and management. The aim of the monograph is to provide formal disciplines for increasing the probability of securing software that is characterized by high degrees of initial correctness, readability, and maintainability, and to promote practices which aid in the consistent and orderly development of a total software system within schedule and budgetary constraints. These disciplines are set forth as a set of rules to be applied during software development to drastically reduce the time traditionally spent in debugging, to increase documentation quality, to foster understandability among those who must come in contact with it, and to facilitate operations and alterations of the program as requirements on the program environment change
    • …
    corecore