@ https://ntrs.nasa.gov/search.jsp?R=19760023761 2020-03-22T13:14:35+00:00Z

STANDARDIZED

DEVELOPMENT

: OF
COMPUTER

- SOFTWARE

{NASA-CR-148762) STANDARDIZED DEVELOPHENﬁ ,
OF COMPUTER SOFIWARE. PART 1:, METHODS (Jet
i Propulsion Lab.) +.0 ¢ 7 toi. . CSCL 09B}

p— o M A s A - —p—

-
r N76-30848

gpclas
G3/61: 50849

PART 1
| METHODS

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

.S. DEPARTMENT OF GOMMERCE
-8 SPRINGFIELD, VA. 22161

Jet Propulsion Laboratory #Cahforma Institute of Technology e Pasadena, California



STANDARDIZED
. DEVELOPMENT
' OF
COMPUTER
SOFTWARE

Robert C. Tausworthe

Jet Propulsion Laboratory'sCatiforma Insiifute of Technology e Pasadena, California



This material was prepared by the Jet Propulsion Laboratory under
Contract No. NAS 7-100, National Aeronautics and Space Administration.

JPL 5P 43-29 July 1976



PREFACE

This monograph started as a set of rules given piecemeal as standards to
a team developing a conversational, incrementally-compiled, machine-
independent version of the Dartmouth BASIC language for the Jet
Propulsion Laboratory, called MBASIC. (Originally, “M” stood for
“management-oriented”, indicating its intended set of users; however, its
great flexibility and ease of use has since won over many scientific and
engineering users as well.) The first draft was a mere collection of the first
sketchy set of rules, along with some background material on structured
programming,

As the design progressed, the emphasis expanded from the design of a
language processor to a project developing software methodology using the
MBASIC development as a testbed activity. New rules were supplied as
necessary and old ones had to be revised or discarded. Some of the ones
that sounded so good when first imposed had effects just opposite to what
was desired. The MBASIC design and documentation standards underwent
several complete iterations, each under new rules to calibrate their
effectiveness. The working drafts of this monograph were in constant
revision to maintain a current set of standards for the project.

Further expansions of the working drafts were made to include much
tutorial material, since 1 used portions of the text as lecture topics for
graduatelevel computer science classes at West Coast University and for
seminars in software standards at the Jet Propulsion Laboratory.
Interactions with the students and professional programmers with widely
different backgrounds proved to be very enlightening.

I realize that some who have already “learned programming” may find
fault with what they read here. I hope their objections are mostly with how
the rules impact their personal programming style. Style is a reflection of a
programmer’s personal programming habits and his own preferences in



iv  Preface

the way he does things. If the rules given here don’t work, that is another
matter,

What I have attempted to do is to merge individual disciplines and good
practices into a methodology that neither destroys personal style nor
reduces motivation and involvement. The given set of rules is the base for a
consistent and effective methodology; but there may be other equally
effective and consistent methodologies. I do not allege to profess the only
way toward improved software development—just one that works.

The monograph does not reflect, nor is it meant to reflect, exact
standards or practices now in effect at JPL; however, much of the material
has formed the basis for Deep Space Network software guidelines and
standard practices currently in effect.

Several individuals at the Jet Propulsion Laboratory have reviewed the
drafts and many bave provided rules, snggestions, and other material. I
have expected such criticism, and welcomed constructive material by any
who cared to supply it. I have tried to be open to all correct, potentially
worthwhile ways to improve the development of software and to build
these into a uniform coordinated methodology for programming, a set of
rules universally sound.

I offer one apology at the outset—for my literary style. About half-way
through writing this monograph, I was suddenly surprised to learn that 1
often referred to software development personnel in the masculine. Lest I
be accused of male chauvanism, let me attempt to defend myself by
explaining that the references appear thus because I tended to place
myself in the roles of these individuals. In writing, I also tended to be
addressing myself, rather than any envisioned reader or actual software
development person. By the time I realized I might be taken to task for
this by distaff readers, the style was set and writing was too far along—
another case where a software error was discovered too late to change the
product without having major schedule and economic impact!

I would like particularly to acknowledge the aid given to me in the form
of encouragement, ideas, criticisms, reviews, questions, and informative
discussions by Walter K. Victor, Mahlon Easterling, Robert Holzman,
James Layland, Robert Chamberlain, Edward Posner, Daniel Preska,
Richard Morris, and Henry Kleine of the Jet Propulsion Laboratory, and
Daniel Lewis, Frank Bracher, John MacMillan, Richard Jaflee, and Howard
Mayberry of National Information Systems, Inc. Also, I want to express my
appreciation to Margaret Seymour for typing the many drafts and to Shozo
Murakami for editorial assistance on this final version.



Preface v

Finally, I wish to thank those who have attended the many seminars and
classes given from this work during its various stages of completion, many
insights into the secrets of software engineering across a broad programmer
base occurred to me as the result of these classroom discussions.

Robert C. Tausworthe



Iv.

i’Pr‘ei:eilmg@paganhlank [N 1Ty

t.,'—‘i

CONTENTS
PART 1

INTRODUCTION .

1.1 THE NEED FOR SOFTWARE STANDARDS
1.2 SOFTWARE DEVELOPMENT
1.3 ORIENTATION.

FUNDAMENTAL PRINCIPLES AND CONCEPTS

21 SYSTEMS, PROGRAMS, AND PROCESSCRS .

22 STRUCTURES . . .

23 SOFTWARE DEVELOPMENT

2.4 HIERARCHIES .

25 CONCEPT HIERARCHIES .

2.6 THE TOP-DOWN PRINCIPLE . .

2.7 THE CONCURRENT DOCUMENTATION
PRINGIPLE

28 SUMMARY

SPECIFICATION OF PROGRAM BEHAVIOR

3.1 SOFTWARE REQUIREMENTS
3.2 [IMPLIED REQUIREMENTS .

3.3 CREATING THE SOFTWARE REQUIREMENT .

3.4 SOFTWARE FUNCTIONAL DEFINITION .

3.5 INTERACTION BETWEEN REQUIREMENTS
AND DEFINITION ACTIVITIES .

3.6 INFORMATION-FL.OW DIAGRAMS .

3.7 SUMMARY

PROGRAM DESIGN

4.1 DESIGN CONSIDERATIONS .

4.2 TOP-DOWN PROGRAM DEVELOPMENT
4.3 PROGRAM ALLOCATIONS . .

44 MODULARITY IN PROGRAM DES]GN
45 ESTABLISHING DESIGN PRIORITIES .
4.6 SUMMARY

vii

) I ds)

10
13
17
19
20
29

32
39

41

42
44
45
46

49
50
53

55

56
59
65
76
89
90



viii

VL.

Vil

Viil.

Contents

STRUCTURED NON-REAL-TIME PROGRAMS

5.1
5.2
5.3
5.4

5.5

5.6

5.7
5.8

STRUCTURED PROPER FPROGRAMS

HIERARCHIC EXPANSION OF PROGRAM DETAIL .

PROGRAM CORREGCTNESS . .
STRUCTURING UNSTRUCTURED PROPER
PROGRAMS . .

PROGRAM STRUCTURES FOR NON PROPER
PROGRAMS .

ABNORMAL TERMINATIONS OF STRUGTURED
PROGRAMS = o

LABELING FLOWCHART EXITS

SUMMARY

REAL-TIME AND MULTIPROGRAMMED
STRUCTURED PROGRANMS

6.1
6.2
6.3
6.4
6.5
6.6

ATTRIBUTES OF MULTIPROGRAMS . . .
MULTIPROGRAM DESIGN REQUIREMENTS .
SYNCHRONIZATION METHODS . .
CONCURRENT PROGRAM DESIGN METHODS
CONCURRENT STRUCTURE DESIGN .
SUMMARY

CONTROL-RESTRICTIVE INSTRUCTIONS FOR
STRUCTURED PROGRAMMING (CRISP)

7.1
7.2
7.3
7.4
7.5
7.6

THE CRISP CONCEPT .
A CRISP.PREPROCESSOR .
CRISP CODING

CRISP AS A PROCEDURE DESIGN LANGUAGE .

DESIGN DOCUMENTATION IN CRISP .
SUMMARY

DECISION TABLES AS PROGRAMMING AIDS .

8.1
8.2

DECISION TABLE TYPES

ADDITIONAL ASPECTS OF DECISION TABLES :

8.3 APPLICATION OF DECISION TABLES

99

09
113
117

120
140

153
158
160

165

166
177
186
189
206
214

217

218
227
231
242
244
246

249

250
253
256



IX.

Contents

8.4 THE USE OF DECISION TABLES [N
PROGRAMMING
8.5 SUMMARY

ASSESSMENT OF PROGRAM CORRECTNESS

9.1 FORMAL PROOFS . .

9.2 COMPUTER-AIDED ASSESSMENT OF
PROGRAM CORRECTNESS . . .

0.3 ASSESSING REAL-TIME PROGRAM
CORRECTNESS . .

9.4 CONFIDENCE LIMITS FOR VEHIFICAT[ON
TESTING

9.5 SUMMARY

PROJECT ORGANIZATION AND MANAGEMENT

10.1 SOFTWARE TEAM PRODUCTIVITY . .

10.2 THE SOFTWARE DEVELOPMENT TEAM .

10.3 CONDUCT OF THE PROJECT . . .

10.4 SOFTWARE PRODUCTION MANAGEMENT
AND CONTROL .. .

10.5 MANAGING THE SOFTWARE DEVELOPMENT .

10.6 DESIGN AND PROGRESS REVIEWS . .

10.7 EVALUATION OF THE SOFTWARE AND
DEVELOPMENT TEAM .

10.8 SUMMARY

REFERENCES
INDEX

iX

271
284

287

288

298

306

308
316

321

322
329
335

340
346
355

360
361

365
373



X Contents

PART 1l

CHAPTERS

XL
XIl.
Xl
XIV.
XV.
XVL.
XVIL.

Software Requirements and Definition Standards
Pregram Design and Specification Standards

Program Coding Standards
Development Testing Standards

Quality Assurance Standards

Levels of Documentation

A Standard Program Production System

APPENDICES

ZErAc~.XTOMMOOD>

Glossary of Terms and Abbreviations
ANSI Standard Flowchart Symbols
Software Requirements Document Topics
Software Design Definition Outline
Software Specification Document Outline
User Instruction Manual Topics

CRISP Syntax and Structures
Development Project Notebook Contents
Operations Manual Contents

Software Test Report Contents
Maintenance Manual Contents

Sample Programs for Project Management
Sampie Program Design Documentation
Useful Standard Forms



PART
METHODS



. INTRODUCTION

A computer system is a rigid, dispassionate machine; it is designed and
built to react in defimte, microscopically precise ways to programmed
commands. The program it executes comprises a large collection of atomic
instructions organized into macroscopic algorithms and computational
procedures in performance of a desired task. The differences between a
hoped-for behavior and the actual are evidences of human failures to
instruct the computer properly. Nevertheless, such failures are referred to
as “errors in the program” or “bugs”, and justly so—the servant has
executed but cannot comprehend any reasoning behind the instructions
given it. Moreover, it has constrained the human capacity to communicate
in doing even this much, as it has required instructions in its own
programming language, rather than in more human terms.

Computer programs have thus, from the very first been subject to error—
missteps in coding committed by the programmer—and then not discovered
until after the program’s operation can be examined and seen to be in
error. The cause of such errors may then be either obvious, very elusive, or
somewhere in between. In any case, the diagnosis comes after the fact, as
the computer proceeds at such a pace as to make concurrent diagnoses out
of the question. Once diagnosed, any subsequent {trial) corrections must be

1



2 Introduction [CHAP. 1

rerun to validate the proper response, at extra expense. The human
proclivity to err in programming 1s probably the singularly most
prominent, overriding factor against producing economical, reliable
software.

Because the computer lacks judgement itself and responds to direction
totally ignorant of the task to be done, programmers attempt to build in
some measure of quasi-judgement by instructing the device to perform
certain tests on input and to check for known- or probable processing
anomalies. They may instruct the computer, based on such information, to
take some less abrasive action than complete failure. Such programming
practices are often called “wser forgiving”, “error insensitivity”, or
“defensive”. Regardless of the terminology, such practices are attempts to
establish the proper master/servant relationship, whereby the machine
adapts to the human, rather than vice-versa.

R. Holzman, a colleague at JPL, once remarked (1972) “When you can
tell a computer, ‘Oh, you know what I meanl’—and it does—then that’s a
computer langnage!” The industry, of course, may never attain that goal of
man/machine communication, but it is reaching, In its reaching, it has
made several significant progressions to define methods, procedures, and
standards for use by programmers to reduce the number and severity of
their “program errors”.

Among the first significant developments were the inventions of higher-
level languages, language processors, and the provisions for programmers
to annotate their programs with some form of rationale for their own
benefit. In addition, novice programmers learned to draw flowcharts, as a
prelude to coding, as a means of developing their skill, and as a method for
designing the program procedure—the algorithm scoping the task. But
programmers still made errors, at about the same rate per instruction as
they had previously. The only difference was that as many errors did not
reach the run-time stage, and each instruction did more in a higherlevel
langumage. Still more higher-level langnages have been developed; until
today, there are probably as many programming languages as there are
natural langoages.

At some point, programmers, or their supervisors, or their customers,
recognized that, even though a program might be working, no one could
understand 7ot it was working well enough to make changes without
introducing a lot of side-effect errors, or how well it was working enough
to assess the programming quality. So the idea, “document what you have
coded so I can understand it”, sprang up. Managerial seminars developed
methods to cajole and coerce [1,2] designers, programmers, coders, ¢f al.,
t0 document. The necessity to document [3] was evident to all who had fo



Sec. 1.1] The Need for Software Standards 3

read and maintain the software, but dreaded by the documentor.
Flowcharting was a nuisance and rarely matched the code, regardless
which was produced first. Annotations of the code were in a similar state,
as were narrative descriptions. Since the computer cannot execute a
flowchart, narrative, or annotation anyway (only the code), and the human
was just as likely to err in describing his code as he was in coding it, other
systems emerged: self-documenting code, automatic flowcharting, standard-
ized documentation formats, etc. Computer technology was beginning to
evolve into an engineering discipline.

1.1 THE NEED FOR SOFTWARE STANDARDS

Years ago, the cost of computing was largely in machine costs; now the
larger portion is paid to people developing, using, and maintaining
programs. In fact, the trend in computing costs js the complete dominance
of manpower costs over machine costs.

Software is big business; the indirect costs caused by failures to meet
schedule or performance requirements often exceed the costs of the
software itself, because software development always seems to be on the
“critical path” of a system development. Boehm [4] suggested the following
prescription for software headaches:

Get software off the critical path in system development.

o o

Increase software productivity.

Improve software management,

e

Get an earlier start.

@

Make software responsive to actual user needs.

th

Inerease software reliability.

The present monograph is an attempt to provide formal disciplines for
increasing the probability of securing software that is characterized by high
degrees of initial correctness, readability, and maintainability, and. to
promote practices that aid in the consistent and orderly development of a
total software system within schedule and budgetary constraints. These
disciplines and practices are set forth as a set of rules to be applied during
software development to eliminate (this is the goal)—or at least to
drastically reduce—the time spent debugging the code, to increase
understandability among those who come in contact with it—especially
managers, who must often make decisions relative to competing resources
(such as budget, schedule, execution speed, memory size, etc.)—and to



4 Introduction [CHAP. I

facilitate operation and alteration of the program as the requirements or
program environment evolves.

To be effective, 1 recognize that a set of standards must not be imposed
so much as adopted. But once a set is adopted, its rules should be enforced.
Needless to say, some of the rules I give are broad and, therefore, open to
interpretation. I have tried to make these as specific as I could without
destroying their general applicability. But some vagueness may yet remain.

One may question whether the strict adherence to definition, design,
production, testing, and documentation rules hamper programmer
creativity or decrease his motivation and involvement; this has not, in my
experience, turned out to be the case. Programming methodology tends to
be rather scantily tanght in computer-science courses in the universities,
What methodology a programmer possesses he may have bad to learn
largely for himself, tutored by his own coding, discovered osmotically from
reading programs otheis have written, or found through discussion with his
peers. Programmers, as any problem-solvers, generally welcome a
workable, well-disciplined approach to problem solving, so they do not
have to re-invent the wheel, so they know what is expected of them and
how they will be judged on their performance, so they know what level of
reporting is required, and so they can really get into the design and make a
clean, good, well-operating system.

Good standards enforce themselves. Once the programmer recognizes
that his own performance is improved by standardized methods, he is its
foremost proponent. When he saddenly realizes that he is capable of
understanding a program written by someone else, he is convinced forever.
I have personally seen instances where experienced programmers have at
first rebelled at the entire concept, but once forced, they recognized the
benefits derived, assisted in further development, and helped enforce
standards in their own organizations.

The reports from industry are equally encouraging. Although productiv-
ity indices tend to be highly variable across wide ranges of applications and
across software development personnel, nevertheless, analysis of quantita-
tive data [5] indicates that the standards forming the basis of this
monograph generally produce better than 50% improvement in overall
project productivity. This overall productivity figure includes analysis,
design, testing, management, support, and documentation, in addition to
coding and debugging. Moreover, the figures in support of this
improvement have been computed in terms of delivered code—the
incidental effort spent in developing code used to support the production
and code, which later had to be replaced, have not been counted.



Sec.1.2] Software Development 5

1.2 SOFTWARE DEVELOPMENT

At the outset of a programming project, there are only a problem
(program requirement) and a programming language in which the solution
to that problem is to-be stated. In between, there is the gap to be bridged
by the development process.

The actual creative process which goes on in a program designer’s mind
is certainly not well understood. It probably rambles from broad concept to
details and completeness, and, perhaps on occasion, from detail to the
broader concept.

When writing a paper or preparing a talk, one first jols down notes, then
an ouiline of the material to be covered. After the outline is expanded by
way of a few iterations, the narrative is written. Many revisions are usually
necessary if the paper or speech is to be of any significance.

A piece of software probably should not be much different in the way it
is created. Successive refinements and revisions of a program are going to
be necessary if it is to be of high quality.

Moreover, the revision process in software development is unavoidable.
People cannot think of everything, in the right order, correctly, in one pass
(Figure 1-1). One can hope, however, that there are procedures that tend
to let the creative process take a natural course,.but yet minimize the
probability that, at some advanced stage of development, one must “throw
out the whole thing and start all over from scratch.”

One of the most costly ways to develop software is to begin the
production phase before the program definition and design have reached
an adequate state of completion. A small change in the program definition,
for example, can avalanche down through the work done, resulting in
suboptimal design, patched programs and code, introduction of undesirable
side effects, and excessive debugging time.

The pressure of a schedule and the awareness that a great deal of coding
has to be done cause many managers to let the design or coding begin,
anyway, just to get started on a job that is obviously huge. Hence, the
process of design is begun throughout the system at the very bottom before
the design has been properly thought out and precisely defined at the top.
A classical “bottom-up” design emerges, leading to difficulty in integrating
the resulting components in a system.

Yet cooperative interaction between the definition, design, and
production activities associated with developing a program can be
mutually beneficial when properly interfaced. The proper interface in this



6 Introduction [CHAP. 1

T PROGRAMMING © i 3
' . LANGUAGE | - 'no" ™7 Sy

P . I

Figure 1-1. Bridging the software gap

context is an organization of the tasks to permit revisions and refinements
without requiring extensive rework.

The procedures of this monograph have evolved from the belief that
successive refinement of a concept by adding more and more detail is a
less costly, more certain discipline than refinement by succesive alterations
of the original concept.

One principle by which program concepts evolve in a natural, structured
way emerged from Dijkstra’s work in the THE Multiprogramming System
[6]. He conceived that a program could be organized into hierarchic levels
of support. The principle, known as levels of abstraction {sce Sec. 2.5),
formed the basis for what has become known since as structured



Sec. 1.3] Orientation 7

programming, the subject of Chapter 5. The augmentation of that same
basic method into a uniform discipline for software development is the
substance of this monograph.

1.3 ORIENTATION

This work, while getting down to a very fundamental tutorial level in
many areas, is not aimed at being a course in programming fundamentals.
realize that one could have no better success in impressing a set of rules on
programmers than to get at them during their very earliest experiences in
machine computation, teaching them the method before their biases begin
to prevail. However, my aim is to provide people who must cope with the
development of large programs an organized methodology for accomplish-
ing their tasks. Many such people obviously may have already had software
experience.

Neither do I want to get into the area of the complexity of computation,
although I recognize that software designers need to be aware that there
are limits of computability. But I believe that the extent to which a human
being is capable of producing a correct program is primarily limited by his
mental capacity to comprehend and retain, rather than by computational
limits. The intricacy with which the various parts of a program interact,
the sheer number of such interactions, the organization and methodology
which produces the program, and the clarity, completeness, and
information-retrievability of the working documentation which bolds the
rationale for those parts of the program already written and the intentions
for those that will follow, are all important factors.

This work, then, addresses these factors by structuring the ways in which
programs may interact, by organizing the development of the software into
workable tasks, and by providing enhancements to mental retention by
means of clear, worthwhile documentation. The methods given are not
100% foolproof, nothing ever is. The procedures and standards are meant to
be aids toward increasing the probability of earlier, less expensive success
than one would otherwise achieve.

The rules given here are based on mathematical theorems and program-
organization methods intended to motivate programmer concentration,
help avoid errors of carelessness, and display the design process as a set of
procedures that split the development process into increasingly more
detailed program specifications, with checks and balances. The methodol-
ogy represents programming as a top-down, modular, structured, hierarchic
function-to-algorithmic-realization synthesis. Besides design rules, there are



8 Introduction [CHAP. 1

rules for the function, level, content, and format of documentation, rules
for the management of software projects, rules for how progress is to be
monitored- and evaluated, and rules for defining and assessing program
correctness and quality.

The rules are meant to provide a precise, disciplined framework for
achieving consistency, compatibility, correctness and control of complexity
in the software definition, design, documentation, and implementation. The
rules are oriented toward that middle ground between pure, extreme
theory and pure, extreme practice, and are directed toward obtaining a
quality-controlled product under economic and schedule considerations.

Because of its content and orientation, this monograph could have
merely been titled “Software Engineering”. Engineering, to me, in any
context means solving problems with given constraints in an organized,
responsible, professional way, and that is certainly the intended orientation
of this work. Anything less than engineering is tinkering, however
grandiose. Those involved in the software tasks that I shall be describing
later are truly engineers: software design engineers, software implementa-
tion engineers, software quality-assurance engineers, and so on. The idea
is to adapt good engineering practices to the development of software.

Most of what the reader will find in the coming chapters is not new.
Many, in fact, will claim they have been using some of the principles for
years. What I bave tried to do is take individual good ideas and bind them
all together into a uniform, coordinated discipline of ideas that are still
good when combined.

The monograph focuses primarily on software development standards
within, or for, technically-oriented organizations, although many, if not all,
of the rules and methods applyto other orientations as well.



Il. FUNDAMENTAL PRINCIPLES AND
CONCEPTS

As I stated in the first chapter, the degree to which concepts in this
monograph are “fundamental” is based on my intended audience: those
who have some experience in software development and are looking for
methods to enhance their effectiveness. The purpose of this chapter, then,
is to present basic principles for software development and to define some
commonty used terms and concepts the way I mean to use them. I do this,
not to be picky about existing definitions, or even rigorously precise in the
ones L give, but to be as clear as possible in exposing the material to come.

By and large I have used terms that agree with or generalize the ANSI
standard vocabulary definitions [7] for information processing. In -some
cases, however, I have restricted the ANSI definitions to a narrower or
slightly different context.



10 Fundamental Principles and Concepts {CHAP. 2

2.1 SYSTEMS, PROGRAMS, AND PROCESSORS

First, let me define what will be meant in this monograph by references
to such general terms as “system,” “program,” and “processor;” all of
which could be, and many times have been, used interchangeably.

A software system is an organized collection of procedures united by
regulated interaction to accomplish a specific set of functions. The software
system consists of two basic subsystems: the operating subsystem and the
application subsystem. The operating subsystem (often called the
operating system, or executive) consists of a mumber of parts that interface
the applications subsystem to the computer resources, such as input/
output (I/0) media, storage media, supervision and execution management,
ete. The application subsystem is that part of the computer software
performing the body of user-oriented functions. .

A program—more correctly, a computer program—is a series of
instructions or statements, in a form acceptable to a computer, prepared to
achieve a certain result; iie., to perform a certain function within a
subsystem. From time to time, I will refer to a program as a system, to
emphasize its characteristics as a functional unit and to de-emphasize its
sequential pature.

In software, a processor usually refers to a computer program that
includes the compiling, assembling, translating and related functions for a
specific programiming language, such as a COBOL processor, a FORTRAN,
processor, etc. The term is sometimes used in a looser context to refer to
programs that process any set of data. In hardware, the term is synonymous
with daie processor, a device capable of performing the execution of a
systematic sequence of operations on data, such as the Central Processing
Unit (or CPU}.

A multiprocessor is a computer that employs two or more processing
units (CFUs, I/0 channels, ete.) under integrated control. By multiprocess-
ing, 1 shall refer to the (perhaps simultaneous) execution of separate
sequences of actions by sach multiple hardware processors. I shall say that
a single processor is muliiprogrammed if it executes two or more
programs or program modules by interleaving them in time. It is even
possible for a multiprocessor to be multiprogrammed, in which case,
several programs share each of several processors. Both multiprocessing
and multiprogramming are capable of concurrent execution of programs,
and I shall refer to both as concurrent processing.



Sec. 2.1] Systems, Programs, and Processors 11

2.1.1 Parts of a Program

Identifiable subportions of a program also fitting the “program”
definition will be referred to as modules. A routine is an ordered set of
instructions (a module) that may have some general or frequent use. In this
monograph, the words routine and subioutine will be used interchange-
ably, and will always refer to modules that, when called, return after
execution to their point of call. The term stbprogram, on the other hand,
will always refer to a module that mvariably is only invoked at one point in
the program.

Subprograms and subroutines are modular subdivisions of-a program
having specific interfaces or connections to other parts of a program. The
interface of a meodule is defined as the set of assumptions that the
surrounding program makes about that module. Modules have control
interfaces via their entry and exit points, data interfaces via arguments or
shared data structures (some of which may be control data), and interfaces
that provide services between modules.

An operation is defined as a finite-time execution performing a time-
independent function based on its input. By this definition, every non-real-
time program, as well as each instruction within that program, can be
viewed as an operation. A sequence of operations performed one at a time
constitute a process; two processes are then said to be concurrent if their
operations can either overlap or interleave arbitrarily in time. Two
concurrent processes are said to be parallel when operations in the
processes occur simultaneously (within a predefined time-divisibility
convention), shown in Figure 2-1.

PROCESS 1 PROCESS 2
T W W WV e e
TIME l OPERATION OPERATION

OPERATION OPERATION
ECOMPUTATIGNS > { COMPUTATIONS g

QPERATION

1

Figure 2-1. Operations, processes, computations, and resources

OPERATION

CONCURRENT (PARALLEL) PROCESSES




12  Fundamental Principles and Concepts [CHAP. 2

The results of processes are computations applied to resources. The
term “resource” is an abstraction for any set of system features, such as
CPUs, storage, files, magnetic tapes, printers, etc. The condition of the
entire set of resources is the computer state; that part of a computer’s
storage accessed by a program is its data space.

Computations are characterized by accuracy, which means the degree
to which it is free from error—the degree to which it conforms to truth or
to a rule. Numeric accuracy contrasts with precision, which represents the
degree of discrimination with which a quantity is stated. A three-digit
numeral discriminates among 1000 possibilities and, therefore, is less
precise than a four-digit numeral, which discriminates among 10,000
possibilities. Nevertheless, a properly computed three-place numeral might
be more accurate than an improperly computed four-place numeral.

A prescribed set of well-defined rules or processes for the solution of a
problem in a finite number of steps is an algorithm. Algorithms ‘have a
stated function; ie., a speeiﬁc purpose, or characteristic action. An
algorithm is also generally expected to be effective. This definition means
that all of the operations to be performed in the algorithm must be
sufficiently basic and definite so that they can, in principle, be done exactly
and in a finite length of time by a human using a pencil and paper. For an
algorithm to be useful, it is not sufficient that the number of steps merely
be finite, computers have their limits. The number must be reasonable.

A program mode (short for mode of operation) is a way of operating a
program to perform a certain subset of the functions that the entire
program can perform. The subset of functions is usually data-coupled,
rather than control coupled. However, the set of functions is usually
selected by control data. For example, language processors usually consist
of “compile” and “runtime” modes (and perhaps some transition modes
between these two) that pass the compiled program as data between the
two. Often the modes of operation will be shown graphically in a mode
diagram, which displays the various program modes and the permissible
transitions between modes, annotated to show the events causing the
transition.

2.1.2 Procedural Representation of a Program

A flowchart is a graphical representation for the definition, analysis, or
solution of a problem. Symbols are used to represent operations, data, flow,
equipment, etc., and are annotated to describe the function of each symbol.
As we shall encounter the term herein, a flowchart will generally refer to a
drawing describing the logic and sequence of operations in a program
(subprogram, routine, etc.) and drawn to conform to ANSI Standards [8],
which are summarized in Appendix B. However, this definition does not



Sec. 2.2] Structures 13

exclude pidgin English or the program code from being referred to as a
“flowchart,” given suitable interpretations of the terms “symbols,”
“operations,” etc. Proper indentations of the lines of pidgin English or code
and a limited program logic structure can, in fact, provide a very graphic
display of the program function, as will be shown later in Chapter 7.

2.1.3 A Word on Program Syntactic Notation

In such program-related expressions to come as DO f THEN g, IF ¢
THEN f ELSE g, etc., the italicized letters will stand for definite types of
text that can occupy those positions in the constructions. For example, f
and g above represent arbitrary program functions, while ¢ represents an
arbitrary test condition. The italics thus identify which parts of an
expression are variable within the syntax of the construction. The
unitalicized capitals, however, DO, IF, THEN, etc., are not; they designate
specific syntactic literals, to be interpreted as they stand.

I shall thus designate hereafter all qualities to be identified as syntactic
variables as italicized characters. Hence, if I am discussing a procedure,
such as SEND(message, device), for example, then I shall mean that
message and device are to be replaced by non-variables in actual usage, as
perhaps, SEND("HELLO", PRINTER). Italicized characters thus represent
variables in the meta-language 1 use to describe a program, not the
variables in the program itself.

In the example, LET variable = expression, which describes the format of
an assignment statement in BASIC, the name of a program variable, such as
A1, is to be substituted for the syntactic variable, variable, and an actual
expression, such as (3+8s5)/2, is to replace the syntactic variable,
expression. If a decision box on a flowchart is labeled d, then an actual
condition to be decided is to be substituted. If I show that a subprogram is
actuated by event, then an actual event, such as FILE ERROR, replaces event
in practice.

2.2 STRUCTURES

Perhaps the most overused word in this monograph is “structure”. 1 use
it in many ways for many different concepts—information, data, and storage
structures; structural design, structured programming; and so on.

The concept of structure may pertain to the manner or form in which
something is constructed, or it may pertain to the actval system being
constructed. Descriptions of structure focus primarily on the interrelations
of the various parts of a system, as dominated by the general character or
function of the whole. Defining the “structure” of a problem can be



14 Fundamental Principles and Concepts fCHAP. 2

described as a process of identifying, analyzing, and selecting among
alternatives within design categories.

In software development there are topological alternatives (control logic
and data structures), clocking alternatives (sequential, concurrent, parallel,
real-time), protocol alternatives {interface disciplines with the operating
system or other programs), connectivity alternatives (accessibility and
security of programs and data), and resource allocation alternatives (fixed,
dynamic), to name a few. Selection among major alternatives defines the
architectural framework of the program (another word for structure).

Some of the things which influence a program’s structure are its
envisioned capability (utility, efficiency, cost, accuracy, throughput rate,
etc.), its use needs {(maintenance and support requirements, use constraints,
etc.), and its implementation criteria {short-term vs long-haul solution, real
vs virtual memory, etc.).

2.2.1 Program Control Structure

The statements in a programming language primarily affecting the
logical sequencing of operations in a program are called control
statements. Examples of control statements are jumps, conditional
branches, subroutine calls, interrupt arming, ete. The control flow of a
program is a general concept referring to the time-ordering relationships
among the various operations comprising the program. The control
structure of a program is then the topological format of this control flow.

There are several ways that one may describe different aspects of
importance in a program’s control structure, depending on the needs of
communication. One such way has already been mentioned, namely the
program flowchart. A flowchart, such as that appearing in Figure 2-2,
characterizes the control structure by showing its procedural steps (i.e., its
algorithm), in execution sequence. Whenever the fundamental topological
structures, which one may be permitted to use in programming, are limited
to a set of very basic forms, then I will call it a stiuctwed program.
Structured programs are discussed more fully in Chapters 5 and 6.

Another way to illustrate some of the control structure of a program is to
depict the program as a directed graph, such as that shown in Figure 2-3,
in which each node represents a given function to be computed, and the
edges connect that function to each of the first-order subfunctions called
upon to perform the given function. The maximal connected subgraph
emanating from a given node thus represents the entire set of subfunctions
necessary to compute the node function; for this reason, this subgraph is
called the scope of control of the given function. More discussion on the
use of such program graphs is to be found in Chapters 4 and 5.



Sec. 2.2] Structures 15

2
Y 3 9
10
4
11
| J
¥ b ¥ 6 ¥ 7 12

f L

Figure 2-2. A program flowchart

2.2.2 Information, Data, and Storage Structures

A program operates on data. An information stiucture is a representa-
tion of the elements of a problem or of an applicable solution procedure
for the problem, a data structure is a representation of the ordering and
accessibility relationships among data items, without regard to storage or
implementation considerations; and a storage structure is a representation
of the logical accessibility between data items as stored in a computer [9]



16 Fundamental Principles and Concepts fCHAP. 2

Do f

) ©

Wy

Figure 2-3. Representation of a program as a graph in which nodes represent
functions and edges represent control connections {each of p, f, and g may have
further expansion)

As an example, in the problem

2 1 3 X 1
4 5 6 y = —1
—1 0 3 z 0

the matrix and the two vectors are information structures. When we agree
o represent these in our problem as the matrix A[LJ], L] = 1,2,3 and
vectors X = (X[1], X[2], X[3]) and B = (B[1], B{2], B[3]), then A, B, and X
become our data structures; and when we represent these in computer
memory, as for example

location (AIL]]) = location (A[1,1]) + J—1 +3+(I-1)

then this becomes the storage structure.

A data structure is generally specified as a set of data items (variables or
constants), each typed: a) by a range of values (such as logical, integer,
real, complex, double precision, string, or an enumerated set of values), and
b) by a connectivity of items within the structure (such as those jmplicit in
a linear list, stack, queue, deque, orthogonal array, tree, ring, or graph).
The simplest example of a data structure is a single integer-valued variable.
A variable used to influence the control logic of a program is called a flag,



Sec: 2.3] Software Development 17

The ease with which data structures can be used often depends on the.
handling capability of the programming language to accommodate that
structure. For example, FORTRAN only accommodates integer, real, and
complex data types, in simple or matrix-array data structures. It is certainly ~
possible in FORTRAN to create and manipulate a queue of string records
as a data structure; but it is not as easy as it is in PL/1, where string -
variables and linked-list data structures are included in the language
repertoire.

A data structure also possesses another attribute having to do with when - -

and where it is accessed in the program. This is called-its scope of activity
(or merely, its scope). The scope of a structure extends from the earliest
point in a subprogram where information appears in that structure, until
the latest point that the structure is needed, either by the current module
or by another interfacing subsequent module. A data structure is said to be
active whenever the program is executing within the scope of that
structure. The scope need not be continuous. For example, an index
variable for an iteration is only active during the iteration, and may be
reused by other parts of a program once the iteration has been completed.

2.3 SOFTWARE DEVELOPMENT

That part of a software project up to the delivery of a working program
for operation by organizations and individuals other than those involved in
this evolution, I shall refer to as the software development period. It
begins with the flash in someone’s mind that a computer shall do an
envisioned task and ends when the program is “operational”.

Several mutually interacting activities during this period can be
identified (Figure 2-4). First, a customer organization establishes a
requirement with certain resources (manpower, schedule, dollars) altocated
to provide the needed service. When the requirement is given, it generally
only contains a sketch or outline of the tasks that a computer will be called
upon to perform, the expected results, and some of the problem-related
constraints.

The function of this requirement is to characterize the program, its
environment, and needed resources in that amount of detail which justifies
to a conscientious, informed management the commitment of such
resources. It also forms the basis for the program functional requirement or
statement-of-work specification to come. Additionally, the requirement
may contain, besides the resource estimate and justification for its
expenditure, some reasonable evidence that the estimate is accurate,
within certain bounds.



18 Fundamental Principles and Concepts [CHAP. 2

REQUIREMENTS
GENERATION
PROGRAM
DEFINITION
PROGRAM DESIGN
PRODUCTION
VERIFICATION

Figure 2-4. Software development activities and pringipal
flow of these activities in a top-down development

The second activity in the software development process is the precise
definition or functional specification of the program behavior. This
activity is perhaps the most difficult in the whole development process, as
there is almost invariably a trichotomy between what the customer thinks
he wants, what he really wants (this is particularly true of the non-
programming customer), and what he can actually have within his
resource constraints. In the end, the definition should contain enough detail
to permit the program to be designed without ambiguity as to its external
(black box) transfer function: specification of 1/0 media and formats, input-
to-output transformations, interactions with users, interactions with other
programs, response to errors and other contingencies, and response to
system failure. Any operating program that meets these detailed
specifications may be said to be correct.

The level of detail provided in a program definition, however, will rarely
be such that any two correct programs independently derived from that
definition will be interchangeable. Such detail would undoubtedly be too
costly to develop. Moreover, human fallibility will almost assuredly
produce vagaries, omissions, and contradictions in sich detailed specifica-
tions.



Sec. 2.4] Hierarchies 10

The third development activity one can identify is that of design. Design
is an alternative-feasibility-study discipline, It bridges the gap between the
program definition and the program code. It is the process that analyzes
the external black-box definition of the program behavior and translates it
into functioning and efficient abstractions of internal machine structuies
(data configurations, algorithms, ete.).

It sets forth program and system restrictions, policies and protocols. The
end product of this activity is a number of documented abstractions that
represent the eventual system in a characteristic way. For example,
flowcharts are an abstraction of the function and control logic of the
program to be produced. Other abstractions have to do with data flow, the
management of system resources, policies to prevent system deadlocks,
inter-program data interfaces, and so forth.

The fourth activity is program pioduction. It consists of coding,
checkout, and integrating the program into the system that forms its
environment. It implements the design abstractions, organizing the physical
resources of a system to perform according to the program specification.
Checkout here refers to the testing of a program, or part of a program, by
the programmers themselves. In Chapter 9, I discuss checkout disciplines
for correctness testing.

The final activity to be identified as a development task is verification.
Software verification is that aspect of development asserting that the
program response falls within acceptable limits of functionally specified
behavior. It testifies that design and production activities conform to
program requirements and project standards; it generates test procedures
and conducts tests to evaluate the program behavior; it identifies all
ancmalies for corrective action; and it ultimately certifies that the program
is ready for user operation.

2.4 HIERARCHIES

A hierarchy is a structure by which classes of objects are ranked
according to some subordinating principle. Pictorially, a hierarchy can be
represented by a tree-graph, as shown in Figure 2-5. A specially denoted
object {represented as the root node of the tree) heads the hierarchy, and
other objects (represented by the other nodes) are ranked by order
(indicated by lines between nodes) into levels of subordination. The level
number of an object within the hierarchy is ils degree of subordination.
Each object (node) occupies a well-defined place within the hierarchy.

Hierarchy can be applied to software development in many ways: to
structure concept refinements in problem definition; to structure programs



20 Fundamental Principles and Concepts {CHAP. 2

Root node LEVEL1

-=— 1 EVEL 2

-+— LEVEL3

-— LEVEL 4

«— EVELS

Figure 2-5. Graphical representation of a hierarchy

into modules, submodules, sub-sub-modules, elc.; to structure data by
refinement of attributes; to structure tests to avoid repetitive testing of the
same specification; and to structure documentation for refefence and cross-
reference. 1 shall begin, in the next chapter, to develop methods to
establish how hierarchies of program elements can aid in software
development.

2.5 CONCEPT HIERARCHIES

Dijkstra’s work [6] involving levels of abstraction permitted him to
formulate the solution of a problem in terms of concepts capable of being
implemented (and interpreted) in many ways, but which were perhaps not
yet fully understood at a particular stage of the development. Later stages
then provided refinements to each concept until the program was entirely
complete.

Alternately, the levels of abstraction could proceed from specific
concepts, which may be combined into broader, more general concepts,
until the most general {level-1) concept results.

In top-down methodology, the hierarchy of development tasks proceeds
from a job represented by a node at level n, upon completion, to jobs
represented by its subordinate nodgs at level n+ 1. By such methodology,
one need never lose sight of the original assumptions which appeared at
level 1. In botiom-up methodology, the opposite precedence of tasks
results; one never loses sightof the actual capability being built up.



Sec. 2.5] Concept Hierarchies . 21

Neither methodology is entirely satisfactory, because, as stated earlier,
people just can’t do intricate thinking tasks correctly in one pass, start to
finish.

The potential risk, doing a strict top-down development, is that there
may be no way to ensure that operations at one level in the hierarchy are
supportable by some abstract resource provided (later} at subordinaie
levels.

The sense that I shall give to an abstraction in this work is that it is a
mechanism for hierarchic refinement by which it is possible, at 2 particular
stage of development, to express relevant details and to defer non-relevant
details for later refinement. Such abstractions apply to concepts during
preblem definition, as well as to the considerations of physical resources
during program design and to the manipulations of computer structures in
program execution.

The purpose of using an abstraction as a program development
discipline is threefold: first, it somewhat matches our tendency to solve
problems by outlining broad concepts, which may then successively be
refined or generalized, second, it tends to permit detail to be added or
generalizations made without requiring global revisions of the previously
outlined concepts; and third, because such global revisions tend to be
minimized, the various development activities (specification, design,
coding, testing) can take place in concert rather than in series, thus
speeding up the development process.

I don’t mean to imply that there aren’t going to be times when
development reaches a point where a serious conceptual error is detected,
rather than an error in the detail within a concept, which will necessitate a
major program revision. (An acguaintance of mine refers to this situation,
labeled “Oops!” in Figure 1-1, as “#*%/ +@!”, an expression familiar to
all who read the Sunday funnies.) The seriousness, in such cases, will
naturally depend on how much the development effort has to be backed up
to correct the concept, and how profusely the changed concept creates
side effects in the work already done.

The way abstractions are formulated also greatly influences the extent
and likelihood that a program will need major revision during the
development process. A proper discipline for abstraction can therefore be
a great asset toward timely program delivery.

An abstract resource may be characterized, according to Hoare [10}, by
three sets of hierarchies:



22 Fundamental Principles and Concepts [CHAP. 2

The representation of an abstract resource is the set of symbols that one
may substitute for the physical aspects of a problem either in a concept or
in its computer implementation. For example, a certain set of data may be
represented in one abstraction by a queue whose name only is of
importance at the first hierarchic level. Deeper levels in the hierarchy
detail other attributes of the representation, such as queue dimension,
location in memory, element-addressing method, ete.

Manipulations must be defined to provide the transformation rules for
representations, as a means of predicting the effect of similar manipula-
tions on the physical resources. In the quene example above, operations
INSERT and FETCH, which access elements based only on the queue
name (its level-1 representation) can be defined.

Axiomatization is the generation of statements concerning the physical
properties of the problem and the extent to which they are shared by their
representations, in virtue of which, manipulation of the representation by a
computer program will yield results that can successfully be applied back
to the physical aspects of the problem. Axioms provide the assumptions on
which the computer program is based, stating the necessary properties that
must be possessed by a resource representation.

The extent to which an abstraction leads to a successful program is
dependent on three conditions. First, the axioms must adequately and
accurately describe the problem. Second, the axioms must correctly
describe the behavior of the program; and third, the choice of the
representation and its manipulations must yield acceptable performance
merits, such as cost to run the program, time to process a certain volume
of data, ete.

2.5.1 Semantic Refinement

Many rules for writing technical specifications of any ilk also apply to
those specifying computer programs. However, the more complex a
function is, the more important a highly structured approach becomes. The
basic elements to be preserved are an understanding of the function to be
served and the mechanisms available to carry out the job.

Semantic refinement is a method for hierarchic abstraction of meaning.
The definition of a concept or function takes the form of a tree in which
the level-1 nede is a broad, perhaps vague (yet unambiguous) statement of
the concept or function to be defined. The next level in the hierarchy is
composed of a set of nodes, each corresponding to a vague, incomplete
component of the level-1 statement. Each of these nodes supplies a more
detailed explanation for that component of jts parent node. This hierarchy



Sec. 2.5] Concept Hierarchies . 23

continues until the definition reaches a point where the entire meaning is
clear.

This technique can serve as a very useful method for stating program
requirements and specifications, as well as some of the program design
concepts, which will follow. The meaning given to “meaning” as the
subordinating relationship of the hierarchy need not be made rigid, so long
as deeper levels in the hierarchy provide useful information. However, it is
worth pointing out that, if the set of final, terminal nodes in the hierarchy
are statements in a precise, well-defined language (a problem definition
language), and if each terminal set of nodes emanating from a given node
provides the exact definition for the given node (i.e., no vague component
remains unrefined), then there is no opportumty for misunderstanding the
requirement.

Meaning can be refined not only by language explanations, but by the
presentation of mathematical algorithms or graphical material, as well. All

these furnish detail relative to the semantic content of the entity being
defined. - :

As an example of the technique, let me proceed, with the aid of Webster
[11], to define “opossum.” Obviously, anybody who has seen one knows
what one is, so the definition could well, for that person, end right there.
Otherwise, the creature can be defined by a set of attributes that
characterize it completely for an intended- dpplication.

Webster offers the following explanation: “Any of a family ... of
American marsupials, chiefly nocturnal, largely arboreal, and almost
omnivorous.” (Regrettably, this beautiful definition does not appear in a
later version of the lexicon.} For a more detailed description, one may look
up “marsupial,” *nocturnal,” “arboreal,” and “omniverous,” arranging the
information as shown in Figure 2-6, and, in turn, look up any new words
that are not clear.

The reader may well appreciate that circular definitions must be
avoided, that refinements should get simpler at each succeeding level, that
logical constructions should be sound, that the process should ultimately
terminate, and that the hierarchy reveals everything intended to be
revealed. Hopefully, the hierarchy reveals everything that will be needed—
that is, that the definition will be complete enough for the intended
application.

However, no amount of descriptive detailing produces an actual
opossum, only a representation. The extent to which we can treat the
representation (our abstraction) as the actual animal is limited. Care must
be taken to orient the abstraction to the application at hand.



24 Fundamental Principles and Concepts [CHAP. 2

OpUSSUTT

]
opossum:  Any of a family . . . of American marsupials, chiefly

L nacturnal, largely arboreal, and aimost emnivorous
¥ 4 T Y
marsupfal: An rocturnals arbareal: OmMNIvorous:
ammal of the Of, pertaining Inhabiting Eating
lowest existing 1o, done, or or everything,
mamimals except occurnng at frequenting ... both
the monotremes night trees animal and
« . . the females vegetable
have a pouch food
for carrying the
young
I
mammal: Any of the monatremes: The lowest
hughest class . . of order of mammals,
vertebrates . . . that consisting of the duckbills
nourish their young and the achidnas
“with milk

'

Figure 2-6. Semaritic refinement of “opossum”

As a perhaps more relevant example, a top-level program requirement
may read

read data
process data
print report

At the time this requirement is formulated, the precise character of the
concepts “read,” “data,” “process,” and “print” may be undefined. But
anyone reading the requirement can understand the fundamental job to be
done. Details at further levels will answer the questions “what does data
mean?” and “how is data to be processed?®”

In hierarchic refinements of sentences in the imperative mood, nouns to
be explained at deeper levels tend to correspond to resources whose
physical characteristics need to be tied down. As with “data” in the
requirement above, one may detail “what kind?”, “where from?”, “what is
its formatP”, “what is its nature?”, in defining its nature, one may further
detail “are there errors in it?”, “what probability of error?”, “how can



Sec. 2.5] Concept Hierarchies 25

errors be detected?”, “what is to be done if an error is detected?”, etc. As
the latter questions show, the physical characteristics of a noun can often
lead to definitions in terms of tests, or criteria to be met.

Adjectives or other modifiers applied at one level to nouns from a
preceding level act to limit the scope of definition to special attributes
(what kind of data? Test datal). The entire noun phrase may then become
an indivisible concept insofar as further refinement goes.

Verbs in the imperative mood direct that an action be taken, Explaining
that action at succeeding levels is tantamount to providing an algorithm in
successive detail. Adverbs and other modifiers act to define the scope or to
provide some of the inner-workings of the algorithm.

It is not necessary for a semantic refinement to be purely lexical, as in
the “opossum™ case, applying meaning to concepts on a word or phrase
basis (Figure 2-7a). On the contrary, an entire concept at one level may be
refined at the next, as alluded to in Figure 2-7 (b and c). For example “read
data™ may expand to “read date from ierminal and read data from file”
at the next level, and may refine at the next to “read control data from the
user operations terminal” and “read personnel capabilities data from file
specified by input at user operations terminal.”

The refinement of an algorithm may, in turn, be an extended algorithm
that includes the algorithm at the previous level (Figure 2-7b), or it may be
an entirely new algorithm that performs a similar function more efficiently,
or with wider applicability, ete. (Figure 2-7¢c). Of the three methods of
refinement depicted, one may ask which of the methods will be least
susceptible to redefinition and revision of initial concepts; which will
require the least work when an initial concept is changed; and which
method will allow the creative process to flow in its most efficient way.

I think it is rather obvious that if an entire concept changes at one
hierarchic level, there is going to be serious undeing of any concurrent
efforts based on the earlier concept. For this reason, I do not recommend
developing software abstractions by the replacement method of refine-
ment.

2.5.2 Example: Skills Inventory

The following example depicts a hierarchically refined program (partial
design) using levels of abstraction. The representations, manipulations, and
axioms at each stage are explicitly defined. Only the first upper levels of
the hierarchic refinement process are given.

Problem: An organization having 1000 employees wishes to make a skills
inventory of its personnel. The organization has determined that about 800



26 Fundamental Principles and Concepis [CHAP. 2

{(a} DETAILED SUBCONCEPTS

P SUBCONCEPT, ,
P LEVEL n+ 1
o -
o __ _.[susconcerT )\ ASuBCONCEPT,
LEVEL n+1] LEVELn+1
-
‘--._‘_‘- —

SUBCONCEPT,,
LEVEL n+1

(b} EXPANSION OF CONCEPFT

CONCEPT,
LEVELRn+1

rd

{c} REPLACEMENT WITH DIFFERENT CONCEPT

DIFFERENT, MORE
REFINED CONCEPT,-
LEVELn +1

Figure 2:7. Semantic refinement hierarchies

basic skills will be utilized within the company, but that no employee
possesses more than 8 of these basic skills. It has, therefore, issued a
questionnaire requesting the return of an IBM card from each employee
with his employee number and a list of his skills by code number. The
company then intends to generate a computer listing containing each
employee with a given skill designated.

Analysis: The information structure of the problem consists of an
employee identification (represented by a number), and a corresponding set
of skills (each also represented by a set of code numbers), for each



Sec. 2.5] Concept Hierarchies 27

employee. The manipulations that seem necessary on the structure are the
conversion of identification numbers to names and skills, the collection of
employee names for each skill present in the company, and the listing of
such information on a line printer or some other device. For convenience
to the reader, a requirement may occur te have the listings to appear in
sorted form, by skill code and by employee name.

The first-level data structures I have chosen to represent the information
are as follows (see Figure 2-8): ENAME, a structure to hold 1000 Employee
NAMEs as character strings; S8KILL, a structure to hold 800 SKILL titles as
character strings; INCARD, a structure to hold the INput CARD numbers (up
to 9 of them) in integer format; and LINKS, a structure to hold up to
8 X 1000 =8000 name-skill relationships {LINKS).

The manipulations on these structures needed (at fevel 1) are: input from
the card into INCARD, copying from INCARD into LINKS, translation of links to
employee names and skill titles, sorting the links by employee name and
skill code, and printing the sorted information. Axioms required at level 1
are that employees and skills can be represented by their numbers 1-1000
and 1-800, respectively; that enave and SKILL contain but representations
of strings that faithfully reproduce names and titles when output; that
INCARD and LINKS contain bit patterns corresponding io integers in the
programming language; that the elements of ENAME(Ei) and SKILL(Sj
access the name of employee numbered Ei and the title of skill §j,
respectively; that LINKS(S57k) produces the kth employee found to have

INCARD
Ef S7 ves Sx
ENAME
h k
e Employee Name £r
LINKS
: .
. L ]
L ]
Sf w—tl e ; 'TY]
SKILL / £
. .
Sj ——n Skill Title 57
.
L]

Figure 2-8. Level-1 data structure definition for skills inventory



28 Fundamental Principles and Concepts [CHAP. 2

skill Sj; that sorting by the internal representations are lexicographic on
output; and that sorting internal integers also sorts their external
representations.

Most of these axioms are usually taken for granted and left unstated. But
for illustrative purposes, it is useful to write them down, to see that such
correspondences of internal program behavior and external interpretation
are present, even if implicit.

The second level data structures, expanded versions of the previous
definition level, are shown in Figure 2-9. ENAME consists of two parts, a
pointer array EPTR and an array of employee names, arranged such that
EPTR(Ed) locates the string name of employee Ez Similarly, sSKILL possesses
a pointer array SPTR that Jocates the string skill titles, and LINKS has a
pointer array LPTR that links each skill number Sj to the linked list of
identifiers for employees avowed to possess that skill,

INCARD
e | s [ - 5=

LINKS

LPFTR

5 = N T T i RS oy

SKILL "'"'I Employee Name E7

SPTR

S —= o+ Skill Title S/

&>
-
-

Figure 2-9, Level-2 data structure definitions for skills inventory



Sec. 2.8] The Top-Down Principle 29

Manipulations for level-2 structures include list handling by. following
pointers, such as locating from.an $j on an INCARD the Ek-links in LINKS and
then inserting an Ei-token into the chain. Other list handling manipulations
needed are the ability to scan LINKS along pointers into ENAME and SKILL
during printing.

Axioms for level 2 are that strings begin in data substructures addressable
by pointers {(important in systems that are not byle addressable), that zero
is not a valid pointer, and so forth.

Storage structures are something else again. The placement of LINKS in
core, for example, may not need to have an explicit array LPTR, because the
first Ei-token for each §j can take the place of the pointer in the top 800
Jocations of LINKS, as shown in Figure 2-10. Similarly, erTR and SPTR may
not be required if the programming language has string data types.

The reasons for deciding on the data structures shown are a process of
design. I shall delay giving such rationale until Chapter 4, which treats
design in more detail. The structures for this example, the reader may later
note, are very similar (as is the problem) to the example given in paragraph
4.8.1, Card Cross-References (Chapter 4). Consequently, the rationale for
the structures shown here is essentially the same as that given in the later
example.

2.6 THE TOP-DOWN PRINCIPLE

The fundamental, guiding principle throughout this work is tenacious
adherence to the top-down procedure of software development. By this is
meant that the program proceeds from the program requirements to
functional specification, to design, to coding, to verification and testing, and

LINKS
'y E1 | PR e—
Skall .
Index .
{ 800 Ek | "—':)
. ’ r
’ F Ei — tield occupies at least 10 bits
E2 | *_-"\‘ PTR — field occupes at least 13 bits
H |
. ”_
En l 0
:
8000 0 0

Figure 2-10. The storage structure for LINKS



30 Fundamentol Principles and Concepts [CHAP. 2

finally, to operations. It means that the resulting design itself is readable
from the top down and organized in a highly structured, modular,
hierarchic way which decomposes and partitions each program subfunction
into a sequence of simpler functional subspecifications, each producing yet
simpler subspecifications to bhandle, until finally, the level of programming
language instructions or statements is reached. It means that coding and
then testing and verification of the design follow as each phase of the
design is accomplished. It means that programming projects are managed
from the top down—from allocation of resources to utilization of
resources—in a way assuring management visibility into and understanding
of the end product. It means that the design-team skills are ordered with
high design capability at the top, leading to special skills at the bottom.

Tc minimize the risk mentioned earlier, that operations at one level in
the hierarchy are supportable by resources at subsequently defined levels, I
envision that those engaged in providing the top-down development must
be very well trained in dealing with the characteristics of the program
environment. In this way there can be reasonable assurance that the
development gap will.be bridged effectively, with minimal redesign.

The reason for strict enforcement of the top-down principle is that it
forces a complete requirement to be stated prior to its accomplishment.
Properly done, unrequired actions never appear in the finished product.

But, as a replacement, it requires a high level of discipline on the part of
its adherents. Those involved must learn to think top-down. They must
learn to think of function before algorithm. They must learn to describe
functions functionally and accurately. They must learn to prove or assess
that a program at any given stage in the design is correct, within its
functional specification. They must learn that programs can be written
with logical and interface precision. In the end, there is evidence [12] that
a psychological reinforcement—a vital ingredient in self-discipline—
emerges.

As Mills [12] points out, once a programmer knows what js in his mind is
correct, then getting it programmed precisely, checking details, etc., is all
that is required for the program to work. On the other hand, if he only
thinks that what he has in mind is probably all right, but is subconsciously
counting on debugging and integration runs to iron out logic and interface
errors, then the entire process suffers in small ways to torment him later.
Only 14 concatenations of subprograms that are probably 95% correct
reduce the ovérall program probable correctness to 49%. An increase to
99% probable correctness—a small 4%—in each subprogram brings the
overall probable correctness up to 87%-a 38% difference!



Sec. 2.6] The Top-Down Principle 31

Another reason for tenuously propounding the top-down method is that
the bottom-up approach has classically been typified by programmers who
spend more time debugging code than they do writing it. According to
Boehm [4], programmers usually spend under 20% of their total effort in
coding and auditing, with the other 80% about evenly -split in design and
debugging. They are apt to spend great amounts of time in redesign {and
then more debugging) due to faulty logic or faulty communication with
other programmers. In short, it is the thinking errors even more than the
coding errors, which hold the productivity of programming to such low
levels.

In the top-down approach, the program designer proceeds to define the
problem as a “black box” imbedded in an environment composed of a
subset of available resources. This environment, with its attributes, exerts
external influences on the developing system independent of and,
hopefully, not contrary to the problem-constraints to which the developing
program must conform before it can respond to the iniernal demands of
the problem.

The top-down approach also leads to structured programs [12] in which
major programs can be broken into smaller subprograms through a
combination of code and the design of subprogram “stubs” which are
referenced or called by that code. By designing the program that calls the
stubs before the stubs themselves are developed, the functional role of the
called programs can be defined completely, so that no interface problems
need be encountered later.

Coding, verification, and testing can begin immediately with dummy
stubs to test the control logic and interfaces of the calling module. These
test stubs can check for the presence of data to be passed, its format, its
range, etc., and can alse return prearranged test-case data.

'This approach also satisfies the need on the part of programmers to get
running, However, it is not the subrontines and the like that get written
first—it is the encompassing code, always executed and checked before the
next hierarchic level of executable code is created, checked, and integrated
into the program. “Checking” in this top-down hierarchy means validated
to the point of verifying the syntactic structure -of the code and making a
correctness assessment of the program. I shall have more to say on testing
in a later chapter.

One should note that the top-down discipiine may elicit some bottom-up
response as a natural unavoidable by-product. For instance, when coding
top-down in a very low-level language, dummy stubs used for checkout
may be called to print trace information as evidence of the program’s



32 Fundamental Principles and Concepts [CHAP. 2

execution sequence. But then there must be provided a bottom-level
support function, PRINT, that may not even be a part of the final program.
Also, some ecritical low-level interrupt-handling routines must be
programmed early to assure timing feasibility for an entire program.

I do not consider this effort at variance with the top-down approach.
Design has preceded coding, and the requirements for the stubs were
established first, before any functions within the stubs were coded.

Some developers may choose, and some problems may require, an other
than top-down approach. Some, for example, may adopt a “hardest-out”
philosophy — one in which the program development begins with the
design of the most difficult, policy-setting decisions known to be within the
system, and evolving upward to meet requirements, and downwards, to the
code. Such a philosophy has many adherents and many virtues. The chief
asset of such a design methodology is probably that it proceeds along lines
of greatest feasibility,

However, as a formal discipline, I know of no way to instruct a would-be
adherent to isolate the “hardest” nut to crack, without resorting to a top-
down structurized design sketch, such as I discuss in Chapter 4. Once the
hardest portion of the program is identified, that portion can be defined as
a high-priority phase for further top-down design evolution. Therefore,
even the “hardest-out” approach can be made to fit into the top-down
design philosophy, even if not the top-down coding discipline. Such
deviations from true top-down development are accommodated by the
“look-ahead” design principle discussed in Section 4.2.2 of Chapter 4.

The look-ahead principle is a pre-implementation design technique that
“breadboards” potentially upcoming problem areas for feasibility, before
the risk of incorporating that design inlo the program is too great for
catastropkic recovery.

2.7 THE CONCURRENT DOCUMENTATION PRINCIPLE

The second principle guiding this work is that the definition, design,
coding, and verification phases of development cannot be regarded as
complete until the documentation is complete and certified by some form
of correctness audit. This view, which reflects the importance and place of
documentation, is taken because good documentation is inextricably bound
up in each facet of the project, from conception, to design, to coding,
testing, etc., and because the formalization enforces a discipline, creating a
program methodology.



Sec. 2.7] Concurrent Documentation Principle 33

But documentation for documentation’s sake is not necessarily any good
at all. Documentation is part of a software development, inseparable from
the analytical, design, programming, coding, and testing phases, and must
be integrated into these activities. To be effective, documentation has to
have purpose, content, and clarity.

Just as the top-down procedure requires a special form of training,
programmers must also learn what “good” documentation consists of, how
to provide it, and how to use it to enhance the project. To do this, it is
important that they understand the function of good documentation.

2.7.1 Documentation Goals

Until coding begins, documentation is the specification and is the design
[13]. If documentation is bad, the design is bad. After all, the rationale of a
program is for humans, not the computing system. The goal of
documentation is communication. During the project, documentation
serves as a working vehicle to prevent distortion of ideas, promote project
control, record design-phase decisions, permit orderly subsystem develop-
ment, and make the system visible, both in its capabilities, as well as its
limitations. When the project is complete, it records the history of
development, serves as a tutorial guide to system operation, demonstrates
that the program works, and provides a means for maintenance and
evaluation of obsolete or amendable portions of the system.

To fulfill these goals, the documentation must deseribe the program
elements not only so that the design analysis and programming functions
are exhibited clearly, but also so that management has visibility into the
technical, budgetary, and schedule implications of system changes. It must
contain a system description that a user can understand—function of the
system, rules for use, domain of input, algorithms and procedures that turn
input into output, etc. It must tell how the program is to be operated—the
system environment, how much storage is used, how fast the program runs,
how 1o load and start or restart after failure, how to keep the program
maintained, ete.

That’s a tall order, right? And, moreover, all this content has to be
organized for clarity. Some clarity is a natural consequence of the way the
content is presented—its format. But format can’t do it all; creativity and
aptness in expression has to come from the documentor.

~

I bhave often been presented with two versions of a program, one
“structured”, and the other “unstructured”. To the naked eye, both
versions are often equally obscure. It is insufficient to present only the end-
product and then to expect a beholder to perceive its significance by
inspection, or even after deep meditation. Instead, the beholder must also



34 Fundamental Principles and Concepts [CHAP.2

be able to see at least part of the programming thought processes that
went into that end product, starting with the original, highly abstracted
motivations, and proceeding to the final program via a clearly presented
sequence of clear refinements.

The understandability of the product remains basically a matter of style;
some programmers have good style, others do not. Good programming
style is not automatically introduced by the rules of structured
programming, any more than good English prose style is guaranteed by
following the ten famous rules listed in. Strunk and White [14]—though
these rules can go a long way toward influencing programmers or writers
in the direction of good style, by establishing a mental atmosphere
conducive to it.

2.7.2 Amount of Documentation

Several problems always exist when a project insists that a program be
documented. Probably the most sexious are the sins of omission—the cases
where something that will be needed later has been left out. Then there
are the cases where the documentation does not serve a useful purpose
because it dees not match the running program. Another frequent form of
misdocumentation is irrelevant or redundant owverdocumentation, which
serves only to drive up development costs.

Conceptually, if an ensemble of development projects were commis-
sioned at varying documentation-level requirements, the plot of the
attendant program costs would appear as in Figure 2-11. With no
documentation provided—not even annotations in the code or mnemonic
variable names—one can readily agree that the complexity of developing a
large program poses a nearly impossible barrier, so that costs (dollars,
manpower, schedule) would be astronemical. But the costs start to drop as
the developers are permitted to write down some of their ideas for later
reference. This type of documentation is an aid; it reduces errors in
thinking (and remembering), so produces a more reliable program in a
shorter time.

At some point, as more and more documentation is required, over-
documentation sets in, making the costs again rise. That is, having
documentation can enhance the development process, but producing it
takes time and runs up the cost. Undoubtedly an optimum exists
somewhere in between.

Maintenance software costs probably take a similar shape and results. If
program documentation is too thin, the maintainer cannot understand the
program. He thus requires a longer time to effect repairs or other changes;
he is very apt to introduce undesirable side effects, as well. Provided with



Sec. 2.7] Concurrent Documentation Principle 35

DEVELOPMENT
($/LINE OF CODE}

MAINTENANCE
{$/ALTERATION)

SOFTWARE COSTS ()

1
I
|
!

?
PROGRAM DOCUMENTATION LEVEL {PAGES/LINE QOF CODE)

Figure 2-11. Program costs versus documentation level

too much documentation, he spends too much time reading irrelevant data,
and then has problems maintaining uniformity when changes are made,
catching all the changes to be made in redundant statements.

The optimum level of documentation depends on several factors. When
the costs involved cover the developmental phase only—by a fixed-man
teamn—then a low level of documentation suffices. But when there is the
possibility that design team personnel can change during the project, or
when later maintainability of the program is stated as a documentation
requirement, then a higher level is needed. Then too, if humans must draft
flowcharts, type narrative, and then maintain these in an error-free
condition, there is quite a different cost associated with documentation
than when automatic documentation facilities are available.

2.7.3 Types of Documentation

Although the level may vary from project to project in rather a
subjective way, I shall not leave the question of the documentation content
to subjective interpretation. I shall produce, as Appendices to this
monograph, detailed tables of contents for each of the most important
documents to be produced, along with detailed instructions as to what each
entry must include. Later chapters will provide disciplines for creating and
limiting the entries.

These outlines provide useful baselines from which actual project
documentation guidelines can be drawn. In producing the outlines, I have
tried to include documentation requirements for every pertinent aspect of
the developing program. In forming them, I have extracted, merged,



36 Fundamental Principles and Concepts {CHAP. 2

rearranged, and reoriented outlines from several sources [1,15-20] into
what 1 believe is a uniform, coordinated approach to useful software
documentation.

I have failed so far to mention what is perhaps the best news about
concurrent documentation to the one who must document the program
development. It is probably the most natural and easiest technigue,
because things are written down as they occur during the creative process,
rather than afterward, when some of the ideas may have been forgotten.

Figure 2-12 depicts a model, or conceptual set of documents that may be
produced during a software development. Many of the documents shown
may not need to be formal, but may, in fact, only exist in the form of
memoranda or even conversations, Which among these actually become
formal documents, which remain memoranda and which remain scratchings
on the backs of envelopes, are largely the prerogative of project
management; but some may also be specified as a requirement for delivery
by the customer or operations organization.

The figure shows four organizations, each having its own piece of the
documentaticn pie; any two (or all) of these may, in actuality, be the same
organization. Because of this possibility, the need for some of the
documents shown may disappear {such as the implementation agreement
when originator and implementor are the same). The major flows of
information may also differ from case to case.

The model shown depicts things getting started in a Software
Justification, by which management is appraised of the needs and costs of a
software developmeni. Upon approval, User Requirements and other
considerations coalesce into a Functional Requirement; while planning
information colleets into an Acquisition Plan, which tells how the required
capability will be achieved (outside contract, in-house implementation,
etc.). The requirements activity then culminates in a Software Require-
ments Document (SRD). More about this document appears in Chapters 3
and 11 and Appendix C.

The implementing organization, upon receipt of requirements, enters
into an analysis of organizational matters to determine such things as
whether it can do the job at all, whether it can make a profit, how much of
the job it is willing to take on, how much it will bid, whether it has the
manpower available, and so on. Based on this Organizational Feasibility
Study, it then enters into an Agreement with the requester, detailing what
will actually be provided, when, and for how much.

Once agreement has been reached, the implementof is shown to produce
a Software Design Definition (SDD). This document is a translation of the



i
% bc:j Software |
o B Justification |
S 2 |
[=u] g ] Crganizational
il
) Software Software | SFf: ;'\I:I ity
[ o Functional Acquisition |
l':> Requirements Plan
o , -
Software
E =t I
w2 SRD Software ge:ngnt n
Software Implementation ghnitio
Requirement Agreement
Document 8SD
|
Software
ORIGINATING ORGANIZATION | Functional
-\\-————= = Specification
Programming
User Ep%[t':gtcatlon
Requirements Specification
STR
Acceptance Software
USER Demonstration Test
ORGANIZATION Archives

IMPLEMENTING ORGANIZATION

|

|

I

|

|

Software |
Implementation |
Plan [
|

|

|

|

|

|

Project
Notebook

MAINTENANCE

AND OPERATIONS

ORGANIZATION

|  SOM

Software
Operations
Manual

OTA

Qperations
Transfer
Agreement

a1

Figure 2-12. A conceptual set of documents which may be generated in a software project

Software
Management
Plan

Software
Maintenance
Manuals

»

2)diouLe g VOLDIUAULNOO (T JuaLmouor) [1'7 09§

LE



38 Fundamental Principles and Concepts fCHAP. 2

»

requirements embodied in the SKD into a conceptual or architectural
design of the program; its purpose is to determine the scope of the work,
to refine the original cost and schedule estimates, to formulate the design
base at the highest levels of abstraction, and to initiate team selection,
work planning, and coordination activities. (A candidate outline for the
SDD appears in Appendix D.) The actual detailed work plan appears as a
separate Software Implementation Flan.

The main body of the program development work culminates in the
Software Specification Document (8SD), shown to be comprised of three
subspecifications: 1) The Software Functional Specification (SFS), or the
program definition; 2) the Programming {Design) Specification (PS), or
merely the program design, and 3) the Software Test Specification (STS).
The first of these is the product of the Program Definition Activity; the
second, the Program Design Activity; and the third, a mutual product of
both the Design and Production Activities. I address the program definition
process in the next chapter, the program design in Chapter 4, and testing
in Chapter 9. An outline for the SSD appears in Appendix E.

User Requirements and the Software Functional Specification (i.e., the
program definition) form the basis for writing User Manuals, a task I have
shown as taking place in concert by the user and implementor. User
instruction manuals (see Appendix F) concern themselves with instructing
the person who must use the program. The contents include just what data
to input, how to format and prepare it, how {o get it into the system, when
and how the output will be received, what that output will say, and
perhaps, even how that output is to be interpreted. User Requirements and
User Manuals are then the primary source materials used to formulate an
appropriate Acceptance Demonstration.

The results of all development tests and acceptance tests are deposited
in the project Test Archives (not, as is all too often the case, the waste
basket). In addition, a Software Test Report (STR) may be warranted (see
Appendix J) to summarize the material in the archives.

As in all good engineering practice, the project progress, design
decisions, analyses, etc., are fecorded in a Project: Notebook (Appendix H).
More about the Project Notebook appears in Chapter 10.

If the user of the program is not also the operator of the program, there
will also be a Softwire Operations Manual (Appendix I), which contains
instructions telling how to set up and run the program, where to send the
results, how to respond to any promptings for command or data input, and
the like.



Sec. 2.8] Summary 39

The Operations Transfer Agreement represents the final delivery of the
completed, accepted software package into the maintenance and operation
organization. This organization is also shown to have its_own Software
Management Plan and Software Maintenance Manuals.

It is mandatory, in the interests of project unity, that the project
manager define, at the outset, which of these (or other equivalent)
documents are to be produced, and in what detail (see Chapter 16 for
standard levels of detail). The greatest and most painstaking effort of all
should be directed toward producing documentation having the highest
impact on project success (including later operations). The documentation
that survives the development phase and that will be of high use in later
operations should certainly rate a high priority among candidates for that
receiving the most effort. High-cost, low-use documentation should be
avoided by proper project organization and management.

2.8. SUMMARY

The salient concepts I have tried to introduce in this chapter have to do
with hierarchic representations of program specification, data structures,
etc.,, from the topmost, most generalized abstractions, downward to the
bottommost, most detailed considerations. I have identified a certain set of
activities and interfaces contributing to the end product, and have
indicated the role documentation must play, if that end product is to be a
SUCCESS.

1

In forthcoming chapters, I shall extend these concepts in much more
detail. Most of the exposed practices are based on the application of
proven and effective standard engineering practices, combined with the
concepts and theorems of structured programming, along with its
consequent enabling of top-down methods.



40 Fundamental Principles and Concepts [CHAP. 2

Problems for Chapter 2

2-1 Take a short (one or two page)} program listing of your choice and with
a set of colored pens draw lines to show the scope of each variable in the
program. Does the scope of any variable depend on the program
execution path? Do any variables possess scopes of activity that are
entirely conditioned?

2-2 Develop 3 story outlines based on the (root) theme “boy meets girl”, as
a top-down concept hierarchy using each of the semantic refinement
techniques of Figure 2-7 down to about 4 levels. Compare the plots.
Change one of the concepts (nodes) at level 2 and alter it to a new one,
then recomplete the plot. Compare again each of the three. Which
refinement technique caused the least rework to complete?

2-3 Develop a two- or three-level abstraction hierarchy of data structures
needed to model some particular characteristic of a waiting line at an
airport terminal ticket counter. Identify the representation, -manipula-
tions, and axioms needed at each level. Develop both the problem details
(requirements) and solution details (data structure plus access functions
and operations) in level-by-level concurrency, from the top down.

2-4 Let a program with E lines of executable code have D of these, at
random, documented in the form of comments attached to the code. If a
line is fully documented, assume it takes a time Ty to read and
understand (i.e., to absorb the meaning); if a line is undocumented,
assume it takes time Tg to recreate the rationale. Further, assume that
the level of documentation, when it appears, is q, that the amount of
time to read it and comprehend what is there is Tgq, and that the extra
time needed to create the rest of the rationale is (l—q)TC; where 0 < q <
I. Assume the time to recreate the rationale if none was given takes the
form T{1—dqg)* for some k, where d=D/E (this model states that a time
Ty is needed if no documentation, or worthless documentation is
provided, and that no time is required if the code is fully and adequately
documented). Discuss this model and solve for d and q which minimize
the time to read and understand the program. Compare with Figure
2-11. ’



lil. SPECIFICATION OF PROGRAM
BEHAVIOR

I identified two activities in the last chapter concerning the definition.of
program function: requirements and functional specification. It is my view
that these two, in their combined, content, should be detailed to that level
which permits software design or production activities to make arbitrary
(but identified and approved) decisions without jeopardizing program
functioning. For example, if a functional specification states that the
program, upon detecting an error, shall “print an appropriate diagnostic
error message on the user’s terminal,” then I would expect that any
message deemed “appropriate” by the program designer or coder would
suffice. If the specifier has a different idea of what “appropriate” means, let
him so state.

1 have alluded to certain beneficial reinforcements that can occur when
requirements, definition, design, and production are permitted to take
place concurrently on an interacting, cooperating basis. I have also alluded
to disasters that can result when this concurrency is improperly structured.

41



42  Specification of Program Behavior [CHAP.3

Dijkstra’s levels of abstraction seem particularly appropriate in this
context, A functional definition developed to a given hierarchic level
permits a programmer to proceed immediately with the design, so long as
he does not assume specifications beyond this level. In fact, the design
process ¢an be used as a tool {o verify that the functional specifications at a
particular stage are supportable in the design (thereby reducing the risk in
top-down development). Unsupportable concepts are nipped in the bud,
reducing the amount of revision which would undoubtedly be warranted
had the fault been detected at a later time. Side effects are likewise
reduced.

3.1 SOFTWARE REQUIREMENTS

The concept of a “software requirement”, as the term is often used,
sometimes conjures up rather a fuzzy mixture of customer goals, program
definition, and even program design. I shall try to be more explicit here,
however, by diflerentiating between two types of requirements, and
between software requirements and the program definition.

The foremost characteristic of a requirement js that it primarily
addresses the needs of the customer {or user) organization. Such
requirements are levied in furtherance of the customer’s goals, such as to
lower production costs, provide a more reliable service, betier the
organization’s capability to compete with other organizations, respond to
operational missions, and so forth. These are the requirements for the
software; they form the justification to purchase or develop an automated
data processing capability.

The second characteristic of a requirement is that it establishes the set of
interfaces and performance criteria on which the justification is based and
to which the development that is to follow must conform. These criteria
address the needs of the software. Such requirements, for example, specify
how the user expects to interact with the data, to cause runs to be
executed, etc. Some requirements will be highly technical in nature,
specifying that certain existing interfaces be observed, certain functions be
performed, certain accuracies be achieved, certain services be provided,
and perhaps, certain mathematical algorithms be implemented. Other
requirements may be more non-technical, such as for development in
accordance with certain cost or schedule guidelines, or documentation in
accordancg_with a company standard, etc.

Many of the problems that traditionally arise in software developments
are traceable to ill-conceived, poorly specified, misdirected sets of software
requirements [21]. Some of these problems are due to a mismatch between
the levels of expertise of the originators and the developers; the mismatch



Sec. 3.1] Software Requirements 43

then manifests itself as a communication barrier between the two. Other
problems arise when customers attempt to define their requirements in
terms that properly are prerogatives of development. Other problems,
needless to say, arise in redirected efforts, changes in requirements during
the development phase, oversights, and so.on.

It is important that requirements be requirements, not constraints,
definitions, or design specifications. That is, those items listed as
requirements should state resirictions or expectations relating to
organizational goals, user (or operational) environment, or the accomplish-
ment of the assigned mission. Functional requirements should be stated in
the form of mathematical transformations, data processing modes, desired
options, output criteria, input characteristics, etc., only up to the
customer/user/operator interface. This interface may contain quite a lot of
technical detail in some cases, but nevertheless, it is important that
requirements concentrate on the program needs, not on the program that
responds to those needs.

For example, if FORTRAN is prescribed as the required coding
language for a project, then one must be able to assume that it is really a
requirement, and that no other language {which is readily available,
conscientiously maintained, or within the expertise of the developers or
operational crew) is acceptable because the use of another language is
inconsistent with the customer/user/operator interface, or else cannot
perform the intended function.

Often, the justification of a software development is based on an assumed
model, which relates how the requirer envisions the program to provide its
service. He has, perhaps, based costs, schedules, and other plans on this
model. But just how much of this planning model should carry over into
true program requirements depends on many factors. f

‘Useful guidelines for identifying requirements are:

a. If the requiring organization is attempting to establish a need beyond
its expertise to describe, then that need is probably not a
requirement, but properly, a part of the program definition or design.

b. If the developing organization is atterpting to respond to an overly
restrictive requirement when equivalent or simpler measures seem
adequate, then again that requirement is probably artificial, and
should be investigated more thoroughly.

c. If the developing organization must define program responses for
which there must surely have been a requirement, but yet none was
provided, nor was such expressed as a development prerogative, then



44  Specification of Progrem Behavior [CHAP. 3

. probably the software requirements are incomplete, and new
requirements must be generated, approved, and appended.

3.2 IMPLIED REQUIREMENTS

Whenever a customer organization is capable of defining its goals in
terms of software requirements, then there is probably little difficulty in
providing the ‘proper tradeoffs and justifications for development. But
often, software goals are so non-technical in nature or implied by system
considerations that fiscal and schedule estimates cannot be made without
extensive consultation by software specialists. In some organizations, the
software specialists may even be given the job of establishing requirements
for their software to achieve a particular set of system goals.

For example, a spacecraft project office may simply require that
“spacecraft ranging data be provided at one-minute intervals over a 5-hour
pass, accurate, in the mean-square sense, to one meter’. Ranging data, let
us suppose, can be extracted and processed in a real-time minicomputer
that forms one part of the- spacecraft-tracking ground instrumentation
system. Since a computer program must then be developed to accumulate
and process such data (a fact immaterial to the users of the data), the
developing organization finds itself charged with costing, scheduling,
planning, and justifying a software development project in response to the
spacecraft-project-imposed requirement. The development project justifies
its requirements for the software as a response to the spacecraft project
dicta, but must establish the requirements of the software as a set of things
needed to do the ranging function and to provide the proper user interface
characteristics.

As long as such a developer orients his specifications toward the needs or
goals of the customer/user/operator, such specifications still state
requirements.

In such a situation, the developers have a strong tendency to define the
program’s characteristics, rather than state requirements. My guideline
here is the following: A statement that appears the same in the Software
Requirements Document as it does in the Softwaie Definition Document
may not be truly stating a requirement, to which the definition is
supposed to respond, but rather a program definition. One may expect
rife counter examples to this guideline, but it is still worthwhile to check.
For example, the requirement “decode telemetry stream input using the
Viterbi algorithm”, although quite definitive, is very likely a program
requirement, as it implies something about how the telemetry data was
encoded at the source; the program definition has no alternative than to
respond as required.



See. 3.3] Creating the Software Requirement 45

3.3 CREATING THE SOFTWARE REQUIREMENT

The justification of a software requirement, created to obtain
management approval to proceed in a software development project, is apt
to vary greatly among user organizations. One can, however, establish two
phases in the creation of the requirement (Figure 3-1). One is the planning
phase wherein non-technical (or low-level technical), highly interdiscipli-
nary interactions (among users, system analysts, managers) determine
feasibility, establish firm objectives, estimate costs, and provide crientation
for the development project. This phase establishes the requirements for
the software. Shaw and Atkins [22] estimmate as much as 25% of the total
development effort may go into this phase.

DATA !
PROCESSING
NEEDS

EXISTING

SCOPE OF
DATA BASES

NEED

AVAILABLE
RESOURCES:
MANPOWER,
MONEY

USER
ENVIRONMENT

\ 7 PLANNING

/- INFORMATION:

RELATIONSHIP

USER

PNt WITH
03%?2‘&5@3“ w4 OTHER PROJECTS,
PROGRAMS

ANALYSIS:
BENEFITS
DISADVANTAGE

SCHEDULE ~

IMPLICATIONS

PRE-DEVELOPMENT
CONSULTATIONS

ORGANIZATIONAL
SUPPORT

DOCUMENT

Figure 3-1. The software requirement and what goes into developing it



46  Specification of Program Behavior [CHAP. 3

The other phase, which Shaw and Atkins estimate at perhaps another
25% of the total development effort, may be termed the user requirements
phase. This effort covers input, information flow, output, documentation or
display, environmental, computer-resource, program acceptance, and
operational support requirements. Information provided in this phase is
again largely non-technical (in the context of program development),
oriented towards establishing output criteria, prescribing the program
functional capabilities, and scoping the program-embedding environment.
This phase establishes the requirements of the software.

Requirements are defimite only to the extent they are wvisible in
documentation. The output of the requirements activity is, therefore, a
Software Requirements Document (SRD) satisfying the following criteria:

a. It must be adequate to identify the objectives of the program, its
environment, the configuration needed for its operation, the
resources required for its support, and the advantages and
disadvantages in the service it provides, as related to the customer
organization.

b. It must be adequate to permit the remaining developmental
activities to proceed under a reasonable assurance that a major
revision to the requirements will not be necessary.

c¢. It must be adequate for review and approval by management on the
basis of its conceptual feasibility in accordance with the other
criteria above. It must contain manpower, schedules, and develop-
ment-cost estimates, as well as reasonably accurate variances for
these estimates, at least for the next phase of activity.

A candidate outline for the SRD appears as Appendix C. It organizes
planning information and user requirements into a hierarchic structure
suitable for semantic refinement. Topics may be detailed to whatever level
is needed to characterize the requirement. Rules for completing the SRD
appear in Chapter 11.

3.4 SOFTWARE FUNCTIONAL DEFINITION

Up to this point, the software development activity has been largely non-
technical. During the software definition activity, the analysis and
documentation effort move toward the middle level of technical depth
(Figure 3-2). Qutput of this activity will ultimately be a Software
Functional Specification (SFS) containing technical material (as opposed to
the conceptual layouts developed in the SRD) relative to input/output
definitions (data base definitions, data base formats, 1/0 device handling,
etc.), processing functions (decision tables, mathematical algorithms on



Sec. 3.4] Software Functional Definition 47

information structures), definitions of technical constraints {such as
execution time, storage limitations, etc), and stipulation of control
functions. In the end, the SF'S characterizes the program to be written as a
“black-box” response. However, some aspects of a computer program
differentiate it from other black boxes and serve to make writing a
definjtion unique. Depending on the specific situation, the SFS could
contain material stipulating the utilization of certain logical algorithms; but
generally, these are left as prerogatives of the design and production
activities.

It is important that the definition concentrate on telling what the
program is going to do. Descriptions of the environment, various conditions

SOFTWARE
REQUIREMENTS

STANDARD
PRACTICES

SYSTEM
CHARACTERISTICS

EXISTING DATA
BASE DESIGN
ANALYSIS OF
REQUIREMENTS,
SYSTEM, AND
DATA BASES

ORGANIZATIONAL
SUPPORT

FRE-DESIGN
CONSULTATIONS

CONSIDERATION OF
EXISTING LIBRARY

RELATIONSHIPTO
OTHER PROJECTS,
PROGRAMS

FAULT-TOLERANCE
PHILOSOPHY

YV sks

SOFTWARE
FUNCTIONAL

SPECIFICATION

Figure 3-2. The software definition and what goes into it



48 Specification of Program Behavior [CHAP. 3

to be met, and similar passive elements can obscure the main issues, if
introduced at the wrong points. -

The Software Functional Specification (SFS), when complete, satisfies
the following criterion:

It defines the meaning of program correctness; any program meeting
the technical and documentation specifications will be deemed a
satisfactory deliverable.

During the completion process, each phase of the SFS satisfies the
following criteria:

a. It is sufficient to initiate the development- of wser manuals as a
separate activity, paralle! to (but coordinating with) any concurrent
program development activities (design and production).

b. It is adequate for continuing the program definition and development
activities (design and production) with reasonable assurance that
major revisions will not be necessary.

c. It is reviewable by project and user personnel on the basis of its
technical feasibility and accuracy, in accordance with the SRD and
the other criteria above.

Appendix E gives a candidate outline for the SFS as a part of the overall
Software Specification Document (SSD), which is arranged for hierarchic
statement of program and documentation specifications. As was the case in
Appendix C, the outline is very detailed and suitable for semantic
refinement of both technical and non-technical program sub-specifications.
Rules for completing the SFS appear in Chapter 11.

The generation of user and maintenance manuals could rightly be
considered an integral part of a software development effort, and may well
appear among the tasks of the development team in many cases. Moreover,
the costs of developing such documentation must certainly be allocated,
accounted for, and managed as effectively as any other development
resource. Regrettably, however, I have not been able to organize these
manuals into the same sort of detailed uniform treatment given to the rest
of the development documentation. Their content, format, and level
depend so heavily on the intended audience and the program function. I
do, however, give some guidelines for their content (Chapter 16) and for
their role and interaction with the other parts of the development effort
(Chapters 10 and 15). Suggested outlines appear in Appendices F and K.



Sec, 3.5] Interaciion — Requirements and Definition 49

3.5 INTERACTION BETWEEN REQUIREMENTS ‘AND
DEFINITION ACTIVITIES

Requirements are primarily set by the customer organization, and
definilions, by the implementing organization. These need not necessarily
be distinct, but in the general case, they are. Such requirements are
generally levied by persons with a different expertise than those who must
respond to those requirements. But it is important that those setting
requirements and those defining functional specifications agree "to the
feasibility of the technical task and the accuracy of manpower and
budgetary estimates.

What a program is supposed to do is sometimes subject to wide
interpretation, even after a previous initial agreement. It is important,
therefore, that the customer remain involved with the remainder of the
development, especially during program specification activity (Figure 3-3).

When a program is thus being developed, with concurrent interaction
among requirements and definition (also definition and design), it is
necessary to interpret the SRID and SFS criteria stated earlier as being true
in a hierarchical sense. For example, in ‘the SFS, the criterion by which
program correctness is to be judged should be interpreted to apply only to
that part of the definition stated so far, at the current hierarchical level.
Before the design effort acts upon it, there should have been concurrence
that the current level of definition agrees with the (perhaps also partially
developed) software requirement.

The need for proper requirement and definition hierarchies to enable
this interactive process to continue successfully is evident. Semantic
refinement by way of detailed subconcepts (see Figure 2-7a) is ideal in this
respect, as it allows the detailing of a requirement at level'n+ 1, based on a
requirement at level n, to take place concurrently with the writing of a

SOFTWARE
REQUIREMENTS

NEGOTIATED
AND
APPROVED
AMENDMENTS
AND ADDENDA

SORTWARE
DEFINITION

Figure 3-3. Interactions between software requirements and definition activities



50 Specification of Program Behavior [CHAP. 3

definition in response to the level-n requirement, while design is working
on a program to safisfy the previous working-level definition (see Figure
3-4).

SUBREQUIREMENT AT

REQUIREMENT
LEVELn +1

AT LEVELn

SUBDEFINITICN AT
LEVEL m +1

DEFINITION
AT LEVEL m

|
I
I
I
PREVIOUS WORKING LEVEL

DESIGN
AT LEVEL p

I
CURRENT WORKING LEVEL

Figure 3-4. Top-down precedence in requirement, definition, and design activities
at concurrent working Ilevels (unterminated arrows point to other detailed
subconcepts not shown on this diagram; wide arrows show information flow)

Detailed rules for encouraging and administering the cooperating
interaction of disciplines will be given in Chapter 10, Project Organization

and Management.

3.6 INFORMATION-FLOW DIAGRAMS

A similar diagram, flowcharts, have traditionally been an important
design and production aid because they display how control is passed from
program module to program module during execution. There is a tendency,
therefore, for those doing program definition to also try to use flowcharts to
describe what they intend a program to do. However, specifying the
conirol logic for a program so early in the development tends to obscure
what the program should do functionally in favor of ways a machine can
sequence its operations. Control logic is really the province of design,



Sec. 3.6] Information-Flow Diagram 51

whereas definition should precede it. Control-logic flowcharts, therefore,
during definition may be premature.

Information-low diagrams, on the other band, can be a tremendous aid
in specifying and clearly illustrating the necessary data routing and
transformation procedures which operate on the information structures
(see Section 2.2) of a program. Hardware design engineers have been using
the equivalent of information-flow diagrams for years—they call them
block-diagrams. They have an edge, however, because the blocks in their
diagrams represent identifiable, real modules to be built. Whereas modules
on information-flow graphs may merely be abstractions that serve to
identify the problem and describe it in enough detail so that the design
process can solve that problem unambiguously,

Nevertheless, programs can be defined in terms of modular, hierarchi-
celly-refined definition units characterizing the program response in a way
that can be audited against the design for consistency. These units can be
graphically displayed using information-flow diagrams. As an example,
consider the chart shown in Figure 3-5, which depicts a generalized data
processing problem. The information flows from a read unit, to a process
unit, and finally to a print unit. In the program to be written, the actual
order of reading, processing, and printing is likely to be intermixed. Hence,
a flowchart at this stage obscures what is taking place with a lot of detail
as to how it is being done, or how the flow of control is passed, or how the
program is to be organized into execution modules.

At the next level, the read unit expands to a chart, such as that in Figure
3-6, showing the various data sources and information structures (not data
structures) holding the data. The ezample shows that the data to be
processed emanates from a data tape, while the printing format
information comes from a control-data file. Additional information detailing
both these inpuis may appear at a next level of definition. The information
at each level occupies certain structures assigned for communication with
and reference by other definition units.

PROCESS
DATA

FORMAT DATA

Figure 3-5. A data precessing program information-fiow diagram



52 Specification of Program Behavior [CHAP. 3

DATA
DATA =] | VECTOR [y~ PROCESS
TAPE D UNIT

i=1, 5000

CONTROL
DATA
FILE

FORMAT
PARAMETERSID———————>{ PRINT UNIT

Figure 3-6. Expansion of the read unit of Figure 3-5

The data processing unit has its expansion depicted in Figure 3-7, which
identifies a data-decoding function composed of a synchronization unit and
a decomutation unit. Data output to the print unit are characterized at this

level only by the information structure labels A and B, to be detailed at
later levels.

Similar {data flow} diagrams are shown in the next chapter to be useful in
the early parts of the design activity. As I have represented the two,
definition and design take place in an integrated fashion, anyway. The
difference between the two types of diagrams is that, in definition,
information flow is concerned with communicating the program function,
whereas, in design, the diagrams identify the connectivity between the
executable program modules and data structures they access.

A
Decommutate
_> data into & PR"_‘;I,T
Channels A and B UNI
Channel
Synchronization, k
Filter Data
D B Points D, x D,
i=1, 5000 1o find k which pr——]
gives maximum

Figure 3-7. The process unit information flow diagram for Figure 3-5



Sec. 3.7] Summary 53

. 3.7 SUMMARY

In this chapter I have formulated the technique of hierarchic refinement
as a tool for defining program behavior without designing the program. I
have given criteria for the documents to be developed, and I have
indicated how the developmental activities all dovetail together in
hierarchic unity. More specific rules for writing program definitions appear

in Chapter 11.



54 Specification of Program Behavior [CHAP. 3
Problems for Chapter 3

3-1 Establish a detailed software requirement for an opinion-poll company
to automate its statistical data-reduction operations. State justification for
expenditures based on company goals and current modes of operation.
Sketch plans for acquiring and operating the automated capability. State
technical requirements and criteria for accepting the program for
operations. Develop this material into 2 set of view-graph slides suitable
for presentation to a review board.

3-2 Define the external characteristics of the program in problem 3-1 in
hierarchic levels of detail. Was it necessary to augment, change, or
otherwise refine the customer requirements in doing soP Was it
necessary to design any of the internal aspects of the program in doing
sor

3-3 Structure the requirements of problem 3-1, the definitions of problem
3-2, and aspects of the internal program design discovered in problem
3-2 into hierarchic levels of detail such that requirements at level n are
responded to by definitions at levels greater than or equal to n, and
internal design aspects at still logically subordinate levels.

3-4 Specify, for the software to be developed in problem 3-1 above, which
documents among those discussed in Section 2.7.3 are to be made formal
and which are to be informal. Discuss the general level of detail for each
document as it relates to this particular project and identify what is to
become of each document at the termination of the development phase.
Identify any other documents to be produced, along with their
corresponding levels of detail and final destination.



IV. PROGRAM DESIGN

Even if there is very little hope of ever completely characterizing the
“optimal design process”, much progress in this direction can be made by
adopting formal disciplines that encourage the identification of goals,
problem constraints, design parameters, and solution alternatives. Design
requires creativity, ingenuity, and innovation, and, for this reason, cannot
be made a rigorously formal procedure. However, a sound approach
methodology towards problem solving and a base of schooling and
experience in software technology turns what otherwise would be an art,
masterable by only a privileged few, into an engineering discipline that can
be learned by many.

This chapter, then, coordinates several worthwhile programming tools
and methodologies into a formalized rationale for software design. Included
are: top-down development, look-ahead analysis, program modularization,
structured control fow, and hierarchic Ievels of definition.

4.1 DESIGN CONSIDERATIONS

The typical software development project goal is to “produce a
program, maximizing its quality, but subject to budgetary and schedule

55



56 Program Design . [CHAP. 4

constraints”. Quality, however, can be judged according to several,
perhaps competing, criteria [23], among which are:

® Reliability (characterized by the number of bugs in a program)
® Maintainability (indicated by the ease in fixing bugs)
® Modifiability (measured by the cost of altering the program)

3+

® Generality (characterized by the functional scope of the programy)
® Usability (indicated by ease of use)

® Performance (characterized by running efficiency)

Design is a process that generates a link between a problem and its
solution. As I shall use the term in this chapter, it generates the link
between the program functional definition and the internal program code.
Even programs “created on the coding pad”, without a formal design
phase, have nevertheless, required some design effort. The quality of a
program is a direct reflection on the quality of its design. It therefore
behooves the programmer to consider the design aspects very carefully and
very deliberately.

The basic elements required to design a good program are an
understanding of the function to be served and the mechanisms available to
carry out the job. The design must then be conveyed clearly and
unambiguously to the programmer along with any special rules for added
clarity.

Not every first idea is a best one, and for this reason, there is usually an
Iteration process involved in coming up with a good design. Moreover,
iteration and reworking a program rationale at design-time is the proper
place for that iteration and rework, rather than later, when there may be a
large investment in documentation and code.

The techniques discussed in this chapter help to make the investment
during development less sensitive to premature design decisions. However,
these are not replacements for design aptitude, but tools which serve to
guide that aptitude through an otherwise uncharted region.

4.1.1 Characterization of the Design Process

Because it requires creativity, design is a difficult process to pin down
definitively. Basically, however, its input is a problem and its cutput is a
specification, in the present context, the output is a specification for how
the coding is to take place. '

As I'shall be dealing with it, this process is that activity defining program
data structures and logical algorithms in response to, and conforming with,



Sec. 4.1] Design Considerations 57

the software functional definition. It consists of describing the program
organization, data manipulations, 1/Q procedures, and the like, carried to a
level of detail that will serve as the working basis for programming and
operational implementation. This activity defines the modular breakdown
of the entire program, thereby specifying work units for coding.

1 have represented the design process in Figure 4-1 as being composed
of (at least) two components and a number of considerations affecting the
result. One part of design is non-procedural, that is, the allocation of
program resources and definition of data structures. This part will then be
accessed and manipulated by the second part, the procedure, or algorithms.

4.1.2 Design Requisites

The first requisite for a designer is technical skill. The aptitude of an
individual for design is measurable to some degree by his ability to:

PROGRAM
DEFINITION

CRITERIA
FOR RESOURCE
SELECTION

PROGRAMMING
LANGUAGE
CONSIDERATIONS

CONSTRAINTS
IMPOSED BY
RESQURCES

PROGRAM
RESOURCE
AND DATA
STRUCTURE
ALLOCATIONS

TESTING

EXTERNAL ;
<ed CONSIDERATIONS

DATA BASES

PROGRAM
LOGICAL
MODULES,
ALGORITHMS
EXTERNAL

PROGRAM
INTERFACES

STANDARD
PRACTICES

BODY QF
TECHNICAL
KNOWLEDGE

TECHNICAL
EXPERTISE

Figure 4-1. Considerations making up the program design



58 Program Design [CHAP. 4

® Analyze problems

® Tdentify constraints and potential solutions

® Make trade-offs, choose alternatives, and render judgements
® Draw on background of technology, methods, and tools

He must know the fundamental principles of problem solving, and he must
be capable of applying these to the problem at hand. He must be
thoroughly conversant with the theory and practice of his trade, and he
must be capable of identifying all potentially useful alternate approaches.
Finally, he must be capable of making sound and responsible tradeoff
judgements among these. In short, he must be a professional.

The.need for a well-organized approach and well-structured documenta-
tion, with inputs and outputs clearly defined and logically arranged, is
fundamental. The product of a design is documentation, No amount of rote
nor helpful hints will eliminate the need for painstaking care and use of
techniques which allow the designers to keep track of all the program
intricacies.

Full use of graphic and narrative material lends clarity to the design.
Some things which contribute particularly well are data-base and data-
structure design tables, logical flow diagrams, data-connection diagrams,
decision logic tables, mathematical formulas, and perhaps even Boolean
algebraic expressions.

4.1.3 Humans vs Tools in Problem Solving

Problems pertaining to the design of software systems may perhaps be
categorized with regard to the required degree of comprehension required
by the designer at any one stage of the solution. Small problems fit into the
designer’s head all at once, without segmentation in any form. Large
problems, however, require segmentation into pieces which can fit into a
single comprehension span before solution is feasible. Because human
experience and intelligence is variable, the differentiation between which
things are comprehensible as a unit, and which are not, is very subjective.

Moreover, small problems can usually be solved and implemented in a
variety of ways, seemingly without undue difficulty; whereas, larger
problems may require laborious study before they can, by abstraction, be
made to resemble smaller problems, or can be dissected into a number of
smaller subproblems that when taken together, solve the original problem.
To convert large, incomprehensible problems concerning a great number
of details into small, comprehensible subproblems with relatively few
details means that the lines of dissection must be chosen to modularize the
original problem into subproblems that contain only those details which



Sec. 4.2] Top-Down Program Development 59

are relevant and conceal those details which are not relevant. This
systematic selective hiding of design details is what makes solution of a
large problem possible.

The following design rules and restrictions are intended to gunide the
dissection of a large problem into comprehensible subproblems, not only
for the designer, but also for his supervisors, managers, and any future
readers. The use of top-down methods, hierarchic decomposition, levels of
abstraction, structured control flow, semantic refinement, use of graphic
and descriptive material, etc., are very effective, each in its own way.
However, it is not the set of tools that solves a problem, it is the human
that uses the tools. Part of the acumen of a good designer is the ability to
match the right tool to the right problem.

Regrettably, then, this work will not be able to provide all designers with
every tool they will need to solve problems, nor, once solved, to express
their solutions in the most effective manner. However, it will provide a
standard that can be applied in the absence of better methods.

4.2 TOP-DOWN PROGRAM DEVELOPMENT

The theme of this monograph is (I say again) top-down, modular,
hierarchic, structured development of software. In keeping with the idea
that cooperative interaction among development activities is beneficial, the
design procedures I give permit the design to be checked conc¢urrently by
coding and testing through hierarchic levels from the top down.

In doing a structured, modular, hierarchic design, one starts with an end-
to-end overall description (definition} of the program and analyzes it into a -
number of component parts according to a set of decomposition rules. In
terms of flowcharts, one starts with a single box that represents the entire
program at the top hierarchic level, and expands that box into a flowchart
at the next level, which displays the component subfunctions as a
structured algorithm, in keeping with certain flowchart-topology rules.
Each of the subfunctions is given a precise, end-to-end subspecification, to
be expanded into its own flowchart at the next design level, and so on, until
such a level is reached that the collection of final subspecifications can be
coded directly, without functional ambigpity. Figure 4-2 illustrates this
hierarchic iree structure of the program modules.

I shall discuss permissible flowchart topologies (structures) and how they
enhance the design process in the next two chapters. In the remainder of
this chapter, let me show how the modular, hierarchic breakdown of
program functions into subfunctions works to great advantage in the top-
down development of programs.



60 Program Design [CHAP. 4

h
,B‘__é,a
SEk SN
\\E
=
i \5:///—5
? N
=
| I
I
i
i
| ¢
| e
e ——
A=
"
\5‘”‘45
N
g
\\E!

Figure 4-2. Decompaosition of a program specification into a hierarchy of maodular
subfunctions



Sec. 4.2] Top-Down Program Developmeni 61

4.2.1 Hierarchic Decomposition

Hierarchic decomposition [12,24,25] identifies the programming process
as a step-by-step expansion of mathematical functions into structures of
logical connectives and subfunctions, carried out until the derived
subfunctions can be directly realized in the programming language being
used. The documentation of the program supplies the tool for assessing
correctness of these expansions.

The documentation—that is, the design, for documentation is the design
at this stage—is purely for the benefit of humans, not the computing
system. The computer executes whatever instructions it receives.
Hierarchic decomposition will channel documentation detail into
functional levels, so that humans can comprehend the program at each
level by regarding the next lower level as a functional subunit.

The technique thus provides a way to control program complexity in a
disciplined, systematic way. With complexity under control, the possibility
for producing a correct design is greatly enhanced.

Such a design, moreover, is suitable for coding immediately; those
subfunctions that permit can be translated directly into the chosen
programming language. Those which require detailing at the next
hierarchic level can be programmed as blocks of temporary code or
dummy “stubs”, as Mills [12] calls them—simple procedures that merely
supply or test interfaces for the algorithm at the current level.
Furthermore, the program can then be run and tested, within the
capability of the dummy stubs. Once there is verification that the program
works with the dummy stubs as it should, the dummy stubs can be replaced
using later-level designs for their intended subfunctions.

Of course, the dummy stubs cannot provide a full interface to the rest of
the program for all possible inputs without being the full code for that
stub. Rather, it is intended to work for one or more special test cases, to
check the operation of that part of the: program already designed and
coded. Any errors detected can be corrected immediately, before they
have a chance to penetrate further into the design.

Mills’ correctness theorem in the next chapter states that (if flowchart
topologies are structured as he prescribes) if the program at a given
hierarchic level is known to be correct, then it will still be correct after all
of the stubs are replaced. In principle then, using dummy stubs permits
checking the entire design (and' coding) for correctness from the top down,
and, in practice, greatly reduces the amount of checking needed to achieve
a given level of confidence in the program. The concurrency of design,
coding, and testing provides checks and balances; when the design is



62 Program Design [CHAP. 4

complete, coding is not far behind, and the program is very likely to be
correct.

The flowchart topologies, or logical connectivity of the subfunctions, to
be studied in the next chapters, are structures which permit programs to
be even more readily readable, understood, coded, and tested, and then
maintained and modified. Control branching is entirely standardized so that
the flowchart, accompanying narrative, and resultant code can be read
from top to bottom without having to trace the branching logic in an
intricate, convoluted way. .

Thus, the design ultimately manifests itself as documentation that s
readable from the top down, page by page, level by level.

4.2.2 Look-Ahead Design

The top-down method manifests itself in a series of hierarchies, not just
one. So far, I have talked principally about developing the program
control-lagic hierarchy from the top down, in execution sequence. But the
reader should not confuse this hierarchy with the top-down concept-
development hierarchy by which the fundamental bases for the program
emerge. One must realize that the mental abstractions needed to solve
problems are quite different than the control- logic abstractions which
result in flowcharts, code, or other equivalents(of program procedure.

For example, in solving a concurrent processing problem, one of the top-
level considerations affecting the whole design might be concerned with
the feasibility and efficiency of certain resource arbitration algorithms.
Thus, primitive functions REQUEST and RELEASE might be closely scrutinized
early to determine that these key design elements are feasible and have
certain envisioned (or discovered) properties.

Viewed with respect to the control-logic development hierarchy,
however, these functions may appear as bottom-level modules. What were
top-level considerations in the concept department are represented in the
program tree by relatively bottom-level stubs.

The apparent misalignment of these two hierarchics does not mean that
the top-down method should be abandoned. Instead, there needs to be an
accommodation made in the development discipline to permit these
hierarchics to interact in the most effective manner,

In bridging the software gap (Figure 1-1), there is always the risk, as in
any systems design, of running up against an unsupportable specification
made somewhere earlier in the design. This risk is true whether the
procedure is top down, bottom up, or inside out. Concurrent coding and



Sec. 4.2} Top-Down Program Development 63

testing tend to minimize the chances of having an incorrect or inconsistent
design up to a given point, but they do not negate the risk that the
program might actually fail to connect the problem to the programming

language.

This type of risk is not exclusive to programming design, but occurs
everywhere that conceptual system specifications are to be connected to
the real-world. It can be averted by resorting to a technique that can be
called a “look- ahead” design, or a “baseline” design, or a “preliminary”
design. What the designer actually does, according to M. Easterling in an
internal JPL: memorandum, is to “sketch out the key details of the
remaining work to assure that what he is doing at present will be proper
when reviewed in retrospect, at a later stage in the design”. (See Figure
4-3.)

In the present context, the top-down design hierarchy with concurrent
documentation is intended to provide a logical and orderly way for the
“various development team members to work together, to guard against
mistakes, and to produce the needed documentation directly in the process.
The team interactions and individual progress milestones can take place in
a supervised, formalized discipline, as will be discussed in Chapter 10.

A complete look-ahead design may well precede the formal detailed
design, to form the “architecture” or basis for estimating costs, schedule
milestones, and the work task breakdown structure for later activity.
During this architectural phase, detailed correctness of the algorithms is
noi as important as the development of a sound foundation for the later
formal, detailed design. The look-ahead notes can include flowchart
sketches, worked out algorithms, data structure preliminaries, and narrative
descriptions of things to come. Only when the designer has assured himself
that what he is formally obliged to produce at the current level is correct,

DESIGN OF
MODULE,
LEVEL n

DESIGN OF
MODULE
LEVEL n+1

DESIGN OF
MODULE
LEVELn +2

: —— e ——

CURRENT INFORMAL LOOK-AHEAD
FORMAL <e X DESIGN CONSIDE
oG GN ¢ RATIONS
LEVEL

Figure 4-3. Logical precedence and flow of information in a look-ahead design



€4 Program Design [CHAF. 4

does he submit it into the body of project-controlled design documentation
at that point. Then, and only then, is it coded and tested.

There are potential problems, however, that a project manager must
avert in look-ahead efforts. Foremost, he must maintain adequate visibility
into look-ahead activity, and avoid the ceaseless “tinkering” that sometimes
has a tendency to occur.

4.2.3 Designing for Correctness

A correct program is one that performs according to its definition. In a
correct, top-down design, the functionally specified behavior is considered
paramount at each level of the development.

But while the program design may be correct at each succeeding level,
deep into the program, the program still may not perhaps bridge the gap
all the way to realization. An impase may occur at a certain level in which
the function specified is not implementable. The design problem is to find
the correct bridge that spans the whole gap. There may be many; in fact,
that is far more likely to be the case than there being only one.

The end product of the design activity is a software specification, which
can then be implemented into code. To avoid errors of omission in the
design, I have provided a detailed outline (see Appendix E) for the
Program Specification (PS). This PS, on completion, can be joined with the
Software Functional Specification (SFS) and Software Test Specification
(STS) to form the Software Specification Décument {SSD). The SSD and
code listings become the major portions of the program development
documentation. During development, the SSD is the design document;
afterward, it is the “as built” specification, satisfying the following criteria:

a. It is adequate to permit concurrent coding and checkout using
dummy stubs at the completion of project-imposed design milestones.

b. It is adequate, upon completion of these milestones, for continuing
the design to later milestones.

¢. It satisfes the program requirements set forth in the Software
Requirements Document (SRD) and conforms to design and
documentation rules and standards in a reviewable, demonstratable
way.

d. It is adequate for use as a later maintenance document.

e. It is adequate for use as a design-control agent within the
development project.

In summary, the top-down approach keeps the design correct at each
stage of the development, and look-ahead helps to make the bridge reach



Sec. 4.3] Program Allocations 65

the other side of the gap. Concuirent documentation provides a way of
writing the ideas down in the sequence they are generated and needed.
The SSD outline (Appendix E) helps avoid errors of omission. Concurrent
coding and then testing validate the design. Everything coordinates and
cooperates in the development process, so that when the design is finished,
there is only a short step to program delivery, complete with
documentation. That’s the idea, anyway. But to make it work, I'll need to
be much more specific about how things are carried out and coordinated,
from top to bottom. :

4.3 PROGRAM ALLOCATIONS

Allocation of data structures and other program resources need to be
integrated with the procedural design. But this allocation as well as design
of such resources cannot usually be separated from the algorithms and
procedures that involve those resources. In fact, certain algorithms, by
their nature, require certain structures. For example, an algorithm that
creates and then consumes data on a first-in-first-out basis needs a queue, a
last-in-first-out algorithm, a stack. If procedures are to be developed in
hierarchic levels of subfunctions, then the corresponding resources need a
corresponding design hierarchy.

4.3.1 Data Structures

Data structures to be used in a program are particularly well suited [10]
to being designed in the “levels of abstraction™ imposed by the hierarchic
modular decomposition of the program specifications. Recall that top-layer
considerations are concerned with the problem, and that deeper layers
traverse the span to programming language. The specification hierarchy for
a data structure will thus begin with one fitting the needs of the problem,
and wind up with detail at the programming language level.

This technique permits one to concentrate on relevant features of the
situation and to postpone for later consideration those factors believed to
be less relevant, By this process, one decides to concentrate on properties
shared by objects or situations by subordinating the differences between
them.

For example, suppose, in the upper layers of a design, that one may
recognize the need for a “stack” to hold certain data in a module. No more
information is supplied at that level, not even the name, because no other
interfaces appear. However, at some eventual hierarchic detailing of the
module (Figure 4-4), the name will become important, as well as perhaps
functions which fetch and store data in that stack. Upon expansion of those
functions, more detail is needed about the stack, such as its size, and the



66 Program Design [CHAP. 4

pointer to its top element. Eventually, the entire detail of the stack, down
to the bit-by-bit machine configuration will be specified. Figures 4-4 and
4-5 show alternatives for the stack level-3 design.

Thus, the process of hierarchic decomposition of the program into
subprograms generates a hierarchic composition of the data structure
definition. Only the details needed at a given level will have been supplied
(although the designer is free to “look ahead” in data-structure design, just
as he is in module design): And just as it is important to document the
program logical algorithms—perhaps as namrative and flowcharts—it is

-~

Level 1. S#ack structure for CONTEXT module (1.5 8)

Assumed attributes:  Stores integer data so that last-entered (“top™)
item Is retrievable first

Level 2: Stack name. NESTING {declared in submodule 1.5.8.3)
Access functions SPAWN: Create stack with no entries
PUSH" Insert item for next retrieval {i.e., at top}

PULL: Retrieve and remove top item, enable
next top

PEEK: Return value of top item; do not remove

EMPTY: Remove all entries

Level 3. Structure of stack: {Used in access functions)
R
. -
[ ] -
'N,___________,_: entry set to 0 by EMPTY,

link created by
SPAWN-to area
in STATIC list

of proper size

incremented by PUSH,
decremented by PULL

no. items

-

top 1tem
e access to top item by
¢ . PUSH, PULL, and PEEK
L] -
e e

MAXSI12

Figure 4-4. A simplified data structure design hierarchy for the stack structure
first referenced in a module named CONTEXT (only the first three levels of
definition are shawn)



Sec. 4.3] Program Allocations 67

|

Level 3: Structure of stack: {Used in access functions)

EMPTY returns all tokens
to AVAIL list, sets NESTING

[1]0]

NESTiNG[ . | -—|—>[h°mm| 0

SPAWN sets
NESTING ta

access to top item by PUSH, PULL,
.and PEEK. PUSH obtains list
» token from AVAIL list; PULL
returns token to AVAIL list

AVAIL | o—= next |

See Knuth, Vol. |, of
Fundamental Algorithms,
Addison and Wasley,
pp. 251-257, 1969, for
operation of AVAIL list

Figure 4-5. An alternate level-3 design for the stack structure NESTING of Figure
4-4 (note that levels 1 and 2 remain unchanged, as is the remainder of the design
using the stack)

likewise important to keep the data structure definitions current in some
documented form.

For this reason, the SSD (Appendix E} contains a Data Structure
Definition Table, and I give specific rules for the format and content of the
table entries in Chapter 12, Program Design Standards.

The process of abstraction hinges on finding generalized representations
(or a set of symbols) to stand for objects or situations, a set of operations to
manipulate the representations, and a set of rules to relate how the objects
or situations in the real world react, based on similar actions on the
represeniations.

I have not revealed how one goes about deciding which data structure to
use in any given situation, any more than I have stated how one chooses
procedures to solve a given problem. A programmer must still have the



68 Program Design [CHAP. 4

professional skill required for his trade. Data structuring by abstractions
will, however, organize the approach.

As a starting point, one should probably begin with the most abstract
concepts of the information structure of a problem and its envisioned
method of solution. Then using stepwise refinements of both the procedure
and information contents, one creates increasingly more concrete
representations of the informational elements as data structures, accessed
by certain operations in certain ways. One should concentrate primarily at
each level with what is being done, rather than kow it is to be done {which
will be defined in later abstractions). It is proper to use look-ahead-design
checks for feasibility; however, only design items approved at the formal
current working level (Figure 4-3) may be used as interfaces for later
design or coding.

At each level of abstraction, it is useful to study the needs of the
problem, that is, to discover all the relevant aspects of the information
elements, such as:

® Source

€ Amount of information

# Types and other attributes of data elements (such as units)
® Relationships among data elements

® Decomposition of elements into subelements

® Operations to be performed on elements

® Access frequency to elements and response time required
o Acéuracy, privacy, lifetime '

Then, one may more rationally invent representations of data structures {or
refinements of previously defined structures) and functions to accommodate
the abstraction (see Figure 4-5). It is important to assess the correctness of
the representation; i.e., to assure oneself that the defined functions on the
invented representation correspond to intended operations on the actual
information (in the real world).

For this assessment, in a conceptual sense, data items can be viewed as
nodes, and relationships among items, as interconnecting lines, on a “data
graph”. In fact, it is often useful to display such a graph as a design aid—it
tends to keep the data structure definition simple and decumentable. The
disjoint connected subgraphs can become separate data structures, since
there are no crossrelationships among the disjoint items. Levels of
abstraction can furthermore designate certain nodes of the graph as entities
for later refinement into subgraphs, in many cases.



Sec. 4.3] Program Allocations 69

Once the structure is graphed, then one must decide whether the links
between data nodes are to be realized as actual connections (pointers)
within the data structure, or whether such links are programmed into the
access functions. This decision primarily concerns whether data is
structure-linked or access-linked, whether it is unpacked or packed,
whether it is a direct or indirect representation, and whether the program
is structure-driven or program-driven.

For example, a compiler may be built around rather simple algorithms
that analyze each input string by following the set of language grammar
rules stored off in some table, in comparison to algorithms that access no
such table of rules, but have the grammar coded directly into the
procedure. Which method is used depends on an analysis of each situation
.against the criteria and guidelines for program quality established at the
ouiset.

These guidelines need to state both high-level and low-level policies for
making design tradeoffs. Some of the things needed, for example, are an
enumeration of the basic data types available in the programming language
to be used (integer, floating point, string, etc.), and the facilities for
building more complex types from these (automatic list generation, etc.).
There also needs to be a guideline for the degree of data packing to save
space, as opposed to the lack of packing to save access time. If packing
saves both time and space, it may be necessary also to consider whether
packing also causes the program to be more complicated or to require
extra expense (e.g., garbage collection). In some cases such as that
illustrated in Figure 4-6, one may decide to support two types of
representations of the same general structure.

To make some needed judgements, it may be necessary to carry sample
look-ahead efforts all the way from the top, down to the programming
language level, and perhaps back up again, to learn about access times,
storage, and other things. These items could seriously immpact the data
structuring and module functions if discovered after formal top-down
coding has begun.

4.3.2 Resource Allocation and Access Hierarchies

Data structures are just one example of computer resources in which the
top-down design process induces an increasingly more detailed definition
hierarchy upon its constituents. The hierarchy describes the resource in
levels of access. At the top, the only access was through the vague notion
of the structure, or perhaps the type of structure. At the next level, the
name could be used, etc. At some point in this hierarchy, the level of
access becomes definite enough that hard program interfaces can be made.



70 Program Design {CHAP. 4

]

LEVEL 1: Al stack structures for program

Assumed attribytes: 1)1  Stores data lastan-first-out
2} Creates and accesses all integer stacks in program

LEVEL 2: Access functions: SPAWN: Create stack with no entries
PUSH:  Insert item for next retrieval {i.e., at top)

PULL: Retrieve and remove top item; enable
next top

PEEK: Return value of top item; do not remove

EMPTY: Remove all entries

LEVEL 3: Stack type:r  STATIC and DYNAMIC added to SPAWN function®

1. SPAWN STATIC(name) creates  rame: [0 | o= 1o STATIC list
{Figure 4-4}
2. SPAWN DYNAMICiname) crestes nmame: |1 | O]  anduses AVAIL
{Figure 4-5)
3. All other functions are same as in leve! 2, but have stack name added-
PUSH{namel
PULL{rame)
PEEK({name)
EMPTY {name)

4.  Typing is automatic within these functions.

LEVEL 4 Srructure of stacks.
{Figures 4-4 and 4-5.} p

Figure 4-6. An alternate definition hierarchy for declaring and accessing all
program stacks, both in static and dynamigc lists

It finally proceeds down to the level in which the individual computer
components are accessible.

As an example, let us suppose that data from a given last-in first-out
(LIFO) stack may be accessed at some level of the design via functions
PUSH, PULL, PEEK, etc., as iflustrated in Figure 4-7. Then all accesses to the
stack in the rest of the program can be made only via this level of access,
except for those inside the access functions themselves which then have a
deeper, more detailed level of access to the data structure. In this case, the
access functions PUSH, PULL, PEEK are inextricable parts of the data structure
abstraction. The functions own the structure at that access level.

The concept may be extended; suppose functions PUSH(stack), PULL
(stack), etc., represent a level of access for a set of LIFO structures any of
whose names can then be substituted for the syntactic variable stack above.



Sec. 4.3] Program Allocations

REST OF PROGRAM

SPAWN (5. V) | (PUSH (A, 5) | PULL (4, §) PEEK (4, 5] EMPTY (5)
Create stack | Insert A on top Remove top Return A.as Flush all
S of N cells of S element of S, vzlue on top elements

return as A of § out of &

7

¥ 3

CORE

> <&

Level-1 Aceesses to Stacks

Figure 4-7. The top level of access to the STACK set of data structures

Again, the access functions own the set of stacks exclusively at that level of
access, in the sense that modules outside PusH and PuLL wishing o access a
stack must access that stack only through these functions.

The general idea here is that resources may be characterized by their
levels of access as well as by the services they perform. A level of access
for a set of resources is defined as an interface through which all accesses
to any constituent part of a resource must pass, except for those at deeper
levels within the hierarchy.

Levels of access can provide a conceptual framework for achieving a
clear and logical design for a system. At the lowest level are the access
functions for individual resource units such as arithmetic registers, memory
cells, file elements, etc. File elements are built into records by defining
functions to process groups of file elements as a unit; records are built into
files by defining functions to process groups of records as a unit, and so on,
up the hierarchy. Each level supports an important abstraction (see Figure
4-8).

Each access level consists of one or more externally accessible functions
(modules) sharing common resources. The connections in control and data
among the various access modules induced by the top-down design



72 Program Design [CHAP. 4

INPUT FROM x

TAPE (x) FILE (x)

[

MAG

CASSETTE TAPE DISC DRUM

Figure 4-8. Levels of access for tape and file input are indicated by horizontal
lines through information flow lines (note logical cohesion of functions within the
accesses; see Section 4.4.2)

hierarchy are limited in a natural way. Every resource used by a program
will eventually be represented in a hierarchy whose levels map the needs
of the problem into the characteristics of the resource.

The process of hierarchic decomposition of a program into subfunctions
(resource access modules) thus generates a hierarchic composition of
resource requirements. The SSD (Appendix E) contains provision for
Resource Access Requirements Tables to maintain the current state of the
access levels in documented, visible form; I give specific rules for the
format and content of those table entries in Chapter 12, Program Design
Standards.

4.3.3 Data Connection

As T stated in the preceding chapter, an information flow analysis is a
natural tool for specifying what a program function is in terms of-
transformations of input data to the output wanted. In design, which



Sec. 4.3f Program Allocations 73

specifies how the computer is to implement these, it is useful to identify
module data interfaces, to identify the precedence of data creation and use
among modules, and to promote understanding of the program interactions.
For example, if data created in modules A and B are going to be further
processed by module C, then execution of A and B must precede C; if A
and B do not share data, either may be executed first.

One could conceivably erase all the flow lines from a program flowchart
and replace them by lines representing the data structure accesses instead,
as a graphic way to identify operations on the data and to display data
Interconnectivity between executing modules. Such a chart undoubtably
would be convineing evidence that analyzing data connectivity can be far
more complicated than analyzing program control fiow. For this reason,
data connectivity design should, from the very first, be made to adhere to 2
discipline that minimizes module connectivity and organizes it into
understandable units, Such a discipline, when coupled with structured
control-logic design methods, offers the possibility of maintaining program
clarity and correctness in both respects, data flow and control flow.

A data-connection diagram is a chart used to depict the same execution
submodules (at a given hierarchic design level) of a given module as
contained on the fHowchart for that module, but with arrows drawn from
submodules which create data to those that use the data. The executable
modules follow their usual flowchart striping and naming conventions
detailed in the next chapter. To distinguish data-connection diagrams from
flowchasts, I use the conventions shown in Figure 4-9; daia connections are
shown as named wide arrows between executable modules, or unnamed
wide arrows between a data structure (or enumerated table of such
structures) and a module.

Data-connection diagrams, such as Figure 4-10 [26], thus depict the
activity of a module as reading the data structures corresponding to
incoming arrows, processing, and writing the data corresponding  to
outgoing arrows. Such diagrams hence display the logical precedence
relations with which certain modules must precede others in execution. An
analysis technique called topological sorting is often useful in revealing an
execution sequence for the modules to achieve the intended data
precedences.

The topological sorting algorithm is simple [27]:

a. Locate on the data-connection diagram a module such that none of
its inputs comes from any module on the diagram.

b. Labei this module as first to be executed, and then break (or erase) all
of its outgoing data connections.



74 Program Design [CHAP. 4

(a) Simple gata-name connection °

MOOULE ¥ MODULE 2

% >

data name

(b} Enumeration of data structures 1n a connection

MODULE 1 MODULE 2

Data
—————>! | Enumeration [L———mmm>

Table

(e} Module external data connection

MODULE

Initial Data
Enumeration Z::::’

Table

Figure 4-8. Data connection diagram conventions

c. Repeat this procedure to find each succeeding next-to-be-executed
module. .

Having such an execution order for modules, a designer may proceed to
design control logic to implement module execution in the indicated order.

Topological sorting fails when there are data loops; ie., modules whose
data structures are iterated to reach certain states. In the example shown in
Figure 4-11, module A reads data in the Tables T and U to update the
contents of U, and module B reads Table U to update Table T. (I shall
suppose that T, but not U, was initialized to a known state prior to
execution of either A or B.) But what, if any, is the implied execution order
of A and B? All that can be said with certainty without further information
is that the first execution of A must precede the first execution of B.

Topological sorting does, however, identify such loops, as well as the
variable nature of the data structures within them. Hence, just as control-
flow graphs do not fully describe a program satisfactorily, neither do data-
connection graphs. But they can work together as tools for effective design
and documentation. Each tends to identify characteristics not visible in the
other, thereby not only catching many design errors immediately, but also



LI

i

hj

Source

Code

Terminal
Table, TT

Code
Macros

Syntax
Rules

¥

LEXANAL Uniform PARSER
A, E:——:D Symbot E___—__I-'>
Table,
@— UsT
STORASGN .
. Optimized
Identifier A
Table, IDN <:3 Matrix,
OPTX
Literal :
Table, W i '
LIT
CODE GEN [
> |
IASSEMBLER
Assemnbly EM
Code 3 ’

Action
Tables

Y

INTERPTR

II

X

OPTIMIZE

H

Relocatable
Object
Code

Figure 4-10. A data-flow diagram for a compiler

Matrix,
MTX

SUOUBIOTY WDiSOLT [9'F *098

SL



76 Program Design [CHAP 4

I

Figure 4-11. Data connection loops (superscripts on the Tables T and U index their
contents after the r-th and m-th executions of B and A, respectively)

minimizing the possibility for side effects when changes are to be made
later in the program’s evolution.

In summary, data connection diagraming, with accompanying narrative,
is another effective tool for the designer’s bag. It provides him a means to
identify, and then to minimize, data connectivity side-effects among
modules. It provides a means of attacking a problem in which questions of
control, which often only obscure the solution, are secondary. It fits in with
the top-down, hierarchic, modular, structured design discipline. It is a
suitable mode of communicating the program organization to project
management. It identifies the elements most important to the program
mainstream, so that priorities and alternate operational modes can be
established.

Probably the most effective use of data-connection analysis will occur at
the highest levels of the design. Then, as design progresses, the data
interconnectivity becomes more firmly established in the mind of the
designer (and reviewer), so graphic aids diminish in value. This is just the
opposite from flowcharting, where the control at the top levels tends to be
rather non-contributory to understanding, but becomes exceedingly more
important at deeper levels.

4.4 MODULARITY IN PROGRAM DESIGN

I bave alluded to the need for modularity in program design as a means
toward organizing the program into subdivisions (which can be considered
separately) to cope with complexity during the development phase, and to
cope with side effects when later changes or corrections are made. The first
order of business is to be more definite about what modularity is and what
its characteristics are. In Chapter 2, T defined a “module” as an identifiable
subportion of a program that also fits the definition of a “program”. Clearly
then, each flowchart box and every program statement is a “module”
according to this definition.



Sec. 4.4] Modularity in Program Design 77

Certain groupings of such “submodules” then can build other “modules”
characterized by [23]:

a. Lexical binding. The submodules appear physically together, as on
the same flowchart or on the same code listing page.

b. Identifiable proper boundaries. The coliection of submodules has a
well-defined, named entry point (at the top) and end boundary
(through which it normally exiis), and all submodules between these
two boundaries belong to that module.

¢. Named access. The module can be invoked as submodule of another
module by its name.

d. Named reference. The module may invoke other modules as
submodules by name.

Such modules I shall distinguish by the term named modules.
References to such modules on flowcharts are distinguished by the
technigue of “striping” the flowchart symbol, as shown in Figures 4-9 and

74-10, .and for this reason, I shall often refer to named modules as sériped
modules. '

Modules are not only characterized by the functions they perform, but
also by their connectivity with the rest of the program. Every module
possesses what may be termed a “coefficient of modularity”, although, at
this writing, this measure is rather more intuitive than mathematic.

For the purposes here, such a measure needs to relate modularity to the
human capability for understanding a module’s function and to the
Likelihood of side effects caused by later changes in the program. Side
effects here refer to those changes that have to be made in a program
outside a given module as a result of making changes in that module. The
two most important measures of modularity by these criteria, according to
Constantine [28] and others [23, 29] are module coupling and module
strength. The optimal modular design minimizes relationships between
modules {minimal connections) and maximizes relationships among
components within each module (maximum strength).

In the remainder of this section, I will present an overview of
Constantine’s modularity-measare considerations [23, 28, 29].

4.4.1 Module Coupling

Module coupling is a measure of data cornectivity between a module
and the program in which it is imbedded. Modules may have their own
internal (local) data structures, but they must nearly always also access data
outside themselves. Such communicated data can either be accessed as



78 Program Design [CHAP. 4

arguments or parameters through the calling-sequence interface, or may be
passed by direct accesses to global data structures, or else may be
referenced to internal data structures of other modules.

Module coupling also measures control connectivity. Modules could
conceivably transfer flow of control in awkward ways to internal
submodules of other modiles; however, this possibility is overtly disallowed
by the structured programming discipline to come. But modules may
communicate control to other modules in the form of control data; ie.,
data altering the functional mode of the module.

Modules must at least communicate data or they cannot functionally be a
part of a program. Perhaps some modules can get by without any data
communication (such as a ToP oF FORM module), but generally, pure data
connectivity is a minimum necessary requirement.

Not so the communication of control. Constantine has shown that the
explicit passage of control data between modules is theoretically
inessential. In a practical sense, however, control data communication is
sometimes necessary or desirable.

Coupling measures the independence of modules, one from another;
modules that are not coupled are not apt to feel side effects. And obviously,
the fewer the number of connections a module has, the more that module
is apt to be independent of other modules.

Besides the number of connections, the type is important. Meyer’s [23]
scale of coupling from lowest (best) to highest (worst) is:
a. Data coupling Best

b. Common coupling

O

. Control coupling
d. External coupling
e. Content coupling Worst

The scale is not linear, angd instances often have to be judged on a case-by-
case basis. Figure 4-12 illustrates the 5 types of coupling.

4.4.1.1 Data Coupling

Modules are date coupled if one module calls the other, if all input and
output communication is in the form of argumenis or parameters passed
through the call-sequence interface, and if all such parameters are data (not
control) elements. Constantine has demonstrated that this form of coupling
is sufficient for any program. 1t, therefore, is the lowest form of coupling.



Sec. 4.4] Modularity in Program Design 79

[a) Data Coupling

_} Data Passed

. A t
! as Arguments {b} Common Coupling

MOD / SUBMOD MOD / SUBMOD

‘ WAL

COMMON
Store
(e} Control Coupling
Control Data
—! Passed a8
,F Arguments
l {d) External Coupling
MOD / SUBMOD MODA =t mMopge
s EXTDATA
{e) Content Coupling
MODA - MODB

Figure 4-12. Classes of module coupling (solid-line arrows indicate control flow;

ORIGIN AL PAGE IS wide arrows show data coupling)
OF POOR QUALITY




80 Program Design [CHAP. 4

4.4.1.2 Common Coupling

A set of modules is common coupled if they reference data held in a
“common pool”, or central repository for-certain data structures accessible
by all the modules. Common coupling creates difficulties becanse it couples
together the entire set of modules using the common pool, without regard
to whether the modules have functional relationships or not. For example,
if two modules are the only ones to access an array of fixed dimension, say
7, in a common pool, and if it is desired to change that dimension to, say
10, then not only the two modules themselves, but every other module
sharing the common pool must usually be recompiled.

Common coupling between unsynchronized real-time programs is
especially dangerous because the results of computations very often are
unpredictable. Even so, it is generally less caustic than the remaining three
forms of coupling.

The disadvantages of common coupling become less severe if common
environments can be segmented and localized within minimal subsets of
modules that share data structures (e.g., in levels of access). Such measures
tend to lower the overall coupling in the program.

4.4.1.3 Control Coupling

Two modules are control coupled if one medule passes a flag or set of
flags (control data) as argument(s) to the other, to directly influence the
functioning of the receiving modute. Control coupling is not very desirable
because the two modules are not very independent; the sending module
must usually have some knowledge of the internal processing of the
receiving module. That is, a calling module cannot view its submodule
completely as a “black box”. Such coupling also usually implies low
module strength, to be described in Section 4.4.2.

The classification of elements as being either pure data-or control data is
sometimes a process of judgement. Generally speaking, classification
depends on how the sending module perceives the data, regardless of
which module is the calling module.

For example, if module mMob calls module susmMop and sends data DAT to it,
and if MOD perceives DAT as pure data, then MoD and SuBMOD are data
coupled, even if suBMOD executes differently based on the value of paT. (This
is partly due to the top-down process: M0D places no restriction on how
suBMOD performs its function, but merely requires that it process DAT
according to the function prescribed.)



Sec. 44] Modularity in Program Design 81

In the converse case, if DAT is returned to MoD by SUBMOD , and SUBMOD
perceives DAT as data, then the two are again data coupled, even though
MoD may execute differently based on the returned value. Here again, the
top-down philosophy is at work: MoD has decided how it will function based
on DAT, and has required sueMoD provide it with data to perform that
function—suemMoD is not controlling MoD.

However, if oD sends a control- flag FLG to suBMOD, and moD views the
value of FLG as a signal for SuBMOD to perform one of its set of functions,
then FLe is control data. And conversely, if suBMOD returns FLG to MOD, and
SUBMOD perceives FLG as a request for Mop to perform one of a number of
functions, then FLG is again control data.

If control data are communicated via the common store, then the
coupling problems are further compounded.

4.4.1.4 External Coupling

Two modules are externally coupled if one module refers to élements
residing in one module with the elements declared so as to be accessible to
other modules. This type of coupling is high because the entire usage or
content of a submodule may have to be taken into account to correct an
error, or to make a change, or to verify that-it does not create side effects.

As an example, suppose module AMOD uses an internal structure DATA,
which it declares to be externally accessible. AMOD calls suBMOD for a service,
in which the value of DATA plays a part; upon return, AMOD goes merrily on
its way, doing whatever it wishes with bATA. Now suppose that the outside
program is to be altered by adding a new module BMOD which in no way

AMOD

DATA

SUBMOD

BMOD

Figure 4-13. Addition of BMOD to AMOD-SUBMOCD program, in which BMOD calls
SUBMOD and communicates through DATA internal to AMOD



82 Program Design [CHAP. 4

resembles AMOD, except that it could use suBMoD for the same service it gave
AMOD, but based on different paTa to be passed (Figure 4-13).

Suppose BMOD thus sends AMOD 2 value for DATA and then calls susmMop. The
next time AMOD executes, it probably crashes because BMOD changed DATA.
Recognizing that this would happen, the BMoD programmer could save DATA,
set a new value, call suBMOD, and then, upon return, restore DATA to the
saved value. If AMoD and BMOD are capable of concurrent execution, AmoD still
crashes.

The point is that BMOD is coupled to aMOD, with which it has no logical
connection at all, by external coupling, In addition, all the disadvantages of
common coupling are probably present, as well. External coupling thus
tends to bave an adverse effect on program meodification, both in terms of
cost and potential bugs, and should be avoided wherever possible.

4.4.1.5 Content Coupling

Two modules are content coupled if one module makes a direct
reference to the contents of another module, either modifying 2 statement
in the other module, or accessing a set of internal data not externally
declared.

Another case of content coupling occurs when modules share the same
physical code, as may occur when the statements of one module lie
physically within another (not as subroutines). It should be obvious that
content coupled modules are very dependent upon one another and that a
seemingly innocent change in one can easily cause the other to
malfunction.

Effective programming does not permit modification of statements or
shared code between modules, and therefore does much to minimize
content coupling,

4.4.2 Module Strength

The second trait of a good module is its strength, or cchesiveness. The
term “binding” is also used in the literature, but I prefer not to use it, as
the same term has another meaning to most programmers.



Sec. 4.4] Modularity in Program Design 83
The scale of inodule strength, or cohesion, from highest (best) to lowest

(worst) is [23]}:

Functional Best

Communicational

Procedural

Temporal

P = 0 F P

Logical

Y
f. Coincidental Worst

Again, the scale is not linear, and, in fact, items b and ¢ appear differently

and perhaps interchanged in two works [23,29]. Functional cohesion is

much stronger than all the rest, and the last two are much weaker than all

the rest. I will discuss each type and try to show how maximizing cohesion

among module components has a positive effect in terms of programming

quality.
4.4.2.1 Functional Cohesion

Functional cohesion is at the top of the strength scale. In a functionally
cohesive module, all of the components are related directly to the
performance of a single function. By a program function, I mean one that
performs a prescribed, definable transformation or service. A useful
technique for determining whether or not a module is functionally
cohesive, is by writing a sentence describing the purpose (function) of the
module, and then examining the sentence. If the sentence is a simple
declarative sentence in the imperative mood (no commas, and only one
verb), if there are no words relating to time or sequence {e.g., “first”,
“next”, “then”, “after”, “otherwise”, “when”, “if”, “start”, ete.), if the
predicate contains a single specific object following the verb, and if the
verb does not imply a general auxiliary relationship (e.g,, “initialize”,
“clean-up”, ete.), then the module is probably functionally bound. T say
“probably”, because cohesive strength exists in the final code, rather than
in the English description.

In practice, however, modules that are judged functionally cohesive by
this criterion tend to be characterized by strong relationships among the
components within the module: all components tend to be oriented toward
a single goal. Such statements as,

EDIT SOURCE STATEMENT
MATCH INPUT STRING

PARSE UNIFORM SYMEOLS
OPTIMIZE INTEAMEDIATE CODE

and so forth, usually describe functionally cohesive modules.



84 Program Design [CHAP. 4

4.4.2.2 Communicational Cohesion

A module with communicational cohesion is one in which the
components are related through the program procedure {see 4.4.2.3) and
additionally, communicate with one another. The submodules either
reference the same set of data or pass data only among themselves.
Communicational cohesion is higher on the scale than mere procedural
cohesion since the module components have the additional bond, that they
operate on the same data.

The following statements of module actions are communicationally
cohesive:

INPUT SOURCE STATEMENT AND ANALYZE LEXICALLY

FIND SIMPLEX SOLUTION AND PRINT ANSWER

FILTER DATA STREAM AND PLOT RESULT

PROCESS TELEMETRY UNTIL LOSS OF QUALITY

IF DATA OK THEN COMPUTE STATISTICS: OTHERWISE
DIAGNOSE FAILURE AND PRINT MESSAGE

The first three of these statements show sequential functions that
communicate data between themselves. The fourth is an iterative
procedure in which decision and processing components are communica-
tionally related. The last is a conditional procedure in which the condition
and each of the two subprocedures share a common data base.

4.4.2.3 Pmcedurf;l Cohesion

Procedurally cohesive modules are modules whose elements are related
in respect to the procedure of the program. Procedural cohesion results,
for example, when the problem to be solved is first lowcharted, and then
modules are defined to represent two or more blocks on the flowchart.
Although this form of cohesion is high on the strength scale because of the
close relationship of the components to the problem structure, it
nevertheless is not as strong as the two previously discussed types.

The following descriptions of modules are procedurally bound:

CLOSE SOURCE FILE, THEN PRINT COST SUMMARY
SWAP IN PARSER WHEN RUNTIME ERROR DETECTED
ACCUMULATE BACKGROUND DATA UNTIL PROCESSOR SEMAPHORE RECEIVED

The first is a simple sequence of two functions, the second, a function
executed conditiondlly, and the third, an iterative function. The latter two
modules have implied inner functions, CHECK FOR RUNTIME ERROA and



Sec. 4.4] Modularity in Program Design 85

RECEIVE PROCESSOR SEMAPHORE. All three module descriptions exhibit
procedural cohesion since the subfunctions of each are related only throngh
the procedure of the program.

4.4.2.4 Temporal Cohesion

A module is temporally (or classically) cohesive if the components of
the module form a class of logically related (logically cohesive) functions,
all of which are also related in time. Temporally cohesive components are
all executed in the same time period; that is, there are no parameters or
control data that determine which components are executed and which are
not.

The best examples of modules in this class are “initialization™,
“termination”, “housekeeping”, and “clean-up”. Such modules perform a
set. of logically related functions (e.g., initialize function f, initialize
function g,...) that are all performed together, rather than separately or
selectively. Other examples of module descriptions that exhibit temporal
cohesion are:

SCAN ALL TNDICATORS

RESET STACK POINTERS
CLEAR ALL BUFFERS

CHECK STANDARDS AND LIMITS

In each case, the functions performed are similar (single verb), but may
differ in detail. All functions in each module execute together, rather than
selectively.

Temporal cohesion is weaker than procedural cohesion because the
relationships between components only exist because of functional and
temporal ties, no precedence of operations exists. Such modules, moreover,
tend to perform services for other modules (e.g.. initialize them) and,
therefore, are coupled to each of them.

4.4.2.5 Logical Cohesion

A module is logically cohesive if its components perform a class of
logically related functions. Logical cohesion is, therefore, much the same as
temporal cohesion, except that temporally cohesive module components
must additionally all be executed. A logically ccohesive module need
perform only one or a selected subset of its entire capability of
subfunctions when invoked.



86 FProgram Design {CHAP. 4

Examples of module descriptions exhibiting logical cohesiveness are:

INPUT FROM FILE OR TERMINAL
PERFORM ALL I/O
COMPUTE SIMPLEX MAXIMUM OR MINIMUM

One clue to judging logical cohesiveness is the following: If the predicate
of the module description contains a single verb but does not refer to a
single specific object, then the module is probably logically cohesive. I
there js indication that the entire set of actions takes place, the module is
probably temporally cohesive.

Logical cohesion is clearly weaker than temporal cohesion, because
temporally cchesive modules have an additional relationship (that all
components are executed together) that binds the components. Since a
logically cohesive module must often be passed control arguments, which it
must then test to ascertain what action is to take place, and because the
similarity of the actions often results in shared code (not subroutines)
among the different submodules, such modules reside very low on the
strength scale. In short, logically cohesive modules are usually character-
ized by tricky code that is difficult to modify and by the presence of
unnecessary control coupling. Structured programming helps to eliminate
the shared ‘code by putting it in separate modules; but such modules ‘are
apt to have only coincidental cohesion.

4.4.2.6 Coincidental Coherence

A module displays coincidental coherence when there is no meaningful
relationship between its components other than, as a coincidence, they lie
in the same module and do contribute to the overall program function.
Such modules are often created in an attempt to consolidate duplicate
coding that may otherwise appear in several modules, or by arbitrary
divisions of the program code in an attempt to “modularize”. Obviously,
since there are no meaningful relationships among elements, module
strength is at the lowest scale point.

Understanding of the module purpose is impaired, and one usually
shrinks from making any changes whatsoever in such modules for fear that
monumental side effects will result. Since such modules have no cohesive
purpose, even a minor modification to alter the service requested by one
caller can potentially make the module unusable by all other callers. It may
even be difficult to identify all of the other callers, especially if these other
callers are separately compiled.

4.4.2.7 Composite Strength

Modules may be defined in such a way as to partly or wholly have the
characteristics of more than one strength. If a module completely exhibits



See. 4.4] Modularity in Program Design 87

several types of strengths, then it is assigned the higher strength. For
example, when modules with communicational cohesion also exhibit
procedural strength, they are classified by the higher strength, communica-
tional cohesion. Temporally cohesive modules are alse logically cohesive,
but classified as temporally cohesive.

However, if a module only parily exhibits characteristics of several
strengths, then it is assigned the lower of the strengths. In the following
examples, the component and module strengths are as indicated:

INITIALIZE PROGRAM AND THEN GET INPUT LINE
{temporal}+{procedural)+{functional)={temporal)

READ ALL SENSORS,CHECK STDS AND LIMITS, AND PRINT REPORTS
{temporal} + (temporal) + {legical) =(logical)

In the latter example, there are also the partial attributes of
communicational cohesion; sensor data is being checked, the results of
which select one of several reports. If the PRINT REPORTS module were to
invariably print only one report, then that element is functional, so the
module strength moves up to temporal cohesion. If then, in addition, all
sensors were read in an identical fashion, and if standards and limits tests
are identical except for values in the limits table, then all components
probably move up the scale to functional cohesion, and the overall module
probably moves up to communicational cohesion.

4.4.3 Guidelines for Modularization

It is only fair to admit that, independent of 2 module’s strength or degree
of coupling, there are always instances when any module can be modified
in such a way as to make it unusable to all its callers. The scales for
strength and coupling are rough indicators of the likelihood that this kind
of thing will happen. It is therefore useful to keep these considerations well
in mind while the program is being designed. Design the modules to
exhibit high strength and low coupling unless these principles conflict
with other design considerations with higher merit.

The scope of control of a module MoD is defined as the set consisting of
MoD and all its subordinate submodules. The scope of effect of some given
decision within a module is defined as the set of all modules whose
execution depends on the cutcome of that decision.

In the example shown in Figure 4-14, when the decision d in module 8 is
true, B invokes D and, in addition, when control is passed back to A, then A
invokes ¢. But when d is false, 8 invokes E, but A does not invoke c. The
scope of effect for the decision 4 here is the entire set of modules shown: A,



88 Program Design [CHAP. 4

because it calls ¢ conditionally; B, because it executes different calls based

on d; and, obviously, & and E. In this case, the scope of control of module B
does not encompass the scope of effect of the decision d within B.

Moreover, B must pass back some information to A, upon which A can
then decide whether or not to call c. In some sense then, the test in B
duplicates the test in A. At the very least, A and B appear to be conirol
coupled.

This example illustrates that when the scope of control of a module does
not encompass the scope of effect of one of its decisions there is higher
coupling, some artificial or redundant conditional statements, and probably
lower module strength than had this not been the case. One guideline for
improving modularity. is, therefore, the following: define program modules
in such a way that the scope of control of each module encompasses the
scope of effect of every decision within the module. That is, constrain the
effects of all decisions from the top downward through the program
structure.

/ e T———
/ A~ cae T \
~ . .

/ Scope of Control ~ ~ e
/ f- oftmoddie . N\
Scope of Effect {f - - R b \\ \
of Decision o v L= - . dirue

/ lv "‘\ . A | \}\\

— —

-""—-—.._...—-""'-'

Figure 4-14. A hierarchy of subordinate modules



Sec. 4.5] Establishing Design Priorities 89

4.5 ESTABLISHING DESIGN PRIORITIES

Perhaps I have stressed structure and documentation a bit too much in
the foregoing sections of this chapter. After all, a design is more than just
documentation and structure, it must ultimately produce a program that
actnally does the intended function. And in most cases, even this is not
enough, it must do it well. '

The quality of a program design can be judged on the basis of how well
it minimizes a number of important characteristics that!'compete for
project and machine resources: execution speed, memory used, level of
documentation, development cost, development time, cost to execute the
program, maintainability of design, ete. If the interrelationships between
these characteristics could be known quantitatively, as well as the relative
merit of each resource, it is conceivablé that an optimal program within
the constraints could be developed.

However, quantitative measures are seldom (if ever) possible, so that
optimum programs (in the sense of resource competition) simply do not
exist. Design standards, therefore, cannot be expected to produce the best
possible programs.

But while competing characteristics may not be quantifiable, they
usnally can be ordered, at least subjectively for a given program, in their
pairwise relationships with one another, as, for example, “reduced
execution time is more important than development cost”. Often, it may
be necessary to qualify the relationships, as, for example, “reduced
execution time is more important than development cost, unless the level
of effort required to decrease execution time would result in a contract
overrun”. Given a set of pairwise relations among competing resources, the
designer can then proceed to resolve simple conflicts, which may arise in
the design process. .

Ranking the competing characteristics by such pairwise dominances can
be a very useful tool for addressing and ordering the relative importances
of resources from the very beginning of the design activity, Grading the
remainder of the design on its merits relative to these characteristics is the
province of the project management function, and will be discussed
somewhat further in Chapter 10. I also provide sample interactive
programs to aid in ranking competing alternatives and grading the design
in Appendix L.

12—



90 Program Design -[CHAP. 4

4.6 SUMMARY

In this chapter, I have distinguished the design activity as one that
generates hierarchic detailings of program specifications into executable
units, or modules. The activity has been disciplined to dovetail in with
program definition and coding, for the mutual benefit of each.

The program design discipline recommended in these pages starts with
the identification of objectives; then an approach is sought to respond to
the functional definition in scope, structure, and content. At this point, an
embryo program begins to form, first probably as a one-page sketch
revealing the upper levels of the program hierarchy into modules and
identifying the major flows of data through the program. The designer
iterates this sketch until he is satisfied that the configuration meets the
program definition, that the modules have as low coupling and as high a
cohesion as can reasonably be expected, subject to other competing
characteristics.

During this sketching and onward throughout the design, the designer
attempts to isolate accesses to resources so as to reduce coupling, through
definitions of levels of access.

Hierarchic levels of design tend to postpone design decisions to a level at
which considerations are appropriate for those judgements to be made.
However, to lower the risk that this may occur inadvertently, I have
introduced the concept of a look-ahead design, a sketch of what is coming
into the future layers that may impact the current formal level of work.

Once this architectural design is completed to the designer’s satisfaction,
a formal development of the program procedure begins from the top down
using hierarchic layering of subfunction and restricted control flow. When
a design portion has been solidified, that design is documented, and then
coded and tested within the assumptions valid at that level of the
development.

This process continues until the software is complete. Because
documentation, coding, and testing are concurrent, major errors have
hopefully been averted before the investment in the errored portion has
become significant. Errors subsequently detected at a particular design
level tend to percolate in side effects downward through the remaining
design, hopefully at 2 lesser cost to correct than had the design not taken
place top down.

I have given criteria for design documentation, guidelines for the
development of data structures and the allocation of other machine



Sec. 4.6] Summary 91

resources, and indices for the qualification of program modularity. Specific
design rules based on the concepts of this chapter appear in Chapter 12.

4.6.1 A Design Example: Card Cross-References

Problem: A FORTRAN source program exists on a set of not more than
1000 cards. Write another program for the UNIVAC 1108 to read these
cards, extract label and variable names, and then print a sorted list of
variables and label names with the card-number crossreferences adjacent
to each name. The objective for design is rapid execution at a moderate
increase in core storage outlay. '

Analysis: A 1000-line source program with an average of 8 references per
card will have about 8000 card-reference items to be printed. Six-character
labels and variable names can be held in one word each of core storage.
Hence, if a 10,000 word array were to be reserved for the cross-reference
array, then 2048 words could be used for a hash and linkage table (see [30])
to aid in searching for and inserting up to 1023 names, leaving 7952
available to hold card references. Hashing techniques are very efficient as
long as the name table occupancy is less than about 80%, or up to about
800 names.

Hashed search and insertion seems attractive, for with 800 names in the
table, the average search for a name requires only about [30},

I #1025

300 & 05—k~ -9

“probes” per search to find or insert a name. The total number of such
events for 800 names plus 7952 card references is thus about 15,300,
Afterwards, a quicksort [31] of the name table will require about

2(800)10g5(800) = 15,430

comparisons and possible exchanges.

A binary tree search and insertion, on the other hand, if balanced, would
take about

1 799

“probes” per name to find or insert a pame. The total number of such
events for the 7952 required items is then about 65,200 operations. Sorting
the binary tree [32] to insert an item is linearly proportional to 800. The
hashing technique is thus clearly the better alternative for this application.



92 Program Design [CHAP. 4

The Program: The reader may note a great similarity between this problem
and that given in Section 2.5.2. The problem statement is almost
procedural. In it are identified certain implied (functionally cohesive)
actions that form the basis for an architectural design: INPUT CARD, EXTRACT
NEXT ITEM, SEARCH FOR ITEM, ATTACH CARD NUMBER TO ITEM, SORT LTEMS,. SORT
CARD REFERENCES, PRINT REPORT. The interface between the first two is the
card buffer, and the remaining functions all share the data structure(s} that
accumulate the names and card numbers. The first candidate hierarchy
diagram for the program architecture is shown in Figure 4-15. The figure
also indicates proposed levels of access to the data structures. Some of the
other structures needed are not shown, but are known to be present at this
point, such as the number of the card just input and the name just
extracted.

The next stage of the design details each of the data structures in
accordance with the identified functions, which form its level of access. In
the INPUT module, the actual input is normally handled via an executive
request, READ$, which inserts packed characters into a designated area
(another structure inside input). For ease in the scanning needed by
EXTRACT, 1 may specify that InPUT transfer these characters into a 72-word
CBUFF, one character per word, right justified.

The design of EXTRACT is by no means trivial—expecially since the source
deck is FORTRAN. However, the algorithms for lexical analysis are known
[33], so I wilt not pursue the design of ExTRACT further here.

The functions that repeatedly access the -cross-reference array, XREFA,
can be accommodated in one pass if XREFA is designed as a linked list, as
shown in Figure 4-16. The sorT functions then could have been included
into SEARCH and ATTACH by having these latter two modules insert new
names and in order into XREFA as they are extracted, card by card, as
perhaps in a binary tree. The above analysis shows, however, that it is
probably best to sort the name array only once, after all the items have
been entered. This not only makes for speed, but also promotes functional
cohesion within the modules. However, the sorting of card references can
be eliminated by attaching card reference tokens in order, following the
“tail” pointer in LINks (Figure 4-16).

To speed searching and insertion of names, XREFA is shown to consist of a
HAsH table (see [30]) of names and a LINKs table of linkages to first and last
card-reference tokens.

The sorRT ITEMS module then sorts both the HASH table and the LINks
array using the name as a key. The SorT CARD Nos module has nothing to do,



Sec. 4.6] Summary 93

1
iINPUT CARD

CBUFF
Up to 8 names [

per card

} : CARD

{ BUFFER
EXTRACT ITEM

Isolate variabte
or label name

i
t—--——n ————————————— —
]

SEARCH

Find tem in
XREFA

|
|
L

REFERENCES ATTACH REF
Cross-reference Link card No.
pames to to name in
cards XREFA

1
i
1 |
SORT ITEMS

CROSS-
Put XREFA In
alphabetic REFERENCE

order ARRAY

[SORT cARD NOS

Put card Nos. in
numeric order,
each name

[

i

]
PRINT RET

Card Nos.
adjacent to
each name

XREFA

Figure 4-15. The architecture of the card REFERENCES program (dashed lines
define levels of access to data structures CBUFF and XREFA)

since all the card-reference tokens are already in sort, and can therefore be
eliminated.

The PRINT module now merely scans down the sorted HasH entries in
order 1o find each name. After printing the name, it spaces over and writes



94 Program Design [CHAP. 4

Hash function:
h (NAME {}

HASH LINKS TOKENS

last-inserted
card reference

vabe / |-~ ~[ 4 [ e\ Joarp A odwr «+e JcaRD 7] 0 |

NARE |-~ § [ od—+foar0 o e -+ —=feAR0 V[ 7]

N
1024 1024

end of link

7952
Figure £-16. The XREFA data structure

the first card reference and each-succeeding reference in columnar format
until the pointer field contains a zero.

This completes the structural design considerations down through the
second tier of the program hierarchy.

Discussion: The text of this example presents a simple narrative
description of the major factors and a few tradeoffs in a program design.
The judgements presented, are based largely on experience and intuition,
although more detailed mathematical analyses could have been used
throughout—for example, to show that, indeed, hash searching and later
quick-sorting is more efficient than other proposed forms of sorting and
searching besides binary tree methods.

4.6.2 When is the Design Complete? N

I have tried to depict design as an activity that is completely separate
from coding. The major learning -about the problem is done during design,
and relatively little should be learned by coding the design. Changes in the
design before coding begins have no consequent costs of coding and
debugging. ‘When coding does begin, fewer and less talented people can do
the coding; coding is easier to schedule; and coding has become a
production job.

A complete design will consist of a specification for coding in which:
® All processing algorithms are specified

® All interfaces, internal and external are defined

® All data structures are defined



Sec. 4.6] Summary 95

® All modules, and procedure of each, are specified
® All error recovery responses are specified

In particular, it should be possible for a person to determine, for any.input,
the precise path followed in the program from the design, without
recourse to the listings.

Coding should begin only after a particular phase of the design has been
thrashed through to the point that it is stable. Coding must then be a
faithful, direct translation of the design. No short-cuts, no cute code, no
coding-level changes to the design—only clear, concise code that is easy to
check against the design. The role of checkout is to verify that the design-
time assessments of correctness are valid. Errors detected in the design
must be corrected in the design documentation (SSD).

The Software Specification Document is for people, and people work
best in their own language, rather than one created-for a computer.
Reading the design should not require a translator, nor should it require
learning a large data base, nor should it require consulting the listings to
find out “the way things really are” in the computer. I will, therefore,
attempt in the coming chapters, to provide the means, and continually
emphasize the need, for-conciseness and clarity in program development.



96 Program Design [CHAP, 4

Problems for Chapter 4

4-1 Design the architecture of a program to simulate a waiting line .at an
airport ticket counter (see Problem 2-3). Identify levels of access to data
structures and present trade-off analyses to justify your choice of
manipulations. Retain all look-ahead notes, labeled in order, level, and
module.

4-2 Design the architecture of a program to process a stream of telegrams,
whereby the number of words in each telegram is counted and telegrams
are printed with appropriate spacing on an output medium. Develop the
remainder of the problem definition, if needed, as well as the program
structure and procedure, in hierarchic levels. Retain all look-ahead notes
labeled in order, level, and module.

4-3 Design a data structure and a level of access by which a company
skills-inventory (see Ixample 2.5.2) can be maintained, edited, and
queried by employee name or number {for skills) or by skill (for
employee names). Refine the data structure and access level to the next
hierarchic detailing,

4-4 Give a topological sorting of Figure 4-10. Are there loops? What can
be done to remove the loop (if there was one)?

4-5 Analyze a coded program of your choice having 5 to 10 named
modules as defined in Section 4.4. Identify the data flow between
modules and analyze for coupling type. Evaluate the cohesiveness of the
module by giving a short English description, and then try to reconcile
that description with the strength of relationships in the code. Identify
the scope of control of each module, and the scope of effect of each
decision which reaches outside its module.

4-6 Sort the list of subprograms named below into increasing order of
module cohesiveness. Name the probable type of module cohesion for
each.

INPUT (<+FROM#>device, <t INTO*>buffer)

ACCUMULATE AND SOAT TRANSACTION FILES

SEARCH NAME TABLE. INSERT NAME IF NOT FOUND

INITIALIZE BUFFER IF RBEADY, CLOSE FILES IF THROUGH,
AND PROCESS ANY REMAINING DATA

CREATE TABLE OF LITERAL VALUES FOR PROGBAM

READ DATA, DETERMINE ACTION, AND PROCESS ACCORDINGLY

PRINT LINE OF TEXT WITH SPACES INSERTED TO RIGHT JUSTIFY

TRAVERSE A TREE IN POST-ORDER

INVERT MATRIX(A)

MONITOR STATUS OF REAL-TIME PROCESSES

P—O?‘ﬁ)

L b X @ = @



Problems 97

4-7 Sort the module fragments below inn decreasing order of coupling, and
name the probable type of coupling implied by each (and why, if
debatable). -

o @ v 0 0 O W

-

INPUT (< FROM¥>device, SRINTO®> bujfer)
CALL SUBA(X,Y,Z)
DECLARE AND INITIALIZE AlLL VARIABLES OF ENTIRE PROGRAM
RESET INTERNAL DEVICE CODE AND OUTPUT TCQ DEVICE
SET A TO VALUE IN LOCATION (SUBPROGMNAME +358)
IF(FLAG>0) THEN JUMP NEXT 68 LINES
RING BELL ON TERMINAL (number)
PARSE INPUT FILE INTO TREE STRUCTURE AND"
DRAW TREE ON PLOTTER
DECLARAE AAAX EXTERNALLY ACCESSIBLE
READ PROGRAM OPTIONS FROM STRUCTURE FILE



¥Precedingzpagehlank:*

V. STRUCTURED NON-REAL-TIME
PROGRAMS

In 1968 and 1969, Edsger Dijkstra [6,34,35] produced a set of ideas and
examples for clear thinking and construction of programs to begin what is
now referred to as Structured Programming. He set forth a methodology
that formed a powerful tool in mentally connecting the static text of a
program and the dynamic process it invokes in execution.

Bohm and Jacopini [36] had, in 1966, indicated that it is possible to write
programs using only the contro] logic structures consisting of sequence,
two-outcome decisions, and restricted looping. Mills [12], early in 1972, set
. the mathematical foundations for structured programming, binding the
ideas of Dijkstra, Bohm, and Jacopini together in a way which initiated the
transformation of programming methedology from a private craft to an
engineering practice,

5.1 STRUCTURED PROPER PROGRAMS

Mills defines a proper program as one which can be flowcharted and has
only one entry point and one exit point, every point reachable from the
entry point. His structured programming theory encompasses only such
PrOper programs.

99



100 Structured Non-Real-Time Programs [CHAP. &

In this and the next chapter, .I extend the.concept-of structured programs
t0 include certain types of non-proper programs. Such non-proper
programs are often times unavoidable in programming, such as when traps
or interrupts are involved. They are, at other times, very desirable and
useful constructs {(when program failure has been detected, for instance).

5.1.1 Basic Theorems

There are four basic mathematical results (B&hm and Jacopini [36] and
Mills [12]), which are central®:

1. Top-Down Corollary: Every proper program logic can be
represented by one of the three struciures:

(a) DO f THEN g
(b} IF ¢ THEN fELSE g
(c}) WHILE ¢ DO f

where f and g are proper programs each with one entry and one exit, ¢ is
a determinable condition (i.e., a test) and IF, THEN, ELSE, WHILE, and

DO are logical connectives.

2. Structure Theorem: Every proper program logic is equivalent to a
program obtained by iterating and nesting the structures (a), (B), and {c)
above.

3. Correctness Thegorem: If a program is structured as in (2) above,
and if the domain of the data-space on which f operates in (c) is not
redefined dynamicallyl in the looping process, then the correctness of
the entire program can be proved by successively proving that the data
spaces for each structure at each level of iteration, or nesting, are
transformed in the specified way.

4. Expansion Theorem: The freedom by which a proper-program logic
f may be refined into one of the forms (a), (b), or (¢) above is limited as
follows:

{a) DO g THEN h cen replace f whenever there exists a functional
decomposition of { into g and h in which f=h{g); i.e, f is the result
of the program logic h operating on the computer state at the
completion of g

*These are not listed in their order of mathematical proof given in [12], but in their order of
logical precedence, )

T Refer to Section 9.1 for a somewhat relaxed generalization of the looping qualifications.



Sec. 5.1] Structured Proper Programs 101

(b) IF ¢ THEN g ELSE h can replace f whenever a logic condition ¢
can be found whose domain is the same as that of f. Then g and f
are fully determined.

(¢} WHILE ¢ DO g can replace f whenever a function g can be chosen
which, when iterated, ultimately reaches f. The condition c is
determined as that condition which recognizes that g has reached

,f' \

Flowcharts for the canonic constructions (a), (b), and {(c) are shown in
Figure 5-1. The interesting fact concerning these flowcharted structures is

{a) DOFTHENg

l

Subprogram F

tb) IFc THEN fELSE ¢
Subprogram g

1 true false

(c) WHILE¢ DO F ¥ y

Subprogram Subprogram g

Subprogram

Figure 5-1. Canonic program structures {frue is always drawn as the leftmost
branch of a decision)




102  Structured Non-Real-Time Programns CHAP. 5

that each has only one entry (at the top) and one exit (at the bottom).
Furthermore, each of the subprograms inside the structures are entered at
the top and exit from the bottom. Thus, it can. be seen that program
flowcharts formed by inserting any one of the three structures as a
subprogram of any of the three (i.e., by iterating and nesting these three
structures) can literally be read from top to bottom. Programs formed of
such jterations and nestings are examples of canonic structured programs.

5.1.2 Other Structures

Needless to say, there js no particular merit to limiting program
structures to the minimum three® necessary to represent all proper
programs. After all, the theorem merely states that programs can be so
represented; it doesn’t say they are efficient. In fact, two other structures,
shown in Figures 5-2 and 5-3, are- generally accepted as valid program
structures, along with those in Figure 5-1. I additionally use the structure in
Figure 5-4 as a simplified convention. The multiple-decision structure is
certainly derivable from the binary decision structure by mere concatena-
tion, and the reader may convince himself that the DO §f WHILE ¢
structure is representable as the structure shown in Figure 5-3(b).

The reason for including such structures in the permitted canonic set of
programming constructions is obvious: they are simply related to the
minimum set and they tend to yield programs that are more understand-
able and efficient than the minimum set.

Each of the structures, as previously indicated, has one entry point and
one exit point. The iteration of any of these in any way results in a
structure again having only one entry point and one exit point.
Furthermore, programs made by iterating and nesting the allowed
structures are planar; that is, they can be flowcharted on one page (if large
enough) without any intersecting program flow lines.

5.1.3 Structure Notations

Before proceeding, it is convenient to introduce some terminology
regarding flowchart structures.

*The minimum is actually only two, as IFTHENELSE is not theoretically needed, but can
be replaced by the use of two WHILEDOs and a structure flag (see problem 5-10).



Sec. 5.1] Structured Proper Programs 103

{a)

Question

® & 'S A et el

answer T answer 2 answer n

L] ¥ ¥
Subprogram 1 Subprogram 2 | & e ® | Subprogram s
- i *« o0
{b)

t * 20

k ; i ¥
-
[ ]

Subprogram 1 Subprogram 2 - Subprogram n

Figure 5-2. Multiple-branch decision structure and its equivalent binary-decision

structured program (outcomes of all decisions are always drawn in case order
from the left)



104 Siructured Non-Real-Time Programs [CHAP. 5

{a) DO fWHILE ¢ (b} DO fTHEN WHILEc DO §

> > l

Subprogram F

Subprogram

failse

Subprogram f

1

Figure 5-3. The DO f WHILE ¢ structure and its equivalent form using subprogram
duplication and a WHILE ¢ DO f structure




Sec.5.1] Structured Proper Programs 105

FORi=n, BY n, WHILEcDO f

(al
l {b)

Initiahize l

loon index

i Repeat fatse Initialize

Next loop Condition ¢ - loop index

+=  index i=n
f=i+n, ;
true
L
Subprogram £
Repeat false
Condition
c
Subprogram £
t l L
Next loop
Initialize index
loop index i=itn,
remn Repeat false
Next loop Condition ¢
»| index
f=i+ny
true

! —

Subprogram

l

Figure 5-4. Special notational symbol for indexed loops: the flowchart (a)
represents the structure (b), and (¢) is an aiternate form of the convention in {a)

ORIGINAT, p
\ AG
OF POOR. qUa gy



106 Structured Non-Real-Time Programs [CHAP.5

5.1.3.1 Designating Flowchart Elements

Abstractly, a flowchart is composed of flow lines and nodes. The nodes
can be grouped into four categories (see Figure 5-5): process nodes (or
p-nodes), decision-nodes (or d-nodes), loop-collecting nodes (or lc-nodes),
and decision-collecting-nodes (or dec-nodes). These calegories are
indicated on flowcharts by flowchart symbols having distinctive shapes.
Pnodes are given a variety of shapes to indicate the procedure involved [8]
and d-nodes are diamond-shaped. Collecting nodes_of both types are
commonly annotated only by the meeting of ow lines; however, for the
treatment in this monograph, they will always be denoted by circles, open
for lc-nodes, and filled for de-nodes.

¥

loop-collecting node (fe-node)

decision hode' (d-ndde}

process nodes {p-nodes}

. |

decision-callecting node {de-node)

dacision node {d—nodé}

Figure 5-5. Elements of a flowchart

Flowcliarts are always ‘1o be' drawn"such that binary ' decisioi modes
always Kave ¢rué to the left. Multiplé-decision nodes’are always drawn With
outcomes in logical case order from the left.
5.1.3.2 Dewey-Decimal Numbering Scheme

The ANSI technigue tied for 'denoting hiérarchic flowchart' expansiofi’ is
striping the box to be expanded, as shown in Figure 5-6. The striped
module is given a procedural name, NAME, a cross-reference identifier, x,



Sec. 8.1] Structured Proper Programs 107

A CHART m CHART x
cross-reference
identifier; becornes
m.n f NAME is
not a subroutine

box number,
crossreference this chart
fdentifier 7
x l n

NAME

| flowchart 1
for NAME

| module l
a baxon
flowchart m l

Figure 5-8. Hierarchic expansion of striped flowchart symbol

and a number, n, on its current flowchart. I shall augment that method as
follows. If the current flowchart identifier is m, then the box can be
uniquely identified as the Dewey-decimal number m.n, and this number
can be used for cross-referencing as long as no ambiguity arises. In such a
case x need not appear at the point of striping.

Striped symbols can refer to hierarchic expansion in one of three ways:
(a) subprograms, which can either be segmenis of inline code or
procedures that, on normal termination, continue execution always at the
same point in the program; (b) internal subroutines, which are segments
of code invoked at several places in the 'program, which always return,
upon completion, to the point of call, and which are part of the body of
the program; and (c) erternal subroutines, which are subroutines
(returning to the point of call) whose designs are external to the program
(e.g., library subroutines) and not described in this set of documentation. I
have previously referred to such program segments as siriped or named
modules. Notations for these three cases are illustrated in Figure 5-7.

The hierarchic place that a module occupies in a design is denoted by its
Dewey-decimal cross-reference. For example, suppose that on a flowchart
numbered m, a box numbered n refers to a procedure (not subroutine) to
be expanded later in: the design process. Then the flowchart for that later
expansion is made Chart No. m.n. One reading the flowchart wishing to
trace out how the function in box n of flowchart m is achieved, merely has
to locate Chart No. m.n to proceed.



108 Stiuctured Non-Real-Time Programs [CHAP.5

{a) Subprogram {b) Internal {c) External
Subroutine Subroutime
1 n A 1 n B 1 o
NAMET NAMEZ MNAMEZ

l l 1

Figure 5-7. Striped symbols: n is the.madule number on this chart; A is a numeric
or alphanumeric chart number where the hierarchic expansion of that subroutine
begins; and B is a designation that indicates where interface information can be
found

More specifically, suppose a striped module appears on Chart 1.2.6, and
has the number 5. Then one can state that box number 2 on Chart 1 was
expanded as Chart 1.2; on that chart, box 6 was expanded as Chart 1.2.6;
and module number 5 may appear expanded later as Chart 1.2.6.5.

The reference to a flowchart, however, cannot always be cross-
referenced this way because subroutines, which can be called from many
places, would not then possess a unique chart number. Therefore, each
subrouting is assigned its own unique level-one chart number. One
convenient way of distinguishing procedures from subroutines is by
assigning an alphamimeric chart number for subroutines; for example, 56
refers to Subroutine 6, T4 to Trap routine 4, etc. The choice of an
alphanumeric designator can be used to group subroutines with common
properties together in documentation. Expansions within subroutine
flowcharts follow the normal numbering: for example, $6.4.2 refers to the
box numbered 2 on Chart $6.4,

5.1.3.3 Numbering Flowchart Nodes

One natural way of numbering graph nodes is the so-called pre-order
traverse method. A pre-order traverse of the chart enumerates the boxes
on the flowchart as follows (see Figure 5-8).

Starting at the top of a structured flowchart, number boxes and loop-
collecting nodes sequentially down the chart until a branching nede is
sensed. Number this node. The general rule to be followed upon reaching a
branching node is to take the lefimost branch for the numbering sequence.
When a decision-collecting node is encountered, return to its correspond-
ing decision node, and if it has a yetunnmumbered branch {or branches),



Sec. 5.1] Struciured Proper Programs “ 109

Figure 5-8. Pre-order traverse of structured flowechart nodes; decision-collecting
nodes and loop-collecting nodes for WHILEDO structures are often left
unnumbered, depanding on intended coding language (see Section 7.3.1)

then proceed to number the leftmost of these branches; if all of its
decisions have all branches numbered, then continue on.

5.1.4 Structure Graphs, Program Trees, and the Tier Chart

The structure graph of a program is a representation showing the
control connections between striped modules. The graph has a root node



110 Structured Non-Real-Time Programs [CHAP.5

(which represents the main program) at the “top” of the graph. A set of
lines are drawn from this root node to each of the nodes representing
striped modules that appear on the “flowchart” of the main program. For
each such new node added to the structure chart, a set of lines is drawn to
each of its striped modules, as depicted in Figure 5-9, until the entire set of
striped modules is represented on the graph. properly connected. For
example, if a subroutine is called several times in various program modules,
corresponding connections appear on the structure graph; if a module is
recursive, the graph contains loops. Betause modules can be recursive or
may invoke subroutines, the structure graph is likely to be non-planar
{crossing connection lines).

A
Main
Program
B c D E

Recursive

Subroutine Subprogram

/

™~

N

F G H
Recursive Re-entrant
Subprogram Subprogram
J K
External Intethal
Subroutine | Subroutine

*

" Figure 5-9. The structure graph of a program (note the loap around recursive
modules, and multiple ancestors (calls) of subroutines)

The program iree is a somewhat simpler version of the structure graph
containing no recursive modules. Rather than drawing the several (possibly
crossing) lines to a common node for each subroutine of the structure
graph, the program tree treats each subroutine call as a separate node,
which then begins its own (identical) subtree, as shown in Figure 5-10. Such
a graph is again planar, but each subroutine appears as a subtree as many
times as there are calls to that subroutine.



Sec. 5.1] Structured Proper Programs 111

{a] Structure Graph {b) Program Tree
A A

>
7 AN
N4

S ] ]

ZERN

Figure 5-10. Gonversion of a non-recursive structure chart to a program tree

Mills’ proof of the correctness theorem is based on the representation of
programs as trees. The tree diagram is also useful in identifying the
separate roles that a subroutine plays in a program when changes need to
be made. From it can be assessed the effect of these changes on the
remainder of the program. But, as a general tool, the program tree
probably loses its effectiveness because of its tendency to become quite
large.

The tier chart of a program resembles the program tree and is, in fact,
derived from it. The tier chart is merely a listing of the program tree node
names in order of hierarchic degree, as shown in Figure 5-11. Each tier of
the chart consists of all modules possessing the same degree of hierarchic
nesting from the main program (root}. Subroutines may appear more than
once in the program tree; however, only one instance of the subroutine
subtree is kept on the tier chart, that having the least nesting degree. If a
subroutine appears twice at the same (least) degree, only the first, in order
of module numbering, is kept on the tier chart.

As previously explained (Section 5.1.3.2), the main program, each
subroutine, and perhaps some major subprograms, all begin at Dewey-
decimallevel 1. Each of these then has its unique level-l flowchart
number; subprograms of these modules build onto the Dewey-decimal
notation in a prescribed way.

By this conventlon,, a;subroutme that first appears at tier 4 in the top-
down development process then begins its own hierarchic expansion again



112 Structured Non-Real-Time Programs [CHAP. 5

1.2.3

1.2

1.2.4

/

This fexternal)
subprogram appears
at tier 3, but its

interfgce information
appears at level 1

E1

1.4

1 1.5.2

- Yy
,T o < This subroutine appears
rogram 15 ™~ ( at trer 3, but has
- previously occurred at
51 tier 2, where its
program tree begins

512
51 <'

1.4

7\

This subroutine
appears at tror 2
Dut begins its
documentation
hiararchy at level 1

Tier 1 Tier 2 Tier 3

Figure 5-11. Organization of program into hierarchic design tiers

at documentation-reference-level 1, such as $1. To avoid confusion, I thus
refer to the depth that 2 module appears in the program tree as its tier
number, and its documentation reference depth as its level number, (Note
that in a program without subroutines or separate level-1 major
subprograms, the tier numbers and level numbers coincide.)

The main use of the tier chart is as a tool for keeping track of which
modules are currently being worked on, which have been completed, and
which are yet to come at the next immediate phases of effort. More
discussion on the use of the tier chart appears in Chapter 1(\).



Sec. 5.2] Hierarchic Expansion of Progrem Detail 113

5.2 HIERARCHIC EXPANSION OF PROGRAM DETAIL

Structured programs can be organized into the hierarchic program
segments (discussed in the previous chapter) such that each segment is at
most some prescribed size, say one page, with entry only at the top and
exit only at the bottormn of each segment. Segments can refer to other
segments at the next level, each by a single name, to represent a
generalized data-processing operation at that point. This property of
readability is a major advantage in testing, mainlaining, or otherwise
referencing program segments at later times.

Figure 5-12 illustrates a struchured program created by nesting and
iterating the structures given in Figure 5-1. The main program structure is
of the WHILE ¢ DO f type, where f is a sequence structure. The sequence
structure f is of the DO g THEN # type, in which g is a function-box and h
is an IF d THEN i ELSE j structure, and so on.

In this simple illustration, all the detailed program subfunctions are
shown explicitly, all on the same flowchart, all on the same page. In more
complex programs, however, all the detail cannot be hoped to fit all on the
same page. How can such programs be represented for human
comprehensibility, when many pages of flowcharts comprise a program?

Decomposing a given program function into one of the three basic forms
necessitates the invention of: (a) two proper program subfunctions, f and g,
for DO f THEN g; or (b) two subfunctions, f and g, and a condition ¢ for IF
¢ THEN f ELSE g; or (c) one subfunction, £, and a condition ¢ for WHILE
¢ DO f.

Each of the subfunctions, being proper, can likewise be partitioned into
subfunctions, and so on, until the functicnal detail of each sub...subfunc-
tion is simplified to any required degree.

This process makes it possible to limit the size of a program unit to that
most convenient for understanding, say, a one-page flowchart, or one page
of program-code. Each of the subfunctions, by the definitions in Section
4.4, can be called a module. Each module which requires further detailing,
or expansion, can be relegated to its separate page as a procedure—
subprogram or subroutine—for a later level of design.

The expansion theorem defines the freedom available in expanding any
functional specification into-a structure at the next level. To expand a given
program function f into the form “DO g THEN 7’ merely requires
choosing any two pairs g and h whose successive application leads to f. The
invention of an “IF ¢ THEN g ELSE /" program to replace f is equivalent



[CHAP. 5

114 Structured Non-Real-Time Programs

Figure 5-12. A structured program with nested substructures



Sec. 5.2] Hierarchic Expansion of Program Detail 115

to partitioning f into non-intersecting subfunctions g and h, and the
invention of a “WHILE ¢ DO g program to replace f is equivalent to the
determination of a suitable g which, when iterated, ultimately reaches f.

The only freedom in an “IF ¢ THEN g ELSE A" construct is the choice
of the condition ¢, which then splits f into determinable functions g and h.
The only freedom in a “WHILE ¢ DO g”.construct is the iteration process
g, for ¢ is then fully specified as that condition under which the iteration of
g has produced f. Any other supposed freedom is illusory.

Mills’ structure theorem and top-down corollary state that any proper
program logic can always be represented by one of three primitive
structures, or by iterations and nestings of the three. This doesn’t mean that
such a program can always be written. For one thing, there may not be
enough storage to accommeodate the entire program. However, insofar as

the abstraction of the program matches reality (see Section 2.5) Mills’
theorems apply.

By way of illustration, Figure 5-13 shows that any of the three basic
structures can be used to create a program “FILL A™ to insert up to 100
numbers into array A. The function to be accomplished in each box is clear
and each version of the program can be proved to perform the required
function. However, if the algorithm by which each subfunction is to be
realized is also to be detailed, it can be expanded at the next hierarchic
level, as illustrated in Figure 5-14, which expands the function appearing in
Figure 5-13(a).

Note the use of the name “LOOP” appearing in the striped box of
Figure 5-14(a) and in the entry symbol of Figure 5-14(b). This is the ANSI
standard [8] notation for hierarchic expansion of flowchart functions.
Notice also that the correctness of each hierarchic segment of a program
depends only on the segments already written or read, and on the
functional specifications of any additional segments referred to by name.

The correctness theorem assures that a program, proved correct based
on the functional specification of its modules, does not have to be re-
proved after each of its modules has been designed in later levels of the
hierarchy to satisfy its specified requirement. Because of the simplicity of
control structures and hierarchical nesting of functions, the control
complexzity of a structured program is approximately linearly proportional
to the program length; that is, the program control logic can be understood
by an argument related linearly to the length of the program (see Chapter
).



116 Structured Non-Real Time Programs [CHAP. 5

{a)

{ FIiLL A )

r

M = MIN(N, 100}

¥ (b)

A, = RANDOM FILL A

FORI=1[11M

[ yes no
EXIT

L i

FOR I = 1[1]N FOR I=
FILL A

111]100

A, = RANDOM

=1+

I

L

( EXIT )

Figure 5-13. Three realizations of the program, “Fill the first N elements of array A
with random numbers, available” through the function RANDOM; the maximum
dimension of A is 100, and the variable | is available as an index, initialized to 1"




Sec. 5.3] Program Correctness 17

{a} (b)
1

{ FILLA } r

¥ 1

l
|
[
M = MIN{N, 100} |
|
1 2 |
oor  F———
A, = RANDOM
FOR I =101 M|
A, = RANDOM
IL 1413
- —————
1 ]
!
EXIT |
]
|

Figure 5-14. Hierarchica! expansion of “LOOP" box, which performs “A; =
RANDOM for I = 1 [1] M” in Figure 5-13{(a)

5.3 PROGRAM CORRECTNESS

A computing process can be viewed as a succession of machine states
dictated by the input data. Generally, the number of possible input
sequences, and hence the number of possible states, is so great that it
would take an impossibly long time to demonstrate them all en a computer
of practical speed. While it is possible to test the logic flow of a program
in finite time, demonstrating the correspondence of the actual output to
that required under given input is what takesso long.

How else can we assess a program to be totally correct? Program
correctness is a question of predictability. Given a function f, however
specified, and a program F, then F can be verified to perform the function
f only by comparing of the input and cutput data sets of F against the
transformations specified by f. If not by enumeration, then perhaps by
formal mathematical means.



118  Structured Non-Real-Time Programs [CHAP. 5

Hoare [37] has argued that formal proofs are possible in concept, and
Mills [12] has shown that, if such be the case, then these proofs can be
applied to structured programs in a simplified way. In particular, for
structured programs, proof of correctness turns into a series of nested
problems, each of which is one of three simple types, which can be
prescribed in advance. It must be remembered, however, that a formal
proof is merely another formal statement of about the same size as the
program it refers to, and, without any automatic aid, is also subject to just
as many human errors. Moreover, rigorous, formal proofs by humans are
generally prohibitive in the amount of work required for a program of any
size.

It has also been argued that there is no such thing as an absolute proof of
logical correctness; there are only degrees of rigor, as “technical English”,
“mathematical jowrnal proof”, “formal logic”, etc., each of which is an
informal description of mechanisms for creating agreement and belief in a
process of reasoning.

Automatic program provers have not been forthcoming either, although
some progress has been reported [38,39,40] and it has furthermore been
hinted by Elspas, et al, [38] that the generalized prover might be
equivalent to just enumerating all the cases in the first place.

5.3.1 Assessment of Correctness

Programs must be correct, or at least they must operate in a way that
appears to be correct, to be useful. The degree to which the program
appears correct can be termed its index of reliability, or its confidence
level.

Currently, human intelligence is the only general means available to
check program reliability. Therefore, another reason for the concise
expression of programs is to remain within the limits of human
understanding. Computers are often used to test the response of the
program to certain “typical” input data sets, but it is up to the human to
design the tests (sometimes with computer aid) to assure that the program
operates within a gualifiable level of confidence.

Nevertheless, test hypotheses can be formulated on a systematic basis,
and technical judgements can then be applied to determine the level of
validation that is feasible and desirable for a given program. The
correctness problem comes down to the demonstration of ugreement
between a_functional description and a program behavior.



Sec. 5.3] Program Correciness 119

But formal proofs are infeasible and fallible, and complete testing is
impossible in all practicality. We must be content with not being able to
demonstrate program correctness on a rigorous scale, and settle for an
informal assessment of the program functioning,

What information must accompany a program to permit an assessment
of correctness on any reasonable scale? The first requisite, of course, is that
the program. functional behavior be known. It is an absolute necessity
that the response of a program to every input stimulus be checkable. If
what a program is supposed to do, given a certain input, has not been
defined at all, then the resulting output cannot really be said to be
incorrect, regardless of what it is.

. One typical, though sometimes subjective, methed for program
behavioral specification is the “principle of least astonishment” default.
According to this principle, one expects rational operation of the program
in its more pathological moments in keeping with similar situations that
were envisioned and specified.

The second requisite js that the program must be readable (documented)
enough to permit a feasible proof. For structured programs, only that level
of detail sufficient to assess correctness on an individual module basis is
needed. Documentation certainly should not be overdone. But, neither
should it be underdone.

I shall defer further discussions of criteria and procedures for increasing
probable correctness and program validation to later chapters of this
monograph, so as to include considerations necessitated by real-time
programming, as well as other constraints.

5.3.2 Recursive Subroutine Correctnest

Program segments that may call each other as subroutines are termed
recursive, Certain subroutines can be recursive with themselves: these are
said to be self-recursive subroutines.

Mills” proof of the correctness theorem assumes that each striped module
can be replaced directly by the program it represents at each level of the
hierarchy, and assumes that this process ultimately terminates. He then
uses finite induction to demonstrate that correctness of a program is
provable. However, coroutines and recursive subroutines do not satisfy this



120  Structured Non-Real-Time Programs {CHAP.5

hypothesis, because the substitution of coding or a flowchart for the
subroutine call never ceases. Does the correctness theorem then apply to
such routines? )

The answer is yes, at least for recursive subroutines, a direct
consequence of the top-down hierarchy and the functional correctness of
segments at every preceding level in the hierarchy. If a program is
designed top-down and proved correct at each level prior to going on to
the next level, then each subfunction in the algorithm at the correct level is
defined and independent of the algorithm used at later levels to realize it.
It does not matter if the subfunction definition is the same as that of the
functicn itself. It is the job of the correctness proof at that level to show
that the algorithm given, having one of its subfunctions the same as the
function, actually terminates and produces the specified result.

5.4 STRUCTURING UNSTRUCTURED PROPER
PROGRAMS

Mills” proof [12] of the structure theorem provides a constructive method
to convert any proper program (i.e., one entry, one exit) into a structured
program using only the basic canonic forms given in Figure 5-1. The
method does not produce particularly efficient structured programs, but
they are, nevertheless, structured. While I do not necessarily advocate
turning already operating programs into structured programs just for the
sake of having structured programs, the procedure by which programs can
be structured is an instructive one.

Once the reader sees how any proper program can be structured, he will
know better how to devise structured programs from the beginning for his
own designs. He can always resort to the Mills algorithm to structure his
own program, or perhaps to other methods such as that of Ashcroft and
Manna [41], but, more likely he will develop a natural ability to create
structured designs on his own.

I have introduced structured programming as a discipline and
methodology to aid in human comprehension and orderly program
development, but that does not mean that the code resident and operating
in the computer itself necessarily has to be structured. Just as for any
programming language, compilers can be made to optimize the object
code to be executed. A compiler for a structured programming language



Sec. 5.4 Structuring Unstructured Proper Programs 121

may well optimize using proven algorithms to unstructure the object code
in specified ways. In that case, even though structured programs may
appear in their source form to be less machine-efficient than unstructured
programs, this need not necessarily be the actual case.

While the structured programs that result from applying Mills’ method
to existing programs are perhaps less efficient than the existing programs,
there is no indication that entire programs designed in a structured way
from the very first are any less efficient than an unstructured design written
to do the same job. The reason for this is that a structured design facilitates
thinking, so that a better product naturally emerges.

5.4.1 Mills’ Method

I shall describe Mills’ method itself as if it were a structured computer
program. The algorithm I give does not appear in this exact form in Mills’
paper, but is, in essence, the same. It does not, for instance, include some
rather obvious refinements for producing more compact flowcharts.

The algorithm stated below makes use of a “flowchart stack”, a structure
for storing and retrieving as-yet-unstructured flowcharts on a last-in, first-
out (LIFQ) basis. The procedure furthermore yields structured programs
with DO.. WHILE loops, rather than WHILE. ..DO loops.

MILLS ALGORITHM:

.1 CONVERT all multiple-branch nodes into their binary-branch
equivalents. Create specific binary lc and dc nodes where flowlines
meet.

.2 INITIALIZE the flowchart stack to contain only one flowchart,
namely, the entire program. Initialize the Master flowchart as a blank
page with an entry flowline at the top.

.3 WHILE the stack is not empty, perform the following procedure:
REMOVE the last-entered flowchart for current consideration.

.5  SCAN down from the top of the retrieved flowchart, drawing all
flowlines and p-nodes (these are already structured) on the Master
flowchart, until a d- or Ic-node is reached.

.B IF' a d-node was reached in the scan

THEN DRAW the d-node on the Master chart and partition the
remainder of the flowchart being scanned into flowcharts fc,,
feg, and fcy, as defined by Figure 5-15.

4



122 Structured Non-Real-Time Programs [CHAP. 5

9
9.1

¢9-2

9.3
9.4

Figure 5-15. Partition of a flowchart after a d-node
is reached in Mills’ algorithm

Any of the fc; may be trivial (only a flow line). fe; and fo,
together comprise the entire set of flowchart nodes reachable
from the “true”™ output of the node. Similarly, fe, and fe;
together comprise the entire set of nodes reachable from
“false”; fcy is comprised of that set of nodes common {and
separable) to the two paths.

PLACE the non-trivial, non-structured flowcharts among fc,
fco. and fez on the stack, the largest (most nodes) first. (Placing
the largest on the stack first minimizes maximum stack depth.)
Draw trivial or structured flowcharts on the Master flowchart,
and leave space on the Master for the charts put on the stack.

OTHERWISE the node reqched is an l¢-node. Hence,

CONSIDER the next mode.
WHILE this node is not a d-node, perform steps .9.2-.9.7
below.
IF this node is an Ic-node,

THEN CHANGE the Icnode to a dec-node, and move it
into the returning flowline, as shown in Figure 5-16.
Continue at 9.6 below.



Sec. 5.4] Structuring Unstructured Proper Programs 123

i

{a) is replaced by (b} (t

:
[

.
E |
]

Figure 5-16, Combination of fc-nodes in Mills’ algorithm

[ L

-

9.5 OTHERWISE, it is a p-node. Hence,

JUMP* the le-node below the p-node, draw the p-node
on the Master chart, put the p-node in the returning

flowline, and redefine the remaining flowchart as f¢/
(Fignre 5-17):

{a} is replaced by {b) ;

;

I ]
|
I
|
|

|
|
|
|
L e |

v

Figure 5-17. Duplication of p-node inside loop in Millg' algorithm

9.6 CONSIDER the next node, then

8.7 REPEAT from step 8.2 above until a d-node is reached, at
which time continue on.

*This step can be refined so that a duplicatien of p may not be necessary.



124  Structured Non-Beal-Time Programs. [CHAP. 5

0.8-9.10 SPLIT f¢’ into fc; and fef, and insert flag® set and zest nodes as
shown in Figure 5-18 to form flowcharts fe; and fc,.

*A new flag must be used for every nesting of a loop within another loop. Mills uses the
convenience of a flag stack for this purpose; upon entry to the loop (the le-node), the stack
is “pushed” down to access an unused flag, and upen exit (after the final flag test) the stack
is “popped” up to release the flag for later use.

{a

true false
ot , . pr
fc; fey
fin fin
15 replaced by
{b)
] L 4
oy fe;
fin rot ! fin + rpt
FL=1 FL=0 FL=1 FL=0
fc,

Figure 5-18. Splitting the flowchart inside a loop after a d-node by Mills' algorithm




Sec. 54] Structuring Unstructured Proper Programs 125

10 PLACE the non-trivial, non-structured flowcharts among fc; and
fcs on the stack, the largest (most nodes) first. Draw the d-node
and the flag-test node on the Master chart, as well as any trivial
or structured fc; or fcy not stacked. Leave space on the Master
for stacked charts.

.11  REPEAT by going back to step .3 for another chart until the stack is
exhausted, at which time
.12 STOP. The Master flowchart is now structured.

Notice, in the statement of the algorithm above, that certain key words
are capitalized and that parts of the narrative are indented and blocked in
a way which modularizes the algorithmic steps and reveals the flowchart
nesting levels. The algorithm as it stands is a structured program; it’s just
written in English rather than some definite (and non-ambiguous)
programming language. The indenting convention can be used as an
alternate to flowchart production of programs. More detailed information
concerning indenting and structured-program languages appears in later
parts of this monograph. A flowchart of the algorithm appears in Figures
5-19 and 5-20.

As seen in the algorithm above, it may be necessary in the course of a
structured design to introduce flags and tests for flags solely for the purpose
of achieving the topology indicated by the Structure Theorem. However,
an examination of the procedure shows that such flags are only strictly
necessary in loops that require more than one test of the loop-termination
condition within the loop, and in which the processing of data subsequent
to one end-test invalidates the results of any later retest needed. The flag in
such cases is introduced to record the outcome of the first end-test.
Introducing such auxiliary flags may be desirable, even when not required,
as for example, when a condition is to be tested several times in a program,
and a flag test is faster and simpler to code than the corresponding
condition test.

Auxiliary flags set to indicate the outcome of a test condition for later
use in order to achieve a certain structured design, whether required or
desired, are referred to hereafter as structure flags.

5.4.2 Examples Using Mills’ Procedure

To give a little familiarity with structured programs and methods for
turning unstructured designs into structured ones, I will work out a few
simple examples. From these examples, the reader will hopefully be able to
see many shorteuts and reductions that can be made in the Mills’
procedure. The first two examples are simple enough that the separate
steps of the structuring procedure are not shown, only the resulting
structured program.



126 Structured Non-Real-Time Programs

ORIGIN’ ( rll_IFs'bsi;lTHM )
AL P A.GE _TS ¥ 1
QUALITY Make all

decisions
binary

E

Put flowchart
on stack

Stack not

[CHAP. 5

empty?

Unstack
flowchart

fc
t 5

Scan down
fram top to
first f orfe

node

) ¥ 9

2;1::?1 on Hierarchicai LOOP
lit rest fnto expansion in - — Find fc, and
Eﬂ fe,, fo, Figure 5-20 fe,

v B . y 10
Putfc,, fc,, Put ¢, and
fo, on stack fc, on stack

I 11 l

12
sTAOP

Figure 5-19. A flowchart for Mills' algorithm (flowchart numbers correspond to

steps given in the text)



Sec. 5.4] Structuring Unstructured Proper Programs 427

9
Loop

1

Consider
next
node

{e nade
?

Change fc to Put g in
dc node inside jreturn leg, move
flowchart 7 £c below p

|

| -
i 6
Consider

next
node

:;
1 s

Split into
fc; and fe,

| I |

Insert
structure
flag

ORIGINAL PAGE 13 SET, TEST
OF POOR QUALITY T

Combine SET,
TEST, etc,
into

fe, and fc,

¥
Return to
————— chart in
Figure 5-1%

Figure 5-20. Hierarchical expansion of the LOOP subprogram appearing in Mi
algorithm (Figure 5-19)




128  Structured Non-Real-Time Programs [CHAP. 5

Example I. In the following example (Figure 5-21), note that the function
D must be duplicated to achieve the structure requirement.

(a} Unstructured {b) Structured

>

|

55 & &
T

Figure 5-21. Example 1 using Mills’ algorithm {no structure flag required)

¥

O
S
m

Example 2. The following construct (Figure 5-22) is widely used; some
advocate its inclusion as a valid structured program for the form DO A
LEAVE IF ¢ ELSE B AND REPEAT.



Sec. 5.4] Structuring Unsiructured Proper Programs 129

{a) Unstructured {b) Structured (Mills) {c} Structured (Reduced}
‘ ; Y ¥
A A

A
false
<5> true false false
true
trie

——
— i

v ]
]

-
ot

Figure 5-22, Example 2 using Mills’ algorithm and reduction to get rid of an
unneeded structure flag

In this example, Mills’ procedure duplicates the function A and
introduces a structure flag F to achieve a structured flowchart. In this case,
however, the flag is not needed, as shown in the rightmost flowchart, part
(¢} of Figure 5-22. An alternate structuring procedure, in which the
duplication of A is unnecessary, is shown in Figure 5-23.



130 Structured Non-Reql-Time Programs [CHAP. 5

y

true false

Figure 5-23. Alternate structured solution to Example 2 using a structure flag to
avoid duplication of A

Note, in this last construction (Figure 5-23), that the structure flag F is
initialized to zero at the beginning, and not changed to unity until the
looping is complete. In this case, the only program overhead required to
structure the given flowchart is a flag cell, initializing it at the beginning,
checking it during looping, and setting it {(and a final check) at the end.
When A and B are rather large or time-consuming program segments, the
overhead is negligible.



Sec. 5.4] Structuring Unstructured Proper Programs 131

Example 3. The last example of this section is from John Flynn of the Jet
Propulsion Laberatory; it is quite a bit more complex than the previous
two we have seen. For this reason, the following structuring steps.are more
detailed. The given chart is that shown in Figure 5-24.

e e — — — — e fo-node
pnode
o A
1 d-node
L T trug
&8 £
trere false
g - T-
C
true
r
fafse

Figure 5-24. Flynn's “Problem No. 5” (to be structured by Mills’ algorithm)



132  Structured Non-Real-Time Programs [CHAP. 5

The first steps are the placement and retrieval of this chart from the
chart stack, and the initialization of the Master chart to the entry flowline.
Scanning for a d- or le-node stops at the first node, an le-node. The next
node is the p-node, A, which is put on the Master chart and duplicated into
the returning flow line; the collecting node is then moved below A. The
flowchart between this point and the end is labeled f¢;. The progress at the
end of the first steps is shown in Figure 5-25.

[a) Master {b] Current chart

D

" remainder of fiowchart

Figure 5-25. First steps to structure Example 3

The d-node with the condition p is detected next, whereupon fc; above
is split into fes and fep (see Figure 5-26(b) and (c) below). The lc- and
dnode labeled p, together with a d-node labeled “F1=?" and the
returning flowline are put on the Master chart as shown in Figure 5-26(a).
Flowchart fc;, having the most nodes, is stacked; then fc;, on the flowchart
stack. (Note the reversal of the true and false legs of fcs at this stage for
readability.)



Sec. 5.4] Structuring Unstructured Proper Programs 133

{a} Master {b) fc, stili unstructured
( ) .fc2
i !
A
B
true faise rma@’mx
i
D C
|
1!
true
A
false
¥
F1=0 F1=1
\

Figure 5-26. Configuration at the end of the first cycle {continued on next page)



134  Structured Non-Real-Time Programs [CHAP. 5

{c} fe, sull unstructured
fo,

E

1

c

trug /l\ false

r
1 \/

B
faise true
g
¥
D
’ A
‘ ¥y
F1=0 F1=1

Figure 5-26. Configuration at the end of the first cycle (continuation)



Sec. 5.4] Structuring Unstructured Proper Programs 135

The process then iterates: fe, is fetched from the stack and processed. At
the end of this cycle, fcs is structured, and appears as Figure 5-27, which is
then drawn onto the Master chart.

fe, structured
B
true false
¥ ¥
D c
1
true false
A
{ 4 ¥
F1=90 8 F1=1
{ ! 1
F2=1 F2=0 F2=1
| -3 |

AGE -

Figure 5-27. Structure of f¢, is achieved at the end of the second cycle



136 Structured Non-Real-Time Programs fCHAP. 5

On the next iteration, fcy is retrieved, and E and C moved to the Master

chart. The remainder after applying Step .9.6, resulting in fe,; in Figure
5-98, is stacked for the next iteration.

still unstructured

B F1=1
false true
c D
¥ t
F3=0 A
1
F1=0

Figure 5-28. Flowchart stack at the end of the third cycle (remainder of fc;. after
application of Steps .5 and .9.8)



Sec. 5 4} Structuring Unstructured Proper Programs 137

Finally, the next iteration structures fc,; and places it on the Master
flowchart, which is now complete, and structured as shown in Figure 5-29,
{(Note that the previously reversed true and false legs have been restored

to their initial order.)
C? Master {structured)

A
true o falsa
B £
] i
e
f2] c true faise
¥
true false
A 2
]
trug false
L
o c
Y
A
¥ ¥
F1=0D F1=1
i ] ' ]
F3=1 F3=0 F3=1

Figure 5-29. Flynn's “Problem No. 5” structured by Mills® algorithm



138  Structured Non-Real-Time Programs [CHAP. 5

5.4.3 Efficiency of Structuring Programs

The expansion of a simple 8-box flowchart by Mills” algorithm into a 30-
box chart is hardly what one would call “efficient” in either memory
utilization, speed, or perhaps even understandability. But then, much of the
duplication in memory can be avoided by making A, B, C, and D
subroutines, and the flag-sets and tests do not introduce a large speed
overhead either if A, B, C, and D are long-duration processes in
COmpAarison.

As for understandability, one at first has a natural tendency to believe
that the original is ‘more readable than the final structured result. But the
original is deceivingly complicated: the various looping paths intermingle
to the extent that one cannot really tell (until after much study) just what
the state upon entry to any box is, or when (and under what circumstances)
the program terminates, or then what the results will be, The structured
version avoids this difficulty to a great extent by its top-down development
and controlled looping. It identifies separate distinctive actions as separate
program modules, even though they were the same originally. Thus a
lcoser coupling probably occurs between modules in the structured version,
because each replication of a function is not playing its total role played in
the unstructured program.

If the designer had decided to program Flynn’s example in a structured
way from the first, he could have been more efficient. As shown in Iigure
5-30, the duplication or subroutining of A, B, C, and D is not really
necessary at all, and the structured design only has 14 boxes. The design
uses one structure flag and combines the tests p and » with structure-flag
tests. Because no boxes are repeated, there is probably tighter coupling
among modules.

But is the program depicted in Figure 5-30 a better program than that
shown in Figure 5-29, and is either better than the one in Flynn's original
problem? The answer is no—they are equivalent functionally. The
structured forms even take slightly more memory and execution time, But
several other questions are equally relevant: How long would it have taken
a designer, starting with a functional requirement, to come up with and
establish the correctness of each of the three? Which is most readible and
understandable? Which most naturally fits a top-down logical development,
problem to solution? What length of time would be needed to debug
logical errors in each? With what degree of ease and with what side effects
can alterations be accommodated in each version of the program and its
documentation? '

More and more programmers are discovering that the answers to these
latter questions tend to favor the structured, top-down approach. In

1



See. 5.4] Structuring Unstructured Proper Programs 139

true fafse

O

Figure 5-3). Angther solution te Example 3, in which no function boxes are
duplicated



140 Structured Non-Real-Time Programs [CHAP. 5

response to the side effects question, for example, suppose that there is an
error or 4 ¢hange to be made in Flynn's program, and suppose that it has
been determined that module C of the original problem is at issue. Any
proposed alteration of C must be checked to verify whether it will work or
not under all conditions of execution. But the conditions under which C is
invoked are masked by the convoluted connectivity of the original problem
to the extent that the effects of a proposed change are apt to be very
difficult to assess. The version in Figure 5-30 is quite a bit better because
the connectivity is structured; but still, the single occurrence of C has
placed a burden on the evaluation of side effects.

On the other hand, the 30-box version has 3 copies of C on the chart,
each executed under different conditions. Hence, one can probably identify
more easily whether or not a change proposed for one of the C modules
also works for the others. If it does, then the change can be made. If not,
then separate C modules are needed. If C were programmed as a
subroutine, the change would then have to be executed conditionally,
according to the conditions in effect when C was called.

Another general method for structuring an arbitrary unstructured
program was devised by Ashcroft and Manna [41]. Their method employs
iteration with an index variable and a multiple-branch decision logic to
route program control to the proper next function. Each series of actions
on the original flowchart is assigned a valuk of the index variable; in the
structured version, then, the outcome of each decision sets the index to its
proper next action value, whereupon the program repeats at the muliiple
branch. The solution to Flynn's “Problem No. 57 using this method appears
in Figure 5-31. In this figure, none of the original functions or decisions
have been repeated, but eight settings of the index variable and two flag
tests have been necessitated.

5.5 PROGRAM STRUCTURES FOR NON-PROPER
PROGRAMS

Structured programming, as I have presented it so far, forms the basis of
an attractive software design and production methodology applicable to
proper programs—those that have only one entry and one exit. 1 have
argued that such programs developed using top-down, modular, hierarchic,
structured programming techniques tend to be easier to organize,
understand, modify, and manage, especially when the structure-set includes
other simple extensions of the minimal three, as shown in Figure 5-32.
However, there are typical cases where the strict adherence to the “one-
entry one-exit” rule for a program or program module is a hindraence,
rather than-a help, to effective software development.



Sec. 5.5] Program Structures for Non-Proper Programs 141

§=1 =3 <4
A &8 c E
true faise - true false true false RU Lt _3
RULE=2| |RULE=4 D RULE=3; |RULE=2| |RULE=5
v
RULE =1

Figure 5-31. Another structured solution to Example 3 in which no functions are
duplicated (note the use of multi-valued flag and decision structure)



142  Structured Non-Real-Time Programs [CHAP.5

{a) SEQUENCE {b) WHILEDO {c] IFTHENELSE

\ — L

{d} DOWHILE {e) CASE

| T

Figure 5-32, Extended canonic program structures

Structure for the sake of structure should not overrule structure for the
sake of clarity. One notable example of such counter-productivity cccurs
when one is designing a program that is capable of detecting the existence
of situations for which further processing in the current mode is either
useless or unnecessary. Often, in such cases, the most desired, most logical,
and most clearly understood course is to divert program control to a
recovery mode or back to the user/operator for subsequent decision
making and manual operations (Figure 5-33).

The alternative to programming abnormal exits of a module is to
introduce structure flags as necessary to force these exits to the normal exit



Sec. 5.5] Program Structures for Non-Proper Programs . 143

Entry

J Z

ormal Mode

N\

Abnormal Exit

Program
Recovery

DS

MMM

/////4///

Normal Exit

Figure 5-33. Abnormal exit from a nested structured program

point. However, this flag then has to be tested each time a “normal” action
in the program comes up for execution. If an abnormal condition has
occurred, the normal action must be bypassed (see Figure 5-34). Bypassing
is necessary until an appropriate nesting level is reached so that the
appropriate recovery procedure can be invoked in a properly structured
way. This not only introduces a clutter of excessive, distracting detail to
slow down the programmer, but it also creates a somewhat larger, slower
program. Hence, besides interfering with programmer effectiveness, strict
adherence to canonic proper-program structures causes the program itself
to suffer.

Jt may also be the case, in many of the higher level languages, that some
statements can cause unavoidable, automatic branching to prespecified or
default program locations when certain conditions occur. For example, in
FORTRAN, executing the file-input statement can result in normal input
(the program continues at the next statement), an end-of-file condition (the
program branches to a prespecified statement}, or a file-error condition (the
program branches to a separately specified statement). “Structured
programming” (using canonic structures) is thus not pessible whenever
such statements appear.



144  Siructured Non-Real-Time Programs {CHAP. 5

{a) Unstructured ib} Structured form of (a)

—

n
o

} ! }

- c R

¥
! °-0 , {
. {
&

Figure 5-34. Bypass program in which p and r are tests that indicate further
execution is useless; R is recovery module, which then initiates program restart



Sec. 5.5] Program Structures for Non-Proper Programs 145

5.5.1 Criteria for Structuring Multi-Exit Modules

The context of structured programming obviously needs to be extended,
in such cases, to include constructs that fit the language and that will tend
to increase design productivity and program efficiency. But great care must
be taken in extending the basic set of structures so as not to undo {or
potentially undo) the progress that cancnic structures have contributed to
software development. Mills’ proof of the correctness theorem depends on
the “one-entry one-exit” character of programs. Permitting modules to
have multiple exits (or entries) can, therefore, be a very dangerous policy
unless that policy is limited to justifiable situations where correctness is not
impaired. Candidate structures to augment the canonic set should satisfy at
least the following criteria:

a. The top-down development and readability of the program design
must not be impaired by the extended structures.

b. The hierarchic, modular form of the program must be maintained
using the extended structures.

¢. Program clarity and assessment of correctness on an individual
module basis must not be jeopardized.

d. The situations under which an alternate exit of a module is
permissible must be limited to special situations where the need is
clear and desirable, or where it is unavoidable.

e. The new structures must conform to the same codability conventions
used for the canonic set, such as modutar indentation of lines of code,
easily identifiable entry and exit points, and clear connectivity of
program modules.

5.5.2 Structures for Muiti-Exit Modules

Iterations and nestings of canonically structured proper program
modules always result in proper programs. Whenever a branching (one
entry, multiple exit) node dppears in a structure, there also.appears a
collecting node and one or more process nodes within the structure
arranged so that the global view again has only one entry and one exit.

The extension of this philosophy to meodules having multiple exits

suggests the following simple extension to structured programs (Figure
5-35).

The entire structure is a proper module, although module A obviously is
not. However, if the function A has been stated explicitly enough that the
two exit conditions are determinable, based on entry conditions to A, then
proof of correctness is conceptually the same as for an IFTHENELSE



146  Siructured Non-Real-Time Programs [CHAP.5

reason 2

reason 7

& c

Figure 5-35. Multiple ex‘its configured into an IFTHENELSE-like structure

structure. I shall use the following convention (Figure 5-36) to denote and
emphasize the condition for that other exit.

A &
answer 2
i

answer

f 1

Figure 5-36. Multi-exit program configuration with exit condition explicitly
annotated

The condition or event ¢ under which the exit occurs is directly displayed
for more clarity and better understanding,

When there are more than two exits, these can be accommodated by
another configuration (Figure 5-37}, analogous to the CASE structure.

Box A in Figure 5-37 represents, for example, the way end-of-file and
file-error conditions are actually treated in programming languages such as



Sec. 5.5] Program Structures for Non-Proper Programs 147

-

answer 2 answer n
answer 1

v

B c z

Y ]

Figure 5-37. Multi-exit CASE-like configuration with exit condition explicitly
annotated

FORTRAN. Using the configuration shown permits file input modules in
such languages to take a structured appearance not otherwise achievable.

Normally, I draw the collecting node of CASE and IFTHENELSE
constructs directly under the bottom vertex of the decision symbol.
However, the exits in Figures 5-36 and 5-37 are uwnusual exits from a
module, so I do not. Normal flow is straight down.

Looping structures could similarly be extended by this technique to yield
the four configurations of Figure 5-38. However, the case for permitting
such structures is a weak one, because the configurations in Figures 5-36
and 537 serve to bring the design back into a structured form. Such
structures do not satisfy the criterion “the need is clear and desirable, or
unavoidable”. I shall not include them, therefore, in the set of permissible -
program structures.

Structures (a) and (d} of Figure 5-38 represent program examples that
endlessly process streams of input data until the data quality falls below a
specified event e, at which time some alternate procedure is invoked.

Structure (b) represents a program A in which e senses an abnormal
condition: B is a recovery module that initializes A for another try.

Structure (c¢) could find application, for example, when information is
being inserted at a terminal by A for processing by B. If e detects an error,
the program returns to A for correct input; otherwise, it continues.



148 Swuructured Non-Real-Time Programs [CHAP. 5

{a) (b)

{c} {d)

A A
¥ ¥
& e a e

;

Figure 5-38. Conceptual laoping configurations for multi-exit structures



Sec. 5.5] Program Structures for Non-Proper Programs 149

5.5.3 Hierarchic Expansion of Multi-Exit Modules

The configurations in Figures 5-36 and 5-37 certainly satisfy the first four
criteria for extensions to the basic proper structures, at least when viewed
macroscopically. But what happens when a multi-exit function (box) at one
level expands (to a flowchart) at the next hierarchic design level?

Using top-down hierarchic-expansion methodology, one starts the design
of the module at the next level with a functional description of the module
and the conditions under which the several exits ocecur. He then proceeds
to design an algorithm to perform the intended action using the usual
canonic structures. In addition, he perhaps finds occasion to use one of the
extended configurations. At some point then, he breaks away from proper
program constructs to divert the flow of control to the alternate module
exit(s). He does this by replacing a box normally appearing in a structure
by an exit symbol, as shown in Figure 5-39.

The resulting flowchart has one normal (structured) exit point, and one
or more extra-normal (unstructured) exits. It is worthwhile pointing out
again that the extra exits may derive from perfectly normal, non-
pathological events. For example, when reading data from a file, it is a very
common practice to read until an end-of-file indication occurs. Hence, the
alternate. exit from a box labeled “input from file” taken when the end-of-
file occurs cannot be said to be an “abnormal” event. I shall refer to it
rather as a paranormal exit (para from Greek meaning “beside™), to
differentiate it from the {normal) exit taken after the more usual, stated

e N
¥ !, \/ ]

to structured
termination
. T L i
to structured unstructured unstructured
termination termination termination

Figure 5-39. Modes of generating multiple exits in otherwise structured programs



150 Structured Non-Real-Time Programs [CHAP. 5

function (reading elements from the file) has taken place, and from a truly
abnormal exit (one in response to an abortive event).

Paranormal events thus lie between the normal and abnormal; they are
the simple “alternate exits” that should be allowed in the software
designer’s bag. They will permit him, among other things, to create
modules which can recover efficiently from minor failures in the program
or from erroneous input data.

On the flowchart of a multi-exit module, several occurrences of each
paranormal exit might appear, as depicted in Figure 5-40. How does such a
flowchart stand in relation to the criteria I gave earlier? The flow through
the chart does not appear disorganized, nor do any of the first four criteria
seem violated; some branches just terminate early, back to an activity
defined and assessed to be correct at a previous hierarchic level. The
expansion of a multi-exit symbol as a separate flowchart thus dees not seem
objectionable according to the given criteria, at least whenever the
invoking events are unavoidable or when an early exit is clearly desirable.

However, if a maulti-exit chart such as that in Figure 540 were to
replace its flowchart symbol at the previous level in the hierarchy, the new
expanded chart would have crossing Howlines. A simplified case of this is
illustrated in Figure 5-41.

Non-planar flowcharts are particularly annoying to anyone trying to
understand a program, because crossing flowlines detract from readability,
reduce clarity and understanding, impair assessment of correctness, and
attack the program organization generally. Flowcharts with on-page
connectors to avoid the crossings are no better. Programming conventions
that can lead to such difficulties are of questionable utility and are clearly a
violation of the criteria I stated earlier.

The viclation comes as the result of substituting the flowchart with
paranormal exits back in place of the simple box at the earlier level
Neither of the flowcharts—that with the multi-exit box, nor its expansion at
the next design level—is objectionable on a separate module basis. For
example, there is no objection to having Figure 5-41 be the next-level
embodiment of box A in Figure 5-37. But there is objection to substituting
Figure 5-41 for box A in Figure 537 because then the flowlines become
jumbled. In Chapter 7, I shall reconsider this issue in the code for such
modules, since flowlines in the code tend to be less visible than they are on
fowcharts.



r

Sec. 5.5] Program Structures for Non-Proper Programs 151

entry

Y

!

D

exrt 2

)
4

exit 2

h J

- C D

exit 1

normal
exit

Figure 5-40. Possible expansion of a module with two extra-normal exits



152  Siructured Non-Real-Time Programs {CHAP. 5

erossing
flowline

¢

L o __—
- ]

\ nermal 1 extra-normal

Figure 5-41. Crossing flowlines can-appear when the flowchart of a multi-exit box
replaces the box



Sec. 5.6] Abnormal Terminations of Siructured Programs 153

The exit points of canonic structures, coded or flowcharted, are readily
located, because they invariably either appear at the bottom or result as
the immediate consequence of the loop test at ‘the top. Logical flow in
nested structures having exits somewhere in the middle is naturally going
to be harder to read and follow, even i the flowchart remains planar.
Hence, even if flowlines don’t become jumbled as one flowchart replaces
its box at the preceding level, the resulting chart is very apt to be less
readable, because of the lack of uniformity in substructure exit
conventions. The lesson here is that paranormal exits from canonic
structures should be used sparingly.

Canonically structured Howcharts at one hierarchic level can replace a
striped symbol at the preceding level without violating any of the criteria
given earlier. But in order to avert such difficulty with the extended
structures, one must accept the following guideline: Do not redraw
flowcharts at one level, substituting flowcharts from the next level for
multi-exit striped modules. Fortunately, this restriction is superficial in a
top-down design, because flowcharts are developed from striped symbols,
rather than vice-versa. I discuss the jmplications of this philosophy upon
coding modules with multiple exits in Section 7.1.2.

5.6 ABNORMAL TERMINATIONS OF STRUCTURED
PROGRAMS

The programming structures discussed so far extend structured-
programming techniques to cases where programming normal events using
canonic structures could prove counter-productive. However, there may be
abnormal contingencies encountered during a top-down design that may
not have been fully identified at earlier levels. In order for the program to
perform correctly, these abnormal situations must be dealt with, and
hopefully not by redesigning the previous levels.

For example, it may be known intuitively ahead of time that some
arithmetic operations can result in overflow-errors under certairi (perhaps
unknown) input conditions. But it may not be known, until an actual
algorithm is designed, just where the overflows will occur, or what the
input conditions that cause them will be.

In other cases, there may be knowable, specifiable contingencies that
represent abnormal departures from the program’s normal functionings,



154 Structured Non-Real-Time Progrems [CHAP. 5

which the program must respond to (or recover from). A decision table {see
Chapter 8) drawn up for this program would likely classify such abnormal
conditions info the “ELSE-rule” category—all cases not specifically defined
by the program’s intended behavior under normal, error-free input.

In some cases, recovery procedures can be instituted by the program
itself; in others, operator intervention may be required. Different types of
abnormalities will conceptually require entirely separate recovery
procedures. For example, a program which generates a report from several
files may conceivably be asked to complete the report because some
identifiable parts of the report may yet be useful, even though one of the
files continues to be read occasionally in error. However, in the same
program, execution may be halted and control returned to the operator if
one of the files cannot be found.

Abnormal exits from many unsiriped modules are often overlooked
because the abnormal exit is implied in the code for that module. A
flowchart box labeled “A=B+¢” would, for example, be coded in FORTRAN
as “A=B+C”; but if A and B are large enough, an overflow trap automatically
kicks the control to some error-handling procedure. Yet these connections
are seldom put on the flowchart. Indeed, if such implicit actions were
required to be drawn onto flowcharts, as in Figure 5-42, few “structured
programs” would exist. And imagine all the confusion trying to follow the
jumbled mess of lines!

A similar statement holds concerning abnormal terminations of striped
modules. In order for us to be able to design and program using what
appears to be structured programming techniques, it is usually necessary
for us to suppress the flowchart connections for abnormal situations, at
least down to that design level where an abnormal event is sensed explicitly
and an explicit branch to the recovery procedure appears. But if program
modules (unstriped, as well as striped} may have abnormal contingencies
whose connections may not appear in an explicit form at a given design
level, then program response can only be fully and readily assessed if the
conventions for suppressing the connections are easily remembered, fully
understood, and rigorously adhered to.

Of course, it may be entirely possible that a program can invoke a
recovery procedure and return to normal processing in a purely structured
way. Such cases, even though induced by abnormal events, nevertheless can
be handled by the normal- and paranormal-exit structures already
discussed. It is the others that must be covered by the convention.



Sec. 5.6] Abnormal Teiminations of Structured Programs 155

The following rule for displaying abnormal terminations seems, to me, to
be most in keeping with the first four criteria given earlier: Flowchart
lines showing abnormal terminations exiting from modules may be
omitted at all hierarchic levels beyond that at which the recovery
module first appears on a structured flowchart; this higher-level
flowchart will also show the abnormal-exit flowlines from the modules
(within which unstructured exits occur) to the appropriate recovery
modules. Such omissions at later levels are permissible, provided the
rule for such exits is clear, easily remembered, and rigorously adhered to.

Figure 5-43 depicts a chart at which a particular abnormal termination
first appears. The recovery procedure appears as a module (here named
RECOVERY) executed whenever the abnormal error event occurs in later
levels. The exploded views of striped submodules of B being aborted do not
show either the eiror condition or the module termination symbol labsled
“RECOVERY” unless there is an explicit need to do so (e.g, when error is
actually tested as an unstriped module), or unless showing them contributes
to readability, understandability, assessment of correctness, etc. As the
latter of these represents an optional case, the abnormal exit can appear
merely as a comment, as shown in Figure 5-44.

OVER
I=1+1 FLOW

To Qverflow
Recavery

Figure 5~42. Implicit abnormal contingencies in a simple “structured” program



156 Structured Non-Real-Time Programs [CHAP.5

)

b N

0o fatrmmd it
A

RECOVERY
error c

J i
{ SYSTEM } STOP

Figure 5-43. A pragram A THEN B, in which an occurrence of errar during the
execution of B initiates the RECOVERY procedure (if no recovery under criterion ¢
is possible, control returns to the operator)




Sec. 5.6] Abnormal Terminations of Structured Programs 157

Submodule
of B

Explicit references
to error and

RECOVERY

ABORT
RECOVERY

This module —T
may have

errar exits o Abnormaliy

RECOVERY | __ | eatsto

also RECOVERY
upon errar

Optional references
to abnormal exits

1
ABORT
RECOVERY

Figure 5-44. Notation for abnormal module terminations at levels deeper than
RECOVERY




158  Structured Non-Real-Time Programs {CHAP. 5

5.7 LABELING FLOWCHART EXITS

There is obviously a need for correct and consistent labeling of the exit
terminals of a module flowchart, so that the reader can tell immediately
and with certainty whether it is a normal, paranormal, or abnormal
subprogram exit, or a subroutine return. Further, he must be able to locate
the procedure next to be executed, following the exit easily and
unambigously.

The conventions summarized in Figure 5-45 (of which only a subset may
actually be operable within a given system) contain a type designator
within the terminal symbol, and in some cases, an additional number
designator that labels the outcome. This number, denoted by n in the
figure, can be optional whenever all outcomes are indistinguishable to the
preceding flowchart level. The number becomes mandatory if outcomes
are distinguishable. The normal exit of a flowchart need not be given an
outcome number, but is always assumed to be labeled “0”. The CRISP
(Control-Restrictive Instructions for Structured Programming} language
(Chapter 7) implements such paranormal ExIT and RETURN by setting an
ouTcome flag to n prior to resumption at the previous level. This flag can be
tested to determine appropriate action, as in Figure 5-46.

(a} Program termination., (b} Program termination. {c) Subprogram normal
Return control to Return control to termination. Return
system. operator. control to invoking

madule at preceding
design lavei.

{d] Subroutine normal {et Paranormal exit, {fl Abnormal exit.
termination. Return Return controd Return to procedure
control to calling ta previous level that has fiowline
module with outcome with outecome flag labeled Lat some
flag set ta n. setton, eariier design level,

Figure 5-45. Madule termination symbol annotation conventions



Sec. 5.7] Labeling Flowchart Exits

(a) MODULE with paranormal EXITs

MODULE /\
i{ﬂ’/ - s 0

159

(b CRISP method.

MODULE paranormal .
EXITs set OUTCOME
flag to value of EXIT MODULE
number
> » 9
v° 7 3"

Figure 5-46. Paranormal EXITs and RETURNS



160  Structured Non-Real-Time Programs [CHAP. 5

5.8 SUMMARY

I have approached “structured programming” not as a coding
methodology in this chapter, but rather as a flowchart design discipline. By
doing so, 1 have not had to consider how the flowchart topologies translate
into any partieular programming language. Ultimately, of course, codability
of the flowcharts bas to be addressed, and I do so in Chapter 7, showing, by
the way, that coding can also take a highly structured form.

1 do not wish to have the reader believe that I necessarily advocate the
use of flowcharts as the primary expression of the procedural design of a
program. Whether this should be the case or not depends on Whether
flowcharts are economically supportable by the programming system.
However, they do form excellent tutorial aids for my present purposes, and
that is the principal reason I have used them thus far. In Chapter 7, T will
show a mathematical equivalence between flowcharts and CRISP code
structures, and thus in Chapter 17, I am able to discuss the compoenents of

a programming support system that makes the design documentation take
the most useful, desired form.

Upon inspecting a variety of programs, one is very apt to see many
programs that look like “structured programs™ because they religiously
adhere to the canonic restricted-contral structure, but which, on ¢loser
inspection, are quite unreadable and contain bugs. One is also apt to find
programs that look “unstructured”, but which are quite understandable and
entirely correct. The final measures of quality and readability of a
design are still inherently dependeni on human ingenuity.

To accommodate some of the inherent difficulties associated with
“canonic” structured programming, I have introduced additional structures
to increase programming productivity. These structures permit efficient
designs of programs that must terminate their normal activity to initiate an
other-than-normal activity.

The next chapter carries structuring one step further, into the realm of
programs.that may contain interruptible or concurrently executing parts.



Problems 161
Preblems for Chaptier 5
5-1 Structure the flowchart below using only the extended canonic

structures shown in Figure 5-32: (a) by Mills’ algerithm, and (b} by
another methed of your invention.

Y
» >
4




162 Structured Non-Real-Time Programs [CHAP.5

5-2 Prove that the structured flowchart generated by Problem 5-1(b) has
the same function as the given flowchart. Make as rigorous a proof as
you can.

5-3 Structure the flowchart below using only the extended canonic
structures of Figure 5-32: (a) By Mills’ algorithm, and (b) by another
method of your own invention.

Note: Thos flowchart is

Waite's template-matching
algorithm. The numbers within

the on-page connectors correspond
1o Waite's “rules™. See “The
Moehbile Prograrmming System
STAGE2”, Comm of ACM, Vol 13,
No. 7, pp. 415-421, Juily 1970,




Problems 163

5-4 Prove that the flowchart of Problem 5-3(b} has the same function as
the giveri flowchart

5-5 Draw a structured flowchart for a subroutine that uses recursion to
compute nl. Frove that the program function is actually n! for all n=0.
What does the program do if n<0?

5-6 Flowchart the skills inventory program of Problem 4-3 as a structured
program using hierarchic levels of flowcharts, such that each flowchart
fits on one 8-1/2 X 1l-in. page and with no more than 10 hoxes per
page. Number flowcharts as discussed in Section 5.1.3.2.

5-7 Prove in Step .10 of Mills’ algorithm that the stack depth is minimized
by placing the largest flowchart on the stack first.

5-8 Prove that structure flags are nécessary only in loops that require more
than one test of the exit condition within the loop and in which the
processing of data subsequent to one end test invalidates the results of a
later retest.

59 Flowchart the first level of a program that inputs data from a
sequential data file. The format of the data on the file and the structure
to hold the data in memory are to be defined at later levels of the design.
Account at this level, however, for the error and end-of-file traps that
occur when a read is attempted.

5-10 Show that IFTHENELSE can be made using two DOWHILE
structures, one following the other, by the introduction of a flag variable
to terminate the loop selected after one iteration.



o — M A A e Ty e e

{ Preceding page blank

Vi. REAL-TIME AND
MULTIPROGRAMMED STRUCTURED
PROGRAMS

The program structures in the previous chapter provide a natural means
for writing non-real-time programs in a top-down way. But real-time,
interrupt-actuated programs and multiprograms often have many (perhaps
implicit) entry points, many exit peints, perhaps simultaneous computa-
tions, etc., and so these are inherently much harder to understand than non-
real-time programs (which are usually hard enough, even when aided by
the structure requirements imposed in the last chapter). There obviously
needs to be an extension of the top-down structured design and production
techniques to such programs. This chapter addresses that need.

The physical constraints of the computing system and the complexity of
the programming process might at first seem to be of secondary
importance to the computational problems to be solved. Yet, programming
efforts typically are dominated by the human incapability to comprehend
the total picture of what is really going on in the computer on an instant-
by-instant basis.

165



166 Real-Time and Multiprogrammed Structured Programs [CHAP. 8

A single computer with but one central processing unit can only process
instructions sequentially, whether on an interrupt-priority, queued-priority,
or background basis. We normally think of a computation as a set of
operations applied to data to solve a given problem, and we know that
these operations must be carried out in a certain order to ensure that the
results are correct. We realize that many computational requirements do
not imply a strict operational sequence; some of the operations, to be sure,
must be carried out before others, but others may be carried out in
arbitrary order, or in paraliel, if there are other processors available for
concurrent computation.

Sequential processes thus closely reflect how we think. But a computer
must often be called on, for efficiency, to process certain operations out of
their normal sequential order. For example, suppose two independent user
programs, time-sharing a computer, are regularly interrupted by the
system executive, to deactivate the one currently active and to pass control
to the inactive one. In this example, the computer sequences back and
forth between the two processes (which could be operated concurrently),
and, in fact, the two programs appear to each user as if they are being
simultaneously processed (except for the speed factor). Whether
concurrent processes are multiplexed or multiprocessed, many of the
attendant programming problems are much the same.

This chapter also addresses some of the inherent differences between
programming real-time and non-real-time processes.

6.1 ATTRIBUTES OF MULTIPROGRAMS

In the remainder of this chapter, I shall refer to operations, processes,
and computations. By way of review (Chapter 2}, an operation refers to a
finite-time execution performing a time-independent function based on its
input. In this sense, each instruction, and indeed each of the non-real-time
programs of the previous chapter, may be viewed as operations. A process,
on the other hand, refers to a sequence of such operations performed one
at a time. Two or more processes that have overlapping or interleaved
operations are concurrent processes.

6.1.1 Program interrupts

According to ANSI vocabulary standard definitions [7], an interrupt is
the stopping of a process in such a way that it can be resumed. A
particular type of interrupt is a #rap (Figure 6-1), which is an
unprogrammed conditional jump to a known program location, automati-
cally activated by hardware with the location from which the jump
occurred recorded. By this definition, a process that has placed a processor



Sec. 6.1] Attributes of Multiprograms 167

in a stopped state awaiting input data before continuing "has been
interrupted, but not trapped.

Trap interruptions to normal program sequence can be classified into
three categories: (a) interrupts caused or actuated by specific internal
operations in the program, such as overflow, underflow, input error, ete.,
(b} interrupts resuliing from external contingencies in response to internal
program operations, such as disk or magnetic tape endfile, input buffer full,
ete.; and {(c) interrupts resulting from external events not prompted by
internal program operations, but to which the program must respond, such
as a real-time clock, emergency stop (BREAK), etc. Although a program
responding to such contingencies is not a proper program, top-down
procedures can still be developed and applied to aid in understanding and
to provide discipline to the design process.

The program structures introduced in Section 5.5 of the previous
chapter are useful in the handling of dedicaied or predictable
interruptions in the normal sequence of operations. Such events, you may
recall, are indicated graphically by merging the function with the event
actuating the interrupt, as exampled in Figure 8-2. The resulting control
logic is then similar to the IFTHENELSE structure.

Particularly useful examples of this structuring convention are the
handling of disk and magnetic tape end-of-file indicators, as shown in
Figure 6-3.

The use of such program structures promotes top-down readability and
simulates the form of a proper program in the design. Either subprogram 1
or subprogram 2 is executed, but not both; either may result in other-than-
normal termination procedures discussed in the previous chapter. As will

Interrupt
e e rer e e won ——— location
saved

h §
PROGRAM

hardware
actuated
Reentry to same
+r T, P —— point in

Figure 6-1. Hardware frap event causes PROGRAM interruption to service
PROCEDURE




168 Real-Time and Multiprogrammed Structured Programs [CHAP.G

Trap: /\
actuating trap
process \/

No trap occurs

trap
1 occurs

y

subprogram 1 subprogram 2

Figure 6-2. Dedicated-trap prograni structure
5

{a} {b)

disk file
input

no end-of-file end-of-file no end-of-file end-offife
' reached ! reached H reached reached
subprogram 1 subprogram 2 subprogram 1 subprogram 2

Figure 6-3. End-of-file trap program structures

be shown in the next chapter, the program code for these constructions can
also appear to be structured in a highly organized way.

6.1.2 Multiprogram Interrupis

Interrupts that cannot be made to fit the structure illustrated in Figure
B-2 {or similar extensions of those given in Section 5.5) yield truly improper
programs. It is specifically this type of interrupt that causes problems in
understanding real-time programs. Obviously, a subprogram actuated by a
real-time trap is manipulating the computer state in some way which can



Sec. 6.1] Attributes of Multiprograms 169

affect operations in the interrupted program. Programs having this type of
interrupt I shall refer to as multiprograms.

Multiprogramming can easily be an order of magnitude more difficult to
understand than mere sequential programming because of the interruptable
aspects of process execution and because of the possibility that, once a
program has been interrupted, its pertinent data state can be changed in a
damaging way before the eventual resumption of its previous activity.
Clearly, such a difficulty must be averted at all costs.

A typical multiprogram interrupt is illustrated by the structure in Figure
6-4. Once the interrupt occurs, a subprogram executes, and control returns
to the point in the program where the interrupt occurred. If there is a
functional invariance between the interrupted segment and the interrupt
program, then the two segmenis could well have been executed
independently by a parallel processor, if one were available and if the
difference in execution speed were immaterial. Therefore, multiprogram- _
ming is, in many ways, a more general concept than concurrent
programming (multiprocessing) because the program segment and the
interrupt subprogram can be viewed as potentially concurrent. Certainly,
the inherent problems of concurrent programming must be averted as a
subset of the problems attendant on multiprogramming.

The structure to be imposed on real-time concurrent processes is
modular partition into sequential activities which can be programmed
separately and then combined for execution in a way that allows for

1 irap ’
¥

subprogram

resel trap fagic and return
o point of interruption

Figure §-4, Multiprogram interrupt (returns
after execution of subprogram to point
where interription occurred)



170  Real-Time and Multiprogrammed Structured Programs [CHAP. 6

precise assertions concerning: the data space before and after each activity
[42].

In order for real-time sequential programs to simulate true concurrent or
parallel structures, any process interrupted by a multiprogram trap must
be permitied, at a later time, to continue on to its normal termination.
Subprograms actuated by such. traps must thus eventually return control
after execution to the point where the interrupt occurred (or else pass
directly to an abnormal termination peint). Three permissible forms are
depicted in Figure 6-5.

Interrupt structures that exit to other points in the program violate the
top-down aim of structured design. They, therefore, must be forbidden.

The only concepiual differences between structured real-time multipro-
grams and programs with structured concurrent segments are imposed by
time-response constraints and interrupt priorities. In a hard-real-time
situation, interrupts may be triggered by external events which require
response within a very short time, before a certain condition evaporates.
Parallel programs may not need to react in the same hard-real-time-
constrained way. Furthermore, the priority of a trap subroutine ascribes a
level of CPU privilege to that routine; the multiprograms may thus
communicate or share resources in a slightly different way than parallel
programs do.

( trap ) I trap ) trap
¥ ¥

subprogram subprogram subprogram

¥ L ]
CLEAR CLEAR ) ( ABORT) ( ABORT )

reset trap fogic and return
directly, or return by

prionty gueue

Figure 6-5. Multiprogram-interrupt structures



Sec. 6.1] Aftributes of Multiprograms 171

6.1.3 Rescurce Sharing

Certain resources, by their very nature or by the nature of the operation
with which they are accessed, must be dedicated exclusively to only one
operation at any given time; these 1 will call devoted resources. Other
resources, which I call mutual resources, can be engaged in simultaneous
operations when certain stated limitations are met.

Memory cells form one example of devoted resources. The reader can
well appreciate that it is impossible to make meaningful statements about
the net effect of parallel computations which are able to change the
contents of a shared cell location simultaneously (or change and read it
simultaneously). Rather, when one process is storing, other processes must
be excluded from accessing that location in any way, storing or reading.

A physical resource that interconnects producing and consuming
processes is a buffer. If it possesses the capability of holding simultanecusly
many products to be consumed, the buffer can be viewed as a mutual
resource of the processes involved. The resources being buffered are said to
be temporary resources.

If one process stores data into, and another process retrieves data out of,
a first-in first-out buffer (queue}, then simultaneous use of the buffer by the
two processes is permissible except when the buffer is empty (and possibly
when it is full). Hence, the buffer is a mutual resource of the two processes
under the stated limitations, and, in this case, the mutval resource is
composed of devoted resources (memory cells} as subunits.

A mutual resource need not necessarily be made up of devoted subunits.
For example, a read-only memory may service any number of parallel
processes without any doubt of the theoretical (as opposed to implemen-
table) outcome of accesses. However, any mutual resource whese state is
capable of being changed must contain devoted subunits to comprise
that part of the resource whose state is alterable.

6.1.4 Concurrent Program Structure

Two or more processes are concurrent when their operations overlap (or
interleave) in time. Processes result in computations, which are applied to
resources (CPUs, memory, files, magnetic tapes, printers, etc.).

On a flowchart, concurrent processes are indicated as illustrated in
Figure 6-6. The parallel lines at the top and bottom of the figure represent
the limits of concurrency. Entering the top of the figure, execution is
sequential; then Py,...,P, are executed concurrently (or interléaved); and
after all the concurrent processes are complete, the overall process
continues sequentially again at the bottom. The upper line is sometimes



172 Real-Time and Multiprogrammed Structured Programs. [CHAP. G

called fork, and the lower, join [25]. Others have called these cobegin and
coend [43]. 1 shall use the former.

Each of the processes P, depicted in Figure 6-6 may itself contain forks
and joins, and so on, iterated to any desired level, as illustrated in Figure

6-7.

T

1 /_-

l

Figure 6-6. ANSl-standard flowchart [8] representation of concurrent-mode
processes Pp,...,P,

v

Figure 6-7. Nested concurrent processes (processes A and B are functions

executed jn sequential order to form process Pj; the function C is executed prior

to the initiation of the parallel processes D and E; together these form process
Py; and P; and P, are executed in parallel)



Sec. 6.1] Attributes of Multiprograms 173

Parallel processes generally progress at independent rates, although
operations in one branch of a fork may be synchronized to mutually
exclude or precede operations in another. Inasmuch as parallel processes
represent simultanecous operations, and a join returns computations to a
sequential state, it is clearly impossible to recontinue the sequential mode
simultaneously at two different points. Furthermore, parallel processes
cannot join and proceed with the sequential mode until all the branches of
the fork terminate, either normally or abnorxmally,

In keeping with the philosophy given in previous parts of this work, it is
reasonable, as a structure requirement for parallel processes, to forbid one
process from disrupting the action in a parallel branch of the fork except
when that disruption is an abnormal termination of the entire parallel
structure. Each process, therefore, eventually reaches its join by normal
termination, and a set of parallel processes terminates normally only when
all of its component processes have normally terminated. Processes
reaching the join earlier than others must wait until all the others have
reached the join.

For concurrent programs, there are certainly other control-structure
topologies that can be dreamed up and that some might even find useful.
However, none appear in this work. If there was an advantage in the use of
structured control flow in sequential programming, this advantage becomes
almost a necessity in concurrent programs, insofar as program reliability is
concerned. The doubting reader is referred to the work of Brinch Hansen
[42].

5.1.5 Consistent Concurrent Processes

Concurrent processes that operate on non-overlapping sets of variables
or physical resources are said to be disfoint. A simple example of a disjoint
process is illustrated in Figure 6-8. Ten records to be input from a card
reader are to be output on a line printer. Input and output resources are
separate, and hence may be used simultancously. However, in order to
keep the records themselves from being a shared resource, two separate
record buffers, RCDIN and RCDOUT, are used; RCDIN is copied into RCDOUT
during a time when the card reader and line printer are not in parallel.

Disjoint processes are an example of a somewhat wider class of
consistent processes called non-interacting processes. A set of concurrent
processes is said to be non-interacting when resources can be used by each
concurrent process without synchronization.

For example, non-interacting processes P; and P; may both read a
variable » so long as neither changes its value; but if P; changes v, then Pp
may neither read nor change it with consistency (unless synchronized). In



174  Real-Time and Multiprogrammed Structured Programs [CHAP. §

{ LIST ]

1

Setl=1

Input Record
nto RCDIN

Copvy RCDIN
to RCDOUT

!

! Input Record
into RCDIN
Print
RCDOUT *
Seti=I1+1

yes

Figure 6-8. Card-listing program with concurrent input and output -

the former case, P; and P, are non-interacting, although not disjoint; in the
latter, P; and P; are interacting. These situations are shown in Figure 6-9.

Other processes, which can access and change the state of common
variables or other shared physical resources, are said to be interacting,



Sec. 8.1] Attributes of Multiprograms ; 175

ORIGINAL- PAGE 18
(a) Disjoint i OF POOR QUALITY

1 resource )

resource

(b} Non-Interacting

P <———=X| resource P:::_:"‘_"} Py

-

{¢) Interacting

Py  @emmamd S T — | P,

|

Figure 6-9. Concurrent process {wide arrows indicate data connec%iuity between
process and resource)



176  Real-Time and Multiprogrammed Structured Programs [CHAP. 6

Interacting processes must make some provisions for excluding certain
operations on shared resources from simultaneous occurrence. This
principle is called mutual exclusion.

When the resource to be accessed on a mutually exclusive basis is a data
structure (e.g., variable, array, queue, record, stack, ete.), then the process
using the structure is said to be in a critical region with respect to that
structure.

The work of Dijkstra [43] indicates that mutually exclusive use of a
shared resource among concurrent processes of equal priority must be
arbitrated by a program or device external to the processes involved and
baving higher priority. Such a program or device (or combination of the
two) is called an arbiter. Arbitration of a shared resource between one
precess and an interrupt process with higher priority, however, may not
need higher authority to guarantee mutual exclusion (see Section 6.4.3 later
in this chapter), but can be handled within the higher priority process at a
loss of program structure.

It is the job of the arbiter to assure that resources which should be
devoted to their operations are actually devoted. That is, it must be able
to enable certain operations involving shared resources and to exclude
others in time. The scheme by which the arbiter constrains the ordering of
operations in time is known as synchronization. Interacting processes must
be synchronized if they are to be consistent. By making arbitration a
service of the operating system, program structure of the type previously
described is possible.

6.1.6 Program States

Before addressing what is needed to make concurrent programs
synchronizable, let me mention that a process may be in any one of a
number of states. A typical process state diagram appears illustrated in
Figure 6-10. The UNINITIATED state is, of course, that state before the
process has begun; upon initiation, the process enters the RUNNING state,
during which time it performs its programmed computations. At various
times, it may enter a WAITING state until certain events can take place in
other processes; then it continues running, Finally, it exits to the
TERMINATED state. During the time it is running or waiting, however, it
may happen that other processes may require, and thus be permitted, to
preempt some or all of the resources allocated to the current process. In
such cases, the process may be said to enter a DORMANT state until such
time as its needed resources can be returned.

During the WAITING state, CPU time is not required; hence,
preempting the CPU resource and giving it to another process during this



Sec. 6.2] Multiprogram Design Requirements 177

UNINITIATED

inftration \ wait

RUNNING return to waiting

preempt -

WAITING

3

continue

return

- DORMANT
to runming

termination \
i ]
C TERMINATED '

Figure 6-10. A process state diagram showing five states and actions that cause
the changes in staie

time does not really preempt a needed commodity, so the process need not
enter what I have called the DORMANT state. However, if some of the
other resources need to be reassigned during WAITING and are actually
preempted, then the processor does enter the DORMANT state.

The scheduling of resources on a preemptive basis and control of the
DORMANT state is generally the province of a higher-level privileged
process (an execufive), beyond the scope of the present discussion. I shall
only address the fundamental needs attendant to synchronization and
arbitration (see Section 6.4).

6.2 MULTIPROGRAM DESIGN REQUIREMENTS

§

In real-time program development, the designer sets the interrupt policy
and subprogram gqueueing strategy, determines the individual subprogram
durations, and verifies that the operating program can meet its real-time-
event deadlines. The analysis of event timings often influences what
computations need to be made, as well as the way they need to be
programmed, and, of course, the reverse is also true. However, the
structured methodology simplifies the design job by separating proofs of
computational correctness from proofs of timing correctness. =



178 Real-Time and Multiprogrammed Struciured Programs [CHAP. 6

6.2.1 Consistent Program Constraints

If there are errors in a program, there mmst be some facility for
diagnosing what they are and where they occur. Error detection at run
time is practically impossible unless programs have a functional behavior
to permit errors to be reproduced under controlled circumstances. In
addition, no system can be said to be operating ‘correctly when its
processes are “deadlocked” in attempting to perform their intended
functions.

Program design methods should therefore be constrained so as ‘to
encourage these two qualities in programs, as a first step toward achieving
correctness. I will refer to programs that satisfy the following two
constraints as consistent programs:

a. Repeatability: The results of all computations must be reproducible
in a practical sense in spite of logical errors, which may be present.

b. Deadlock-Free: It must not be possible for the program to reach a
state in which two or more concurrent processes are waiting
indefinitely for conditions that will never occur.

As a direct consequence of the repeatability requirement, Hoare [44] has
shown that two more provisions are necessary for consistent concurrent
programs:

c. Speed-Independence: The results of computations in one process
must not be dependent on the rate at which computations are made
in a concurrent process.

d. Resource Protection: Data and physical resources of each process
must be guarded against inadvertent or malicious interference by
other processes.

The latter of these seems rather obvious, but it is by no means a trivial |
commodity to achieve. Many present-day computers have lock-out features
that can separate instruction and data sets of processes from each other and
from other processes. Other computers do not. In either case, there must
be great care in overseeing the allocation of common resources. I .shall
address some aspects of process protection in a later section.

The necessity of the speed-independence provision may appear
surprising at first; we normally envision real-time concurrent processes as
comnmunicating data back and forth and uvsing resources in a very time-
dependent way. However, it is extremely difficult for us to comprehend
the combined effects of a large number of intricate, interacting activities
that evolve nearly simultaneously at independent rates. On the other hand,



Sec. 6.2] Multiprogram Design Requirements 179

our understanding of what a single sequential process does, will not

generally depend on its actual execution speed. All our understanding
requires is the knowledge that operations are performed one at a time, and
that certain assertions concerning the data space can be made before and
after each operation,

Because the dynamic behavior of external evenis is possibly very
unpredictable, and because of the lack of influence that an operation can
exert on its own execution rate (which itself may be dynamic, if processes
are interleaved in time), and because of the general inability of humans to
understand concurrent processes in terms of their absolute speeds, the
necessity of speed-independence is unmistakable. Besides, speed-indepen-
dence does not prevent time-dependent interaction among concurrent
processes; it just makes it possible to program assuming that the responses
to given inputs will be the same, regardless of how slowly or quickly the
computations are carried out.

Obviously, when incoming events occur too rapidly for the program to
respond, the program output is again likely to contain unreproducible
errors. We may, therefore, add another necessary condition for consistent
programs:

e. Deadline Integrity: Processes must meet appointed timing deadlines.

Programmers who knowingly violate consistency requirements, do so
with great risk. They must do so knowing, that while they may well reduce
a program’s overhead once it is correct and working, it may not be possible
to reproduce errors, and hence, some errors are going to be difficult, if not
impossible, to fix.

Some may argue that all errors can be perfectly reproducible in any
program if only the program could be subjected to the identical input
sequence, timing, and process interaction in effect when the error was
detected. But here the human aspects again become a factor, it is too big a
chore for human intelligence to keep track of all the simultaneous goings
on in a large real-time system, much less design a program that can react-
differently to each of the slightly different situations which can occur.
Therefore, to the extent that errors can be identified on a practical basis,
those events causing time-dependent errors must be classified as non-
reproducible.

I thus limit my concern in the remainder of this monograph toward
generation of programs in which computations ¢an be verified indepen-
dently of other concurrent operations.



180 Real-Time and Multiprogrammed Structured Programs [GHAP. 6

6.2.2 Resource - Arbitration Requirements

Where multiprocessors are concerned, there must be a hardware
arbiter to provide the mutually exclusive accesses to each unit of devoted
resources (resources shared among processors and accessed one at a time).
In simple computers with concurrent CFU and 1/0 processors, the arbiter
is usually a simple device that “steals” infrequent memory cycles from the
CPU during 1/0 operations, thus interleaving CPU and 170 operations in
time.

Inasmuch as arbitration is a process capable of changing the staie of a
shared devoted resource (pamely, by reassigning it from one process to
another), it follows that it must act on a privileged basis, taking priority
over any other processes desiring use of that resource. Each process using a
devoted resource must go through a procedure (see Figure 6-11) by which
it: {a) invokes the arbiter to request the resource and waits until the
resource is granted, then (b) uses the resource, and, finally, (c} invokes the
arbiter to release the resource.

The hardware arbiter for parallel processors is more complicated than
that needed to multiplex a single processor’s resources among multipro-

Y
REQUEST

HRequest resource
R, wait for
notification

¥ ¥

Arbiter for

Use Resource R Resource 7 .

]
RELEASE

Release
resource A

'

Figure 6-11. Structured interaction of a process and arbiter (wide arrows show
data connections between the requesting process and the arbiter)



Sec. 6.2] Multiprogram Design Requirements 181

grams. For a true multiprocessor, the hardware arbiter must have
properties equivalent to the following [42]:

a. The arbiter may be invoked by either of two commands, which T will
call REQUEST and RELEASE.

b. If the arbiter is invoked while it is BUSY, the process identifier(s) and
command type(s)are entered in a hardware queue.

c. If the arbiter is invoked simultaneously by two or more processes
when the arbiter.is NOT BUSY, and the queue is empty, the arbiter is
granted to one of them immediately, and the identifier and command
type of the other(s) are entered in the hardware queue.

d. When the arbiteris granted, a function corresponding to the invoking
command (REQUEST or RELEASE) is performed, and the arbiter is
marked BUsy until the fanction execution is complete.

e. If the arbiter is nOT BUSY and the hardware quene is NOT EMPTY, then
the next action in the queue is granted.

f. The process invoking the arbiter is placed in a waiting state until the
arbiter is granted to that process and its command-function has
completed its execution.

6.2.3 Resource Protection Requirements

The simultaneous presence of data and programs belonging to co-existing
processes requires that something must be done to protect processes from
each other. In larger multiprogrammed installations, some measure of
protection comes from services provided by an existing, privileged
operating system. In smaller applications or applications where an entire
computer is dedicated to a fixed set of related, hard-real-time tasks, and
where the operating system is less elaborate, the user may have to achieve
protection by some other means.

Guarding against inadvertent (or malicious) destruction of data or misuse
of any other resource is not easy, and a satisfactory general solution is not
yet known, to my knowledge. One can, however, identify some of the
characteristics of the solution.

Brinch Hansen [42] classifies protection according to two aspects:
operations and security. Resources are characterized not only by the
functions and meaning attached to their use, but also by the operations by
which they are accessed and by the authority to make such accesses.

For example, suppose that a numerical array with known dimensions can
be operated upon in several well-defined ways, such as termwise addition
with an equally-dimensional numeric array. There are unpermssible



182  Real-Time and Multiprogrammed Structured Programs [CHAP. §

operations, such as addition with an array having different dimensions. But
even the permissible addition must, at times, be temporarily banned, as is
the case when another process is engaged in a permissible operation
changing some of the array elements. There may also be permanent bans
needed to guard against malicious processes accessing the array at all.

Hence, three attendant problems are associated with protecting a
resource:

a. Authority recognition.
b. Identification of resources and permissible operations.

c. Checking that operations on a resource stay within its limits of
integrity.

Programmers must identify to what extent these three are needed by
their programs, and to what extent the operating system fulfills these needs,
Any shortcomings must be taken care of by implementing such
accommodations into the operating system or by inventing accommoda-
tions for each potentially interfering program segment. Those accommoda-
tions falling outside the operating system domain must become
programming standards and should be documented as a necessary part of
the inter-process interfacing requirements.

At least one language, Concurrent Pascal, combines the concepts of
levels of access (Section 4.3.2), resource protection, and synchronization
into a single concept, called a monitor [45]. A monitor is a level of access
to a shared resource and provides both arbitration among users at run time
and check of access rights at compile time. A monitored resource can only
be aceessed via interface functions that hide the resource from the outside
users; synchronization is implemented within the monitor, and parts of a
program attempting to directly access any resource within a monitor
definition are caught by the compiler.

6.2.4 Synchronization Requirements

Mutual exclusion of shared devoted resources alone is not safficient to
satisfy the concurrency requirements, Other known criteria for proper
process synchronization include the following [44];

a. When a devoted resource has been requested by one or more
processes, it must be granted by the arbiter to one of them within a
finite time.

b. When a process has acquired a devoted resource, it must eventually
release it again.



Sec. 6.2] Multiprogram Design Requirements 183

c. When a process has requested, used, and released a devoted resource,
its request for use must not remain in the request queue.

d. While a process is using a devoted resource, it must make no
assumption concerning the state of any other process with which it
shares that resource. No assumption concerning the relative speeds of
the various processes must be made. Processes may even be in the
DORMANT state when not using a shared resource (as long as no
real-time deadlines are missed).

Other additional features are sometimes useful, or contribute to more
efficient synchronization, but are not required by consistency, such as:

e. The waiting state should not waste CPU time endlessly. (Wasting
CPU time during a waiting process is sometimes called the busy
form of waiting.)

f. The arbiter should be “fair” in its policy by which rescurces are
granted to requestors.

The subject of “fairness™ in arbitration is entirely application-dependent,
and will consequently be left open; the discussion in Brinch Hansen [42],
however, is very informative and recommended reading.

6.2.5 Requirements for Deadlock Prevention

A deadlock results when a parallel process lies in a waiting state for
conditions that will never hold. Deadlocks are also called stalemates or
deadly embraces. A process in the waiting state cannot transit out of the
waiting state until another process releases it. Hence, deadlocks occur
when each of the deadlocked processes is waiting for one of the other to
act, and all are unable to do so. Deadlocks can involve permanent
resources (those that can be used repeatedly by many processes, such as
line printers, card readers, etc.) and temporary resources (ones that are
produced by one process and consumed by another, such as signals,
messages, ete.).

For 2 deadlock to occur involving permanent resources, it is known [46]
that four conditions must simultaneously hold:

a. Sets of permanent resources have been acquired by two or more
processes for their mutually exclusive use.

b. The deadlocked processes are in the waiting state, awaiting their
needed, but unacquired, resources.

¢. Certain subsets of these resources, which, if reassigned to other
processes, could break the deadlock, either cannot be released or
cannot be preempted to the proper process.



184 Real-Time and Multiprogrammed Structured Programs [CHAP. G

d. Two or more of the deadlocked processes are capable of acquiring
their needed resources in partial allocations, and the resources lacked
by each deadlocked process have been acquired by others.

The obvious solution sufficient to prevent such deadlocks is to choose
design rules by which all of the four conditions will not simnultaneously be
true. Negation of (a), of course, cannot be allowed, as it would permit
simultaneous access to devoted resources (forbidden by the consistency
requirement). Furthermore, it is natural for processes to wait for a resource
being used elsewhere, so negation of (b} does not seem feasible, although .it
can be combined with the negation of (¢) to form what is called
preemptive reallocation.

Preemptive reallocation forces some processes to release resources
temporarily in favor of others, on a priority basis. Such scheduling is
sometimes impractical on many resources {such as magnetic tapes, etc.)
and inefficient on many others. It sometimes may be required, however.

The most generally suitable possibility for preventing deadlocks comes in
the area of proper resource allocation to user processes. The simplest
technique for allocation that prevents deadlocks is the allocation of all
resources needed by a process at one time (complete allocation). In such a
case, joint processes must operate on disjoint sets of resources; if that is
feasible, it presents a simple solution. However, computational efficiency
can usually be enhanced by resource sharing, and when that is the case, the
decreased efficiency engendered by complete allocation is often too dear a
price to pay for deadlock protection.

Allocation algorithms exist [42] by which a master arbiter can make very
flexible use of the system resources. The idea behind such algorithms is the
allocation of resources in nondeadlocking sets.

As an example of such an algorithm, suppose P; Py and Pj are three
concurrent processes that require resources A, B, C, and D. As illustrated in
Figure 6-12, P; requires A, B, and C, while P, requires B, C, and D, and 5
uses only A. If the arbiter has granted B to P}, it will not then grant C to Py,
as C will be required to complete P;; but it can grant D to P,. Similarly, it
can grant A to either P; or P; because, if given first to P, then A will only
be used for a finite time, after which it can be reassigned to P;.

The arrangement of resources into acceptable non-deadlocking sets and
the algorithms associated with arbitrating the allocation (both in the
sequence that resources may be granted to each user as well as which



Sec. 8.2] Multiprogram Design Requirements 185

Figure 6-12. Resources A, B, C, D, and processes P), Py, and 3 using them

resources may be granted to him) is a topic beyond the scope of this work.

1 recommend the interested reader to the book by Brinch Hansen [42] for
further discussions of deadlock prevention by resource allocation.

Deadlocks may alse occur in the use of temporary resources. However,
in order that a deadlock involve temporary resources, such as messages, it
is necessary that either a buffer is full and a PUT is being executed, or a
buffer is empty and a GET is being executed, orboth.

Deadlocks involving temporary resources can be averted if one programs
according to the following rule [42]: a temporary rescurce must never be
produced unless it will eventually be consumed, and a temporary
resource must never be expected unless one will eventually be produced.



186 Real-Time and Multiprogrammed Structured Programs [CHAP.

The following design rules are sufficient to ensure that this stipulation
holds:

a. Provide a consistent interface between the producer and consumer
processes with regard to where the next temporary resource will be
available.

b. Design so that, within each process, all operations that produce or
consume temporary resources eventually terminate.

¢. Provide processes producing temporary resources and requiring the
return of like or other resources with an empty (buffer) element into
which the returned resources can be delivered immediately.

d. Make all communications complete in the sense that, when one
process has consumed a resource produced by another, the
consuming process requires no further resource from that producer
for the current transaction.

These four rules are not the only sufficient conditions for temporary
resource deadlock prevention; other sets of sufficient rules can also be
formulated. It is important that any set of rules proposed for use be known
to be sufficient, however.

6.3 SYNCHRONIZATION METHODS

Synchronization, or the scheme by which the arbiter constrains the
ordering of operations in time, can be designed, to a great extent, to fit the
needs of the problem and the limitations of the resources involved. In this
section, I shall discuss three typical methods: buffering, semaphores, and
conditional critical regions.

6.3.1 Synchronization by Message Buffering

As I indicated earlier, not all shared resources need to be devoted, but
can be mutual resources between two processes. In the case of cooperating
processes, where resources are apt to be temporary (i.e., produced by one
process and consumed by another), there still has to be some physical
resource (i.e., buffer) capable of holding the product of the producer (e.g., 2
message) until it can be used by the consumer, and the use of this physical
resource must be arbitrated.

The producing process may use the buffer in the cycle

PLACE {message,buffer) PUT (message, buffer)

REQUEST (buffer) } or merely
RELEASE (buffer)



Sec. 6.3] Synchronization Methods 187

which will copy the data structure message into the designated buffer. The
consuming process may similarly use the buffer in the cycle

REQUEST (buffer) or merely
TAKE (message, buffer) GET {message,buffer)
RELEASE {buffer)

which removes information from the designated buffer and places it in the
message structure,

As I have shown the arbiter ealls ahove, PUT and GET operate the buffer
on a mutually exclusive basis, whereas they only need to be mutually
exclusive when the buffer is empty (and sometimes, when full). The arbiter
can accommodate such cases by using a second argument of the REQUEST
call above, as

REQUEST (buffer,top)
or

REQUEST (buffer,botiom)

where top and bottom are pointers within buffer. A request for access to
bufferitop is a request for access to a different data-location than to
buffer,bottom, except when the buffer is empty (or full, if cireular). Hence,
the arbiter can exercise mutnal exclusion on these different locations
accordingly.

6.3.2 Synchronization by Semaphores

The simplest mode of synchronization is the communication from one
process to another that a particular event has occurred. The shared
resource in this case can be a timing signal from one processor to another,
a program-actuated trap, or a flag to be set by one process and tested by
another,

In any case, the temporary resource can be regarded as a simple
message, and all operations which access or activate that message must
exclude each other in time in a consistent (error-reproducible) way. The
only difference between these messages and the ones considered earlier are
that the messages considered here take a much more primitive form—mere
OCCUITENCES.

If the communicated event in question can happen more than once
during the life of a given process, the recipient may need (in order to
prevent deadlocks) a way of knowing whether the message he is now
examining is the same as an earlier notification, or is, in fact, 3 new
message, informing him that the same event has reoccurred. He has one of
two alternatives: he can mark the current message himself for later
identification, or he can establish an agreement with the sender to
distinguish the messages.



188 Real-Time and Multiprogramimed Structured Programs [CHAP. 8

But if he marks messages himself, he runs the risk of missing one or more
messages that arrived during a time he was otherwise occupied. If that risk
is untenable, he must require that distinguishable messages be sent.

Dijkstra [43] introduced the semaphore as a simple device for handling
such communications. In its simplest form, a semaphore 5 is a data
structure composed of a variable s whose value is

s = (number of messages sent) — (number of messages received)

and a queue g, which contains a list (if not empty) of processes currently
wailing for the signal. In this form, each “receiving”’ process “consumes’
one of the transmitted messages.

Both the send and receive operations yielding synchronization via
semaphores access the count variable, and must therefore be mutually
exclusive in time. The subprograms invoked by the semaphore arbiter in
response to SEND{S) and RECEIVE(S) requests are similar to those found in
the generalized resource arbiter (see Section 6.4.2). But, because of the
simplified nature of semaphores, they can be implemented somewhat
differently, as shown in Figure 6-13.

Synchronization via a semaphore takes place as follows. Somewhere in
the program before forking, s is set to zero and the queue emptied. A
positive value of s thereafter will be equal to the number of sent, as-yet-
unreceived signals; a RECEIVE(S) request thus causes no waiting but reduces
the value of s. If s = 0, more RECEIVE requests have been encountered
than seENDs; hence, the processes issuing RECEIVEs are inserted into the
queue g and put into the WAITING state until more senos occur. When a
SEND occurs with a non-empty g, a process identifier is immediately
removed from the queue and the corresponding process removed from the
waiting state; otherwise, when the queue is empty and a SEND occurs, s is
augmented.

The SEND and RECEIVE operations for a semaphore are similar to PUT and
GET for a message buffer, except that the buffer for a semaphore is realized
as the count variable.

6.3.3 Conditional Critical Regions

It is sometimes the case that a process, say P, inside a critical region
(i.e., it owns data on a mutually exclusive basis) must wait for a condition ¢
to come true, but the condition ¢ is based on critical-region data to be
supplied by another process, say Py, temporarily locked out. So P; must
release its resources in favor of P; to avoid a deadlock, but immediately
request those resources again so that it may continue after P, has
completed its critical region and enabled condition ¢. The-situation appears



Sec. 6.4] Concurrent Program Design Methods 189

( SEND ) ( RECEIVE )

Value of PROC
1s identifier of

requesting
process
1 ]
s no
is g empty? & Iss> O?
i ¥ Y |
Remove NEW Put process
s=s+1 procass from s=5-1 PROC In
gueue g queue g
L i
i, Enable
Cancef walting .n
state of v;\:;ltmg state
process NEW PRODEGCBSS’

Figure 6-13. Mutually exclusive SEND and RECEIVE operations on a semaphore
S =s5q

flowcharted in Figure 6-14; part (a) shows the temporary release and re-
request of the critical resource, and part (b) introduces an equivalent AWAILT
function. (Brinch Hansen’s await function [42] is similar to this, but more
sophisticated in queueing the resource rerequests so as to avoid “busy
waiting” for ¢ to come true.)

6.4 CONCURRENT PROGRAM DESIGN METHODS

So far, 1 have been addressing the requirements for programming a
design and the tools for assuring that the programs are consistent, deadiock
free, and meet deadlines. Such tools do much to relieve the designer’s mind
of details inherently structural in nature, but control-logic-flow structures
and resource protection do not address other problems, such as timing
conflicts or constraints, data connectivity, resource assignment, memory
management, etc. The techniques given in this chapter have addressed the
characteristics of good real-time prograis, rather than the creation of the
algorithms and data structures that form these real-time programs.



190 Real-Time and Multiprogramimed Structured Programs [CHAP. 6

{a) Conditional {b} AWAIT

re-—

Yy
RELEASE AWAIT ¢
¥

REQUEST

i 1

- -

* »

[} .

‘"RELEASE RELEASE

l i

Figure 6-14. Conditional critical region and the AWAIT function

The design ease for a given application is greatly influenced by the
aptness of a language for describing that problem and for arriving at a
solution, The suitability of a candidate language can be gauged by how well
it permits the user to abstract the (large} problem into smaller abstractions,



Sec. 6.4] Concurrent Program Design Methods 191

each with only relevant details appearing at that level, to focus his
attention appropriately on these details, and to manipulate and evaluate
design decisions and parameters.

It would be nice if the problem-solving and analysis language could be
the same as the implementation language, for then there would not need to
be an extra translation of that design description into implemented
procedures, data structures, ete. Thus, the power of a language with
respect to a particular problem may be measured by the number of
statements required within that language to implement the solution to that
problem. Higher-level languages intrinsically hide a great quantity of
implementation detail from the problem solver. Therein lies their power,
but only in special circumstances does any one programming language
seem to conceal the proper level of detail so as to be appropriate for
describing the system design also, especially for real-time systems.

For this reason, graphical and symbolic representations are rife in
software designs. Besides flowcharts and data-flow diagrams, one finds
finite-state-machine graphs, timing-interaction plots, state-transition
networks, data-structure diagrams, ete., used throughout the design process.
Each describes an aspect of the design in a different set of abstractions; the
particular description/analysis tool used in a particular instance depends on
how concisely it portrays the relevant issues and conceals the irrelevant
ones.

Whatever methods used for describing a non-real-time program design
must be augmented (and perhaps, replaced, at certain levels) in real-time
designs by descriptions of the time-critical interactions among the various
processes involved. The program code cannot stand alone to document the
design rationale or analysis,

6.4.7 Real-Time Program Structures

I have shown two forms of interrupt-handling structures in previous
sections of this chapter, The first is the IFTHENELSE like dedicated trap
structure shown in Figure 6-2, in which one of two subprograms, but not
both, executes in response to a process that can potentially cause the trap
to actuate. The second is the fork/join concurrent structure shown in
Figure 6-6; each of the processes in the structure executes exactly once
(barring abnormal terminations) leaving the “fork” before entering the

fke 2 3)

Real-time process-control applications, however, are typified by
repeated executions of lrap routines in response to recurrent external
events. Once a trap has been enabled and armed (external signals enter a



192  Real-Time and Multipr ogrammed Structured Programs [CHAP. 8

priority hardware or software queue and are eligible to cause activation of
the trap routine), the trap routine executes each time the computer detects
that the external event has occurred. Background and interrupt processes
are concurrent processes—their operations overlap and interleave in time.
But the iterative nature of the trap executions is not correctly represented
by fork-join flowcharts (Figure 6-6), and the true form (Figure 6-1) lacks the
aesthetic benefit of a structured appearance.

For this reason, I use the convention shown in Figure 6-15. It merges the
ANSI-standard symbols for parallel processes with the interrupt/terminal
symbol. The fork symbolizes that point in the background program at
which the trap first becomes eligible to interrupt (probably the enable/arm
instruction), and the join is that point beyond which the interrupt is no
longer eligible (probably the disable/disarm instruction). The priority p (if
pertinent) is shown by annotation.

This structure may be iterated within each of the processes shown. For
top-down development integrity and consistency, it is necessary to make
certain restrictions. In Figure 6-16, it is fairly evident that the priority of T
must exceed that of T, otherwise T would never activate F. The structure
convention I have presented means that Ty, may interrupt C, T may
interrupt E, and, certainly, T; may interrupt A and C. The question Is,
should T, be allowed to interrupt T; or T3P

The answer is that design and analysis considerations should probably set
interrupt priorities to assure that process deadlines are not missed, rather
than have them assigned as a consequence of top-down hierarchic
development. And since process durations cannot be rigorously prespeci-
fied by a top-down design, the hope of a top-down proof of timing
correctness is fiction anyway. As a result, deadline errors are apt to

-

! [
PROCEDURE PROGRAM

Clears trap and
returns to PROGRAM

Figure 6-15. Concurrent background and real-time trap-actuated processes



Sec. 6.4] Concurrent Program Design Methods 193

3 o/
¥ ¥
8 A
L
L T, = T,
Py N P, N
1
¥ ] Y ¥
E F c D

Figure 6-16. Nested real-time structures

manifest themselves late in the development and be difficult to correct
without massive redesign.

For this reason, many will prefer to design trap routines and their
background interfaces from the bottom up, at least on a preliminary basis. I
do not consider this a violation of the top-down design principle, but
rather, another instance of the engineering “look-ahead” technique
described in Chapter 4. Inasmuch as trap routines tend to be very short
anyway, the departure from true “top-down” practice is vestigial.

Synchronization of a real-time multiprogram in a single-processor system
is then only slightly different than it is for the concurrent programs
previously discussed in this chapter. The same statements concerning
consistency apply to real-time programs equally as well as they do to
concurrent programs. However, arbitration may be implemented differ-
ently.

6.4.2 Resource Arbitration Methods

A simple attempt at sharing a single resource R among N concurrent
processes Py,...,.Py of equal priority, using only a hardware simultaneous-
memory-access arbiter, is shown in Figure 6-17. Each of the processes has a



194 Real-Time and Multiprogrammed Structured Programs [CHAR. 6

need to perform a subprocess involving the resource over and over. The
program segment shown uses a flag to arbitrate which process shall gain
possession of the resource. Initially, FLAG is set to 1.

When the program reaches the fork, only the process P; can activate and
use R. Not until “FLAG=2" is encountered can another process—this time
Py—acquire R and use it. When P; sets FLAG=3, then next uses R, and so on,
The processes thus arrange for mutually exclusive use of R by alternating
cyclically, Py...P,P;...Py..., etc. However, the program is not consistent,
for, say P; terminates; then after Py has released R and has set FLAG=1, none
of the other process can begin. The program deadlocks because P; is
scheduled next to use the resource, but P; has terminated, and lies dormant,
waiting at the join until the rest have also terminated.

The reason why the scheme above fails to be consistent is not just
because it was a bad design to begin with; indeed, any such attempt would
have failed! A hardware arbiter on single load and store operations is just
not enough to provide arbitration of resources on a larger scale. Something
else is needed.

Since it is fundamental to real-time multiprograms and multiprocessing,
arbitration is usually handled by executive requests to the operating
system. However, in some minicomputers or dedicated process-control
applications, arbitration may be handied differently. In the next few pages,
I shall discuss the inner-workings of arbitration so that the reader can
realize what provisions must be made to make programming of consistent,
equi-priority, concurrent processes possible. I will address non-equal-
priority real-time resource arbitration later (Section 6.4.3).

The functional integrity of a devoted resource must be maintained from
first use to as long as required by a process. For example, if a shared
variable is given a value in one process and that value is used later in the
same process, another concurrent process may not change that variable
(unless it can assuredly return the variable to its former value by the time it
is needed).

Before reserving a resource, a process may sometimes be able to test the
availability of that resource, and if not available, to go on to something else
in the meantime. When a process requests a resource, however, it must be
prepared to wait until the resource has been freed and assipned ‘to that
Process.

A shared resource may take many forms: a single variable, a whole
complex data structure, a line printer, etc. Regardless of the units of access,
program consistency requires that each devoted unit of a shared resource
must have associated with it: (a) a facility by which a process may REQUEST



v

Sec. 6.4] Concurrent Program Design Methods 195

' Process £y
. @&
Use R and Use B and
. ‘e N
release it release it
¥ F
Set FLAG =2 Set FLAG =1
¥ ]
SetFi=11f Set FN = 11f
A 15 not needed R i5 not needed
again; Ef‘l =0 again; FN =0
otherwise otherwise
yves ves
no Ro

1

Figure 6-17. Simple synchronization of a resource among several processes {the
program, however, is not consistent)



196 Real-Time and Multiprogrammed Structured Programs  [CHAF. 6

the resource, (b) a facility which causes a process to wait until the resource
has been acquired, and (c) a facility by which a process can RELEASE the
resource to other processes.

These functions of an arbiter are illustrated in Figure 6-18. Since RELEASE
and REQUEST access and change shared commedities, and since many
processes may call them concurrently, they must be mutually exclusive
operations; hence, even the arbiter calls require:an arbiter at a higher
authority. At the highest level, arbitration requires a hardware device to
permit only one process at a time to perform either REQUEST or RELEASE
operations. Not only are REQUEST operations mutually exclusive with
respect to other REQUEST operations, but with respect to RELEASE operations
as well, and vice versa.

With a simple hardware device to make REQUEST/RELEASE subroutines
mutually exclusive operations, other arbiters can be programmed. It is not
necessary to have one hardware arbiter for each resource, one will do for

{ RELEASE )

REQUEST

Value of PROC Value of PROC
o ] 1s identifier of | _lisidentfier of
requesting releasing
process 4 process
yes no Remove PROC

from queue

L J

Put process

PROC in

waiting state

3
T Remove NEW
from queuse

Put PROC
ity queue !

Cancel waiting
state for

Figure 6-18. Mutually exclusive REQUEST and RELEASE functions of an arbiter



Sec. 6.4] Concurrent Program Design Methods 197

all when properly programmed. It may often be advantageous, in the
interests of execution speed, however, to have more than one.

The hardware arbiter for a multiprogrammed single CPU computer can
be realized by triggering the two highest-priority traps via program
instructions to call REQUEST and RELEASE subprograms. Since individual
instructions in a single CPU are time-exclusive operations, since neither
REQUEST nor RELEASE subprograms call each other, and since the
multiprograms are initiated by traps having lower priority than those
assigned to the arbiter, mutual exclusion of the two arbiter functions is
assured. Further, no bardware quene is required; however, the arbiter must
be able to ascertain which of the multiprograms has invoked the arbiter,
(See Section 6.4.3 concerning relaxation of arbitration between a higher-
order interrupt program and the program it interrupts.) This is usually no
great difficulty, as the identifier of the current process can be maintained in
a program register.

Again, only one hardware arbiter is required (the two program-actuated
traps), but more may be used to increase operating efficiency. Whenever
an arbiter controls more than one resource, it is necessary -to call the
arbiter using a resource identifier as an argument. A separate request-
queue for each resource is then maintained by the REQUEST and RELEASE
subprograms shown in Figure 6-18.

6.4.3 Arbitration Among Real-Time Processes

Real-time multiprograms sharing a single CPU are actuated in response
to external events assigned to priority interrupts. When a higher-priority
process interrupts one of lower priority, it (usually) executes to its
termination before allowing the other to recontinue. The higher-priority
process is not, therefore, in jeopardy of having the states of any of its
resources altered by the lower-priority process while it is executing, If no
yet-higher-priority processes access these resources, then that process has
gained mutually exclusive use of them for the process duration. It need not
appeal to a higher authority for arbitration. If a lower-priority process was
not accessing those resources when the interrupt occurred, the trap process
may go ahead and use them.

If the overall program is to be consistent, however, the lower-priority
program(s) must thus have some way of either preventing the higher-
priority interruption from occurring, or communicating to the higher-
priority process that a shared devoted resource is busy. In the latter case,
the higher-priority task must have some way of transferring CPU control
back to the low-order process, just long enough to permit it to complete its
use of the resource. Then the higher-order task resumes.



198 Real-Time and Muliiprogrammed Structured Programs [CHAP. 6

A simple example of this type of control interconnectivity and loss of
program structure is illustrated in Figure 6-19. Arbitration takes place
within the trap process T: Before the background process B—or trap process
with priority less than T—uses the resource, it sets BTURN trte, as a signal to
T not o preempt the resource. When T activates, if BTURN is false, T may be
certain that B is not using the resource, and so may use it, reset the
priority-trap logic and return to the point of interruption. However, if
BTURN is true, T registers its intention to use the resource by setting TTURN
to true, and returns CPU control to the point of interruption at the same
level of priority (the trap-priority logic has not been reset). If T had
interrupted a task T, with lower priority, the CPU would complete the
lower-priority task at the higher priority, and so on, until control eventually
passes back to B. Then B would finish using the resource and resume T as
shown. I have labeled the two unstructured control connections between B
and T as $1 and $2.

Aside from there being a lack of structure here, arbitration in this case is
also somewhat unfortunate, because it has inverted the order of priority
between processes T and T,, which do not share resources at alll To repair
this misfortune, when BTURN is true it is necessary for T to locate and use
the return address {and the saved state) of the lowest-priority suspended
trap process T, (that’s the one that interrupted B) to return directly back to
B. The repair is shown in Figure 6-20. Upon resumption of T {control passes
through ¢1), the “state-save” area of the lowest-priority active trap will
have to be replaced with appropriate data to assure proper resumption at
g2 after T is complete. (This implies 2 common save-mode for all trap
routines). When T completes, it reassumes the saved state (that of B if T is
the only active interrupt), clears the trap logic, and returns (to $2 if T was
the only trap active). How intricate the control has becomel

The configuration shown thus requires some increased overhead to avoid
a bigher-authority arbiter. The sitnation, however, becomes much more
complicated if more than two processes share a devoted resource, and it is
probably wiser to use the higher-authority arbiter to quene all requests for
a resource until it has been released. Upon release, control passes to the
highest-priority waiting task.

The ad hoc configuration in Figure 6-20 not only does not extend to
arbitration among more than two user processes, but, moreover, its non-
structured control interconnectivity detracts from readability. Even if
multi-exit modules RELEASE and REQUEST are used, as shown in Figure 6-21,
the cross-connectivity is still distressing. However, this sort of interconnec-
tivity and overhead is inherent when real-time priority-driven processes are
synchronized without having arbitration administered by the operating
system.



Sec. 6.4] Concurrent Program Design Methods 199

(a) Background Process {b} Trap Process

(2 )

) & ® ®

BTURN frue false
= frue ‘
‘ | |
B uses TTURN = true
resource save processing
status
' |
Do not reset
RETURN — o~ priority trap
BTURN = false ( ) logic
processing | 81 -
status I
T uses
resource
. 1
M L ]
* L ]
[ ]

TTURN = false
reset trap
logic

Reset trap
logic and
RETURN

Figure 6-19. Unstructured arbitration of a devoted resource between a back-
ground process B and a trap process T (no other process shares the resource)



200 Real-Time and Multiprogrammed Structured Programs [CHAP. 6

Interrupted
task state
saved on entry

BTURN = true
Save current
processing
staturs; sot
TTURN = true
¥
, Ty A t
Use resource KES | fowes
Assume saved
state of T, ,
] RETURN (T,)
=42
L
BTURN = ralse
true ﬁ?\ga?'es;?:(?es RestoreE T
that in lowest |} Proeessing $1
i w status
active trap
T uses
resource
. ¥
L ]
. Set
TTURN = false

)

Reset trap
tagic and —— CLEAR
RETURN

Figure 6-20. Unstructured arbitration of a resource between background process
B and trap process T in which trap priorities are preserved




Sec. 6.4] Concurrent Program Design Methods 201

(L2 D

! |

AREQUEST
BTURN = true tue BETURN Arrange
return if
¥ busy
( RETURN ) -
1
B usas T uses
resource resource
L L 4
RELEASE /\
trie
Arrange o {TTURN TTURN = faise
restatt T
if suspended \/

: t

CLEAR

Figure 6-21. A somewhat more structured-looking version of Figure 6-20

6.4.3.1 Arbitration by Priority Reassignment

Some computer systems (or operating systems) permit processes to
declare priorities of their subtasks. Others permit the traps to be disarmed
{(prevented from entering the trap rouline) without being disabled
{prevented from entering the bhardware quene). In either case, it is
sometimes possible to cut down on the arbitration overhead. If priorities
are reassignable, the REQUEST merely becomes a reallocation among the
priorities using the resource to favor the current process. RELEASE then
restores the original priorities. Alternatively, if interrupts can be disarmed
without disabling, then the REQUEST function can disarm any higher-priority
traps that may access the resource.



202 Real-Time and Multiprogrammed Structured Programs [CHAP. &

In either case, however, it is not merely the resource use that is
prevented, but the entire trap process in which that use occurs. Such
drastic means should thus only be aliowed into a design when there is
demonstrable assurance that the program integrity is not violated. For
example, if the time required by a lower-priority task to use a resource is
small, or can be made small (perhaps by segmenting the resource into
mutual subunits), and if no real-time deadlines are critical within this time,
then lock-outs of higher priority tasks are generally permissible.

6.4.3.2 Relaxation of Consistency

There are also instances where global program consistency is achievable,
even though some program segments may be inconsistently programmed.
For example, if a background process B reads a structure written by T, then
T can write into that structure and set a flag to communicate to B that he has
done so. Then B resets the flag, reads the resource, and checks the flag
again; if still reset, the reading was okay. If the flag had been set, however,
8 would have to reread the structure, presuming that, in doing so, no
deadlines are missed. (See Figure 6-22.)

There are also situations in which inconsistency can be identified to
cause no problem. For example, suppose a consistent program continuously
monitors and controls a hardware device, such as a receiver or command
modulation assembly in a deep-space tracking station. Its operation mode
has been selected and set by a control-data structure initially stored, but
can be altered while the program is running by piecemeal, low-priority
entry of new control data via an operator keyboard terminal. During this
entry, the program is adapting in a piecemeal fashion to its new control
data, and if an error occurs, its repeatability is questionable. However, once
the program is reconfigured, it runs consistently again.

In each case, the designer must analyze the effect of not arbitrating and
prove that momentary inconsistency does not violate the program
specification.

6.4.3.3 Higher-Priority Arbitration

When all the special techniques one can think of (and prove to work) to
gain mutual exclusive use of a resource fail to apply in a case at hand,
there is always higher-level arbitration o fall back on. The real-time
arbiter I shall describe here makes use of four program-instruction-actuated
traps, the highest priority traps available. I spoke of such REQUEST and
RELEASE traps earlier in Section 6.4.2. The other two I shall call ENTRY and
RESUME; every other trap routine save these four has ENTRY as its first
module and RESUME as its last, beyond which it resets the interrupt logic
and returns to a process at lower priority. (See Figure 6-23.)



Sec. 6.4] Concurrent Program Design Methods 203

— # 0 0

Write
Resource
FLAG = false
¥
[ FLAG = true
Read Resource

true

CLEAR

. 8 ¥ la—

false

Figure 6-22. Communication of a data structure written by trap process T to
background process B without arbitration

Processes accessing a shared devoted resource do so by actuating the
REQUEST and RELEASE traps, possibly passing a resource-busy-queue name, if
more than one resource are to be arbitrated. Figure 6-24 shows Howcharts

for the four trap routines. Four are needed because mutually exclusive use
of the priority P index is required.

The enTRY module saves the entry state (registers and address for
resumption of the suspended process) on a stack indexed by p, the current
priority. RESUME unstacks the saved state, resets the trap logic, and resumes
execution at the saved resumption location. REQUEST sets the resource
queue TURN entry at the current priority level {rue to indicate its intention



204 Real-Time and Multiprogramined Structured Programs [CHAP. 6

trap

L i
ENTRY

Stack entry
state

REQUEST

Relinquish
0 using
process if busy

Yy

Use Resource

¥
RELEASE

Resume highest
suspendesd
process, if any

]

RESUME
Unstack state
of interrupted
process

¥

( CLEAR }

Figure 6-23. Structured conflguration of trap processes (all have ENTRY and
RESUME; those using a shared devoted resource aise have- REQUEST and
RELEASE)




Sec. 6.4] Concurrent Program Design Methods 205

{a} {b)
‘ ENTRY } ‘ RESUME ’
3 ¥
Save entry
state for ﬁe_t P
Process (P) -rE
SetP=P+1 Assume saved
(the new state of
priority level} {c} Process {P) (d)
: REQUEST ' ( RELEASE l
( CLEAR } ] ( CLEAR ) Li
TURNIP) TURNI(P}
true, busy, false, true, T
T least T, not busy highest

1

Save current

¥

Save current
state of
Process {P)

1

Assume saved

state of
Process {P}

{

Assume saved

state of state of

Process (T} Process (T)
Set Set '
P=T P=T

CLEAR

arbitration

CLEAR

Figure 6-24. Program actuated trap routines for real-time, single CPU, priority




206 Real-Time and Multiprogiammed Structured Programs [CHAP. 8

to use the resource; but if some other process T is using it, then T is the
least index having a true TumN entry. In such a case, REQUEST saves the
current state (registers and resumption location), retrieves the saved state
of the interrupted process currently owning the resource, and resumes that
process at the priority level of the latest REQUEST.

When a process RELEASES a resource, it removes its true flag from the
TURN queue; if any higher-priority tasks have registered intentions to use
the resource, the greatest TURN index T with a true value will correspond to
that highest priority waiting task. The same sequence of state transforma-

tions used in rEQUEST follows, to resume execution of the higher-priority
task, now free to use the resource.

The uniformity of all usages of shared devoted resources permits the
suppression of the control flow connections between REQUEST/RELEASE
modules in processes; such connections are understood as a standard
operating mode. Whenever a trap process requests a resource, it may
expect that that resource will be granted within the maximum time needed
by any trap of lower priority (including REQUEST/RELEASE overhead). The
real-time program designer may thus build modules using entirely the same
structured programming techniques as does the concurrent process
designer, except that he must additionally analyze and keep track of timing
schedules, planning so that no deadlines will be violated.

6.5 CONCURRENT STRUCTURE DESIGN

In Chapter 5, I presented an architecture by which sequential programs
may accommodate a certain set of situations wherein the normal canonic
structures prove awkward, but where multiple (paranormal) exits from a
module seem both desirable and effective. I also gave rationale and criteria
for the use of such structures, and I produced a flowchart notation that
represents the use of these constructs in much the same way as other
program constructs use branches in the canonic set.

The same types of arguments as appear in Chapter 5 to substantiate the
use of paranormal exits, when applied to real-time programming structures,
reveal that the spawning of concurrent processes (the establishing of
concurrent processes, cognate to branching in a sequential program) may,
at times, also not conveniently fit into the strict forkjoin form, which I
have been discussing so far. Rather, one can readily identify sitnations in
multiprogramming where the strict adherence to fork-join structures is
either impossible (a fault of the operating system), or else, extremely
awkward (usually in lower level langauges).



Sec. 6.5] Concurrent Structure Design 207

6.5.1 Paranormal Entries into Concurrency

There is advantage in extending the permissible set of multiprogram
control-logic structures to permit the unconditional spawning of concurrent
processes from within a striped module, as is illustrated in Figure 6-25. The
striped module shown is much the same as the multiple-exit siriped
modules of Chapter 5, except that the processes A and B shown are not
selectively processed, but are both executed concurrently.

Join denotes
entry into
waiting state
until both

A and B reach
join

Sequential flow
resumes when both
A and B complete

Figure 6-25. Convention for denoting the entry into concurrent mode nested within’
module X {(process B is concurrent with 4, as well as some portions of process X}

Selective spawning of a concurrent processes is also desirable at times,
and a convention for structuring these situations is shown in Figure 6-26;
the event or condition that causes the “striped fork” to activate can be
attached to the module symbol as shown as an aid in the top-down
correctness assessment of the program. When both conditional and
unconditional entries ‘into the concurrent mode appear within a striped
module, the two conventions can be merged, as shown in Figure 6-27. If
many such processes are spawned, the convention in Figure 6-28 can be
applied. )

On flowcharts that expand a given striped module into its algorithm of
component submodules, entry into the concuirent mode can then be
denoted as shown in Figure 6-29, which represents the next level expansion
of the striped module in Figure 6-27. Concurrency is signalled by the
occurrence of parallel lines across a flowline, and module departures are



208 -Real-Time and Multiprogrammed Structured Programs [CHAP. 6

represented by regular ANSIstandard terminal symbols. Unstructured
(paranormal) departures of flow from the flowchart conneet to correspond-
ing concurrent processes designated at the earlier flowchart level. When
more than one concurrent paranormal exit appears, it is necessary to label
these by number or process name. Both labeling techniques are illustrated
in Figure 6-29,

X /\

condition

Y

Figure 6-26. Convention for denoting the conditional entry into a concurrent mode
nested within module X (process B is conditionally concurrent with process A, as
well as some parts of process X)

condition X

1 \/ 2
]

normal
exit
i

¥ L J

1

Flgure 6-27. Paranormal concurrent structure showing both unconditional entry
into concurrent mode on the left, and conditional entry, on the right




Sec. 6.5] Concurrent Structure Design

1

209

X /\ condition 1 condition 2

noermal
exit
1

Z

3

4

1

}

Figure 6-28. Generalized paranormal concurrent structures; the module X has both
unconditional (on the left} and conditional (on the right) concurrent departures

Figure 6-29. Expansion of modute X in Figure 6-27, showing unconditional and
conditional structured paranormal departures into concurrent mode



210 Real-Time and Multiprogrammed Structured Programs [CHAP. 6

6.5.2 Event-Actuated Concurrent Structures

Another structure often needed for designing programs with concurrent
processes is one that permits the activation of a concurrent process
repeatedly for the performance of a task, invoked during the execution of
another on-going process. The convention for declaring such tasks is shown
in Figure 6-30; it merges the ANSI-standard symbols for concurrent
processes (the parallel lines) with the interrupt/terminal symbol. The fork
symbolizes that point in the invoking program at which the concurrent task
is declared (to the operating system usually) available for invocation when

event occurs, and the join is that point beyond which the event no longer
may invoke the task.

The event that invokes the process, shown as A in Figure 6-30, can be an
external interrupt, a call for an executive service from the operating
system, or some such similar device that initiates concurrent execution.
Interrupt-driven invocations wete discussed earlier in Section 6.4.1.

Once invoked, the process A executes {perhaps concurrently with B)
completely and reaches the join, where it enters a dormant or waiting
state. While waiting for B to complete, A may be activated again and again.
Once both A and B are at the join simultaneocusly, however, A becomes
inactive (ineligible), and the program again enters a sequential mode. An
arbitrary number of concurrent processes, such as B, may appear between
the fork and join, and any number of medules, such as A, may also appear.

A entered only when
event occurs within B

B entered immediately

(within time-slice ot
queue restrictions)

f 1

Sequential mode
deactivates A
Figure §-30. Event-actuated concurrent structure (A does not execute until
invoked while B is executing)




Seéc. 6.5] Concurrent Structure Design 21

Any one of the processes can invoke any of those available for invocation

(such processes may even be concurrent with themselves, if programmed
to be reentrant).

A slight variant of the join-philosophy applies when no modules of the
type labeled “B” in Figure 6-30 appear. In this case, depicted in Figure
6-31, when an event-actuated process reaches the join, it enters the
dormant or waiting state until all of the other processes also reach-the join,
at which time, the processes merge into sequential flow again without
d_lsablmg any of the functions. This convention fosters nested. refinement of
concurrent service tasks, as shown in Figure 6-32. Using the convention,
one may proceed with a top-down design, knowing that certain concurrent
functions (such as A and B in the figure} will be invoked within a process
(such as b) without specifying how those functions will be configured until a
later refinement. The concurrent functions, shown enclosed in a “dashed
box™ on the chart, in such cases would appear as a single striped module at
the upper level, to be expanded into more detailed submodules at a later,
more appropriate design phase. However, there must be an early
recognition that a concurrent mode of operation is to take place; hence,
major structural decisions tend to percolate to the top level in such designs. .

When the event invoking the initiation of a concurrent process shown at
an earlier design level is an executive service request (ESR) of the
operating system, the invocation appears much the same as an ordinary
subroutine call. Moreover, to the program that invokes the service, the

event T event 2

Sequential mode

does not deactivate
either A or B

Figure 6-31. Concurrent configuration estahlishing processes A and B for
invacation without deactivation



212  Real-Time and Multiprogrammed Struciured Programs [CHAP. 6

function is in many ways indistinguishable from one performed by a
subroutine. The only visible difference in logic is usually a need for
synchronization (see Section 6.1.5). For this reason, such invocations can
appear on a chart, as shown in Figure 6-33; horizontally or vertically
striped, as appropriate, with an appropriate cross-reference identifier, X.
When the ESR invokes a simple operating system function, neijther the
stripes nor the cross-reference may be necessary.

' .
'_"l avent ? }:ﬂ event 2 }:o e
J
¥ y Lmore

A B D

el

A and B can be
entered until
D reaches join

- i

¥

l‘k A and B cannot
be entered

Figure 6-32. Nesting of event-actuated processes within a concurrent structure

6.5.3 Paranormal Departures to Invoked Concurrent Processes

Whenever a subprogram X declares internally that a concurrent process
A is to be imvocable while in the remainder of X, as well as during a
subsequent process B, the paranormal concurrent departure from X is of the
invocable variety (and perhaps conditional as well). Figure 6-34 illustrates a
notation for declaring such program structures when the departure is
unconditional; the addition of a decision symbol extends this notation to
cover a conditionally invocable paranormal process.



Sec. 6.5] Concurrent Structure Design 213

L ]
»
[ ]
x | x
A A
or
function function
[ ]
L ]
[ ]

Figure §-33. The invocation of a programmable event-driven ¢concurrent process A
within module D (see Figure 6-32) when event 7 is a programmable executive

service request
ESR arg —
¥
)
3

Declaration
detail at next level

|

A

x\.._

m
[
]
&
0y
I

normal
exit

functron

|

{nvocation detail

Figure 6-34. Declaration of a. paranormal structured’ entry into concurrent mode
within X to execute process A whenever invoked in remainder of X, or within B by
a programmable executive service request (ESR)




214 Real-Time and Multiprogrammed Structured Programs [CHAP. 6

6.5.4 Concurrent Structure Design Options

The choice of which fork-join discipline should be followed in designing
a program very often depends heavily on, or is dictated by, the intended
programiming language or operating system services available to
implement the concurrent structures discussed so far.

If, as a programming standard, the code must be made to correspond
modularly, on a one-for-one basis, to the flowcharted design, then some of
the structures shown may not be available in some implementation
languages. For example, if an operating system dictates that concurrent
portions of a program be registered as separately compiled segments and

be invoked by executive service request events, then there is no way that
the code for such processes can appear adjacent, as might be depicted on a
strict fork-join flowchart. If, however, concurrent processes can be coded in
adjacency, as in Concurrent PASCAL [45], then the code can be arranged
so as to match the flowchart modularly.

On the other hand, if implementation standards do not require exact
modular correspondence between flowcharts and code, then conventions
can be adopted so as to allow wider, less restrictive use of concurrent
structures, yet retain strict logical fconsistency between code and
flowcharts. However, in such cases, the code corresponding to adjacent
functions on a given flowchart may appear segmented among many
program segments, and the design-to-code cross-referencing problem is
more acute, '

Further discussion relative to such coding conventions and restrictions
will be delayed until the next chapter and Chapter 13.

6.6 SUMMARY

In this chapter, I have tried to indicate some of the inherent difficulties
in concurrent, real-time programs and, thereby, the greater need for a
structured approach in developing these programs. Real-time multipro-
grams and concurrent processes have many of the same attendant
problems; to avert many of these, 1 have imposed the requirement for
consistency—repeatable results even when errors are present—a position
that necessitates synchronization of processes accessing common resources.
In all but the simplest situations, synchronization must be gained by way of
higher-level arbitration, often at considerable overhead.



Sec. 6.6] Summary 215

As was the case in the previous chapter, and for the same reasons, I have
presented the material using flowcharts as illustrations, rather than giving
examples in a programming language. Having now determined the control-
logic characteristics of structured programs—real-time and concurrent, as
well as non-real-time—as flowchart topologies, I am in a position to define
corresponding code structures. I do so in the next chapter.



216 Real-Time and Multwprogrammed Structured Programs [CHAP. 6

Problems for Chapter 6

6-1 Prove that the program in Figure 6-21 is consistent.

6-2 A set of numbers £X,} stored on a computer fille represent samples of a
function X(t) for t=nAt, n=0,1,...,N. A computer program is to “filter”
these by the algorithm y,=(At)X,+e 2y, ; and to plot these as
samples of the resultant output process y(t). Develop a flowcharted
program in which file reading, computations, and ploiting can be
concurrent.

6-3 A computer system has resources Ry,...,R, shared amoflg concurrent
processes Py,...,P... Design and flowchart an arbiter to assign resources
to process in deadlock-free sets. Prove that there will be no deadlocks
using such an arbiter.

6-4 A real-time process X(t) is sampled by an analog/digital converter once
per millisecond and processed by the numerical algorithm in Problem
6-2. Floating-point arithmetic operations are to be used, but these are
supplied in the form of subroutines that cannot be used inside interrupt
routines. Once every second the filtered function is plotted on a cathode
ray tube dispiay. Assume l-millisecond and l-second interrupts initiate
reading and display subroutines. Flowchart such a program using the
real-time programming structures of Section 6.4.1. Prove your program
is consistent and correct. What are the timing requirements for the three
program parts, and what are the interrupt priorities?



Vil. CONTROL-RESTRICTIVE
INSTRUCTIONS FOR STRUCTURED
PROGRAMMING (CRISP)

The purpose of a higher-level programming language has historically
been to simplify the expression of algorithms or subprogram functions
created by an important class of problems. The flexibility and productivity
of such languages are gauged by the ease with which, and the degree to
which programmers may vary the composition and execution of programs
[47]. The widely diverse classes of problems have, over the years, led to the
development of an exceedingly large number of languages [48], both wide-
application (general-purpose) and restricted-application (special-purpose}.
There is no doubt that standardization is needed, but defining a “standard
language” is probably only feasible within a distinct problem class.

The characteristics sought in a standard language, however, are noble:
the language should be capable of solving problems over a wide range of
applicability, and should contribute to the solution of those problems large
measures of stability, maintainability, readability (or self-documentation),
understandability, and machine (or installation) independence. Further-
more, it should lend itself as much as possible to program production tools,
automalic design methods, easy assessment of correctness, easy or
automated verification and testing, and easy or automated quality assurance

217



218 CRISP {CHAP. 7

measures. To be acceptable, as a minimum requirement, a standard
computer language must not hinder the programming process. On the
contrary, the purpose of a standard is to help.

The principles set forth in this chapter do not attempt to specify a
standard programming language, but instead, provide a programming
language standard—that is, a disciplined way of programming to achieve
the goals of the preceding paragraph.

In the current chapter, I present a language control-structure concept
that will be used throughout the rest of the monograph. The notes here are
not meant to provide a programming manual in the sense that the reader
will necessarily be able to write his own programs. Hopefully, however, the
concept comes across to the extent that the programs I write are
understandable to the point that their correctness is intuitive, if not
rigorous.

7.1 THE CRISP CONCEPT

In block-structured programming languages, such as PASCAL, ALGOL
and PL/I, structured programs are GOTO-free. Structured programming,
however, can be extended to almost any language, and should not be
characterized simply by the absence of GOTOs, but rather by the presence
of an organized control-logic discipline. The use of a language having
structured control-logic instructions facilitates the process.

Program control-logic is specified in the remainder of this chapter by a
set of Control-Restrictive Instructions for Structured Programming, called
CRISP, augmenting an arbitrary programming language. Programmers
construct code using statements from the arbitrary language, such as
FORTRAN, BASIC, or assembly language, except for statements governing
the program contrologic (branching, looping, etc.); such control is
accomplished by using a CRISP statement instead.

The CRISP control structures are precisely those found in the two
preceding chapters. The CRISP concept thus extends the advantages of
structured programming [49] to those languages which most fit a particular
problem.

CRISP preempts all- control statements from the base language and
substitutes a set of statements that will force programs to be structured;
that is, any program written in CRISP is automatically structured without
the need for GOTOs. “GOTO-less” structured programming is currently
available in some other languages, such as BLISS [50], IFTRAN [351], and
SIMPL-X {52]; special limited preprocessors for FORTRAN, such as



Sec. 7.1] The CRISP Concept 219

SFTRAN [53], are also now available. These do not, however, have a
common control syntax.

The strength of CRISP, as opposed to these other structured
programming languages lies in the fact that only the control statements are
preempted. Given an operating GRISP preprocessor for the base language
most suitable for the problem at hand, the programmer may proceed to
solve the problem in the language he wants, and is already familiar with. If
he is called upon to solve another problem in another familiar language,
then he again finds the same set of control-logic statements by which to
organize that problem in the other language.

7.1.1 Elements of CRISP Statements

A CRISP statement begins with a reserved word or symbol identifying
the type of structure, or a module within a structure, or the end of a
structure. Because the CRISP statements are keyword-actuated, it is
necessary that all non-control statements in the base language not begin
with these keywords. Otherwise, alternate CRISP keywords must be
chosen. More detailed restrictions appear in Appendix G.

Additionally, CRISP statements may contain strings that are part of the
base language or are other CRISP statements. For example, in the CRISP
structure shown in Figure 7-1 below, the substring denoted by ¢ is a
condition string, which will be substituted directly into a conditional
statement in the base langnage to produce code having the structure shown
in Figure 7-1. The strings s, are either base language statements or other
nested CRISP constructions.

IF (g}

& true false

52

X i ¥
sﬂ sf sm

52 sm +T
{ELSE} . :
5, §" §p

‘ 1

i, T
ENDIF

Figure 7-1. The CRISP IFTHENELSE structure




220 CRISP [CHAP. 7

The complete superset of CRISP constructions is given in Appendix G,
along with their flowchart equivalents. (Not all of these will apply to a
given base language.) Each such program structure will be here referred to
as a CRISP-biock (not to be confused with the definition of a block in
block-structured languages such as ALGOL and PL/I); subdivisions of
blocks into constituent parts will be referred to as clauses. Blocks and’
clauses are typed by their initiating key-words, as for example, an 1F-block,
or an ELsE-clause. In some cases, block names may need further
description, such as may be desirable to contrast a Loor-block from a
tooPFOR-block.

The CRISP syntax given here and in Appendix G has had the benefit of a
considerable amount of cosmetic evaluation, both from my students as well
as from colleagues. Probably the most profound such influence came as a
result of my participation in the Language Standards Working Group of
the Jet Propulsion Laboratory Committee on Modern Programming.
CRISP very strongly resembles the control structures adopted by that
working group.

The r1F-block shown in Figure 7-1 is the canonic “IFTHENELSE”
structure used in Chapter 5. CRISP also has a single-line (IFTHEN) form
with no ELSE-clause,

IF {¢) s

The single-line 1F form is signalled by the presence of the statement s on
the same line as the IF-clause.

The IFTHENELSE structure in CRISP is only a special form of the
more generalized selection structure depicted in Figure 7-2 below. Within
this generalized 1F-block, only the case donsisting of statements
corresponding to the first-encountered true condition ¢, gets executed. The
ELsE-clause is always optional.

CRISP also provides for another type of multi-valued decision structure,
the case-block shown in Figure 7-3. The symbol i in the figure denotes an
index variable in the base language; { and k are integers. A special CRISP
internal flag, OUTCOME, can also be tested by the case-block (a description of
the outcome feature appears in the following Section 7.1.2).

Iteration in CRISP programs occurs within Loop-blocks, which take the
three forms shown in Figure 7-4. CRISP also permits, in addition to the
forms shown, the use of: LOOP UNTIL (c¢), which means LOOP WHILE (NOT c);
and REPEAT UNLESS (c), which means REPEAT IF (NOT ¢). Various options for
indexed loops (LooP FOR. . .) also exist, and are described in Appendix G.



Sec. 7.1] The CRISP Concept

221

true

failse

true

ba-,- . -_“lo

'ﬂh- - .301

|

|-l —r———

true

ELSE

Figure 7-2. The generalized IF-block; the ELSE-clause is optional

CASE {/)
g

ENDCASES

"
-

S

ﬂh-l-

Figure 7-3. The CASE-block (an ELSE-clause may also appear after case &)



222 CRISP [CHAP. 7

LOOP WHILE {¢)

3y

false

Sn

REPEAT

LOOP

%

é‘n

ff

sﬂ
sﬂ
REPEAT IF {c)

| wrue
false

LOOP FOR ¢ =n, BY n, TO n,
5

0

LR

out-cfrange

] ™= = f -+
X ﬁ—range
sﬂ

REPEAT WITH NEXT j

Figure 7-4. LOOP-blocks



Sec. 7.1] The CRISP Concept 223

CRISP structures can conceptually be iterated and nested to any level
desired to produce the intended program. Indentations and annotations for
readability, which I shall discuss later, however, will tend to limit the
amount of nesting within blocks, because the listing tends to crowd toward
the right-hand edge of the page. Rather than contend with this continued
crowding, the user naturally finds himself inventing procedures to be
substituted, linked, or called (and programmed later). As a result, CRISP
program, subprograms, and subroutines generally fit on one page each (but
link to procedures on other pages).

As Mills [12] points out, segmentation of program listings to a prescribed
size, such that each segment enters only at the top and exits {normally) at
the bottom, is a major asset in coping with program complexity.

CRISP makes allowance for up to three distinct types of procedure calls
within a program. The first takes the form

DO p

which links the current block to the procedure named p in a

TO p

ENDTO

block. In some CRISP processors, it is conceivable that the entire
procedure named p could be substituted into the object code for the bo p
statement in the source code. Arguments may conceivably be passed in the
calling string p, but generally, all parameters are considered as global.

The second procedure call is

CALL f

which creates a subroutine linkage to a named procedure f declared in a

SUBROUTINE: [

ENDSUBROUTINE

block. Subroutine arguments may be passed in the normal way between
the caLL and the sUBROUTINE definition. Such subroutine blocks translate
into the normal subroutine-defining mechanisms in the base language.



224 CRISP [CHAP. 7

Functions, when permitted in the target language, are the third form of
procedure call, and are identified by block declarations of the form

FUNCTION: §

ENDFUNCTION answer

The answer string is an optional device that may be required in some base
languages to return the function value. Functions are defined, invoked and
linked in the usual base-language mode.

The main program is identified as the block

PROGRAM® name

ENDPROGRAM

Within a program, the sYSTEM directive releases the control of execution to
the operating system; sToP, to the operator. Again, both of these options
may not be available in an arbitrary target language. ENDPROGRAM signals
one of these actions as the normal exit consequence.

7.1.2 Module Terminations

As discussed in Chapter 5, there are times when module exits other than
the normal structured exit are needed for program efficiency and clarity.
These may take the form of responses to pathological or abnormal events,
in which case, they are abnormal terminations. Sometimes, however, the
event leading to a desired immediate non-normal (non-structured} exit is
one that is expected. For example, it is a typical practice to input data
until an end-of-file indication signals the program to begin processing in a
new mede. I have called these nonstructured exits from a module
paranormal terminations.

CRISP restricts a module to having only one normal (structured) exit
statement per module. However, the top-down development of program
modules having multiple exits may necessitate inserting several non-
structured exit statements into the module and CRISP, therefore, allows
them. However, these can sometimes create difficulty in isolating errors or
in performing subsequent actions unless there is some way of telling which
exit of the muliiplicity was actuated.



Sec. 7.1] The CRISP Concept 225

Paranormal exits are signalled by exIT a within 70...ENDTO, by RETURN n
within SUBROUTINE:. . .ENDSUBROUTINE, and by LEAVE n within LOOP. . .REPEAT.
The integer n identifies the value given to the special CRISP flag variable,
OUTCOME, upon exit; OUTCOME is always equal to O when the exit is normal or
when n is omitted. oUTCOME is not altered if all Ex1Ts omit n.

The outcoME flag is accessible only by using the CASE-structure, as, for
example,

CASE (OUTCOME)
(1) <ENORMAL+>

{2) <*END-QF-FILE*>

{3)<#FILE ERROR*>

ENDCASES

Because there is only one outcome flag, care must be taken to locate
outcoMe tests immediately after the block having the paranormal exits,
before another such structure destroys the value.

Other paranormal exits necessitated by error or other conditional traps
are accommodated by the CRISP AT-block shown in Figure 7-5. If any of
the trap events ¢),...,4, occurs in the statements s;,...,s,, then immediate
transfer takes place to the indicated place corresponding to that trap. If
none occurs, then the NORMAL-case clause executes.

The CRISP directive ABORT ! termipates any activity abnormally and
transfers control to the recovery procedure labeled I defined within its aT-
block. Any label exclusive of commas may be used, including the name of a
trap identifier; however, no ABORT-label may appear in more than one AT-
block.

7.1.3 Module Exit Conventions

A top-down program may be written, as I indicated earlier, in a format
whereby each module has its entry at the top and a normal (structured) exit
at the bottom. Any exits in between are either calls to modular procedures



296 CRISP [CHAP. 7

AT(!-,-'O-;:") l
SF
: f’ /\
5 :
(NORMAL} 5n
5, normal I, t,
. 1 ¥ r
: m
;) )
. *p
fe.)
* . i i
ENDAT

Figure 7-5. The AT-block

(usually, but not always farther down in the code), or extra-normal transfers
to points within modules at previous design levels {usually higher up in the
code).

Calls can be classified by the data-space state upon initiation of the
called procedure. For example, subroutine calls will pass the return address
and optional arguments to the subroutine procedure, often in a stack
configuration. Coding for the normal exit (in the subroutine case, RETURN)
reconfigures the data space for proper resumption of program execution.
The same consideration must be given to extra-normal exits. (In the
subroutine case, these exits must also unstack return addresses and
arguments.)

Abnormal terminations may transfer back through an arbitrary number
of levels, all at once, to a recovery procedure. Paranormal exits may
likewise transfer back through a number of levels, but only one flowchart
level at a time (although in an optimized object code listing, this could
appear as a single jump).

Just as it facilitates flowchart readability and understandability to
identify normal, paranormal, and abnormal exits separately (but consist-
ently), it is likewise the case with the code corresponding to these exits.
Many base languages may not have separate statements for all the cases
and some may not even allow all of those given in Table 7-1 below to be
implemented. CRISP syntax, however, does contain provisions for them.
Table 7-1 sumimarizes the syntactic conventions.



Sec. 7.2] A CRISP Preprocessor 227

Table 7-1. Striped module exit conventions

Type Meaning
SYSTEM, ENDPROGRAM Program termination, return control
to system.
sTOP Program termination, return control

to operator.

ENDTO Subprogram normal termination.
Control transfers back to invoking
module at preceding level.

ENDSUBROUTINE, Subroutine and function normal
ENDFUNCTION terminations., Control returns to
calling module.

EXIT 1 Subprogram paranormal exit. Sets
outcoME=n and transfers control
back to invoking module.

ABORT [ Abnormal exit to module labeled I
in an AT-block earlier in program; [
must be unique.

RETURN n Subroutine and function paranormal
exits. Sets OUTCOME=n. and transfers
control back to invoking module.

7.2 A CRISP PREPROCESSOR

A source-program consists of a mixture of CRISP and base-langnage
code, which can then be translated into executable instructions for a given
computer system. The translator may take the form of a compiler, by
which the source statements are translated directly into executable form.
But rewriting or modifying an existing compiler to accommodate CRISP
can be averted by implementing the translation via a CRISP preprocessor.

Such a CRISP preprocessor accesses sequential source records, written in
CRISP or base-language syntax, and replaces the controllogic statements
by target-language statements that perform the equivalent action.

7.2.1 Operational Modes

The hypothetical CRISP preprocessor I am using tutorially in this text
operates in a number of modes, and I will describe aspects of each in turn,



228 CRISP [CHAP. 7

The main mode is the franslation mode, which outputs base language
statements. The second and third modes are edit modes: wpdate and
annotation. The update mode is a text-editor that permits insertions,
deletions, and alterations of CRISP programs. The annotation mode indents
CRISP blocks and supplies them with flowlines and their Dewey-decimal
reference and cross-reference numbers (see Section 5.1.3 2).

The processor allows comments to appear anywhere in a source
program, within target-language statements, as well as within CRISP
control statements, and to be indicaied by surrounding the comment string
with “<™” and “*>", as, for example, <*comment™>. The comment may
then contain any string of characters except “*>>”. CRISP comments do not
continue automatically on the next line if the final “¥>7 i{s omitted,
comments must be continued in the same manner as other statements.

The strings “<*” and “*>"" naturally, must not be valid constructs in the
base language statements. If either is, alternate comment delimiters, such
as (*...7), or {*...*], or /*...*/, may be substituted as a convention for
implementing CRISP in that base language.

CRISP statements may be continued on several lines by terminating each
unfinished line with “&”. Base-langnage statements (also continued using a
final “&”) are continued only if permitted within the base language syntax.

7.2.2 Macro Processing

The hypothetical CRISP processor has a minimal, but useful, compile-
time text-macro capability, Base languages having better macro handlers
may, therefore, choose not to have this particular feature implemented.
There are two directives; the first is the macro definition, one form of
which is

%template MEANS base string®%END

which declares that occurrences of the second type %source string that
match %template will be replaced, both in CRISP control statements, as
well as in target statements, by base string. An instance of the type
%source string is an instance of a macro call. The base siring may extend
over many lines, defining a procedure and forming a block of text to be
transferred. The end of a defining macro is signaled by %END.

The macro template may also contain formal parameters to be
transmitted into the target string; these'are signaled by the occurrence of
the parameter marker in the template. Whenever a % occurs in an input
source line, a scan of the-remainder of the line begins, much the same as in
the STAGE2 macro processor [54]. When a match occurs between the
input string calling macro and a macro template, the base string



Sec 7.2] A CRISP Preprocessor 229

corresponding to that template is evaluated with the actual parameters
resulting from the template match. The result of this evalvation replaces
the matched source string in the output.

Correspondences between actual and formal parameters are set up
during template matching. The template is a sequence of fixed strings
separated by parameter markers (%), or “holes”™. When the matching
process is complete, each parameter marker corresponds to some substring
of the input line and the fixed strings exactly match the other substrings of
the line. The i-parameter string gets inserted into the farget string
wherever occurrences of %i appear in base string.

Magcro definitions and calls may be used anywhere in the CRISP source
code; in particular, a call can precede the macre definition. Macro
definitions may contain macro calls, but not other macro definitions.

7.2.3 Example of the Use of Macro Capability

The following is an example of the use of the macro capability.
Somewhere in a CRISP program, there is a definition module,

%RANDOM ARBAY MEANS A%END
%EILL %{%.%) MEANS
DIM #%1{%2 %3)
LOCP FOR DUM=%2 TO %3
%1 (DUM} =RANDOM
REPEAT WITH NEXT DUM%END

The appearance elswhere in the program of the call

%FILL %RANDOM ARRBAY (1-50)

produces first the intermediate statements

DIM %RANDOM ARRAY (1:50)

LOOP FOR DUM=1 TO 50
%RANDOM ARRAY (DUM) =RANDOM
REPEAT WITH NEXT DUM

which are then rescanned for CRISP control statements and possible
further translations. In this particular case, there is further macro action,
leading to the final CRISP code:

DIM A(1-50)
LOOP FOR DUM=1 TO 50
A (DUM) =RANDOM
REPEAT WITH NEXT DUM



230 CRIisP [CHAP. 7

7.2.4 Other Compile-Time Features

Perhaps the most unigue of the compile-time features is what may be
termed a “compile-time” edit statement:

REQUIRE AT d:s

This statement causes the statement s to be inserted in the object code
immediately before the code for statement d, numbered in the Dewey-
decimal fashion. Its purpose is to permit truly top-down development and
readability of programs. For example, suppose a Do p appears inside a loop.
At the time the Do p statement was written, the programmer envisioned a
certain, definite function would be performed by an as-yet undefined
algorithm. However, in programming p at the next level, he may discover
that, to program the intended function efficiently, an unforeseen variable
needs to be declared and given an initial value back at an earlier program
level, outside the loop.

But the program development up to this point was not concerned with
this value. It has only just become important. Furthermore, the declaration
and initialization of a new variable does not in any way alter the
correctness assessment of the program up to that point (except perhaps in
timing, if critical). Hence, it makes sense to associate the statement
initializing a procedure with that procedure, rather than back at the
previous level. Otherwise, it threatens readability and understanding, both
in the previous module (“what is this doing here?”) as well as the one
needing it (“where on earth did I initialize that variable, and what to?f™).

Every data structure need not be declared using a REQUIRE statement,
some are naturally passed on to procedures as data on which they are to
operate. Use of the REQUIRE, however, can enhance readability when local
structures need remote initializations.

Each module statement can also automatically be given a number by the
CRISP processor in its annotation mode, and cach flowline is assigned a
special module-execution counter as a compile-time option to record the
number of times that that particular path has been executed when the
program runs. The execution count display prints upon execution of the
CRISP directive

DISPLAY THRU LEVEL n

The value n is the level of hierarchical nesting within the program as
determined by the decimal count in the Dewey-decimal statement
identifier.

This path-execution-count capability is invaluable in program testing, for
one may readily identify which paths have been executed and which have



Sec. 7.3] CRISP COd’fﬂg 2731

not. Moreover, because of the program structure, it is possible to design
and provide input data to exercise these paths (See Chapter 9).

For fully verified programs, the gverhead setting up and incrementing

these counters can be removed by prefixing the source program by the
CRISP directive

CANCEL MODULE COUNT

)

Selected portions of a program may have their module counters enabled
and disabled by using the directive

EMABLE MODULE COUNT

with the CANCEL directive above.

7.3 CRISP CODING

1 have not yet addressed how the CRISP structures stand in relation to
the readability of the code, the fifth criterion in Chapter 5 for a set of
control structures. Obviously, there are times when the coded procedure
corresponding to a striped-module of a flowchart might need to appear
directly in-line for speed efficiency, rather than having a coded call to the
procedure. Using canonic structures, this presents no readability problem,
but in multi-exit structures, there is likely to be a problem in identifying
the connectivity of the code. Moreover, if it were deemed objectionable in
Chapter 5 to replace flowcharts for striped multi-exit modules in a
2-dimensional medium, it seems to me even more objectionable to allow
substitution of multi-exit code for procedure calls in the viewable source
program, a linear medium.

For these reasons, all the CRISP blocks conform to simple control-
connectivity conventions. Coded procedures representing flowchart striped
modules may have paranormal exits, to be sure, however, the code for a
T0...ENDTO module cannot be inserted at the previous level to replace
the Do. . .statement because the EXIT n-statements would have nothing to
connect to. (Instead, such statements would attempt to exit the higher-level
module.) .

Thus, the CRISP constructions automatically fall in step with all the
structural criteria stated in Section 5.5.1. There is a one-to-one
correspondence between structured flowcharts and CRISE code. For these
reasons, flowcharts can be coded into CRISF almost directly, and the code
can be matched, or verified, with the design by a reader very quickly.
Moreover, if errors are found and corrected, these can be transferred back
into the design documentation immediately.



232 CRISP [CHAP. 7

7.3.1 CRISP Module Numbering Method

Each CRISP block corresponds to a flowchart structure containing nodes
and flowlines, and each CRISP statement either corresponds to a node or a
flowline. )

Comparing flowchart structures and their CRISP code structures, such as
is illustrated in Figure 7-6, one finds that when “IFTHENELSE”
configurations are drawn with ¢rue to the left of false, and when multiple
decision branches always are drawn in case-order left to right, then the
code statements corresponding to numbeied flowchart boxes (Section
5.1.3.2) always appear in the program in sequential numeric order from
the top-down.

The CRISP processor can therefore easily simulate the preorder traverse
of flowchart nodes and annotate certain lines of the code with appropriate
numbers. This annotation for statements within procedure blocks takes the
form

statement

.1 LOOP WHILE (¢)
CASE (I}
{1}
A
{2)
B
(3)

¢ ¥ 3 Y 4 Yy 5 y 6
(4)
D

ENDCASES
REPEAT

2
3
4
5
4]
7

Figure 7-6. A preorder traverse of flowchart nodes makes CRISP code madules
appear in numeric arder in the listing



Sec. 7.3] CRISP Coding 233

The statement can either be CRISP or target language code. The .n, flush
with the left margin for easy identification, is the number assigned by the
preorder traverse. Module numbers for procedure-definition statements are
the Dewey-decimal reference numbers assigned earlier in the program;
they appear flush at the right-hand margin, as

TO name MODE d

Thus a statement .n within a procedure having Dewey-decimal number d
is uniquely identified as the Dewey-decimal d.n.

Statements that invoke procedures {(po and caALL) may have module
numbers of the form .n/A: which signals that module n of the current
procedure calls the ith subroutine of a class with alphanumeric
designation A,

7.3.2 Indentation and Annotation

Although the syntax does not require it, the program structured
hierarchy should be displayed by indenting the lines of cade, such as shown
in the syntax table in Appendix G. Examples in this monograph are
indented according to the following rule:

If a block contains only one clause (such as a LooP-block), then indent
statements comprising that clause by a prespecified number of spaces
beyond the block header {the Loor). If a block contains more than one
clause (such as the cAsE-block), then indent 3 spaces past the block header
(case) to the clause header (the case label), and each line of the clause
another 2 spaces beyond the header. Certain blocks do not have a separate
clause header within the block, such as the 1F-THen block. For consisteney,
these are indented just as though they were multiple-module blocks.

Programs indented this way are almost as easy to read as flowcharts,
because the block type 15 identifiable by its header, which protrudes from
the body of the block, and thé beginning of each module within the block
stands out in the same way. Successive indentations occur for block
structures within modules.

The CRISP processor supplies the necessary indentation automatically
on the listing and, in addition, annotates the code with flowlines and, on
option, module numbers as shown in the following example. The base
language used in this example is an abbreviated form of English; the use of
such expressions is discussed in Section 7.4.



234 CRISP [CHAP. 7

procedure. post-order_traverse of a banary tree

<% This procedure performs a post-order walk of a tree

<% represented as follows' each node of "tree" 1§

<# composed of 3 (or more) fields. The first is called
<* "yalue" {and may be actually mere than one field):

< * the next 1s called "son", and contains a pointer 1o

< ¥ the leftmost descendant of the current node, the last
<* is called "brother", and contains a pointer to the

<* gurrent node's next sibling (having the same parent

< # node) to the right The procedure makes use of a stack
< * to keep place in the walk. The notation "p q" denotes
< % the value of the g-field of the tree node pointed to by p.

1 empty stack

.2 push pointer_to_root of tree on stack

.3 let visited = false <*the tree-walk flag#¥>

.4 lﬂM {stack_not_empty)

5 4 let current node = top_of stack

8 {1 1f (not visited and current _node.son = nil)

7 ¢ push current_node.son on stack
1 :->(else) <tnode is a leaf or has been visited+>

8 4 do process_this_node <*#for intended applicationi>

.8 % 1T (current_node.brother = nil}

10 ¢ let top_of stack = current_node.brother, &
0 visited = false
1 ->{else) <kno brothers*>

11 4 pop the stack <kdiscard the node¥*>

12 ¢ let visited = true <#we are now backing up¥>
f end1f
t endif
«eerepeat
endpracedure



Sec. 7.3] CRISP Coding 235

7.3.3 Some Examples of CRISP Coding

In this section, I shall present a few short programs and subroutines to
illustrate what CRISP programs look like. The reader may note that the
code is rather sparsely annotated, and is not suitable as stand-alone finished
documentation. But 1 have three reasons for the formats given. First, I want
to illustrate the readability of bare CRISP code; second, T want to display
the various CRISP structures themselves rather than to formally document
the program; and third, the designs are existing, proven algorithms that I
have only adapted into CRISP format. I do, however, provide separate
accompanying explanatory design and analysis narrative to aid the reader
in digesting the solution methods.

7.3.3.1 Example of Bubble-Sort Program

The program presented in Section 7.3.2 rearranges and prints in
increasing order a set of numbers mput from a terminal, according to the
“bubble-sort”™ algorithm [31].

Algorithm: Scanning the input list from top to bottom, interchange
consecutive pairs that are not in increasing order. When the bottom of the
list is reached, reduce the list size by one (the bottom of the list is in sort)
and repeat.

Analysis: This sorting program goes through N{(N—1)/2 comparisons to
sort any input array; the number of exchanges can range from 0 to the
maximum, the number of comparisons. On random data, the average
number of exchanges is N{(N—1)/4.

Program: The algorithm appears in the program in the form of two nested
LOOP FOR...REPEAT loops, which are readily seen to embody the algorithm
correctly. The base language in this example is MBASIC [55], which
permits dynamic dimensioning of;arrays by the DI statement, exchange of
variable values by the == Operatbr, and free-form input (integer, decimal,
or exponential notation) by the # format. MBASIC also permits modifier
constructions which reduce the number® of lines of code; but for clarity I
have not used them here.

Illustrated in the program are the CRISP structures LOOP FOR
...TO.. .REPEAT and IF...ENDIF, and the use of the text macros to clarify and
annotate the code so that the code actually executes the annotation. The
CRISP preprocessor automatically adds the flowline and module number
annotations to the output listing.



236 CRISP [CHAP. 7

PROGRAM. BUBBLE-SORT MOD# 1
< % SORT IN-PLACE AND PRINT A SET OF NUMBERS
< # INPUT FROM A TERMIMAL*>

INPUT USING %PROMPTING MESSAGE AND FREE-FORM INPUT: N
DIM %ARRAY TO HOLD NUMBERS

PRINT 'ENTER NUMBERS TO BE SORTED °

INPUT USING %FREE FORM: %ENTIRE ARBAY

B W D =

LOOP FOR J=N BY —1 TO 2 <DROP QFF J-TH ELEMENT EACH CYCLE*>

+ LOOP FOR I=1 TO J—1 <¥BUBBLE LARGEST ELEMENT TO ELEMENT J'%>
+ t  IF (%ELEMENTS I AND I+1 OUT OF ORDER)

N HEXCHANGE VALUES

+ ¢+ : .ENDIF

}  ««<REPEAT WITH NEXT I

<c+REPEAT WITH NEXT J

m ~ o;m ;

.8 PRINT \"SORTED VALUES: '\%¥ENTIRE ARRAY, <#BACKSLASH GILVES
<*CARRTAGE RETURN AND SEMICOLCN CONTROLS SPACING WHILE
<*ARRAY IS BEING PRINTED®>

ENDPROG

<*MACRO DEFINITIONS:*>
%PROMPTING MESSAGE AND FAREE-FORM INPUT MEANS
%THOW MANY NUMBERS TO BE . SORTED? #'%END
%ARRAY TCO HOLD NUMBERS MEANS A(N)%END
%FREE FQRM MEANS ' (#) '%END
SHENTIRE AHRAY MEANS A%END .
SELEMENTS I AND I4+1 OUT OF ORDER MEANS A{I)>A(I+1)%END
%EXCHANGE VALUES MEANS A(I)==A(I+1)%END



Sec.7.3] CRISP Coding 237

7:3.3.2 Example of Shuttle-Interchange Sorting Subprogram

The following subprogram rearranges in-place and in increasing order a
set of numbers contained in an array A(N), according to the “shuttle-
interchange” sort algorithm [56].

Algorithm: Scanning the input array from top to bottom, interchange
consecutive pairs, that are not in increasing order; when an interchange
occurs, hold that location and repeat the process from this location
backwards until consecutive pairs are found in order. Then jump back to
the saved location and continue the process onward.

Analysis: The shuttle-interchange sort algorithm is very similar to the
bubble-sort algorithm given in the previous example. There are, however,
some significant differences.

If the data is already in sort, there is only one pass through it, or N—1
comparisons with no interchanges; if the data 1s sorted in reverse order,
there is an interchange and backup involving 1—1 interchanges at each of
the N—1 steps on 1, for a total of N(N—1)/2 exchanges. For random data,
one may expect abont N(N--1)/4 comparisons and exchanges. Therelore,
shuttle-interchange sorting is more efficient than bubble sorting, especiaily
for nearly. sorted data, where it is better by a factor of about N/2 in the
number of comparisons.

Program: The program is slightly more complicated than the mere bubble
sort; it illustrates the use of CRISP structures LOOP FOR...UNTIL ... REPEAT
and 1F. . .ENDIF. The interchange action in the program can be seen to take
place when A(I) and A{I+1) are detected to be out of order, then the
backup begins if I>1 when A(I—1) and A(I) are out of order; and the
backup, which exchanges A(K) and A(K+1), continues until K=1 or until
A(K) and A(K+ 1) are no longer out of order, as detected by the setting of
the structure flag, sorTED. The listing also illustrates that maero definitions
may occur anywhere; in this case, within the first LooP FOR-block and at the
end of the program.

A flowchart of the program appears in Figure 9-6 of Chapter 9 to
illustrate how tests can be generated to verify that the algorithm is correct.



238 CRISP [CHAP. 7

TO SHUTTLE-SORT ARRAY A
<¥SORT IN-PLACE A SET OF NUMBERS CONTAINED IN
<#ARRAY A(N) UPON ENTRY>

.1 LOOF FOR I=1 TO N-1
+ %OUT OF ORDER AT %,% MEANS A(%1)>-A(%2)%END
$  %EXCHANGE VALUE AT %,% MEANS A (%1)==A{%2)%END
IF {%0UT OF CRDER AT I,I+1)
SBEXCHANGE VALUES AT I, I+1
IF (I>1) <*NOT FIRST ELEMENT IN ARBRAY*>
IF (%CUT OF ORDER AT I-i,I)
SORTED=%FALSE<# INITIALIZE BACKUP FLAG*>
LOOP FOR K=I-1 BY —1 UNTIL (SORTED=%TRUE)
4 HEXCHANGE VALUES AT K, K+1
+* IF (K=1) <*BACKED UP TQ FIRST ELEM%NT*)
t SORTED=%TRUE <* END BACKUP*>
4 -2 {NOT %0UT OF ORDER AT K-1,K)
o SORTED=%TRUE<¥END BACKUP*>
1 :._ENDIF .
: <e+REPEAT WITH NEXT K
:..ENDIF
.. ENDIF
1. . ENDIF
“~e«REPEAT WITH NEXT I
ENDTO

M~ DN o WD M

11

T

t

4

)

4

$

T

1\
.10 ¢
1
.12 ¢
t

t

*

T

)

%TRUE MEANS 1%END <¥MBASIC LOGIC CONVENTIONS®>
BFALSE MEANS O0%END -

7.3.3.3 Example of a Program to Sort a Short File

Quite often, the items to be sorted will appear on a disk file rather than
being input from a terminal. The program in this example accesses a user-
specified file of numbers of unknown size, sorts them using the shuttle-
interchange subroutine lifted ffom previous example, and then refiles them
in a user-specified output file.

Program: Numbers are read into an array, maximum size may not exceed a

predetermined maximum, $MAXFIL. Numbers on the file are assumed to be
readable in free-form by MBASIC.,

The program illustrates the AT...ENDAT interrupt-handling structure and
the use of EXIT n to direct control to the alternate procedure of an
ouTcome-block.



Sec. 7.3] CRISP Coding 239

PROGRAM: FILESORT
<kSORT A USER-SPECIFIED INPUT FILE*>
%MAXFIL MEANS 10000%END <#MAXIMUM ASSUMED CAPABILITY#>
DIM A{100) <*INITIAL TRIAL SIZE FOR ARRAY#*>
STRING INFIL:50,0UTFIL-50 <+FILE NAMES, 50 CHARS EACH®>
INPUT USING <*PROMPTING MESSAGE AND FREE FORM-¥>&
'ENTER INPUT FILE NAME: #OUTPUT FILE NAME: #'.INFIL,OUTFIL
OPEN INFIL FOR INPUT AS FILE t
OPEN QUTFIL FOR OUTPUT AS FILE 2
DO INPUT FROM FILE TO ARRAY A <xSET N TO SIZE*>
CASE (OUTCOME)
. -2 (0) <*NORMAL, SO NO ACTION RECUIRED*®>
1 =2 (1)<#NOT ALL OF FILE EXAMINED#>
PRINT 'FILE TOO LARGE, AT LEAST %MAXFIL ITEMS®
. ENDCASES
DO SHUTTLE-SORT ARRAY A
WRITE ON 1:A<*ONE ITEM PER RECORD IN FREE-FORM FORMAT®>
PRINT 'SORTING COMPLETE. NUMBER OF ITEMS=':N
ENDPROGRAM <#STOP AND CLOSE BOTH FILES*>

TO INPUT FROM FILE TO AHRAY A
%END-OF-FILE MEANS ENDFILE {1)%END
<#INITIALIZE FOR ARRAY INPUT+> J=1,N=100
AT (%END-CF-FILE}
- LOOP FOR I=1 TO %MAXFIL
+ INPUT FROM 1 A{I) <+xFREE~FORM INPUT*>
+  IF (J=100) <*A IS FULL¥>
+ J=0,N=N+100 <*+AESET J AND NEW ARRAY SIZE*>
+ o IF (N>¥MAXFIL) N=#MAXFIL
4 DIM A(N) <+REDIMENSION ARRAY®>
t .ENDIF
4  J=J+1 <+COUNT NUMBER OF ITEMS SINCE A REDIMENSIONED=>
<««REPEAT WITH NEXT I
(NORMAL) <*MAXIMUM NUMBER READ INTO A%>
--BXIT 2
(%END-OF-FILE) <#LESS THAN MAXIMUM NUMBER READ IN*>
N=I-1 <*BECCRD THE NUMBER ACTUALLY READ IN¥>
ENDAT
: <--ENDTO



240 CRISP [CHAP. 7

7.3.3.4 Example of Concurrent Input/Qutput Program

This is Brinch Hansen’s “Readers and Writers” problem [42]. There are
two kinds of concurrent processes, called “readers” and “writers” which
access a common data base. All readers can access the base simultaneously,
but writers must have exclusive use; when a writer is ready to write, he
should be given permission to do so as soon as possible, maintaining
program consistency.

Program: The solution below illustrates the use of FORK...JOIN to enclose
concurrent procedures READER and WRITER. Mutually exclusive use of the
data base is gained via AWAIT, REQUEST, and RELEASE arbitration discussed in
Chapter 6; the arbitration, however, only encompasses two storage
locations that record, respectively, the number of currently active readers
and the number of currently active writers. WRITING executes only when ail
currently active readers bave finished; only one writer-at a time is active,
others (readers and writers alike) are locked out because AWAIT has placed
both activity indicators in critical regions. READING executes when no
writers are active and with no variables in critical regions; hence, readers
may execute concurrently.

The functions AWAIT, REQUEST, and RELEASE are not part of the CRISP
language specification (in Appendix G); they are assumed to exist or have
been programmed into the base language as privileged instructions, as
discussed in Chapter 6.



Sec.7.3] CRISP Coding 241

PROGRAM:
BACTIVE WRITERS MEANS ACTWTR%END
%ACTIVE READERS MEANS ACTRD%END
%INCREMENT (%) MEANS %1=%1+1%END
%DECREMENT (%) MEANS %1=%1-1%END

%ACTIVE READERS, %ACTIVE WRITERS=0
FORK n

.1 =2 (1) < PROCEDURE: READER >

AWAIT %ACTIVE WRITERS=0,
CRITICAL ON (%ACTIVE WRITERS,%ACTIVE READERS)
%INCREMENT (%ACTIVE READERS)
: . . RELEASE (¥ACTIVE WRITERS, %ACTIVE READERS)
DO READING
REQUEST (%ACTIVE . READERS)
%DECREMENT (¥AGTIVE READERS)
. RELEASE (%ACTIVE READERS)

> {2} <¥PROCEDURE  WRITER 1>

BEQUEST (%ACTIVE WRITEHS)
H%INCREMENT (%ACTIVE WRITERS)
: . . RELEASE (%ACTIVE WRITERS)
AWALIT %ACTIVE READERS=(0,
: CRITICAL ON ([%ACTIVE WRITERS, %ACTIVE READERS)
DO WRITING
%DECREMENT (%ACTIVE WRITERS)
. RELEASE (%ACTIVE WRITERS, %ACTIVE READERS)

TOTN

ENDPROGRAM



242 CRISP [CHAP. 7

7.4 CRISP AS A PROCEDURE-DESIGN LANGUAGE

It is certainly no more difficult to write structured-program code than it
is to draw a flowchart when both contain approximately the same level of
detail. Some may argue, since the code listings have to be produced
anyway, that supplying further documentation in the form of flowcharts is
then a duplication of effort. Moreover, maintaining consistency between
buman-drafted lowcharts and code listings during an iterative development
cycle can be a very time-consuming task, even if such iteration is.minimal.

Furthermore, it can be argued that structured code is more rigorous than
a flowchart. For one thing, it is written in a programming language whose
syntax and semantics are well defined. For another, the structured code is
part of the operating program, no hanslation being necessary (with its
attendant possibility of introducing error). Structured code contains no
unconditional branches and no statement labels to branch to. The logic flow
of each program always proceeds linearly from beginning to end. Because
there is straight line logic, flowcharts tend not to be needed for
understanding,

Nevertheless, structured code, even with annotated flowlines {as in the
CRISP examples above), is somewhat less graphic than a flowchart, and the
rationale and functional specification of program modules may be a little
less understandable in code annotations than the narrative that properly
accompanies a flowchart.

In the foregoing discussion, I oriented the CRISP concept toward a
compilable programming base language; the output of a CRISP processor
in such cases would be, of course, execulable code. However, the use of
CRISP control structures superimposed on English as a base language can
also be a very useful tool during the procedural design pbases of
development, not only to the designer himself, but to any readers, as well.
The statement of Mills’ algorithm in Section 5.4 was, in fact, a description
using constructions much like CRISP, superimposed on regular technical
English. The procedure shown in Section 7.3.2 is another such case.
Neither description, as it stands, is compilable, but using macros as
indicated (Section 7.3.3), this need not always be the case.

The use of terse English phrases to describe concepts to be expounded
upon more fully at later levels, imbedded in the CRISP controllogic
structures, is much like the IBM technique referred to as “PIDGIN” and
what others have called a “structured design language”. I hesitate to label
this technique using the CRISP control structures CRISP-PIDGIN for
obvious reasons.



Sec. 7.4] CRISP as a Procedure-Design Language 243

As another example of the use of structured Englsh as a program
procedure-design language (PDL), let me suppose that one wishes to
describe a simple CRISP preprocessor design for an undisclosed target
language. The level-1 specification might appear listed as

PROGRAM: CRISP PREFROCESSOR WITHOUT MACRO HANDLING
INPUT CONTROL CODES
INITIALIZE WORKSPACE
LOOP WHILE {SOURCE DECK NOT EMPTY)
4+ INPUT SOURCE IMAGE INTO BUFFER
+ DETERMINE STATEMENT TYPE AND PARAMETERS
4+ GENERATE TARGET CODE
«<<RBEPEAT
END PROGRAM

Each of the subspecifications has been given a unique, descriptive name for
reference purposes, by which refinements can be located at the next design
level. Each subspecification can then be expanded into any needed detail at
successive subsequent levels. For example, the next level of design for the
DETERMINE. .. subspecification might appear as

TO DETERMINE STATEMENT TYPE AND PARAMETERS
INITIALIZE POINTERS TO FIRST CHARACTER IN BUFFER
AND ROOT OF TEMPLATE GRAPH
LOOP WHILE (INPUT POINTER NOT AT END OF INPUT BUFFER}
4 IF (INPUT CHARACTER MATCHES TEMPLATE NODE CHARACTER)
3 ADVANCE INPUT POINTER AND GRAPH POINTER
4 :->(ELSE)
b IF (THERE IS ALTERNATE TEMPLATE NODE)
4 EXECUTE GRAPH NODE ACTION CODE FOR CURRENT NODE
3 SET GRAPH POINTER TO ALTERNATE NODE
o - ->{ELSE)
o : SET STATEMENT TYPE TO "UNRECOGNIZED™
4 EXIT UNRECOGNIZED
t . .ENDIF
4 .. ENDIF
4+ IF (INPUT BUFFER EXHAUSTED AND GRAPH NODE IS LEAF)
t SET STATEMENT TYPE TQ LEAF NUMBER
+ . ..ENDIF
<<<REPEAT
EXIT NORMAL
ENDTO



244 CRISP [CHAP. 7

The reader. may note at once that such CRISP-PDL procedural
descriptions, being devoid of non-procedural explanations, may not always
reveal everything that someone, other than the originator, needs in order to
understand how the program works. In the procedure above, for example,
the “template graph” data structure has not been described (it is in
Chapter 12), and the reader may stumble about without such information.
Besides descriptions of data structures, the reader may also need to have
other forms of rationale provided to explain why things are being done as
they are, or what the significance of a particular step is. As a
documentation tool, the technique does much to emphasize human
readability, but it is not the whole answer.

Nevertheless, as a design tool, CRISP-PDL has permitted the designer to
state the algorithms he is developing in a structured, procedural, and very
readable way before any code has been generated. Such a tool allows him
to write down several alternative procedures for evaluation, correctness
assessment, etc., before they pet committed into flowcharts, formalized
documentation, and code.

Changes in the design during this time do not cost in coding, debugging,
or extra documentation. Many adherents to the use of structured English
thus advise, “Don’t code until you can’t think of anything else to do!”, as a
means of saving costs.

Once the CRISP-PDL descriptions are firm enough to flowchart and
code, these processes can take place fairly rapidly by persons having quite
a lower level of technical skill, and perhaps even aided by the computer
{see Chapter 17). Once the design is done, implementation can be more of
a production-type job; it is easier to schedule, since design-creativity is the
commodity that comes in uncertain chunks,

7.5 DESIGN DOCUMENTATION IN CRISP

While CRISP alone goes a long way toward illustrating what a program
does very graphically as a self-documented product, it may not go quite far
enough in communicating all the whys necessary for a reader to review
and understand the program, unless properly annotated.

The code listing for a program is the only exact representation of what is
executed by the computer. No matter what is written in memos, discussed
at meetings, inserted into design documents, or attached to the code in the
form of comments, the machine will read and execute only what is coded.
Everything else is surrogate.



Sec. 7.5] Design Documentation in CRISP 245

Nevertheless, I tend to believe that, as long as human beings are reading
it, a program is not well structured unless it is accompanied by well
structured narrative—however irrelevant this may be to the abstract theory
of program verification (see Chapter 9), In Chapter 17, I discuss provisions
whereby the program listing can contain all the information necessary to
document the program design. Narrative can be carried entirely in the
form of readable and relevant comments using the same clear, concise
prose as good technical writing. Design flowcharts, as well as flowcharts of
the executable code, can be drafted automatically from the listings.
Automated auditing of the design and code against the program
specification, each for conformity with project standards, can also be
achieved to a certain extent.

Designing procedure specifications in CRISP and providing relevant
narrative, from which flowcharts or narrative descriptions of the program
can automatically emanate, should still precede the introduction of
executable code, in keeping with the top-down development philosophy of
earlier chapters. Module interface specifications can be done directly in
code, so that there is less opportunity for misunderstanding and error..
There is then also no programming toward hypothetical or temporary
interfaces; every interface is defined at the proper logical point in the
project, and used as a fully specified reference from there on.

The CRISP code structures I have been discussing, together with the
capability for macro extensibility and comment annotations, abet the
concept of phased concurrency in design, coding, testing, and documenta-
tion. The documentation principle I expect to be in effect is that
documentation will be certified at the end of each development phase by
some form of audit before the next phase takes place. That is, for example,
the design phase of a module may not end until that module is fully
documented and audited.

‘The surest way of assuring that a design at a given point can be coded is
to de the coding. The first such opportunity occurs in the top-down
approach when the very first part of the structured design has been made.
To ascertain that there are no errors, the program can then be run.

To be sure, the embryo program will not perform all, or perhaps any, of
its specified tasks at this primitive level of the design. However, it can
produce evidence that the program sequences through its stated
subfunctions in the proper order in response to controlled stimuli, and that
variables advertised to be passed to, or obtained from, a subfunction are
actually accessed in the correct manner. It does all this by substituting
simplified dummy segments of code (stubs) for the as-yet-uncoded
subfunctions to verify the correct sequencing of subfunctions and to
validate all the interfaces of the program at the current state of design.



246 CRISP [CHAP. 7

These principles are largely based on techniques put forth by Mills [57]
who developed them as a means of implementing and testing programs,
with reliability in mind. Besides being a check on the design and
documentation, another advantage is that the central logic of the system is
tested most, since it is run every time a new subsystem replaces one of the
dummy stubs. System integration problems are almost entirely eliminated,
because when a newly coded module is tested, it is integrated with all the
already defined parts of the system.

The reason for phased concurrency and auditing is that it is just too
costly to produce possibly incorrect software, including documentatlon,
with the view that it can be corrected later. Catching all corrections in
documentation at a later time is a very risky, time consuming job.
Concurrent coding and testing are aimed at revealing design and
documentation errors at the earliest possible stages, before they can
influence the remainder of the emerging program.

7.6 SUMMARY

In this chapter, I have introduced a set of statements to aid in creating
structured programs in an arbitrary base language. Algorithms may initially
be stated in a CRISP-PDL format, which leads, through a series of
refinements, into compilable code. In the absence of a CRISP processor,
the control structures may be translated into the base language through a
simple discipline using conditionals and “GOTOs". If these constructs are
coded in a consistent fashion, the programmer soon realizes that he is
playing the role of a macro processor. General-purpose macro translators,
such as STAGEZ [54], can place most of the CRISP capability within the
access of programmers in a very short time and with very little effort on
their part.

Indenting CRISP code and addition of annotating “flowlines” turns a
source listing into a two-dimensional, flowchart-like display of the program.
The potential for program readability using CRISP code is, therefore, very
high. In Chapter 17, I demonstrate that the CRISP code is also suitable for
machine generation of actual flowcharts. Use of CRISP-like constructs not
only then provides the opportunity for top-down concurrent design, coding,
and testing, but it also provides a common, highly visible repository for all
the documentation relative to these, namely, the source listing, These
characteristics are very important ones in raising project productwlty, as I
discuss in Chapter 10.

I realize that I have not discussed the use of many of the features of
CRISP such as DISPLAY, REQUIRE, ABORT, elc., in very much detail. 1 have



Sec. 7 6] Summary 247

tried to relate the reasons why these have been put into the syntax,
however. Hopefully, the reader will gain a better appreciation for some of
the features as the monograph continues.

I have not developed language structures in this chapter for specifying
abstract data types beyond those facilities inherent in the base language
upon which CRISP is imposed. I did express, in Chapter 4, the view that
the design of an algorithm cannot usnally be separated from the design of
the data structure upon which it operates. And thus, since 1 have given .
structural topologies for program control flow in CRISP, it would seem
that I have forgotten here about the other half of the problem.

That accusation is largely true. If CRISP were ever o evolve into a
modern programming langnage, the facilities for abstract data definition
would have to be included. However, as long as it is intended merely for
use as a structuring preprocessor for existing unstructured languages, very
little can be done to include abstract data declarations and operations
capabilities into CRISP. When used as a program design language to
format text, however, CRISP supports abstract data definitions as well as
any language now extant; the programmer, in fact, is free to introduce any
syntax for constructing data structure specifications wathin comprehension.

Further discussion on data structure description languages and their
implementation into a modern programming language may be found in
Chapter 17. A useful bibliography of papers concerning data description
language features has been compiled by Tennent [38].



248 CRISP [CHAP. 7

Problems for Chapter 7

7-1 Program the flowcharts produced from Problems 5-1 and 5-3 in CRISP,
Assume that A, B, C, etc., are names -for the modules shown, and that a,
b, ¢, etc., are condition strings valid in the target language.

7-2 Program the skills-inventory problem (see Problems 4-3 and 5-6) using
CRISP structures. Annotate the code with the appropriate flowchart box
numbers,

7-3 Design, flowchart, and then code using CRISP syntax the first three or
four tiers of a complete CRISP preprocessor. Indicate which parts of the
design are dependent on the implementing language, which are
dependent on the target language, and which are independent of either
of these.

7-4 Program the flowcharts produced by Problems 6-2 and 6-4 in
concurrent and real-time CRISP structures, respectively.

7-5 Write a CRISP-FORTRAN subroutine io solve an N XN set of linear
equations using the Gauss elimination technique.



Vill. DECISION TABLES AS
PROGRAMMING AIDS

Although flowcharts are a widely accepted means of describing the logic
of a computer program being developed, they have several significant
disadvantages during program specification and early design. These
disadvantages should encourage one to seek alternate metheds for stating
the pertinent aspects of a problem. Decision Tables (also called Deciszon
Logic Tables) provide such an alternative. First, some of the disadvaniages
of flowcharting during the initial parts of program development can be
listed [59];

® Although flowcharts are ofien very appropriate for describing
scientific or mathematical algorithms where the logic is predefined
and where each box can represent a certain amount of computation,

. flowcharts are very often not appropriate for describing problems in
systems programming, business data processing, or information
retrieval, where actions in response to a long sequence of logical
decisions must be made.

® Flowcharts for programs with intricate logical structures tend to
become lengthy, involved, and difficult to follow.

249



250 Decision Tables as Programming Aids [CHAP.8

® Filowcharting requires that one define his problem and develop his
computer program in the same operation.

Decision tables tend to overcome these disadvantages, while providing
some advantages, as 'well. They are, therefore, another useful tool that can
contribute to the success of a software development project. This chapter
exposes some of the salient features of decision tables and their use.

8.1 DECISION TABLE TYPES

A decision table [60] is a tabular display of the pertinent logical aspects
of a programming problem, showing all relevant conditions, relationships,
and actions to be taken under each set of circumstances. Used in
programming design, decision tables separate program control logic from
program computing functions, to allow each program path to be explicitly
defined. The use of decision tables is not restricted, however, only to
computer programming. In general, they can be used anywhere a
complicated logical situation must be described.

8.1.1 Decision Table Format

The normal decision table representation has four separate parts in a
specific format, as shown in Figure 8-1: The condition stub, the condition
entries, the action stub, and the action entries.

Condition Conditian

Stub Entry
Action Action
Stub Entry

Figure 8-1. Skeleton form of a decision table

The condition stub is a list of all the relevant conditions, usnally posed as
guestions, upon which resulting actions are to be based. Normal decision
table theory does not require any order to the conditions, but certain
programming aspects make an order more appealing and readable.

The condition entries are columns (“rules”) in which sets of pertinent
answers are given to the conditions. In the simplest decision tables, rules
contain only logical true/false or yes/no entries; however, they often
display other answer types, as well.

The action stub is a list of all possible actions that may be taken in
response to the various sets of conditions. These need not be in any order,
but for ease in understanding, a natural order may resuit.



Sec. 8.1] Decision Table Types 251

The action entries are columns associated with the condition entry
columns. They contain indicators to identify which of the actions are to be
performed, and the sequence in which the various actions are to be taken
when a given rule is satisfied.

A decision table thus presents the sets of condition entries and their
related sets of action entries as a set of vertical rules represented side-by-
side. Whereas flowcharts depict decision processes serially, the decision
logic tables represent the same processes in parallel.

8.1.2 Limited-Entry Decision Tables

Limited-entry decision tables (LEDTs) are the most widely used type
and, in fact, most of the theoretical results apply only to these “LEDTs”.
They are readily identified by the fact that the condition entries are
restricted to “Y”, “N”, or are immaterial (represented “-”). Other notations
are often used: “T”, “F”, and blank for “Y”, “N”, and “-”, respectively, etc.
If only one action per rule appears, the action entries contain only the

character “X” to indicate which particular action is to be taken.

As an example of how to use a limited-entry decision table, consider the
following problem: Having reached this point in the monograph, the
reader undoubtedly faces a number of uncertainties and wonders what to
do next. His quandary can be solved by preparing a decision table, such as
the one shown in Figure 8-2.

& Rule §
READERS QUANCRY i 2 3 4 b 7 B
1.  Is the reader tired? Y Y ¥ ¥ NINJ{N N
2. s the reader interested? YY N N YIYINN
3.  Is the reader confused? ¥ N Y N YIN]Y N
1. Reread first part of chapter || X X
2 Continue reading chapter X - X
3  Skip to next chapter X X
4.  Stop reading and rest X X

Figure 8-2. Limited-eniry decision table: “The Reader’s Quandary”

Here, various pertinent conditions and a set of actions that could be
invoked are listed. The table recommends one of four actions for each of
the eight sets of circumstances involving three decisions to be made.

The table recommends the reader “Stop reading and rest”™ {Action 4)
whenever he is tired and uninterested, regardless of whether he is confused

L3

or not; he may “Skip to next chapter” if he is not tired, but not interested,



252 Decision Tables as Programming Aids [CHAP. 8

regardless of his state of confusion. When situations of this type occur, the
“don’t care” response, indicated by “-”, is useful, as shown in Figure 8-3.

Despite the possibility that the recommendations given may not be the
same as those that would be chosen by someone else, the table in Figure
8-3 is too simple to be effsctive. For one thing, there is an implied looping
back to the beginning of the chapter when the reader is confused. If
rereading does not clear up his confusion, but he insists on following the
table’s advice, then he ultimately tires or becomes uninterested.
Consequently, he stops 1o rest or skips the rest of the chapter and, in either
case, never reads to this point. (I may assume, therefore, that either you
are not confused, or you don’t take advice.)

Since I obviously want this chapter read, either the first part of the
chapter should be fixed so there can be no confusion after rereading, or else
I should supply another condition, so as to allow the reader to proceed in
the text, hoping his confusion will be alleviated later. Such a condition is
added in Figure 8-4.

CQUANDRY REDUCED 1 2 3 4
1. s the reader tired? - — Y N
2. Is the reader interested? Y Y N N
3. Isthe reader confused? Y M — —
1. Reread first part of chapter || X

2. Continue reading chapter X

3  Skip to next chapter X
4. Stop reading and rest X

Figure 8-3. “The Reader's Quandary” with reduced rules

QUANDRY REDEFINED 1 2 3

Is the reader tired?
Is the reader interested?

I

|

|
Z |+
2 2| ¢;

Is the reader confused?

B owopon

Is this the second reading?

x|z < <
< < <

Reread first part of chapter
Continue reading chapter X X
Skip to next chapter X

bW N =

Stop reading and rest X

Figure 8-4. “The Reader's Quandary,” redefined



Sec. 8.2] Additional Aspects of Decision Tables 253
The addition of condition 4 permits the reader to continue, if interested,
after the second reading of the material, confused or not.

Several of the advantages of decision tables have been illustrated in the
foregoing example:

® Logic is stated precisely and compactly.

® The logic is easy to understand and the relationships among the
various aspects of the problem are readily visualized.

® Decision tables lend themselves easily to update and change.
8.1.3 Extended- and Mixed-Entry Decision Tables
Another type of entry used in the condition entry stub is the extended

entry. Here the answer to the condition is not expressed as a logical true/
false, but is whatever value is required to answer the condition:

What color 1s the house? White Yellow Pink Other

It can readily be seen that an extended-entry question is equivalent to
several yes-no questions asking if each of the possible entries is true. For
example, the above extended entry can be represented as the following
limited entries:

Is the house white? - Yes No No No
1s the house yellow? MNo Yes Mo No
Is the house pink? No No Yes Mo

Features characteristic of both limited-entry tables and extended-entry
decision tables (EEDTs) may be combined into a single table called a
mixed-entry table. In any one horizontal row, however, entries are limited
to one of the two types, exclusively. Mixed-entry decision tables (MEDTs)
have one major advantage. Conditions that can be appropriately expressed
by binary values {i.e., Y or N) may be represented in that fashion, such as
conditions that are defined by relational expressions.

8.2 ADDITIONAL ASPECTS OF DECISION TABLES

In this section, I discuss some additional aspects of decision tables as an
aid in developing them. These aspects include the reduction of entries by



254 Decision Tables as Programming Aids [CHAP. 8

combining rules or by a single rule covering multiple entries, and the
testing of decision tables.

8.2.1 Simplification of Decision Tables

If two or more rules have the same action sequence and if their rule
entries are logically similar, the two rules may often be combined into one
rule. For example, two LEDT rules having identical actions and differ only
in the entries for one condition may be combined by substituting a “don’t-
care” entry for that condition:

T
f——> F

i e |
-n

Similarly, don’t-care entries may logically contain other, more explicit
LEDT entries:

T T T

- | F B> -~

The complete rules for combining LEDT entries having identical actions
are identical to those for combining terms in Boolian expressions used in
logical design. This type of reduction is not always as straightforward for
EEDTs or MEDTs, and in many cases such tables must be converted to
their LEDT counterparts before processing can be attempted. I refer the
interested reader to the literature [61,62] for further details concerning
reduction of tables.

8.2.2 The ELSE-Rule in Decision Tables

Each of the condition entries in all of the decision tables discussed so far
contains explicit answers to explicit questions. Questions may be asked in
any order, arbitrarily, with the same action{s) taken in each case. All
possible sets of answers appear in condition entries {although some answers
may be immaterial). Matching a given array of answers with those in the
condition events can likewise be done in any order.

In many cases, however, a designer may want to specify explicitly only a
relatively few condition entries with their corresponding actions, under the
implieit understanding that all unspecified situations are to be handled alike
as another single rule. He does this by stating the explicit rules in the
normal way, and then adds an extra column of action entries to be



Sec. 8.2] Additional Aspects of Decision Tables 255

performed in the event that none of the explicitly defined rules is satisfied.
This rule 1s called the ELSE-rule.

A conversion of the problem in Figure 8-4 to the ELSE-rule format
appears in Figure 8-5.

QUANDRY WITH ELSE RULE 1 ELSE

Is the reader tired? —

2 < | mN
Zz2 Z|®W

Is the reader interested?

Is the reader confused?

PN

Is thus the second reading?

X2 € <
1
I

Reread first part of chapter
Continue reading chapter X
Skip to next chapter X

N

Stop reading and rest X

Figure 8-5. “The Reader’s Quandary” in ELSE-rule format

Using the ELSE-rule avoids exhaustive enumeration of ail the immaterial
answers to a set of conditions for which the actions are all the same
anyway. Since all sets of answers are not enumerated, a given array of
answers must be checked against those appearing in the explicit rules first,
before deciding to take the ELSE actions. There is therefore now an
implied order by which one goes about deciding whether to apply one of
the explicit rules, or else, the ELSE rule. The procedure for searching
through the table to see which rule applies to a given array of answers is
called a sequential testing procedure (or STP), and is the subject of the
next section.

8.2.3 Sequential Testing Procedures

In executing a decision table as if it were a program, there is an implicit
order in testing the conditions to find the valid condition entry, and,
thereby, the action to take. A sequential testing procedure (STP) is an
algorithm for processing the upper half of a decision table, to determine
which rule is to be activated.

One simple STP is the following: Starting at the first condition and first
rule, perform the condition test and compare the result to the entry
(“don’t-cares” do not have to be tested). If the result matches the entry, go
on to the next condition test and the next lower entry. If the result does not
match the entry, step back to the first condition and the next entry column
(rule). When all of the condition tests satisfy a rule, then ail the actions for
that rule should be done in the order stated. However, if no entry column
satisfies the condition tests, then do’the actions for the ELSE-rule.



256 Decision Tables as Programming Aids [CHAP. 8
8.3 APPLICATION OF DECISION TABLES

When thelogical conditions stated in a decision table can efficiently be
the same as those tested by a program, then that table reveals much about
the program design, as well. It doesn’t reveal everything, of course. A
flowchart and program written directly from a decision table would seldom
be very efficient. For one thing, specifications of data processing generally
state the global effect of operations, rather than the sequencing and
intermediate operations that compositely build that global effect.

Nevertheless, a flowchart drawn from a decision table may form a good
starting point for the program design. In fact, the design process may take
the form of a series of refinements of the specification decision tables into
design tables. I give an example of this later in this chapter.

Obviously, any proper program can be represented by one or more
decision tables, because proper programs have an equivalent structured
form. The program organizations allowed by structured programming may
be easily implemented in decision table format, and these structures are
sufficient to code any program.

8.3.1 Decision Tables as Programmable Algorithms

Decision tables are an entirely different way of thinking about an
algorithm. The advantage is not so apparent on smaller problems, and, in
fact, decision tables may seem, at first, to be an awkward way of
representing a small problem. However, when decision tables are used to
analyze a larger problem, they allow one to cope with one rule at a time,
independently of the other rules. They also tend to show when, or what
will happen when, rules have been omitted unintentionally.

The structure ‘IF ¢ THEN f ELSE g is simply represented by the table
(Figure 8-6):

I ... THEN .. ELSE 1

Is £ true? Y N
Perform F
Perform g X

Figure 8-6. [f.. . THEN, . .ELSE decision table



Sec. 8.3] Application of Decision Tables 257

Similarly, the structure “WHILE ¢ DO f is simply represented as the
table (Figure 8-7):

WHILE .. DO 1 2

1.  Isc true? Y N

1. Performf

2  Repeat table 2
Cantinue on X

Figure 8-7. WHILE. . .DO. ..decision table

Action 2 (Repeat) causes the condition entries to be reevaluated and
subsequent action taken according to the activated rule; the numbers
occurring in the first action entry indicate the sequence m which the
actions are to be performed. (Since only one action occurs for the second
rule, an “X” is sufficient to. mark it) Action 3 (Continue on) causes
cessation of the action for this table.

Normally, the flow of a program represented by the chart would carry
on to the next structure in order. Ofien, it is useful to designate actions to

connect decision tables:
¥

n  Perform table ¢ next X

In this way, decision tables can reflect the hierarchic nature of the
specification or design process. Tables can also be kept to a reasonable size
by relegating certain actions to subtables, as indicated above.

8.3.2 Example: The Sieve of Eratosthenes

This example illustrates how a decision table can be used to define a
program; in this case, the program generates the first 300 prime numbers.

The prime-number generator works merely by setting the first prime
equal to 2, and then considering each odd number N, trying to divide it by
the primes discovered so far, In trying to find prime divisors, we need try
only primes already found up to Ni/2 as divisors. (If N is not prime, it must
have a factor less than or equal to N/2, This fact is easily demonstrated by,



258 Decision Tables as Programming Aids [CHAP.3

supposing the contrary were true, namely, that N=ab where a and b both
-exceed N2, But we would then have N =ab>N, which is impossible.)

The following table (Figure 8-8) describes the program:

SIEVE OF ERATOSTHENES i ELSE

First pass? T
K <3007 —
N/TABLE({l} an integer? —
TABLE(I) > SQRTIN)?

AW -
- - TN
mm = M| ew
| 4 m|&

SetN=2 "
SetN=3
SetK=1

Set =1

Set TABLE(K} =
SetK=K+1
SetN=N+2 2
Set|l=1+1 1
Print M

Repeat this table

B No ek W
bW N @ -
2 I CR AR

—

)
~
<)
k)
o]

Terminate X

-
—

Figure 8-8. The Sieve of Eratosthenes

The first pass (Rule 1} prints the first prime (2) and inserts it in the table at
index K=1. On future passes, whenever an N is considered and is divisible
by a prime (Rule 2), it is discarded. When it is not divisible by the Igh
prime but N'/2 is greater than the Ith prime (Rule 3), the next prime
divisor is tried. Then (Rule 4), when I has sequenced to that point in the
table of primes where N2 is less than the Ith prime, then N is judged to
be prime, and is printed. Ultimately, when 300 entries into the table have
been made, the ELSE-rule terminates the program.

The table in Figure 8-8 serves to illustrate that decision tables have the
advantage that each program path (i.e., rule) is specifically enumerated and
defined independently from all other rules If a modification needs to be
made to the actions for any rule, it can be made with assurance that the
actions for other rules are not changed.

8.3.3 Translating Specifications to Computer Programs

The use of decision tables to specify a program function has several
distinct advantages, among which are that it forces a clear problem
statement, and it defines completely at the top hierarchic level those



Sec. 8.3] Application of Decisiorn Tables 258

decisions to be implemented. Moreover, as a technique, it is not
inconsistent with the concepts introduced in Chapter 3, detailirig program
characteristics in hierarchic specification units. Decision tables lend
themselves to hierarchic decomposition quite conveniently, as was
illustrated in Figure 8-6.

Earlier in this chapter (Section 8.3.1), I indicated that decision tables
form a good starting point for beginning the design process. The tables
depict algorithms whose global effects have been stated explicitly and
concisely. Therefore, turning these into flowcharts or coded procedures in
a series of refinements (in the interests of efficiency} assures program
correctness with respect to matching actual program response to specified
response.

Also, sequential testing procedures ultimately lead to the decision trees
generated when an LEDT is converted to a flowchart or computer
program. Translation of decision tables to programs can be done manually
or with the aid of special computer programs developed for this purpose
or for simulating the execution of the table [63,64,65]. The translation can
be oriented toward minimizing either the amount of memory used or the
speed required to decide which rule is in effect.

e

Several enhancements can be used to speed up computer processing
substantially. One simple and obvious enhancement is to save the result of
the condition tests as a set of flags as they are performed, so that they need
not be redone when one rule is not satisfied and the testing starts again at
the top. This saves re-executing the condition tests for each column (rule}.

A second enhancement is equivalent to arranging the table so that the
most heavily used rules appear first in the columns. These rules can be
determined by simulating the execution, keeping a running count of rules
satisfied during execution.

Dynamie simulation enables self-adaptive optimization as follows: When
a rule is satisfied, compare its.count with that belonging to the rule (if any)
on the left; if it is iess, switch the rules.

If a priori statistics are available, they can be used to determine the STP
directly, as will be outlined later in this chapter.

There are many manual and automatic ways [66,67] that decision tables
can be turned directly into computer programs. Programming in CRISP,
however, is almost as automatic a first translation as could be hoped. For



260 Decision Tables as Programming Aids [CHAPF. 8

example, the Reader’s Quandary (Figure 8-4) merely becomes the
following:

Assume that flags TIRED, INTERESTED, CONFUSED, and SECOND TIME reflect
the state of the conditions, and that the actions are REREAD, CONTINUE, SKIP,
and sToP; then the CRISP embodiment of the Reader’s Quandary (in which
condition 2 is tested first, then 3, 4, and finally 1) is the short program:

IF (INTERESTED)
IF (CONFUSED)
IF {NOT SECOND TIME)
DO REREAD CHAFTER
« -> (ELSE)
DO CONTINUE READING
.. . ENDIF
: =» (ELSE)
DO CONTINUE READING
: ;. .ENDIF
: -> (ELSE)
IF (TIRED}
DO STOF READING
-> (ELSE)
DO SKIP TO NEXT CHAPTER
. :. ENDIF
: .. ENDIF ‘73

By this example one can'see that programs derived from decision tables
are inherently structured and modular. Aside from not being quite so
compact as the table, the program is perhaps just as straightforward and
readable, however,

But the same table could have been coded by testing condition 1 first,
then 2, 3, and 4 in order. The result then would have been a much longer
program, as follows:



Sec. 8.3] Application of Decision Tables 261

IF (TIRED)
IF (INTERESTED)
IF (CONFUSED)
IF (SECOND TIME)
DO CONTINUE READING
: -> (ELSE)
DO AEREAD CHAPTER
- 1 . ENDIF
: -> (ELSE)
DO CONTINUE READING
: - . ENDIF
: -> (ELSE)
DO STOP READING
.ENDIF
: -> (ELSE)
IF (INTERESTED)
IF ([CONFUSED)
IF (SECOND TIME)
DO \CONTINUE READING
-> {ELSE)
DO REREAD CHAPTER
:. ENDIF
- -> (ELSE}
DO CONTINUE READING
) ENDIF
: -> (ELSE)
DO SKIP TO NEXT GHAPTER
ENDIF
.ENDIF

The order in which the tests are made thus can affect the program size
and speed, sometimes to a large extent. The reason why the second
program above is more complicated than the first is directly traceable to
the fact that, even though only 2 of the 5 rules requires a test of condition
1, nevertheless, this test was conducted first. As a result, condition 2 had to
be repeated in each leg of the first IFTHENELSE structure.

The first version of the program tested condition 2 first; but then,
because condition 1 had- “-” for every ‘Y’ answer, testing that condition
could be omitted from the THEN branch. Similarly, testing condition 3 and
4 are superfluous to the ELSE branch, and so on.

8.3.4 Conversion of LEDT to Computer Program

Several algorithms have been put forth for the automatic conversion of
LEDTs into computer programs, with the aim of minimizing storage



262 Decision Tables as Programming Aids [CHAP. 8

requirements, execution time, or compiling time. The following procedure
based on Poliack [68] converts an unambiguous LEDT into a flowchart:

a. Select one row of the original LEDT by a suitable criterion C (to be
discussed later). The condition in that row becomes the first
comparison of the flowchart.

b. Decompose the table into two subtables having one less row—either
subtable may perbaps only contain one action—and associate each
subtable with a branch of the flowchart decision. That is, one
subtable consists of all the remaining conditions and the set of rules
for which the condition selected in (a) above is true; the other is
similar, except that the condition answers are false.

c. If a subtable has more than one action, select one of its rows by
criterion C and attach the condition for that row to the proper
branch of the previously selected condition producing that subtable.

d. Continue {b) and (c)} above on each subtable until each rule of the
original LEDT or the ELSE-rule is represented in a branch of a
condition {or until a subtable indicates that the original table
contained redundant or contradictory rules).

The criterion C above can, among other things, check for redundancy or
contradiction among rules. If, at any stage, two rule columns exist without
containing at least one Y,N pair in some row, redundancy or contradiction
exists. Such a condition, for example, exists in the table shown in Figure
8-9:

Condrtion i 2
Cy Y -
€ N N

Figure 8-9. Redundant or contradictory rules

If the actions for rules 1 and 2 are the same, the rules are redundant and
one can be eliminated; if the actions are the different, the rules are
contradictory, and the table is in error.

By choice of the proper criterion C, Poilack and others [66-70] had
hoped to produce flowcharts that would minimize either the memory
space occupied by the decision process or the time required to make the
decision. But none of these criteria always achieved its intended purpose,
nor indeed, can any one-pass criterion ever be found which will. The
reason for this is that the algorithm has no provision for backing up to



Sec. 8.3] Application of Decision Tables 263

select a different flowchart, even if a suitable criterion could detect that it
is now producing a suboptimum flowchart.

In 1966 and 1967 Reinwald and Soland [64] gave algorithms that do
produce optimum flowcharts, minimizing either execution time, or storage,
or any increasing cost function of the two. The algorithm is essentially the
same as that given above, except the criterion keeps track of a cost metric;
whenever this metric for a partial flowchart exceeds a certain bound, the
procedure backs up to consider alternate flowcharts.

To explain the coming criteria, it is useful to rearrange and augment the
decision table so that it appears as in the example shown in Figure 8-10.

AUG- Rule
MENTED
LEDT 1 2 3 4 5 G 7 8 TEITIE Stofage
Cost, Cost,
- {usec/ {cells/
N Probability deciston) | decision)
Conditions

010[015]025|020|005| 005| 005] 0,15

e, y |y | nly | n| NI N]Y]| 50 30

¢ yly |y | N | v | N[ NN 68 75

e Yy N[y NNy |[n]|Y 25 18
Actrons A, A, Ag J

Figure 8-10. Example of LEDT showing rule relative frequencies and execution-
speed and memory costs

In this table, the rules have been grouped together wherever they have
the same action {A;. What these actions are, and what the actual
conditions are, have been suppressed. The table appears in its full form,
without “don’t-cares”. Tables having indifferent entries, as I have said, are
sometimes useful as an aid to problem specification and for simplification
of the table into a more manageable, understandable form. The table in its
reduced form is acceptable by some of the various criteria used in the
Pollack procedure.

But rules can ofien be combined in many different ways to produce
“don’t-cares”, which may lead to different non-equivalent “minimal cost”
results in the procedure. I shall instead, for the treatment here, parallel the
Reinwald-Soland technique, starting with the unreduced table, and proceed
to define flowchart cost metrics for minimization.



264 Decision Tables as Programmung Aids [GHAP. 8

The LEDT in Figure 8-10 has some elements not present in previous
tables: the probabilities (relative frequencies) with which each of the rules
occurs, and the costs, both in execution speed and memory occupancy,
associated with making tests of the conditions. The figures 1 have put into
this table are entirely hypothetical.

Notationally, I shall represent the table in a skeleton form by a row
vector p, whose elements p, are the 2" rule probabilities, and column
n-vectors x, §, and s. The column vector x, contains the Y, N results of tests
of conditions for the rth rule; t is the time-cost vector; and s is the storage-
cost vector. In Figure 8-9, for example, n=3 and

N o0 30
=Y |- =] 68|, s=1| 75 |,
Y 25 18

p = (.10,.15,.95,.20..05,05,.05,.15)

The component of x; corresponding to condition ¢ will be denoted as x;
for t, as t; and for s, as s.. For example, x,; = Y, t; = 50, 53 = 18.

As a further notational convention, 1 will refer to the events ¢; = Y and
¢; = N merely as i and i, respectively. I shall also refer to k-tuples of such
events in the notation,

€= (el;eZQ B }ek)

The entire set of rules satislying an event set ¢ will be denoted R{e). In the
example above,

R = {1,2345678)
R(2:3) = {68}

The former of these reflects that the set of rules is not restricted; the latter
contains only rules 6 and 8, since both have e = (2,3), that is, ¢ = N and
Cg = Y. )

Two functions are needed to define the flowchart decision-time metric.
The first is the don’t-care discriminant,

1 If rules r, and 1, agree except at
A condition ¢ (i.e., Xer, 7= Xer,), and
De(ry.r:) = both lead to the same action, A,

0 Otherwise

‘The symbol “ 8> means “equals by definition”.


http:10,.15,.25,.20,.05,.05,.05,.15

Sec. 8.3] Application of Decision Tables 265

BReinwald and Soland have shown that the expected exira time
contributed to the execution of a flowchart, caused by making a test of
condition ¢ next after the outcomes of events (e,...,e,) = e are known
(having already been tested by the flowchart), is given by the second
function,

ATO(E) =t, Z (Pri -+ Prj) Dc(ri:ri) )

R(e)

where the sum extends over all pairs of rules r, < 1 satisfying e. The
condition ¢, of course, is not included anywhere in e.

The formula for ATe) is somewhat intuitive; it says that, once the

" decisions reflected by e have been made, the expected time loss incurred

by testing condition ¢ is the time t, required to test c, times the probability
that the actual rule in effect has ¢ as a “don’t-care” condition.

Reinwald and Soland have further proved for a given LEDT, that the
average total decision time T for any flowchart which tests condition ¢ first
cannot be smaller than a computable lower-bound Ty

Tl:: =Ztk _E ATR‘ + A'.-]:'c
k=1 k=1

and, therefore, that the average decision time T of any flowchart
equivalent to the given LEDT cannot be made smaller than a value T,
given by

T>Te 22t =3 ATy + min AT,
k=1 k=1 <

Another pair of functions will produce the storage-cost metric for a
flowchart; the first of these is the utility discriminant,

1 If a rule r, exists in R({e)
such that D,(r,,1,) = 0 for
every other rule 1, in R{e)

0 Otherwise

Ude) A

This function reflects the utility of a condition ¢ with regard to whether
some rule in that subtable conditioned on the events e actually requires a
test of condition c.

Reinwald and Soland have then shown that the additional storage cost
incurred due to testing condition ¢, conditioned on the prior-tested events
e, is given by the second‘function,



266 Decision Tables as Programming Aids [CHAP. 8

ASce) = s, [1 — Ucle)] + 3 sUxle,c) Unle,c)

The sum on k extends over all conditions in (e,c). Again, c does not appear
anywhere in e.

This formula, too, is somewhat intuitive,.in that it states (in its first term)
that a test of an irrelevant condition ¢ uses up s, storage locations
needlessly, and {second term), that since Uj(e,c) Uy(e,C) equals one only if
condition k is relevant in both the subtables conditioned by (e,c) and by
(e,c), there will be an expenditure of an additional s; storage locations for
each remaining condition k, since condition k must then appear in both
branches of the flowchart beyond c. At each subseguent point at which a
condition k is relevant in both subtables, an additional cost of s, is again
incurred.

There is a lower bound on the amount of storage § used by a program
equivalent to a given LEDT; if the program tests condition ¢ first, this
lower bound is

Sc - z SkUk + ASC
k=t

Thus, the decision-storage reqguired by any program equivalent to an LEDT
cannot be smaller than a lower bound S;, given by

S 2 So - Z S]{U]{ - min ASC

k=1

This lower bound, however, is rarely achieved.

8.3.5 Criteria for the Pollack Procedure

Even though I have repeatedly stated that the Pollack procedure does
not always produce the optimum result, nevertheless, it is a simple
algorithm. Large LEDTs are very unwieldy anyway, so simple procedures
can provide a means for achieving a fairly good program, even if not
optimum.

Since the Reinwald-Soland functions, which I have called AT, and AS,
above, are direct measures of the extra time and storage required as the
consequence of a decision ¢, they make excellent metrics for minimization.
The criteria given by Pollack [68], Press [66], Shwayder [6%, etc., are
somewhat similar.

8.3.5.1 Criteria

For the Pollack procedure, a- criterion that will tend to reduce the
expected execution time of the flowchart is thus the following:



Sec. 8.3] Application of Decision Tables 267

Criterion C1 (Reduced Execution Time)—Compute the metric AT, for
each condition ¢ in the subtable remaining for consideration. Choose that
¢ for which AT, is a minimum value.

One can readily see that, if a flowchart exists which actually achieves the
lower bound, then that optimum flowchart will be found by the Pollack
procedure using criterion C1 above, except possibly in cases where two or
more conditions at a certain stage of the development have equal values of
AT, least among all remaining AT.. Then there is a possibility that the
wrong condition may be chosen at that stage. The converse, unfortunately,
is not true, flowcharts found by the Pollack procedure are not always
optimum.

A criterion for the Pollack procedure that will fend to reduce the storage
occupancy is the following:

Criterion C2 {Reduced Storage Occupancy)—Compute the metric AS, for
each condition in the subtable remaining for consideration. Choose that ¢
for which AS, is a minimum value.

~ The two criteria can be combined into one criterion by the introduction
of a suitable cost function, which I will denote by $(AT,AS,). The only
restriction on $(x,y) is that it be an increasing function, nondecreasing in
each argument.

Criterion C3 (Reduced Cost)—~Compute AT, AS, and the metric
$(AT_,AS,) for each condition in the subtable remaining for considera-
tion. Choose that ¢ for which $(AT_,AS.) is a minimum.

8.3.5.2 Examples

The following two examples illustrate the minimization of execution
time and storage allocation by the Pollack procedure using Criterion C1
and C2, respectively.

a) Example: Flowchart for Figure 8-10 “minimizing” execution time by the
Pollack procedure (Criterion Cl).

First, the values for AT, are:

AT, = 50(.10 + .25 + .20 + ,05) = 80
AT, = 68 (.05 + 05) = 6.8
AT, = 25 (.10 + .15 + .05 4 .05) = 8.75

Since AT, is least, condition £ is chosen first. The two remaining subtables
with ¢y excludéd are:



268 Decision Tables as Programming Aids [CHAP. 8

1 2 3 5
Cp=Y Cost
0.1 015 025 0.06
¢ Y Y N N 50
Cq Y N Y N 25
A A |
L _ ! 2 ___1
4 6 7 8
Cy = N Cost
020 0.05 005 0.15
& ¥ N | N ¥ 50
e, N Y N Y 25
Lo — he Sl A _JI

At this second stage, one can verify that
AT4(2) =50(.35) = 175 A’I’l(ﬁ) =50 (.25) = 125
AT (2) = 25(.25) =625  AT,{Z) =95(10)=25

Therefore, condition 3 is to be tested on each branch of condition 2; these
now result in the four subtables:

1 3 2 =)
=Y, 6, =Y —{ Cost ta=Y,cy=N Cost
010 | 025 0.15 | 005
Ty Y N 50 ¢y Y N 50
| 1 | |
| Ay I I Ay | Az |
L - L —
& 8 4 7
=N, c3 =Y Cost c=N, ¢ =N Cost
005 | 015 .20 | 0.05
Gy N Y 50 c, Y N 50
I I I !
I A, Ay | [ A, |
L __ —_ L e —_d

The rules in the first and last subtables all beleng to one action, and,
therefore, need not be tested. The resulting flowchart appears in Figure
8-11.



Sec. 8.3] Application of Decision Tables 269

yes /czk no
\/

no
i na

A

2

ves
es
3

- I

Figure 8-11. Flowchart resulting from decision table in Figure 8+10 by Pollack’s
procedure using criterion C1 (average decision time is 113; storage used is 171)

In this case, the Pollack procedure has produced the actual optimum
flowchart, even thongh the average execution time slightly exceeds the
lower bound T, = 143 — 45.55 + 6.8 = 104.25.

b) Example: Flowchart for Figure 8-10 “minimizing” storage allocation by
the Pollack procedure (Criterion C2).
First, the values for AS, are:
AS, =30(1—-1)+75-1-1+18-1-1=03
AS,=T75(1—1)+30-1-1+18-1+1=48
AS; =18(1—1)+30-1-1+75-1-1=105

Hence, as in the last example, condition 2 is to be tested first; the two
subtables are the same as in the previous example, except the costs are
now 30 and 18 cells, rather than 50 and 25 psecs. Next,

AS,(2)=0  AS5,(%) =0
AS(2)=0  4S,(2)=0

Thus, the extra storage incurred by either conditions is zero on both
branches, so either condition can be chosen for either branch; let us say



270  Decision Tables as Programming Aids [CHAP. 8

condition 1 for event 2 and condition 3 for event 2. The four subtables that
remain are:

e, =Y, 0 =Y 1 2 | Cost e,=Y,c,=N|| 3 5 | Cost
Cy Y N |18 e, Y N |18
I A [ { A A I
[, ' —— S ! 2
c,=N,e;=Y || & 8 Cost c;=N,e;=N 4 7 | Cost
¢, N Y | 30 g Y N {30
I A A | ! A !
L 272 L 2 __ 1

Again, the rules in the first and last subtables all belong to one action
and, therefore, need not be tested. The resulting flowchart appears as
shown in Figure 8-12. The chart is undoubtedly optimum, since the
minimum additional storage cost decision was chosen at first step, and the
remainder had no additional storage costs.

>

>
b

(5]

Figure 8-12. Flowchart resulting from decision table in Figure 8-10 by Pollack’s
procedure using ecriterion C2 (storage used is 171, the same as is used in Figure
8-11, but the average decision time is 124.25)



Sec. 8.4] The Use of Decision Tables in Programming 271

Unfortunately, such an easy indicator of optimality (zero additional cost
at each step) appears only rarely in processing an LEDT; the lower bound
on storage is Sg = 171, achieved by the optimum. The chart in Figure 8-11
achieves both the optimum average execution time and storage costs.

By way of comparison, the chart shown in Figure 8-13 has an average
decision lime of 134.25 and a storage requirement of 216, more than either
of the two previous charts.

&
™
[ +3
P
=
[
>
]

Figure 8-13. A non-optimum flowchart equivalent to decision table in Figure 8-10
(average decision time is 134.25; storage cost is 216)

8.4 THE USE OF DECISION TABLES IN PROGRAMMING

As was stated earlier, decision tables provide a way of differentiating
between conditions and actions; specifically, all conditions are tested
before any of the actions are performed. When programming without the
aid of decision tables, one generally intermixes the two, following an
impulse to “act as soon as you know you must” [64]. Frequently, one delays
the execution of an action implied by a subset of conditions already tested,
by setting a flag to remember the test outcome for later reference (a good
example is the setting of a loop structure flag). None of the previously
stated minimum-cost procedures allows for such intermpang of condition
tests and actions, or the use of flags to delay execution of an action.



272 Decision Tables as Programming Auds [CHAP. 8

However, minimum cost techniques very often lead to more efficient
programs; the development of algorithms incorporating these features is
thus desirable, and probably [easible. The fact that decision tables tend to
become unwieldy when there are more than half a dozen conditions is, in
many ways, an advantage, because it is almost always symptomatic of poor
program organization. It encourages the programmer to reexamine the
problem, break it into smaller, more manageable modules wherein each
meodule finds its expression in a single table.

8.4,1 The Reinwald-Soland Procedure

The procedure developed by Reinwald and Soland is essentially the same
as the Pollack procedure, with two significant differences. First, a
cumulative metric is maintained for the entire flowchart, up to its current
state, whereas the previous procedures only examined, and then discarded,
the incremental costs. And second, the procedure can backtrack to a
previously-considered stage in the flowchart development (one that was
rejected at that time because its metric was too great) whenever it
ascertains that the metric at the current stage has exceeded the metric at
the previous stage. I shall not elaborate on the algorithm in any greater
detail; the interested reader, however, may consult the references [64].

8.4.2 Testing the ELSE-Rule

Very often, the reduction procedure leading to an optimum flowchart
leads to subtables that correspond to only one single action, but in which
some conditions remain untested and not explicitly indifferent. For
example, suppose the decomposition process has, at a particular stage,
resulted in the (hypothetical} partial tables below:

1 2 3 4
<, =Y | ¢ =N
025 0.25 Q.1 0.1
c, Y Y ey Y N
c Y N
3 L_ __H A, A;
L &

Condition ¢; in the leftmost table is immaterial; however, ¢, is given as an
explicit condition, which must be Y before action A; is to be invoked. But
what action is to be taken in the event the answer to ¢, is N? It depends. If
¢; = Y, cg = N is a possible event, then the action to be taken is
contained in the action entry of the ELSE-rule, in which case a test of ¢,
must be made. However, if ¢; = ¥, ¢ = N is not a possible event, then ¢y
need not be tested. If the event is possible, but highly improbable, there
may arise concern as to what course should properly be taken in the



Sec. 8.4] The Use of Decision Tables in Programming 273

program design: incur the extra expense to test the condition{s), or leave
out the test(s) and run the risk of encountering the unlikely event(s).

The design decision, of course, is mitigated by the serfousness of
omitting the test, compared with the cost of making it. For example, if
omission of a test merely causes momentary erroneous data once in a great
while, there is a great temptation to leave it out, in the interest of
“efficiency”. But if not testing that very unlikely event can blow the
program, obliterate or falsify a great body of data, cause physical hazards,
etc., then most certainly the test will be made, whatever the cost.

In keeping with the goal of this monograph—correct programs—design
standards should require that the ELSE-rule be tested completely, except
on a case-by-case basis where it can be shown that the likelihood of an
untested ELSE-event is extremely low and the consequences of not testing
that event are clear and justifiable. The program documentaticn should
carry the rationale for each such exception.

8.4.3 Extensions to Mixed- and Extended-Entry Tables

The procedures given in the preceding sections of this chapter for
turning decision tables into flowcharts (i.e., programs) are restricted to
tables with binary branchings. With minor revisions, these can be
generalized to tables in which multiple branching is permitted.

One obvious way of doing this is to convert all non-binary decisions to
binary decisions, and proceed as in the previous sections. Depending on
how multiple-branch decisions can be implemented in the target computer
language, such a procedure may not be so inefficient as it may seem at first.
Many multiple decisions are, in reality, merely cascaded binary decisions

anyway.

In general, however, one can preassign a cost to each outcome of each
decision. Previously, I considered these to be the same for Y and N answers
{but they needn’t have been), and collected these in the rightmost
column(s) of the LEDT. If the costs of a test depend on the outcome, then
these can be inserted, as shown below, into the table adjacent to the
corresponding outcome. If g, is an answer to rule j: ’

EXTENSIONS 1 2 * e r

Decomposition of the table takes place just as it did previously, except
there will now be a subtable associated with each answer a, to the chosen
condition.



274  Decision Tables as Programming Aids [CHAP. 8

The procedures for minimizing costs are the same as given previously,
except, instead of associating a cost with each condition (say 1,
corresponding to condition i), now a cost is associated with each answer to
each condition, as t; corresponds to the jth answer to condition i.

8.4.4 An Example of the Use of Decision Tables in
Programming: A Card Cross-Reference Program

The following example demonstrates the use of decision tables from the
conceptual stages of program specification to the development of a
computer program.

Problem: A program in source-language form exists on a set of cards.
Another program, to be written, reads these cards and identifies the
variable and label names on each card according to specified control data
input. It then prints, adjacent to each pre-specified variable (or to every
variable in lexicographic order when no variables are specified in the
control data), the card number on which that variable appears within a
specified card-number range (or the entire program when no range is
given). Similarly, it prints for each specified label (or all labels, in
lexicographic order when none are specified), the card number of all cards
having a branch to that label within a second specified card-number range
(or the entire program when no second range is given). The format of the
control input is (variable list:card-number range;label list:card-number
range). Nothing is to be printed if (;) is input, all variables and labels for all
cards are printed if (;;:),or () is input. A specification such as (v} prints only
for specified variables in the list v over the entire range, (:n;np) prints only
for all variables over the specified card number range. Similarly, ;) prints
only for the specified labels in the list I over the entire range, and (:;n;-ny)
prints only for all labels over the specified card-number range.

Analysis: The problem statement (i.e., requirement), while being rather
long, is nevertheless, fairly vague, in that it only explicitly identifies actions
for 7 events. A programmer, however, will readily identify the following
set of logical conditions to be tested:

L. olist given?

2. first *:” given?

3. v-range given?

4. “;” present?

5. list given?

6. second “:” given?

7. Irange given?



Sec. 8.4] The Use of Decision Tables in Programming 275

and actions to be taken:
1. print for selected variables

print for all variables
Rrint for no variables

" over selected ‘range for variables
over entire range for variables
print for selected labels
print for all labels

print for no labels

© e N ;o L P

over selected range for labels

| g
&

over entire range for labels

Jomd
L

print error message

Wishing to make a benevolent design, the programmer has himself
added action 11, an ELSE-rule action. He also, upon study, sees that there
are 5 printing formats for variables and 5 for labels, and thus that, to
provide the flexibility for accommodating any combination of these, there
must be 25 separate rules. Two inputs, ( ) and (:;:), yield the same action.
He thus concludes that 27 rules, in all, are necessary.

On further study, and aided by the seven sample events, he fills out the
program definition decision table shown in Figure 8-14. Let it be assumed
that this table is then approved (by those writing the original problem
statement). Now the design process begins. If the designer decides to
flowchart using the Pollack procedure as a design prelude, be will find the
need for 62 binary decisions (ELSE-rule completely tested)!

At this point, he seeks ways to simplify and reorganize the program
definition without affecting the conditions and actions.

Reorganization: He recognizes that actions printing the variables and
labels are very similar; independent tables such as those in Figures 8-15 and-
8-16 can express these actions with simpler conditions. All 25 of the
required-actions are represented in the two tables; however, the null input,
(3 is -improperly accounted for (neither table prints anything), and the
ELSE-rule is incorrectly invoked. To eliminate a retest of the condition in
which a null input might have occurred, Figore 8-15 introduces the setting
of a flag.



'gé CROSS REFERENCING LEDT 1234565067891 M1213 141516 17 1819 20 21 22 23 24 25 26| ELSE
g% .| Conditions: " ' ¥ o .
o 1. vhst given? YYYYYYYYYVYNNNNMNMNNNNNDBNNPMNNN
bdﬁ- 2. First” " guen? YYYYY - - - YYYYYYYYYYNNNRNNN
tg E 3 v range given? YYYYYNNNNNYYYYYNNNNMNNNRNMNAMNNM
?m 4 Y present? Y Y Y YNY Y Y YNYYYYNYYYYYYYVYYYN
= 5 L-list given? YYNNNY YNNNYYNNNYYNRNMNYYNRNHNRN
E E G Second """ given? ¥ =YY NY =YYNY -YYNY - YYNY—-Y¥Y¥YNHN
- 7 L-range qiven? Y NY NNYNYNNYNYNNYNYNNYNYNRNN

Actions

1. Print for given v XX XN X X X X X XX

2 Print for all v XXX XAXX XXX X

3 Print for no v X X X XX

4 Selected vrange X X X X X X X X X X

5. Entire v-rangz X X X X X X X X X X X

6. Print for given £ X X X X X X X X X X

7 Print for alt £ X X X X X X X X X X X

3 Print for no £ X X X X X

9 Selected f-range % X X X X X A X X X

10 Entire £ range X X X X X X X X X X X

11 Print error message X

Figure 8-14. LEDT for a Card Cross-Reference Program (rules indicated by * are explicit in problem definition,

the remainder are inferred; no relative frequencies or decision costs have been provided)

SPIV SURUWDISoLg 8D $8)qD T u0istoa]  91Z

8 dVHD]



Sec. 8.4] The Use of Decision Tables in Programming

VARIABLE REFERENCES

-

ELSE

1
2
3

v:list gqiven?
First ** '" qiven?

w-range given?

A -~

2 < 2 |-

Z 2 2 |,

- b W =

12
13
14

Print for given v
Pring for all v

Print for no v

Over selected v-range
Over entire v range

Print error message
and terminate abnormally

Set FLAG =0
Set FLAG =1
Perform table in Fig, 8-17

x|« < <

X

X

X

X

>

X

X

o

Figure '8-15. Partial LEDT for the Card Cross-Reference
references to variables

277

Program, actions to print

LABEL REFERENCES

-

ELSE

£-list given?
Second - given?

f-range given?

-

z < z|a

2 Z Z2|w

=0 ®o o ofN s

-

Print for given f
Prant for all £

Print for no £

Over selected f-rangs
Over entire {-range

Print error message

X< < <

Figure 8-16. LEDT for the Card Cross-Reference Program, actions to print
references.to labels

The designer,. however, recognizes from Figure 8-14 that, aside from the
last two actions, the table in Figure 8-15 is always executed. Thus this table
can be isclated as a separate action, prior to execution of Figure 8-16,
which is to be executed then only when a semicolon is present. The table
linking the two appears in Figure 8-17; the resulting flowchart appears as
Figure 8-18. The total number of decision boxes has been reduced by this
procedure to only 18 (tables in Figures 8-15 and 8-16 take 6 and 7,



278 Decision Tables as Programming Aids

[CHAP. 8

VARIABLE AND LABEL REFEREMCES 1

ELSE

4, 15 present? Y
E-list given? -
Second ' given? -
Frange given? -
FLAG =17 -

0 o~ »
“~ 2 Z2 2 2 |0

2 =2 2 2 Z2 | Ww

18 Execute table in Fig 8-16 X
2. Print for all v

Over entire v-range
Print for all £

10 Over entire {-range

KX oX X

16. Do nothing, continue

11. Print error message

X

Figure 8-17. LEDT for the Card Cross-Reference Program, linking tables in Figures

8-15 and 8-16

respectively). If logical connectives are permissible, then a further
reduction occurs in the number of decisions, as shown by the CRISP-like

procedure, ACTION, as follows:

Note: The flowchart (Figure 8-18) and CRISP-like
procedure are not the program to be written. Rather, they
only show the required response to control data input

insofar as actions to be taken are concerned.

PROCEDURE: ACTION <*DEFINLTION OF CONTROL RESPONSE#>

<CONDITIONS %V-LIST, %CCLON-1, %V-RANGE,

<RRSEMICOLON, %L-LIST, %COLON-2, AND %L-RANGE, ARE ASSUMED

<*TO BE SUPPLIED BY CALLING PROCEDURE*>&

DO VPRINT <+PRINT VARIABLE REFERENCES*>
IF (%SEMICOLON)

DO LPRINT <*PRINT LABEL REFERENCES#>
: => (ELSE)

IF (%L-LIST OR %COLON-2 OR %L-RANGE)

CALL ERRMSG <*#PRINT ERROR MESSAGEx>

. ->(ELSE)
IF (FLAG=1)

H : DO PRTALL <*PRINT ALL REFERENCES:*>

. : :  ENDIF
. ENDIF
. . ENDIF
ENDPROCEDURE



Sec. 8.4] The Use of Decision Tables in Programming: 279

PROCEDURE: VPRINT <*PRINT VARIABLE REFERENCES*>
FLAG=0
IF (%VY-LIST)
IF (%COLON-1 AND %V-RANGE)
DO ACTS25 <¥xACTIONS 2 AND bH#>
. -> (ELSE)
IF (NOT %V-RANGE)
DG ACTS24 <*ACTIONS' 2 "AND, 4¥>
. -> (ELSE) :
CALL ERRMSG <+PRINT ERROR MESSAGE:#>
ABORT
ENDIF
ENDIF
. -> (ELSE)
IF ({%COLON-1)
IF . (%#V-RANGE)
DO ACTS15 <#ACTIONS 1 AND &5%>
: -> (EL3E)
DO ACTS 14 <*ACTIONS 1 AND 4%>
ENDIF
- _> (ELSE)
IF (%V-BANGE)
CALL ERRMSG <*¥PRINT ERROR MESSAGE®>
ABORT
: -> {ELSE)
DO ACTS36 <*ACTIONS 3 AND &%>
FLAG=1
.+« - ENDIF
. .. ENDIF
ENDIF
ENDPROCEDURE

PROCEDURE. LPRINT <#PRINT LABEL REFERENGCES*>

ENDPROCEDURE

The subprogram LPRINT (to print label references) is very similar to
VPRINT, and so, for prevention of further ennui, it is omitted here.



280 Decision Tables as Programming Aids {CHAP. 8

1

VPRINT Figure 815
| JFLAG=0.f
Print variable any printing
references oceurred

LPRINT
Figure 8-16 == Print label
references
ERRMSG
Print error
message
ERRMSG
Print error
message
ERBMSG
mno
Print error
message
PRTALL
Print zll
references
STOP

Figure 8-18. Flowchart for Example 84.4, Card Cross-Reference Program (decision
logic follows table in Figure 8-17; this is a program definition flowchart, not a
program design flowchart)



Sec. 8.4] The Use of Decision Tables in Programming 281

It is worth pointing out that the original table (Figure 8-14) and the
simplified program are not strictly equivalent. The former would have
dismissed the input (:} as an error; the latter treats it as being equivalent to
{:;}, printing all variable references throughout the program. Discrepancies
of this type necessarily must be identified and shown not to be in conflict
with the original problem statement. In this case, it is not, and in fact, leads
to a more forgiving input specification (which still should, I would think,
require approval by the proper authority, before continuing).

At this point, the designer has a correct algorithm insofar as its response
to input control data is concerned. However, he has not yet imbedded his
algorithm into a program that will efficiently accumulate the input data
upon which the algorithm is to operate, and that will efficiently print the
specified results. How the input is to be accumulated into a form snitable
for the algorithm to access and how the output printing is to be formatted
was not given in the problem statement, but left as a design prerogative.
Hence, the next design task is to define the needed data structures,
accumulation algorithms, and printing formats, and then to refine the
ACTION algorithm to interface these properly.

Let me suppose that the designer elects, as in Figure 8-19, to input the
control data by a module conTROL, which then parses it and thereupon sets
the flags needed by the ACTION algorithm or terminates abnormally in an
error message. If no semicolon appears, conditions 4, 6, and 8 of Figure
8-18 cannot be valid within the parsing algorithm, and may thus be omitted
from ACTION. Moreover, items are to be accumulated, rather than printed,
according to the ACTION specification. The designer thus renames the
module ACCUMULATE. The accumulation module (Figure 8-20) iteratively
reads the input data cards, examines them for labels and variable names,
and stores them selectively into sorted, linked lists in accordance with the
ACTION algorithm. Printing takes place after all cards have been processed
by the module REPORT.



282 Decision Tables as Programming Aids [CHAP. 8

{ REFERENCES )

b

CONTROL /\
Input comtrol | arrpr
data, set
flags
—— | Y
ltems selected ACCUMULATE ERROR
according to -
..ﬂ«c‘rumuQ “““““ Form sorted, Print error
algorithm linked lists message
¥
REPORT
Print fists

il

STOP

Figure 8-19. The entire REFERENCES program design

The reader may note that ELSE-rule checking has been relegated to the
CONTROL module. Also, the EXTRACT module has been charged with retrieval
of the card number; in case the cards have sequence numbers punched,
these are merely extracted and used. However, if not, it must supply them
by some other algorithm. (Another designh prerogative subject to approval,

since it affects the output definition.)
’

At this point, the designer feels he has his level-1 program designed, and
he is reasonably sure it conforms to the problem statement. It is, in fact,
somewhat better for two reasons: first, the design is more flexible with
respect to control inputs, and second, this flexibility was achieved simply
and efficiently.

The regular hierarchic design methods carry on from here.



Sec. 8.4] The Use of Decision Tables in Programming ‘

ACCUMULATE

Y

" flag and
FLAG set by
CONTROL

CARDIN

Read in
program card

¥

EXTRACT.

Find labels, vari-
abies, and card
number; putin
buffers

i

VSTORE

Store vanables
and card
number

LSTORE

Figure 816 = — —

Store labels

and card
number

yes

—

‘ end

deck

Figure 8-15

FLAG =17

ALLSTORE

variables, and
card numbers

Store all labels,

283

Figure 8-20. The ACCUMULATE module, a refinement of the ACTICN algorithm

ORIGINAL PAGE IS
OF POOR QUALITY..



284 Decision Tables as Programming Aids [CHAP. 8

8.5 SUMMARY

This chapter has shown how decision tables can be used to develop and
document a computer program from the top down, 1n modular hierarchy.
Some characteristics of decision table uwsage worth summarizing before
leaving the subject are listed below [59]:

® Tt forces a clear problem statement and shows where information js
missing,
@ 1t forces a complete logical description of the problem.

® It completely defines, at the top hierarchic level, those decisions to
be implemented.

® It permits functional definitions and descriptions that are distinct
from procedural content.

® It aids in translating a program definition into a working computer
program.

® It permits development and orderly presentation of programs that
are sometimes too complex for effective flowcharting,

® [t modularizes the program by forcing a segmentation of the overall
system into logically manageable tables.

® It is suitable for documentation, and for communication of the
program operation between people.

® It assists in implementing program changes, and tends to identify
consequences of any one change, even in a complex program.

® It is useful for presenting and communicating the program design to
management for evaluation.

Standards for generating and using decision tables may be found in later
chapters of this work. Format and documentation standards for decision
tables are also discussed in Gray and Laadon [20].



Problems 285
Problems for Chapter 8

8-1 Write a CRISP program to print the first N primes as illustrated in
Figure 8-8.

8-2 Make appropriate assumptions for the frequencies, decision costs, and
decision times for the card cross—reference decision table shown in
Figure 8-16, and find 2 “minimal cost” STP by an appropriate Pollack

procedure.

8-3 Make a decision table for the following simple elevator. The elevator
goes between floors 1 and 2, the door can be open or closed, the button
outside each door can initiate the “call” state, and the button inside only
can activate {move) the elevator. The actions it can perform are: (1)
close the door, (2) open the door, (3) go up, (4) go down, and (5} clear
state of push buttons at current floor {inside and/or out). (Sets of actions,
once started, go to completion beforenew conditions are tested.)

8-4 Design and flowchart a structured computer program to convert a
given LEDT into a flowchart by the Pollack procedure with criterion C3
given in Section 8.3.5. (Hint: use recursive calls to a procedare that
performs C3 on subtables.)

8-5 Design and flowchart a structured computer program to perform self-
adaptive dynamic optimization of the sequential testing procedure for a
limited-entry table-driven set of repetitive actions and decisions, as
follows: Keep a running count of the rules executed; when a rule is
satisfied, compare-its count with that belonging to the rule (if any) on the
left; and when it is less, switch the rules. Consider the feasibility of
testing all conditions and setting flags before entering the STP, as
opposed to testing each condition the first time it is required by the STP,
and then only a flag each succeeding time.

8-6 Discuss the feasibility of the following LEDT implementation into a
computer program: Test each of n conditions ¢, setting bit 1 of a
computer word w equal to 1, if true, or to 0, if false. Then branch to the
address contained in a 2™-th element transfer-vector V, as indexed by the
integer held in w, to initiate the actions invoked by the rule in effect.

8-7 Make an LEDT for the following problem. If a customer has placed an
order that exceeds his credit limit, then send the order to the credit
department. However, the order should always be accepted when it is
one of our special customers; that is, one who does business with us
regularly. Also, if the order is less than the minimum allowable shipping

e



286 Decision Tables as Programming Aids [CHAP. 8

quantity, it should be rejected and sent to the shipping department
manager. However, the system should be capable of receiving exceptions
to this rule, as there will be cases when a customer will insist that his
order be shipped, even though it is too small. In such cases, & special
approval from the shipping department overrides the minimum-érder

requirement.



IX. ASSESSMENT OF PROGRAM
CORRECTNESS

I have been harping about correctness of programs through eight
chapters so far, without saying too much about exactly how that assessment
is to be made. Since large programs cannot be fully demonstrated, either
by rigorous, formal proofs or by exhaustive verification, these programs are
almost certain to contain errors of one form or another. It is true that the
modular, hierarchic decomposition of a program into functional subunits
reduces complexity to a great extent, but probably not to the extent that
concurrent, rigorous proofs of correctness are feasible.

What, then can be done to increase probable program correctness, or
the “index of reliability”, or “confidence level”, as I called it in Chapter 52
At this writing, not enough; programs still require repairs, no matter how
carefully they have been prepared, documented, coded, and tested. But
there are some things that help, and that is what this chapter is about.

287



288  Assessment of Progiam Correctness [CHAP. 9

9.1 FORMAL PROOFS

The only known general method that can be applied to make a formal
proof of correctness may now be stated as follows [71]:

For each flowchart flowline, make asseirtions which describe the
current pertinent state of the program data space as the program
traverses that flowline. For each process node, prove that if the incoming
assertion is true, then the outgoing assertion is true; for each collecting
node, prove that if any one of the incoming assertions is true, then the
outgoing assertion is true; and for each branching node, prove that if the
incoming assertion is true, then all of the outgoing assertions are true.

Proofs of termination are usually handled separately, but can often be
decided by making the assertions contain a parameter that indicates
convergence of the algorithm.

9.1.1 Proof of Program Behavior

I claimed in Section 5.1.4 that formal, rigorous correctness proofs are
impractical, in that they are at least as complicated as the program they
assert to be correct, and in that they are probably just as susceptible to
error (38, 39, 40]. Nevertheless, the use of proof techniques does coniribute
to program correctness by forcing programmers to express solutions to
problems in two different ways: by an algorithm and by a proof of the
algorithm. For this reason, I urge program designers to make such proofs to
themselves or others—at least on an informal basis—as a reasonable
assurance that the program will work before the design goes any further.

As an example of this technique, the program shown in Figure 9-1 (a
modified version of that appearing in Knuth [71]) finds the greatest
common divisor of two numbers N and M, input at a terminal, by Euclid’s
Algorithm. The needed assertions and a proof outline are given on the

figure.

It is theoretically possible, and I shall discuss this in more detail a little
later, to generate the required logical assertions on each program flowline
in a well-defined formal way, all the way to the end. The proof of program
correctness then comes down to verifying that the derived “end assertion”
agrees with the program specification. The trouble with this formalized
method is that it produces a logical assertion equivalent to the program
function, but no general method exists for proving that a derived logical
assertion matches the desired program function. That is why it is so useful
to make intermediate, humanly easier-to-verify assertions along the way.



Sec.9.1] Formal Proofs 289

EUCLID's
ALGORITHM

Assertion T:
MandN are
integers greater
1 2 than zero

Assartion 2;
A=B1=0,
Al=B=1,
] 3 C=M,D=N

Q=P (C/D}
R=CMODD

Assertion 3:
A*M+B*N=D
Al*M+B1*N=C
_____ =Q*D+R
O0<R<D,

ged (C, D) =ged {M,N)

Assertion b: Assertion 4:
Assertion 3 = D=gecd (M, N}
and R >0 =A*M+B*N
C=D,D=R,
T=Al,AT=A,
A=T-Q*A,
T=81,B1=8,
B=T-0Q*B, Proof of Algorithm:
Assertion 6; B 0= IP (C/D), Prove Assertion 3 is true
Same as assertion 3 R = C MOD regardless of whether input
to {4) comes from (3) or (5).
Then 0 £ R < D at each iteration
means R = 0 eventually. When
R=0,C=D%"Qs0
; ged (M, N)=ged (D*Q,D)=D.
sToP

Figure 2-1. Proof of a program (Euc]id’s Algorithm)



290 -Assessment of Program Correctness [CHAP. 9

9.1.1.1 Program Assertions

What kinds of assertions (also called predicates) are required for formal
program verification? First and foremost, a program must have an end
assertion. This is a statement (or set of statements) that defines what is
meant by program (or subprogram) correctness. There may also be an
entry assertion, which states initial conditions upon which the program
operates. Other assertions along the way are theoretically not necessary,
but practically, are very useful. Of particular utility are the assertions
immediately following each loop collecting node, these are often referred
to as inductive assertions. Figure 9-2 illustrates the various assertions
above,

Entry
Assertion

Inductive
Assertion

End
Assertion

Figure 9-2. Assertions for formal program proofs



Sec. 9.1] Formal Proofs 291

The inductive assertion of a loop, as well as all of the assertions supplied
within that loop, must be invariant under the looping process. That is, each
such assertion on a flowline must be true cach time the program traverses
that annotated flowline. Moreover, all assertions within a program
(excluding the entry condition) must derive from the entry assertion in
concert with the program operations.

In consideration of the method above, the “loopr condition™ in Mills’
Correctness Theorem can be relaxed as follows: the data space may be
redefined dynamically so long as each of the assertions about the data
space, on the loop-entry flowline and on the loop-iteration flowline,
satisfy the inductive assertion on the flowline’exiting this loop collecting
node

The assertion at the entry to a proper program (perhaps the null
statement) together with all the subsequent node operations define a set of
formal assertions valid at all other points in the program. Such assertions
are said to be derived assertions, as they result from purely formal logical
manipulations; consequently, they reflect the exact behavior of the
program at the given peint. Other assertions may, be attached to various
points that specify the desired (correct) program behavior. These are called
invented assertions. The correctness-proving problem comes down to the
verification that the invented and derived assertions are compatible. The
derived program function must encompass the desired function.

As an example, suppose that the desired response of a program is to
output sin x whenever a,positive value for x is input, x < 0 cannot occur,
a physical constraint of the problem. A program whose derived response is
sin x, valid for negative as well as positive x, is compatible. But in the
reverse situation (viz., when there is a desired response of sin x valid for
positive, zero, and negative x, but the derived program response shows
correctness only for positive x), there is incompatibility.

Figure 9-3 depicts a formal derivation of predicates (assertions) as a
forward traversal of nodes. In part (a) of the figure, the program function F
produces, in response to the assertion A;, the compatible assertion A, (=
in the figure stands for “implies”). In part (b) of the figure, assertions A,
and Az following the decision are compatible with the combined conditions
stated in A; and those imposed by the outcomes of c. Finally in part (c) of
the figure, the merging of two flowlines having assertions A; and A, into a
single flowline produces a single predicate A; compatible with the two
combined alternatives.



292  Assessment of Program Coirectness [CHAP. 9

fal FlA,}=> A, (b} (A, AND )= A, ]l (A, Oﬁ Al=> A;
(A, AND NOT &}=> A, "

Ay

1

Az

Figure 9-3. Forward derivation of assertions

9.1.1.2 Loop Correctness

Making a correctness proof for a loop is contingent on the formulation of
the inductive assertion (the assertion on the outgoing flowline of the loop-
collecting node). This assertion must be a true statement at every iteration.

If, as in Figure 9-4 below, A; is the assertion at the loop input, As(n)is
the assertion on the returning flowline (which may depend on the node-
entry-number, n), then the outgoing inductive assertion As(n) is the derived
statement A; OR As(n). Having recognized the possible dependence of the
leop assertions on the number of iterations, I shall henceforth refer to A(n)
merely as A,, unless a specific value is given to n.

One may start with an assertion inside a loop and derive assertions all
the way around, until the same point is reached again; the two predicates,
initial and derived, must then be compatible. Any predicate within the
loop can be chosen, but the simplest to illustrate is Az In the WHILE ¢
DO F configuration (Figure 9-4a), one may write, for example, the derived
expression

A,ORF(A,AND o) = A,

One may thus prove the correctness of a WHILE ¢ DO F loop, for given
A}, As, F, and ¢, by finding an invented Aj satisfying the two requirements:

A, ORF(A; AND o) = A,
A;ANDNOT ¢ = A,



Sec. 9.1] Formal Proofs 293

(a) WHILEc DO F {b) DC FWHILE ¢
Ay Ay

A, fn) A, [n]

i

A, (n)

'

Ag

Figure 8-4. Loop structures and correctness assertions

A similar technique applies to the DO F WHILE ¢ loop in Figure 9-4b:

A, OR{F(A,;) AND¢) = 4,
F(A,) ANDNOT ¢ = A,

The reader may verify for himself that the given inductive assertions for
Euclid’s Algorithm (Figure 8-1) do indeed satisfy these conditions.

A general method for proving that derived and invented forms of
assertions are compatible is not presently known, although some work in
this area has been reported [72]. At the present, proofs, if done at all, are
done by humans, and these, as I have said, are just as susceptible to error as
the program it “proves”. However, the use of proof techniques will find
many discrepancies in a design before the programming stage begins.
Hence, while not perbaps producing a 100-percent error-free program,
proofs (formal or informal) do increase the index of reliability measurably.

The increase in reliability, of course, depends on the expertise of the
assessor. Rigorous, formal-logic proofs are not generally going to be
forthcoming from the average programmer. But less formalized assurances
that an algorithm behaves according to assertions supplied at various points
are generally within his capabilitics. Moreover, they take less time, and



294  Assessment of Program Correctness {CHAP. 9

probably will be more productive in terms of correct modules delivered
per day.

What T want to present here, then, is a discipline that draws upon formal
correctness procedures, tempers them with practicality, and provides
useful doecumentation of the program functioning as a by-product, as well.

9.1.1.3 Complexity of a Program

One measure of the complexity of a program is the length of its
correctness proof: the more complicated a program is, the longer will be
the argument required to understand the program and to show that it
operates correctly. Even if “proof of correctness” is weakened to
“assessment of correctness”, or to “understanding”, these shorter, more
practical measures of complexity are probably still directly proportional to
the former.

For a rigorous proof, a set of assertions, one per flowline, plus arguments
to relate derived assertions to invented assertions, is sufficient. Each of the
assertions is equivalent to an announcement of the program state (or
change of state} as that flowline’ is traversed during execution. Hence, at
best, the complexity of a program must be at least linearly related to its
length.

If operations and program structure can be made simple enough that the
logic and raticnale for each program ‘step are clear, then the arguments to
relate invented and derived assertions are very short. The more significant
portions of understanding are then devoted to discovering what each
constituent of a program does, rather than to argue that each such
constituent should appear as it does.

For structured programs, operations fall into a limited number of easily
grasped program structure categories (sequence, IFTHENELSE, DO-
WHILE, etc.). The constituent parts of the structure IF ¢ THEN f ELSE
g, for example, are ¢, f, g and the control structure, IFTHENELSE. The
argument to understand the entire structure consists of verifying that the
condition ¢ does convincingly seem to partition the problem as it should,
and that f and g are the proper functions to have been executed in each
case,

Undesstanding the entire IF ¢ THEN f ELSE g structure is thus really
equivalent to understanding the distinct roles of each of its three separate



Sec. 8.1] Foimal Proofs 285

components:

a. Understand c.
b. Understand f.
¢. Understand g.

since the IFTHENELSE structure is so simple as to be thoroughly
1 understood already. That is, the complexity of this structure seems to be
equal to the sum of the respective separate complexities of ¢, f, and g

By induction then, understanding each.component is linearly related to
understanding its nested subcomponents, and so on down the line. For this
reason, hierarchic, modular, structured programming holds the petential
for developing programs which achieve a linear relationship between
complexity and program length.

However, even a linear length-complexity relationship may be too much
for programs or systems with tens or hundreds of thousands of instructions,
unless the proportionality constant, can be reduced to an acceptible figure
by reduction of what will be required during development in the way of
correctness assessments. Such reductions are the subject of investigation in
the next section.

9.1.2 Proof of Control-Logic Correctness

The number of combinations of possible data inputs, and hence the
number of corresponding computer states, is generally so great that only a
relatively small number of them can ever be demonstrated. However, it is
possible to check the control logic of 2 program in a reasonable time,
either by making a correctness proof or by running a series of tests on the
emerging program.

In connection with control logic analysis, the complexity of control may
be defined as a measure of the length of the correciness assessment for the
control logic of a program. Often such an assessment involves the
calculation and measurement of the numbers of times each program
flowline is traversed. Knuth [71] demonstrated that these numbers are
governed by Kirchhoff's equations (for non-real-time proper programs, at
least). There then always exists a set of flowlines which form a linear basis
for the flowchart, in the sensé that the number of times any other flowline
is traversed during execution is a linear combination of the numbers for the
basis set.

Robert McEliece pointed out, in an internal JPL working paper, that the
control complexity of a program is therefore probably at least as great as
the amount of work required to solve Kirchhoff's equations and verify the



296 Assessment of Program Correctness [CHAP. 9

numbers in the program. For an arbitrary unstructured program, this effort
can be as high as 0(n®), where n is the number of nodes on the program
fAowchart. McEliece then also pointed out that for structured programs the
basis flowlines can be found by inspection and thus that the solutions for
the other flowlines can be written down immediately in terms of this basis
set. In other words, the control complexity of a structured program is
probably again only linearly related to the program length, O(n).

In the remainder of this section, I present an analysis of what comprises
a formal, mathematical proof of control-logic correctness. With this as a
guide, I will then be able to define practical tests to be made in
conjunction to the concurrent design and coding activities to lend
reasonable assurance thal program control-logic is valid.

A formal proof of control logic is much the same as a formal proof of the
entire module function, but easier, as it need only be concerned with paths
through the module.

Assertions (predicates) relative to logical control are merely statements
defining the conditions that must be met for traversal along the
corresponding flowlines. The proof of control-logical correctness of a top-
down, structured, hierarchically-documented design thus consists of
demonstrating that, for each module,

a. Each path segment {flowline) has an assertion relative to module
control parameters.

b. Each assertion truly reflects the logical condition under which that
path is traversed.

c. Each condition for traversal represents a circumstance that can occur
(i.e., there are no untraversable flowlines).

d. Each such condition is decidable from documentation of the current
module and its ancestor modules.

e. Once entered, module control eventually passes either to a normal or
extra-normal termination.

Figure 9-5 shows an example of a controllogic correctness assessment of
the Euclid’s-algorithm program given earlier as Figure 9-1. Although each
flowline in the chart can be assipned an assertion relative to control
parameters (conditions), many of these assertions would merely duplicate
actions in the function boxes, so they have been omitted, as have those
functions that do not affect module control.

As the next step, the assertions have to be verified to_show that each is a
true and sufficient condition for traversal of the flowline (condition 2). T will



Sec. 9.1] Formal Proofs 297

EUCLID's
ALGORITHM

Input N,M

[ Assertion3:

D<R, <D,

D, =R,
farn> 1

Assertion 5:

Assertion 4:
0<R <D,

R=0

(n=n+1)
Dn=Hn4
R, =CmodD,

Proof: There exist M, N such
that R +# 0. In such cases, at
each iteration we have

0<R, <R, forn> 1. Hence
) R, = 0 eventually, and the

algorithm terminates
‘ STOP ’l

Figure 9-5. Assessment of control-lagic correctness of Euelid's Algorthm (see

Figure S-1) {(only the operations and assertions necessary for proof have been

retained; values of R and D have been tagged with an integer (n} value denoting
the iteration index at Assertion 3)

bypass the formal aspects of this issue, and rely on the reader’s reasoning

for assurance that the assertions given are true (i.e., an informal
assessment).

Next must be found a set of conditions that together invoke every box on
the chart (condition 3). In this case, it is clear that any given positive values



298 Assessment of Program Correciness {CHAP. 9

of M and N produce either Ry = 0 or R; > 0. All control is expheit and,
therefore, decidable without outside reference (condition 4). Finally, the
algorithm terminates (condition 5): if R, = 0, it terminates immediately, if
R, > 0, the proof appearing in the figure may be applied.

As a first requirement, then, the control logic of a module will have to be
documented to such a degree that it is possible, at any phase of design, to
assess which submodules of the current module will be executed in any
given set of circumstances.

9.2 COMPUTER-AIDED ASSESSMENT OF PROGRAM
CORRECTNESS

Human fallibility and inability to cope with complexity in large
programs, even with the benefits afforded by the top-down approach,
dictate that there be some form of automatic checking of the design.

After one has become proficient in using a programming language, he
might expect that he would no longer make any syntactic errors in writing
programs, Yet this has amply been shown not to be the case. People still
make such errors; fortunately, they are mostly caught by the compiler (or
assembler) immediately. Some modern compilers now have the capability
to process many of the global characteristics of a program for context,
thereby catching many other errors that would not be noticed previously

until that code was exeeuted, if indeed the error were catastrophic enough
to be classified as a failure.

The methods given so far have admonished the reader to take great care
in each of the development activities, to be sure that what he 1s doing is
correct before he proceeds. Unfortunately, just as compilers will always
find syntax errors in freshly coded programs, there will always, with high
probability, also be bugs in these programs, not locatable until actual
execution of the code. At least, not until automatic program-provers come
along.

But just as mathematicians generally do not undertake to prove a
mathematical theorem correct until they are reasonably sure it is correct,
neither stiould one undertake to execute a program until he is reasonably
confident that it is also correct.

Checkout is the first step in program verification once coding has taken
place. It is the validation of the program or a part of the program by the
programmers themselves. It consists of compiling and assembling the code
being checked until the listing contains no errors, and then running a series
of tests to validate program integrity.



Sec. 9.2] Computer-Aided Assessment 299

Debugging refers to fixing any uncovered errors or inconsistencies
between the program specification and its actual operation.

Even if debugging is uninteresting and deplorable from the viewpoint of
computer science, it nevertheless is a practical necessity in program
production. Production systems that do not have automatic aids to permit
software engineers to execute programs, wholly or partly, in a controlled,
interrogative way doom program reliability and/or personnel productivity
to abysmally low levels. I shall not discuss the kinds of debugging aids one
should find in a good production system until Chapter 17. Worth
mentioning, however, are some techniques that do contribute to hastening
program checkout and that tend to be independent of the particular set of
aids available on a given system.

9.2.1 Concurrent Design, Coding, and Checkout

Designing a program from the top down offers a great potential toward
generation of iritially correct programs. Concurrent coding provides a way
of checking how a program actually operates to see if it matches the
designer’s intent, level by level through the program development process.

An unstriped submodule within a module can be coded as soon as the
flowchart on which it appears (or its equivalent) is finished because
unstriped modules represent specific, unambiguous functional statements
concerning the action of that module. Moreover, the program can be run,
provided each striped module is properly represented by a block of
temporary code {dummy stub) that will act as though it were the actual
code for the module, insofar as it produces a proper interface with the
program at its current stage of completion.

Once a design has reached the stage that the coding of a number of
modules {the current design phase) can begin, the design of the tests and
dummy stubs for that phase can also begin. (Different dummy stubs may
sometimes be required for different input sets.)

Of course, such stubs do not perform all that is necessary to make the
program operate correctly for all possible inputs. Rather, stubs are
intended to verify, by way of special test cases, that the operation is proper
for the already coded part of the program. Recall that Mills’ correctness
theorem states that if the part already coded 1s absolutely correct, then it
will stili be absolutely)correct after the rest of the program is coded, and
need not be checked again.

In principle, the use of dummy stubs can reduce the amount of
debugging and testing required during development to gain a certain level



300 Assessment of Program Correctness [CHAP. 9

of confidence in the program. However, since absolute correctness is
generally inaccessible, some rechecking may be necessary in practice. In
addition, the amount of rework needed to correct an error is greatly
reduced, because most errors are “nipped in the bud”, caught before they
are embedded in further levels.

By writing the code that calls the program stubs before the stubs
themselves are developed, the interfaces between the calling and the called
programs are defined completely so that no interface problems should be
encountered later.

In a complete sense, “correct” means that the program takes the proper
action for all inputs that may occur. In a practical sense, however, tests
must be limited to representative cases. Certainly, extreme values and
some non-valid data should be included as development-test-cases to assure
that the program responds in the intended way at every phase of the
design.

The test designer may elect, on occasion, to write test programs (fest
drivers) in which to imbed the current-phase design, or a part of it, or all
of it plus some of the previously tested design. Such an extra effort is
certainly in order when it is cumbersome, inefficient, or costly to compile,
load, and run paris of a program with which modules at the current phase
do not interface.

The principle of using the entire program as a test driver, however, has
several advantages, among which are:

a. It tends to minimize the coding of special test drivers to the
maximum extent possible,

b. It embeds modules in the same environment during testing that they
will have later during operation. !

c. It does not discard the driver-code after use (rather, it is the dummy
stubs which are discarded after use).

d. It allows tests {run at one phase of the development) to be rerun at
any subsequent phase, with consistent results.

I would like to emphasize again, that even though dummy stubs may
provide test data to a module and its hierarchic ancestors, this data is not
the actual data the program will access in final operation. It is data
supplied to verify logical control and data-space control Functions only.
Therefore, testing a module having dummy stubs succeeds only in testing
the control aspects of that madule relative to any data emanating from the
stubs. The data design is not verified until the actual data structures are



Sec. 9.2] Computer-Aided Assessment 301

accessed. Stub-tests may, however, by inference contribute to an
assessment of the data structural and functional correctness of modules at
the higher program tiers. .

9.2.2 Validation of Control-Logic Correciness

The five criteria for a formal demonstration of control-logic correctness
given in Section 9.1.2 above serve as guidelines for computer-aided
demonstration of control-logic validity. The demonstration consists of
devising sets of test data for a module to exercise each of its “flowlines”,
then executing that module with the test data as input, and, finally,
verifying that the conditions stated for traversal of a given “flowline” are
actually in effect. Additionally, module control must terminate as
advertised.

Devising test data for a developing program is conceptually not difficult,
and, in fact, can be computerized to some extent. The test designer merely
identifies (perhaps with computer aid) each of the series of decisions along
a path leading from the input test data to the "fowline” to be traversed,
and then invents appropriate test data to invoke those decisions.

As deeper and deeper levels of a program are designed and coded, the
test data can become hierarchically more and more refined, so as to invoke
each of the paths within each of the modules that have replaced dummy
stubs. That is, if a given test input caused the execution of a dummy stub,
that same input will cause the module replacing that dummy to execute
one of its paths; modifications of the input cause all its flowlines to be
traversed.

9.2.3. Auditing and Verifying Functional Correctness

The second requirement needed to make a- reasonable assessment of
program cotrectness (the first was control-logic documentation} is that
documentation should be carried to the level that permits an audit of a
module algorithm against its stated function at the previous tier of the
design. The purpose of such an audit is to ensure that everything assumed
by the parent-level design actually appears within the module and that
everything actually appearing in the module design is traceable back to the
stated module function.

In designing and executing tests to validate control-logic correctness, one
has simultaneously also designed the tests from which the functional audit
can take place. The identification of a program path with a certain test
input permits the assessor to tabulate what functions have been performed
along that path. He can then assess whether their actions are being invoked



302 Assessment of Program Correctness [Chap. 9

in their “proper” sequence, even though some of them, at this stage of
development, are as yet, only implemented as dummy stubs.

The job of tabulating the decisions necessary to cause the program to
traverse a given path is algorithmic; in fact, programs such as FLOW,
QUALIFIER, and PACE [73,74] generate optimal sets of test cases. The -
generation of data to invoke the test cases is likewise almost algorithmic,
but generally requires human intervention to relate input processing to the
predicates (program decisions) needed. The job of tabulating the functions
performed along any path in response to test input can be purely
automatic: counters and/or print stalements (probes} inserted in each
flowline will suffice. Then, the assessor must establish the correspondence
of each input to its required output stated in the Software Functional
Specification (SFS) and to the tabulated steps in the actual output of the
tested program. While this is not perhaps automatic, it is nevertheless still
at the audit level of complexity.

Human judgement and programming expertise, howéve_r:-will generally
be required to ascertain whether a given path tabulation is*consistent with
the program definition—that is, whether the output sequence of invoked
functions operating on the input data do, in fact, represent the correct
_response of the program module at the current (incomplete) phase of
development.

9.2.4 Example: Testing Module Control Paths

Problem: To generate sets of test data that will cause the shuttle-
interchange sort program to traverse all program flowlines. Figure 9-6
displays a flowchart of the program coded in Example 7.3.3.2 (of Chapter
7). Some of the flowlines are explicitly numbered for reference in this
example, others will be referenced by the numbers on the box they enter.

Analysis: To design these tests, one may choose each flowline in turn and
ask first, “What is a composite set of conditions which must be true in
order for this flowline to be processed?” In the example, to traverse
flowline 8 (entering box 8), the conditions are 1 < I < N-1, A} > Ay,
I > 1, AL} > Ay (because Ay and Agy; were exchanged in box 3), and
SORTED = false.

The next question to be answered is, “What input data will cause this set
of conditions? In the example, the 3-element array A=(3,2,1) satisfies
these criteria for I=2.

Usually, each data set tests a number of flowlines all at once. For
example, the array A=(3,2,1) causes traversal of flowlines 1,2,3 (and 4), 18,
and 18 for [=1: then flowlines 2, 3, (and 4), 5, 6 {and 7), 8 (and 9), 10, 14,
and 18 for I=2; and, finally, flowline 19 for I=3. All that remains is to test



Sec. 9.2] Computer-Aidad Assessment 303

— SHUTTLE-
ORIGINAL PAGE IS v Aand @

OF POOR QUALITY  JzeNon y

entry

in order

Exchange
A, and A

SORTED = faise 15 16 Y

Exchange

AgandA,

18
SORTED = true SORTED = true

19

RETURN

Figure 8-6. Flowchart of the Shuttle-Interchange sort algorithm of Example 7.3.3.2



304 Assessment of Program Correctness [CHAP. 9

flowlines 11, 12, 13, 15, and 17. The array A=(1,5,4,3,2) fulfills this need.
The composite array A=(3,2,1,7,6,5,4) causes traversal of the whole
program.

Although each flowline has now been tesied, each path (ie., valid
combination of flowlines) through the program has not been tested. Hence,
there may yet be errors in the program, but confidence that this is not the
case is very high. Still, to be sure, it is wise to submit the program to the
trivial (?) case A=(1), and to as large a sample of random data as may be
expected to appear in operation.

The simpler cases, such as A=(1) and A=(3,2,1,7,6,5,4), can be checked
by hand (desk checking); however, to assure that the code matches the
flowchart—or whatever medium served for desk checking—it is probably
worthwhile also to sitbmit the running program to the same examples used
tor desk checking.

9.2.5 Other Checkout Techniques

Another useful technique applies whenever the correctness of a module
can be established based on an arbitrary value of a parameter, rather than
the specific value it must have, as required by the overall program. For
example, let me suppose that the overall program requires a buffer of, say,
20,000 words of memory, but the subprograms that access this buffer are
programmed parametrically to accommodate a buffer of arbitrary size, B.
It might then prove very costly to require the allecation of 20,000 words
just to check out the access modules, when a smaller size of, say, 50 would
do.

It was pointed out to me by B. Mulhall of the Jet Propulsion Laboratory
that many numerical processes to be programmed are either inherently
linear, or else have linear sub-parts (perhaps within some limited range of
values). Conceptually then, each path through a program could be tagged
as to whether it is supposed to produce a linear or nonlinear computation.
Inspection of the specified algorithms would indicate the linearity of each
such path (each path is a subfunction performed by the entire program).

If the program is a linear process, then the principle of superposition
holds: If X is an input set resulting in the output data set Y, and if U is an
input set resulting in the output set V, then processing X-U should output
Y-V. .

v



Sec. 9.2] Computer-Aided Assessment 305

Even though a few such checks do not prove a program is linear,
nevertheless, such tests are relatively easy to perform, and simple to check.
Moreover, they increase confidence in using the program, especially when
hand-computation of a calibration output set Y is difficult, error-prone, or
lengthy.

Moreover, only one such calibration input/output pair is ever needed,
say (X,Y). For any other input set U, one may define W = U+X; then if
the output using U is V and using W is Z, the relationship V — 2 = ¥
should hold.

Code checkout may thus make use of simpler configurations or schemes
. to simulate facilities not yet available, as preliminary assurances of module
integrity. Ultimately, however, the module must be tested in its actual
environment. Programmers should thus be careful not to over-checkout
their modules using oversimplified test cases.

On occasion, a programmer checking a program discovers that his job
would greatly be simplified if he only had a certain debugging aid. On
further consideration, he may find that such an aid can be made a general-
purpose tool, to aid in many future developments, as well. So he begins
developing the tool as a subdevelopment project within his current project.

The trouble with creating debugging tools is that it is the sort of thing a
programmer can go wild over and lose his perspective, sometimes spending
more time developing the tools than on developing the program. For this
reason, it is probably best to develop such aids in small stages, with
programmatic justification required for each enhancement. Otherwise, the
effort can be very wasteful of project resources.

9.2.6 Prognosis for Success

In the design and coding of a program from the top down, the control
logic has been made explicit, and it has been possible to test and verify that
control logic with explicit, well-defined input data. On the other hand, data
structures {other than conirol flags) and the functions which- operate on
them may have been verified more implicitly, since data may not actually
get stored into these hierarchically defined structures until the very lowest
operations in the hierarchy have been coded. There is, therefore, probably
a larger chance for errors to occur in functions which operate on data
hierarchies than there is in the functions which affect module control.



306 Assessment of Program Correctness [CHAP. 9

But even if data structures are perhaps more likely to be accessed
incorrectly, or have the wrong information stored in them, nevertheless the
module control-logic and functional intent will have been kept intact.
What is most likely to go wrong, then, is that some of the data structures
will be improperly interfaced, or some of the module correctness
assessments based on assumptions not later fulfilled.

The first type of problem usually gets cleared up after a few tests are run
and a consistent interface defined (and adhered to). A module whose
function is correct but whose data accesses are found to be in error can be
corrected at the detected level or modified at the later, exploded levels of
that module as required, without upward side effects. With high likelihood,
if such errors have not been permitted to remain unmended as the program
develops, the program will be correct.

9.3 ASSESSING REAL-TIME PROGRAM CORRECTNESS

The structures introduced for real-time, concurrent programming
{Chapter 6) and the concept of program consistency imposed as disciplines
on program development separate the procedural correctness from proofs
of timing correctness. Procedural correciness assessment of a real-time
program is compatible with the formal and machine-aided assessments of
correctness of non-real-time programs discussed previously. But formal
proofs may be discounted from practicality for all but a select few, small
programs.

The central problem then lies in selecting tests that infer probable
correctness. Structured, consistent programming permits verification tests
during development on a systematic basis. The principal difficulties in
testing a multiprogram (presuming that the operating system makes
consistency possible) will be in defining test data sets that cause all
flowlines to be traversed, and then interpreting the “trace” of that program
activity with respect to program-defined requirements.

Because concurrent processes can communicate data among themselves,
the problem of defining input data sets to traverse each path segment at
least once becomes more difficult. That is, each process not only depends
on its owned input, but also on that shared with other processes; moreover,
the daia communicated between processes may be time-dependent, thus,
harder to control.

Brinch Hansen [75] describes the testing methods used to validate the RC
4000 Monitor, which forms the nucleus of its multiprogramming system,
multiplexing a single CPU among concurrent process and implementing



Sec. 9.3] Assessing Real-Time Program Coireciness 307

the procedures that these processes may use to create other processes and
send messages to them. In that case, the test stubs consisted of a hierarchy
of simulated user processes selected to exercise a minimal set of Monitor
functions that would give significant information about its handling of
concurrent events. First, tests verified the multiplexer mechanism; then,
the process communication procedures within multiplexed programs; next,
all possible interactions between processes and peripheral devices of
various types; and finally, the file system. As a result, the Monitor was
virtually error-free within a few weeks.

One significant aspect of the Monitor program was that it was written
after the testing philosophy had been specified. That is, the Monitor was
designed with testability assigned a role of paramount importance. The
ways that its processes could interact were designed in terms of the zests
that could be performed to validate that interaction.

McCornock [76], for example, describes the development of a “synthetic
environment” (which models the host computer, its operating system, and
peripherals) to test real-time programs. Real-time process-control programs
can be imbedded in this model and executed interpretively in parametric
time (simulated real time) during the program development phase. This
procedure separates out all the non-timing problems, and is capable of
detecting many of the timing errors, as well. It further permits the majority
of the program production to be accomplished using a computer with
perhaps less than the full complement of peripherals or capabilities than
the one in which the program will later be required to operate.

From the viewpoint of the software being executed, McCornock’s
synthetic environment is real. Devices are simulated, but the actual
program code is executed, albeit in a controlled way. The program in ijts
synthetic environment can even be run as a batch job, if desired. The
testing speed of the program can thus be very high, because the rate of
execution is not geared to peripheral speed, but to execution speed of the
model environment. Control of the model resides in a set of data images
stored on magnetic tape or punched cards. Changing operating modes,
hardware characteristics, or f‘tirﬁing” of events is simple; evaluating their
effect is made possible by the repeatability of the results.

But, in the end, the synthetic environment is still synthetic, and only a
model of reality. The extent to which the model has validly simulated
actuality has permitted program development to succeed to that extent.
The final confirmation of correctness must come from the program
operating in its true environment.



308 Assessment of Program Correctness [CHAP. 9

9.4 CONFIDENCE. LIMITS FOR VERIFICATION TESTING

Coarrectness and reliability of software are crucial as practical matters for
nearly all large programs and programming systems that are used on a
continuing operational basis. Such programs are constantly being tested, as
a part of normal operational usage, and errors continze to be uncovered
long after the program has become operational, despite all precautions
taken and all disciplines used during the development phase. Many
postulate that no large system can ever be completely error-free.

Given a large program, its correctness is a matter of fact and not a
matter of probability; the number of errors that a program contains is a
fixed, although usually unknown, quantity.

However, the number of errors that can be found by testing tends to be
a random variable, since it is very rare that all the possible responses of a.
program can ever be completely verified. Since any set of responses tested
is in some sense a random sample of the entire set of all responses, the
number of errors discovered during a test reflects on both the reliability of
the program and the adequacy of testing.

Of course, if one sticks to exercising only the tried-and-proved cases,
then one can be 100% sure that the program operates as it should (unless
something has been tampered with in the meantime). But what of the
untested cases? Is there any way to estimate the likelihood that a randomly
chosen, untried case will perform correctly?

The answer is yes, although the reader may well appreciate that the
accuracy in estimating or predicting a program’s reliability from analyzing
experience data is significantly influenced by how well the statistical model
fits actuality, that s, how well the assumed error-effect and error-probing
mechanisms mirror the actual errors and the way these are encountered by
tests. The use of statistical inference techniques can, nevertheless, provide
a worthwhile gauge of program correctness, and can help to define testing
methods, test criteria and test procedures to demonstrate a program’s
reliability within a given confidence level.

The remainder of this section is devoted to one such technique that
permits end-to-end verification that a program contains no more than a
prescribed number of errors, subject to a quantifiable confidence factor.

9.4.1 Calibration of Testing Adequacy

Mills [77] transcribed Feller’s theory of “Estimation of the Size of
Animal Population by Recapture Data” [78] into software terms, and built



Sec. 94] Confidence Limits 309

upon it a simple, useful concept for designing and conducting tests, and
inferring program reliability from the test results:

The model assumed by Mills is the following, The program to be tested
is presumed to contain an unknown number of “indigenous” errors, which
are the subject of investipation. Finding these, or at least estimating their
number, is the object of “testing”.

The method for estimating the number of indigenous errors consists of
inserting a number of “calibration’ errors covertly into the program before
submitting the program to testing. Testing then reveals and locates a
certain number of the errors, some of which are calibration errors
(unknown to the testers at the time), and the remainder are indigenous.
The calibration errors are then revealed.

If the insertion and testing are presumed to be unbiased (that is, so that
errors of either kind are'found without bias), then the theory states that the
maximum likelihood estimator for the total number of errors in the
program is given by the formula

in which the symbols represent:

£ = the estimated number of indigenous errors
¢ = the number of calibration errors inserted
i = the number of indigenous.errors found by the test

k = the number of calibration errors found by the test.

When k = ¢ (all calibration errors are found by testing), then i (the
number of indigenous errors found by testing) is the maximum likelihood
estimate of how many there actually are. However, the estimate € is
merely the most likely value for the total number of errors, based on the
data; it does not reveal how confidently one can rely on that estimate.
There is the possibility, since the actual number of errors in the program is
still unknown, that errois, other than the ones that were found, are still
lurking about, ready to pounce on an unsuspecting user.



310 Assessment of Program Correctness [CHAP. 9

Fortunately, Mills also gives a method for estimating the confidence that
one can have in stating, “There a¥e no more than E errors in the program”,
and, thereby, for specifying test criteria to validate such a statement, to
within a given confidence level. The method forces testing to continue until
a prescribed number, k, of the calibration errors are found, and then stops
to examine the indigenous errors.

Let it be supposed that there are actually e errors in the program (but e
is unknown). Confidence in the statement “no more than E errors exist™
can be gauged as follows: If i > E, then, obviously, the hypothesis is false
and would be rejected immediately; it warrants no confidence at all. But if
i = E, then it is of concern whether other similar (random) tests would
have produced i > E (proving again that the hypothesis is false).

Thus, if e > E, then with calculable probability, the hypothesis, “no
more than E errors exist”, will be proved a lie by testing; no such
statement would thus be made. The confidence one may take when such a
statement can be made, therefore, is equal to this probability, that testing a
program with any e > E would find i > E, and prevent the lie from being
told. Hence, the (pre-test) confidence factor is

conf (“po more than E errors”™) =min Prob {i > E}

ex1

Hereafter, I will refer to the left-hand side merely as “conf{ < E)”, the
minimum value is necessary (as a worst-case) because the actual value of e
is unknown a priori. The numerical value for the confidence level when i
errors are detected is given by

0 fori > E
c
conf (<E) = (k— 1)
E+1-+¢c
E+k

When testing continues until all of the calibration errors have been
found (i.e., k = ¢}, the formula reduces to

fori < E

conf (<E) =



Sec. 9.4] Confidence Limits 311

Figure 9-7 illustrates this confidence factor for ¢ = k = 9, 19, and 99. As is
shown, the confidence in a test with ¢ = 9 that claims a program contains
no errors is 90%; for the same test to validate that there are under 2 errors,
the confidence drops to 75%.

Confidence in stating “< E” drops as E increases and as fewer
calibration errors are used. These characteristics fit with intuition: The
more calibration errors used and then found, the more thorough must be
the testing to find them (and any indigenous errors, as well). The more
indigenous errors a program is assumed to have, the less certain are tests to
locate them all.

1.0

CONFIDENCE FACTOR (<E)

1
10 15

ERROR BOUND, E

Figure 9-7. Pre-test confidence factor for cases in which all calibration errors are
located by testing (¢ = k), as a function of presumed upper hound on number of
errors

9.4.2 Test Monitoring

Testing by the method described above requires a test monitor and a test
conductor. The monitor knows where the calibration errors are located and
what they are. The test conductor knows neither of these things, although
he may know the number that have been inserted.

As errors are located by the testing, they are presented to the monitor,
who then reveals their type, calibration or indigenous, one by one. Testing
ceases when either all calibration errors are found before E +1 indigenous
errors appear (a successful demonstration), or else when E+1 indigenous
errors are located before all ¢ of the calibration errors appear (the
demonstration fails),



312 Assessment of Program Correctness fCHAP. 9

Figures 9-8 and 9-9 illustrate two examples of a “test progress” chart,
one of the programs passed its test, the other failed. Both programs were
tested to demonstrate fewer than 7 errors, with 75% confidence {¢ = 21).
Both figures also show maximum likelihood estimates for the total number
of errors, calculated as each error was detected. As may be seen, the error
estimator is subject to wide variations, especially during the early testing.

Although verifying, at a given confidence level, that a program is error-
free Is no less rigorous than demonstrating that a program has no more than
an arbitrary higher number of errors, the amount of administrative work in
preparing and monitoring the tests can be significantly less in the zero-
error case. The number of calibration errors to be generated is less; the
work of locating, cataloging, and, perhaps, repairing errors, is less
(remember, most of the errors in the program during the test are
calibration errors}; and, if calibration errors are repaired as they are
discovered, the costs in reassemblies or recompilations may become a
significant cost factor. If not repaired, they may seriously hamper finding
the others.

i5 i | I [ I
MAXIMUM LIKELIHOOD
ESTIMATE, € OF NUMBER
OF ERRORS DURING TEST
g 10 TEST TERMINATES 3  —
2 WHEM ALL 21 C's
= ARE FOUND
w
[42]
=
o AR B SN SN A, WY VP
=
w
(]
[a) |
z sl ERROR LIMIT | ]
[
|
1 [
ACCUMULATED INDIGENCUS I
ERRORS DURING TEST ]
DETECTED ERROR LIMIT |
0 ! L | | VI
0 3 10 16 20 25 30
DETECTED DETECTED ERRORS DURING TEST, e,
ERROR

TYPE-=CC ICICCICCCCCCICCCCICCCCCC

Figure 9-8. Test Progress Chart for a program to verify that it has fewer than 7
errors with 75% confidence level



Sec. 9.4] Confidence Limits 313

| | | |
MAXIMUM LIKELIKOOD )
ESTIMATE, %, OF
e 10 NUMBER CF ERRORS —
g DURING TEST TEST
bt TERMINATES
= AT 8th ERROR
w
D e—me——— e e e . e e e . e e e . P —
(@]
= U
¢ INDIGENOUS
= 50 ERROR LIMIT _
E
ACCUMULATED
INDIGENOUS
- ERRORS DURING
TEST
DETECTED ERROR LIMIT —al
0 | | | i
0 5 10 15 20 25 30
DETECTED DETECTED ERRORS DURING TEST, e,
ERROR

TYPE cccccrlrcccecccliccctliicrcltill

Figure 9-9. Test Progress Chart for a program that failed to show that it had no
more than 7 errors (test designed for 75% confidence level)

9.4.3 Creating Effective Calibration Errors

The confidence-testing theory, which is being discussed here, depends on
generating and insertng errors similar in nature to the errors (if any) that
exist already in the program. Without knowing {or suspecting) what type of
errors these may be, probably the best way is to insert errors at random.

There are many types of errors that this method does not apply to,
because there are many ways to fix a program with errors (including
rewriting the entire program so that it no longer resembles the original).
However, for programs aiready highly reliable, one normally thinks of
correcting errors by changing or adding a statement or a few statements.
This, too, suggests that the idea of msertmg errors randomly through the
program will provide a useful model fOr testing. A procedure for doing this
insertion is as follows:

If there are ¢ errors to be inserted, generate ¢ random
numbers and multiply each of these by the number of lines
of code in the program. Then go into the program at these
line numbers and alter the code (leave out the line, add a
new line (or lines), misreference a variable, change a



314 Assessment of Program Correctness [CHAP.9

constant, branch to the wrong label, make an array smaller
or larger than it should be, clear a data cell, etc.} choosing
the error type at random, as well.

It is not difficult to conceive of automatic algorithms for various
programming languages to randomly introduce such errors but maintain
correct syntax, for recompiling and testing. The error frequencies could be
set to reflect actual experience in the given language at a given stage of
development.

The highest confidence factor is achieved when testing continues until all
¢ of the calibration errors are found. Testing to verify an assumed upper
limit of errors, within a given level of confidence, can therefore be
achieved by inserting and finding ¢ calibration errors, where

_{E 4+ I)conf(<E)
T T " Cconf(<E)

For example, to demonstrate with 90% confidence that there are no
errors, only 9 calibration errors are required; to demonstrate with 99%
confidence that there are no errors, 99 calibration errors are needed; to
demonstrate with 75% confidence that there are no more than 200 errors,
603 calibration errors must be inserted.

The reader may well note that the number of calibration errors for
insertion grows sharply as higher .confidence levels are required and
proportionately as a greater number of errors are supposed to exist. To
verify with 50% confidence that a program is errorfree only takes 9
calibration errors; to demonstrate with 75% confidence that a program
contains no more than 5 errors, 18 calibration errors are required.

This does not mean, however, that it is easier to verify zero-error
programs at 50% confidence than 18-error ones at 75% confidence. Quite
the contrary. If a program has only 5 errors, it passes the latter test 100%
of the time; it passes the former test less than 10% of the time.

Thus, to raise test confidence when only a fraction of the calibration
errors are sought, it is necessary to raise the number of calibration errors
inserted, and to find the appropriate percentage of these. There just isn’t
any way around thorough testing when a high confidence factor is at stake!

9.4.4 Post-Test Confidence Factors

Let me again assume that testing proceeds until the kth calibration error
is detected, whereupon testing ceases, having uncovered i=I indigenous



Sec. 8.4] Confidence Limits ) 315

errors. Knowing that there are at least I errors is more than was known
before the test was run., This extra information can be used to refine the
confidence estimate.

The post-test confidence factor for the statement, “there are no more
than E errors if I-errors are found”, is

conf (<E|I) =min Prob {i > Ile}

esB

and the formula for it is

S <E+1 c ) ,
~1 —k+1
conf (<E|T) = E oo

E+C+l) E4+ct+2—i—k
1=X+1 1+k-—1

As may be noted, the pre-test conf( < E) value is the same as the post-test
conf{ < E | E). For the case k=c, there is a recursion formula to facilitate
calculating the post-test confidence factor,

conf (<E + 1|I}) = conf (<E|I} + (m

° )[1—conf(5E|1)‘]

Figure 9-10 illustrates the shape of the post-test confidence factor curves
for the case k=c=9 as a function of E for various values of 1. As shown in
the figure, if 2 indigenous errors are found by testing (I=2), then there is at
least 75% confidence that no more exist; there 1s 92% confidence that there
are fewer than 4 errors, 97% confidence that there are fewer than 5 errors,
etc. A test that finds no errors shows 90% confidence that there are no
. more; there is 98% confidence that there are fewer than 2 errors, 99%
confidence that there are fewer than 3 errors, ete.

When testing fails to reveal all ¢ of the calibration errors, stopping after
the k™ is found, then the effectiveness of the test is reduced, as is the
confidence in the indigenous error bounds. The zero-error case takes a
particularly simple form that illustrates the degradation very well:

k
c+1

conf (no errors) =



316 Assessment of Program Correctness [CHAP.9

1.0 EIm———
I=0
- 1
o
v o8k
g 2
2
w | 3
o
= 4
a
= 5
T 061
) B
Q
i
12
0.4 ] | 13§/ 14
0 5 10 15

ERROR BOUND, E

Figure 9-10. Post-test canfidence factor for stating that a program has no more
than E errors when l-values have been located by testing, for the case c=k=9

Thus, if no errors have been detected when testing stops after finding 8
calibration errors of the O inserted, then the test confidence drops from the
.90% expected; should testing have continued successfully to the detection
of the Oth calibration error, to only 80%.

9.5 SUMMARY

The methods 1 have put forth in earlier chapters toward increasing
program reliability are ones that encourage proper attention to detail in
design by forcing a certain level of documentation and informal assurance
of correctness along with the design before coding begins. Then coding has
the opportimnity to check the design as the program evolves, to the extent
that, when the program is completed, every statement of code will have
been executed at least once. (More than this, each fowline will have been
traversed.) I have also mentioned a method for demonstrating program
reliability based on confidence levels.



Sec. 9.5] Summary i 317

I realize that conditions and systems will vary from organization to
organization and from project to project, making it perhaps impossible to
establish a detailed standard correctness philosophy that will apply equally
to every condition Nevertheless, an overall methodology is not impossible,
to identify and define candidate disciplines for software reliability
calibration. There is a direct application of such methods in all software
development projects, large and small—only the scopes and magnitudes of
the efforts will change.



318 Assesmnent’of Program Correctness . [CHAP. 9

Problems for Chapter 9

9-1 Make a list, and discuss each item in the list, of techniques that can be
used for debugging programs, but do not particularly depend on the set
of aids available on a particular system. Discuss the aids you think should
be available for debugging in a “standard software production system”.

9-2 Draw a flowchart for the sieve of Eratosthenes (see Figure 8-8) and
annotate it with assertions on each flowline. Prove each inductive
assertion and then prove the end assertion in a rigorous, formal,
mathematical way.

9-3 Write a set of dummy stubs for the CONTROL, REPORT, ERROR, GARDIN,
EXTRACT, VSTORE, LSTORE, and ALLSTORE modules of the REFERENCES
program shown in Figures 8-19 and 8-20. Design these to validate all
control paths of the program by traversing every flowline at least once.
Each module should print the module name and the value of control
elements for that path. Then play the part of the computer and execute
the program. From the output, assess whether the program is correct at
this level of design by comparing the required behavior with the
sequence of actions taken.

9-4 The subroutine saAT shown below computes the square root of the
incoming argument X and exits with X2 in the AQ register. Attach
control-logic assertions to each flowline that satisfy the criteria in
Section 9.1.2. Prove rigorously that the algorithm terminates and that, on
normal termination, A0 contains X172,



Problems 319

Enters with
X as argument

¥

' EXIT error ,

-
i}

AQ=0 AD= (X +1}/2

T=
{X/AQ - AD)/2
AD=AQ0+T

o

yes

Exits with T
X112 |0 L — %

register AQ
RETURN

9-5 Design and flowchart {(or code in CRISP) a program that will scan a
CRISP source listing and then print the conditions for traversing each
flowline. Comment on the utility of such a program for designing test
data to validate other programs.

9-6 Devise tests that will validate the “Readers and Writers” program
given in Example 7.3.3.4 (of Chapter 7).



320 Assessment of Program Correctness [CHAP.9

9-7 The sequence of bits generated by the formula a,y; = apq @ 2, is
known to exhibit excellent random properties when n and m are
properly chosen [79], n is the word size and “@ ™ is modulo 2 (exclusive
or) addition. Starting with a word w = (a,_pa,2... sap), the following
procedure produces random words:

procedure. Random word w

-1

(= 2 L I~ N VL I\

.7

let register R=w <#the word from last time*>
right-shift R by m bits, zero fill on left
exclusive-or this R waith w

store result back in w

left-shift R by n-m bits, zero 11l on right
exclusive-or this R with w

store result back in w <*save for next time*>

end procedure.

Now the problem: prove that this algorithm produces as its next word

the value w = (a, 1,35, ... ..a,) and thus, by induction, that each call
of the procedure generates the next n bits in sequence.

9.8 Devise a test tree or set of test trees that cause every flowline of the

i

CRISP-PDL post-order traverse program in Section 7.3.2 of Chapter 7 to
be exercised. Then “run” the procedure on this test data with an
appropriate dummy stub for “process this node™. Be sure to include the
PDL for the stub.

-9 Rewrite the post-order traverse program to perform a pre-order walk.

Test it and use the same PDL style as in Problem 9-8.

9-10 Compute the number of calibration errors needed in the post-order

walk problem to build a 66.7% confidence level in the program. Insert
this number of errors, of a subtle, minor nature, into the program and
resubmit to the previous {(all flowline) test. Did the test find all the
calibration errors? If not, then how many?



X. PROJECT ORGANIZATION AND
MANAGEMENT

For small, or perhaps even intermediate-sized programs, one person may
be able to do all the design, coding, testing, and program maintenance tasks
himself. But for larger programs he needs help. This chapter provides some
guidelines toward the composition of a software development team, the
roles of its members, their responsibilities, and the procedures they are to
follow when developing a medium-to-large scale piece of software.

? <%

The approach parallels much of IBM’s “Chief Programmer Team” or
“CPT” concept [80], but is more flexible and tailored to the development
procedures I have discussed up to this point. As in the Chief Programmer
Team, the project organization I will describe separates the work of
program development into specialized jobs, defines the relationships among
specialists, and devises tools to permit these specialists to interface
effectively. The project personnel work as members of a team rather than
as individuals.

A definitive analysis of what constitutes good project organization and
management practices is beyond the scope of this chapter. All I can hope
to give are highlights, guidelines and examples of the kinds of things that
need to be considered in developing top-down software effectively. 1
recommend to the reader interested in a more comprehensive treatment

321



322 Project Organization and Management [CHAP. 10

the work of TRW [81] contained in their Softwaie Development and
- Configuration: Management Manual. .

10.1 SOFTWARE TEAM PRODUCTIVITY

An intelligent, hardworking programmer working by himself may be
able to write a program of many thousands of lines of code in a relatively
short time. Typically, such a person puts in many long hours, talks to very
few of his co-workers, keeps very sketchy notes of his programs, but is very
productive in actually producing lines of code. But as the size of a program
grows, it becomes necessary at some point to add members to the
development effort. Two equally capable programmers are usually not able
to produce twice as much work as a single programmer. If a third
programmer is added, he usually adds less to the overall output than was
added by the second As a result, a programmer working as a part of a
team is less productive than if he were working by himsellf.

In the remainder of this section, I want to discuss this phenomena and
propose organizational and programming puidelines to combat decreasing
incremental productivity.

10.1.1 A Simple Model

The key to the insights I want to develop can be correlated with the
following tremendously oversimplified analysis of a software team’s
productivity. Let me define index of productivity by the formula

A L

WT

in which L represents the total number of lines of source code (excluding
comment lines) delivered (i.e., error free) at the end of the project, W is
the number of workers contributing to the product, and T is the average
time each worker spent developing the software. The unit of this
productivity index is lines/day.

For example, if 83,000 lines of source code were delivered in 22 months
(477 working days) by an ll-man year effort (an average of 6 team
members), then their team productivity was P = 29 lines/day. This is the
figure published for IBM’s New York Times project [82], the first to use the -
Chief-Programmer Team concept.

Let me apologize for the oversimplified measure of productivity by
saying that I will use the measure only to provide some broad insights into



Sec. 10.1] Software Team Productivity 323

why there are apt to be inherent difficulties with large projects, if
improperly organized. It may be possible.to refine the productivity model
to account for such things as different levels of expertise, variation in
salaries, etc., but I think the insights remain the same.

In the development effort, there are a number of software tasks to be
performed, among which are: ‘

a. Design.

b. Coding.

¢. Checkout.

d. Documentation.

e. Supervision.

f. Acceptance testing.
g. Quality Assurance,

There may be others, but these suffice for the argument to follow.

10.1.2 Task Separation

Let me first suppose (not seriously, however) that each of the seven
software tasks above is undertaken by a single individual. There is then a
complete separation of task areas within the project. This assignment
means that the designer must design the equivalent of WP lines per day,
the coder must code this many per day, the persons doing checkout and
testing must test this many, the documentor must document all the design,
coding, testing, etc., of WP lines per day, and the supervisor must oversee
the activity of his team operating at this pace.

To match the New York Times Project’s 29 lines per day, each of the
seven members of the project I am describing must produce the equivalent
of 7 + 29 = 203 coirect lines per day.

But there is more to the story. In order for the project to run smoothly,
it is necessary that each individual spend part of his time communicating
with each of the other team members. For example, the designer must
confer with the coder to resolve any questions the coder may have about
the design; both of these must talk to the individual testing the code to
give him the benefit of their experience with the program; each of these
must talk to the documentor to assure that the documentation is proper
and complete; and so on.

Thus each member may devote only a certain fraction of time to active
production. The rest of the time is spent in necessary conference with


http:possible.to

324 Project Organization and Management [CHAP. 10

teammates. Let me oversimplify again and suppose that the average time
splits into

T=T,- (W—1)Ts

where T, represents the average “productive” time, and Ty, represents the
average “non-productive” time each worker spends interfacing with each
of the other team members. “Non-productive” time here does not mean
non-useful or unnecessary—it means only that the individual is engaged in
an activity other than active production in his task area.

The rate, or individual productivity level P; that each team.member
must sustain during his “productive”™ periods so that the team bhave overall
productivity P, is given by

b L _ WP
T, T 1= (W= 1) (Ta/T)

Obviously, as depicted in Figure 10-1, too many workers can spoil things! If
the average time spent communicating ever reached the fraction,

Tuo 1

T  W-1

then the project is doomed! In order for these seven workers to output 29
lines per day, spending 5% of their time. communicating with each other
project member, each member must work at the rate of 200 lines of code
per day!

10.1.3 Job Integration

Now let me suppose that one individual were to undertake the entire
project and was capable of doing each of the seven tasks himself. The time
spent in inter-task communication is then zero, all the material to be
communicated is already in mind. This one individual, therefore, must
design the equivalent of only P correct lines per day, code P lines per day,
check out P lines per day, and so forth. All his time is productive.
Intuitively, then, it might seem much more plausible to have one capable
person do all seven tasks on 29 lines of code per day, rather than having
seven people doing individual tasks at the rate of 290 lines per day each.

This is probably true if one person could undertake an entire large
program and cope with its complexity; it would, however, take such a
person about five times as long to complete the project as the seven-
member team above (at a 5% non-productive index). Hence, let us try



Sec. 10.1] Software Team Productivity 325

|

b
<L
- /
E 15 . -
=z 2 = g1 /7
g T /
e 0.05 /
w /
& 7
= / 0
= 10 |- 4
o //
o
- /s
> Ve
b 7
§ e
o e
& yd
-l
=z -
2 i
s Z
aa ]
=

0 1

0 5 10
WORKERS, W

Figure 10-1. Individual productivity required to support an overall project
productivity of P =1 line/day, for non-productive time ratios of 5% and 10%

splitting the project among a number of such individuals to hasten things
along.

Suppose that the program were to be segmented into W equally-sized
modules, each within the human capability to cope with complexity, and
let W workers be assigned, one per module, to perform all the needed
tasks (design, coding, documentation, ete.). Each produces P; lines per day,
finished, correct code. As before, let L be the total number of. lines of
delivered code, and T be the average time each man spent in the project.

If each of the modules were to require the expenditure of non-
productive interfacing time T, then the amount of code completed each
day by the project is, on the average

2= BW [1— (W ~ 1) (To/T)]



326 Project Organization and Management {CHAP. 10

The figure in braces represents the loss in personnel efficiency due to non-
productive interfacing time.

The 'amount of code that this project can produce per day has a
maximum value, found to be (Figure 10-2)

(7).~ )

The figure in braces again represents the loss in personnel efficiency. This
maximum production rate is achieved when the team size is

w o 1T (To/T)
2(Top/T)
’
/!
J
V4
/
/k
/ UNENCUMBERED
/ RATE
/
2 /!
[1+ (TnE /T}] /-’
4T _IT) / LOSS DUE TGO
s s INTERFACING

NORMALIZED TEAM PRODUCTION BATE, R

14 (T, /T)
20T, _/T)

1
LR 7

WORKERS, W -

Figure 10-2. Normalized team production rate (Ré L/TP;} as a function of team
size and non~-productive time index



Sec. 10.1} Software Team Productivity 327

Notice that the efficiency of this team is never much better than 50%
when producing at its maximum rate For example, at a 5% non-productive
index, the personnel efficiency is cut to 52.5%, and 10.5 people produce
only 5.5 times as much code as one (ideal) individual. At a 10% non-
productive index and 5.5 workers, the maximum rate is only 3 times as
great as one individual.

If the New York Times team was of optimum size (W=8), then the
83,000 lines of code delivered in 22 months would bave required an
individnal productivity index of P;=53 lines/day and would have had a
non-productive time index of 9.1%.

Such a project hoping to deliver L lines within time T using W workers
having individual integrated-task productivities P; must keep their non-
productive index within the bound

T 1— (L/WTPy)
T <7 W—1

if there is to be success.

A six-member team attempting to deliver 83,000 lines of code in 22
months using workers skilled to the 35 lines/day level must find some way
of limiting their inter-task non-productive-time index to 3.4%—less than 17
minutes a day per interface!

10.1.4 More on Modularity

To maximize productivity, one must reduce to the fullest possible extent
all factors .causing non-productive time. I used the illustration of seven
people doing seven separate, strongly correlated tasks to show how non-
productivity can escalate as a project grows in size, if organized along lines
requiring human interfaces. The example in which team members
performed integrated tasks, but spent non-productive time interfacing the
modules, shows that their performance was no better.

In previous chapters, I propounded modularity as a means to combat
complexity: modularization by functional segmentation into hierarchic
levels having minimized -program conpections (in data, control, and
services). I now add another dimension to modularity: modularization by
organization of the program into hierarchic segments that minimize the
interfaces required between project personnel. I'can also quickly append
another dimension: modularization inte areas of personnel expertise.



328 Project Organization and Management [CHAP. 10

Operating directly on these premises is the Chief Programmer Team
concept, developed by IBM as a method to increase productivity in
production programs; that is, those programs where “off-the-shelf”
algorithms apply. Why it works can be argued on the basis that
supervision, design, coding, and documentation are largely carried out by
the Chief Programmer himself. Design is done mostly in code using “self-
documenting” techniques (this merges much of the design, coding, and
documentation processes into one activity, decreasing W). Interfaces with
other programmers are directly defined in code as arguments passed to
their module stubs. Complexity is controlled via structured programming
and top-down development.

There are projects, however, that require more definite forms of
documentation than descriptive variable names and fixed stub interfaces.
Sometimes projects are too large for one person to manage effectively and
still handle the Chief Programmer’s role. There are company organizations
where software management and design are performed in-house, while
coding is done on contract (or vice-versa). To the extent that the concepts
that pervade the Chief Programmer team are valid, they may be fitted to
other organizational disciplines beneficially.

At some point as programs grow large, complexity exceeds the human
ability to cope with it; when this happens, individuals spend more time
floundering around than they de producing code or beneficially supporting
its development. Assigning separate tasks to separate individuals invites,
and, indeed, necessitates some non-productive time in the form of inter-
task communication. Assigning too large a program segment to one person
decreases productivity by fostering non-productive time of a different sort,
namely, that needed to cope with program complexity.

10.1.5 Personnel Tradeoffs

The simplified models above leave many factors unaccounted for, and I
caution the reader not to stretch their lessons too far. Individual
capabilities, unequal salaries, and a host of other factors, [83], many very
subjective, must be correctly modeled before an optimized approach to
software development can be found.

-

Several factors are amenable to economic and engineering tradeoff
studies, such as the cost benefits of assigning junior people, at lower salaries
and skills, to tasks that necessarily raise TnP/T. Even though a decrease
might occur in team productivity, there may nevertheless be a substantial
cost savings in doing so. Junior personnel thus also become trained,
increasing their company potential.



Sec. 10.2] The Software Development Team 328

10.2 THE SOFTWARE DEVELOPMENT TEAM

The organization of the software development team I shall describe here
owes its structure both to the top-down, concuirent design, documentation,
coding, and testing concept and to the recogmtion that high capability for
program development is a scarce commodity. Accordingly, the team
organizes the work* around senjor-level professional specialists, in a
disciplined, structured team envircnment.

A division of labor is not always necessary; when programs are small
enough to be handled by one individual in a timely mannef, then that
should be the case. But when it is necessary to assign more personnel, their
assighment should be into areas that take maximum advantage of their
skills and minimize their non-productive time.

The CPT concept has hit on one way this can be done effectively: top-
down, hierarchic, modular structured development. The Chief Programmer
performs his activity top-down to a set stubs for completion by specialists.
The function and interface for each stub is defined by the Chiefl
Programmer directly in code, to minimize confusion and prevent others
from programming to hypothetical interfaces.

A more generalized view of this concept is the division of team members
into areas where necessary project documentation forms the personnel
interface. I shall describe an example wherein the divisions fall between
design, coding, and testing. Since each of these activities must produce
documentation as a necessary part of its effort anyway, division into the
three prescribed activities provides an opportunity to verify the adequacy
of such documentation.

10.2.7 The Team Nucleus

The nucleus of the software development team consists of the Software
Project Manager, a Chielf Program Designer, a Lead Programmer, a
Software Test Engineer, and the Interface Control Engineer. Other
specialists may be assigned to this nucleus to aid in designing, coding, or
testing modules, as directed by the Software Project Manager. The
organization is charted as Figure 10-3.

The separate parts of the team (design, coding, testing) have somewhat
different goals, and different requisite skills, as well. These parts interact in
a closely-coordinated, interactive way, with checks and balances not only to
increase overall productivity, but also to assure product reliability. I will
describe this interaction in some detail later in the chapter.



330 - Project Orggnization and Managemeni [CHAP. 10

Customer/User g{’ff“’are
Representative | | roject
Manager
Interface
Control
Engineer
Chief Lead Software
Program Pea Test
Designer rogrammer Engineer
Additional Additional
Program Additional Software
Design Programimers Test
Engineers Engineers

Figure 10-3. Software Development Project Organization

The project is also organized so that any or all of the major comprising
efforts can be performed by contract personnel in the event that
manpower or expertise in a given area is unavailable directly within the
project-imbedded organization. The principal interfaces are indieated in
Figure 10-4.

10.2.2 Team Qualifications

Software engineering, much like any other branch of engineering,
requires specialized, well-trained, disciplined personnel—people skilled in
the management, design, production, and quality assurance aspects of their
trade. The organization I have described above defines a certain set of
career specialties and a structure in which these specialties are
interdependent, but not subordinate, one to the other.

The quality of the software produced is largely a function of the aptitude
of the team nucleus. That’s the way it should be in a project in which
everything proceeds from the top downward. The best people must be
placed at the top; competency at the bottom of an organization can’t bail
out incompetent people at the top because development will generally
have been carried too far by the time the lower echeleons get into the act.

10.2.3 The Software Project Manager

The Software Project Manager’s role in the team is primarily one of
technical management. He is there to define project priorities and
milestones; to oversee and coordinate the activity of the design, coding,
testing, and documentation efforts as the program evolves, to define design,



Sec. 10.2] The Software Development Team 331

Project
Management

Design
Activity

P —

Design
Document

{PS in
55D) -

vV

Discrepancy

Coding.
2 Reports

Activity

Development
Testing
Activity

Discrepancy
Aeports

User/Operations
Manual

<«

Test ¥
Report

Figure 10-4. Primary Software Development Project interfaces are through
necessary project documentation

coding, and testing phases; to allocate resources in the form of schedule,
manpower, and computational facilities within his jurisdiction (or to obtain
these from higher management should they fall outside his purview); to
supervise development, including any redirections that may occur within



332 Project Organization and Management [CHAP. 10

the project lifetime, such as may occur due to a change n scope or due to
some error in the design; to monitor the progress and productivity of the
design team members; to review and approve the design, coding, and
testing documentation; and to ensure that the program satisfies all
requirements for delivery.

However, the Software Project Manager also takes an active part in the
software development, technically. He does this, first of all, by supplying
the preliminary design concepts to the team, and then by talking to the
team members, giving them msights, solutions to problems, cautions to
potential problems, and the like. He may also elect, in certain
circumstances, to perform some of the technical tasks himself, such as
devising program and module tests, or setting coding conventions, or
designing some of the early-level modules. He is called on, finally, to assess
and judge whether the performance of this team is technically correct and
whether their output represents a feasible, efficient, and acceptable
embodiment of the project technical goais.

To fulfill these functions, the Software Project Manager must be a highly
COmpe'tent individual, technically in the areas of software design, coding,
and testing, as well as verbally for lucid and precise documentation, and
_administratively to motivate and lead the development team to a successful

product. If he is not technically capable, he loses control over his team’s
productivity; if he does not express himself well, he may not be able to
deliver clear enough instructions to get the job done in the most productive
way; and if he is administratively ineffective, the project soon bogs down.

Every profession is characterized by highly creative individuals being
involved directly in the first-line management functions of that profession.
The job of Software Project Manager calls for such an individeal. His
managerial duties are set according to the structure and needs of the team,
to maintain organizational discipline and high productivity.

10.2.4 The Chief Program Design Engineer

The principal job of the Chief Program Design Engineer is to design and
document the program to be coded, in compliance with management and
technical standards, and to enforce these standards within his design group.
He also serves as the Project Manager’s top consultant during the detailed
functional specification and preliminary, conceptual design phases of the
development.

He should be characterized as a highly creative individual, skilled-both as
a technical writer (for the documentation) as well as one extremely
competent and productive in the area of program design. In practice, the
Chief Program Designer designs and documents the earlier tiers, as well as



Sec. 10 2] The Softwware Development Team 333

other selected, critical phases of the program himself. He then defines
program design-stub interfaces for others under his supervision to
complete, and he reviews and incorporates the entire work of the design
group into one unit.

10.2.5 Lead Programmer

The Lead Programmer’s task is to translate the design from documenta-
tion into efficient code, to document that code in such a way that it can be
audited for conformance to, and cross-referenced with, the design and
project standards, and to enforce slandards within his programming
activity.

~
The lead programmer works very closely with the software design and
testing activities; however, he reports directly to the Project Manager. The
lead programmer should be very well versed in the system and
environmental aspects of the host computer and thus provide the designers
and testers with consultive feedback relative to design efficiencies and
testing strategies.

The lead programmer and other members of his team supply dummy
stubs as specified in the Software Test Plan, to be used for phase-testing
the emerging program. The programmers are not responsible for the
design of the stubs, but they are responsible for checking their code before
it is delivered into the Software Development Library. Delivery into the
library attests that, to the best of their knowledge, the code matches the
design, adheres to coding standards, and operates within the test plan
specifications.

If checkout uncovers any evidence that there is a program design error,
then the program designer is notified; if there is any evidence of a test plan
error, then the test engineer. In all cases the notification is wrntten and
logged into the project notebook. If checkout uncovers an error in a
module belonging to a previous development phase, then a project
descrepancy report is filed with the Project Manager for action.

10.2.6 Software Test Engineer

The software test activity has more project interfaces than any of the
other activities, except project management. It is this activity that attests
to program correctness. The activity is guided by the Software Test
Engineer, who is responsible for the generation of the Software Test Plan,
for the preparation of validation data by which the program will be
verified, for the scheduling and supervision of acceptance tests, for the
audit of all documentation and listings prior to delivery for correctness and
conformity with standards, and for verifying that all the requirements for



334 Project Qrganization and Management {CHAP. 10

delivery of the program have been met. He reports all discrepancies noted
during testing and auditing to the Project Manager for appropriate action.
He impounds the results of all test runs in the project archives and
maintains these archives in a form visible to other members of the team.

The test designer designs inpul to test all flowlines in modules of the
phase currently to be tested and specifies what response all dummy stubs
required must have. The test designer may do look-ahead test design, just
as the program designer may do look-ahead module design.

In testing the program at the'current phase, it is the job of the tester to
validate the software, not to debug it. All failures are recorded in the test
report and diagnostic material is given to the appropriate team member.

The Software Test Engineer is also the Project Manager’s chief
consultant during program definition, with regard to setting goals for
testing and for desipgning testability into the software. The job calls for an
individual capable of unwavering attention to meticulous detail. He also
needs to have a background of working experience in software definition,
design, and coding.

10.2.7 The Project Interface Control Engineer

The principal task of the Interface Control Engineer is to maintain the
project personnel and program interfaces in a highly visible and controlled
form. These interfaces are the various forms of documentation generated
by the three project activities: the SDD, the SSD (which includes the
Software Test Plan}, code listings, etc. The Interface Control Engineer acts
as custodian over all elements accepted into project control, whether it be
documentation, coded program modules, dummy stubs, or test data. He
alone is permitted to update or append approved elements to the Project
Software Development Library (SDI) files and project-controlled
documentation. All project documentation and elements of the SDL files
are available to any requesting team member through the Interface
Control Engineer. I shall discuss the SDL in greater detail a little later on.

The Interface Control Engineer also acts as the Project Manager’s aide,
taking charge of the project notebook, in which are recorded minutes of
meetings, a log of detected discrepancies and their current disposition, a
log of standards waivers and reasens for these, the current project schedule
and all previous outdated project schedules, an up-to-date tier diagram (see
Section 10.5.6), a log of factors causing schedule slippages, a log of changes
made {and why) to elements after accepted into project control. A
suggested outline for a project notebook appears in Appendix H.

The interface control task requires an individual with some software
technical skill, but the main thrust of his background needs to be



Sec. 10.3] Conduct of the Project 335

administrative. It is his ability to organize the custodianship of interfaces
and to provide the Project Manager visibility into the current status of
development that is his most important role in its effect on the team’s
performance and on the quality of the software produced.

10.2.8 The Customer/User Representative

For some reason, what a software design is supposed to do is subject to
wide interpretation, even after prévious agreement. It is important,
therefore, to involve the customer or user organization in a formal way, so
that it has had the opportunity to concur at earlier points than before final
delivery. To give the development team free rein between requirements
definition and operation is inviting trouble.

For this reason I have shown a customer/user representative as part of
the development team. His involvement is meant to be real, in depth, and
continuing throughout the project. He is there to aid in the generation of
the functional definition (SFS), to participate in all reviews, and to observe
and concur in the acceptance tests. He serves as the applications expert, to
analyze the evolving program response to assure that it fulfills the technical
objectives required for his application.

10.3 CONDUCT OF THE PROJECT

Now let me address the procedures and interactions among team
members during program evolution. I will assume that the Project Manager
has just defined a project phase as a certain portion of the program to be
defined, designed, coded, tested, and documented as a project milestone
- before proceeding to the next phase. The scope of work in each area need
not be uniform, but sized in the most meaningful way. For example, Phase
1 of the software definition activity may be very detailed, whereas Phase 1
of design, coding, and testing may only encompass the first few hierarchic
tiers of the program. Portions of a given phase to be undertaken by
separate individuals should probably be roughly the same complexity,
however.

10.3.1 Work Breakdown Structures

Project phase-planning can be used as a viable method of allocating work
keyed on priority of requirements. Such phases provide a medium for
cross-referencing and auditing the design and implementation against
program requirements and, thereby, also provide the tool for estimating "
schedules and costs for given, added, or deleted requirements. Monitoring
phase status identifies the state of requirement fulfillment relative to the
set of project priorities.



336- Project Organization and Management [CHAP. 10

The project procedural discipline is shown in Figure 10-5. The diagram
shows that definition must precede design, design precedes coding, coding
takes place concurrently with test design. Design is based on definition,
coding is based on design and definition, and so on. All design and coding of
striped modules takes place in top-down hierarchic order within the scope
of the defined phase. Coding begins only when the design has become well
established and stable, developmental testing then can take place with the
view of establishing correctness, not debugging the design.

Figure 10-5 does not show look-ahead efforts, nor does it apply to the
earlier architectural design phase. Both are used to identify the key details
and likely problems of the development and also to size the effort and
permit the work breakdown structure to be formulated.

10.3.2 Joint Programmer-Reader Collaboration

A requirement levied in Chapter 9 to aid in assessment of program
correctness was that documentation be carried to that detail which permits
an audit of a module algorithm against its stated function at the previous
level of the design. The purpose of such an audit is to ensure that
everything assumed by the parent-level design actually appears within the
module, that everything actually appearing in the module design is
traceable back to the stated module function, and that design standards
have been adbered to. Such an audit will decrease the possibility of
oversight, prevent the augmentation or alteration of the design unilaterally
at the later design stages without proper approval or integration of that
augmentation in the design, and maintain a uniform, standardized design.

Notice that I have made no statement concerning the process of
validating the module algorithm as part of the design audit. Rather, the
auditing process is purely a “bookkeeping” job, something which keeps the
design “honest”. It can, and preferably should, be done by someone other
than the designer himself, say a Quality Assurance representative. In a later
chapter, I address the possibility of antomated design auditing,

However, as in all good engineering practices, the design itself should be
verified. Design verification, as it is meant here, is a careful examination of
the design by someone skilled in design. Perhaps the best choice for this
job is the designer’s supervisor; at the least, it should be a peer or senior
colleague. The purpose is to get corroborative concurrence that the design
at the current level is correct (i.e., that it will do what it is supposed to do)
and is “good” by whatever criteria have been established for the project.

The verification can take the form of a “structured walk-through”, if
desired. A structured walk-through is a generic name given to review or
“paper tests” conducted with peers, supervisors, etc., to analyze the



Sec. 10.3] Conduct of the Project

Defimition Fault

Develop
Program

Phase n

Munor Destgn Fault

Coding or test plan fault

1

Previcus

Phase

Defirtion, /2 —— >

337

Program
Listings

Code and
Check
Modules
and Stubs,

Software
Test Plan
(550

Develop

and Verify & o/

Y
perform ) e
Tests
Change \_/—
Control Y
Archives
Analyze Phase n
Results Test Report

Diagnose
Difficulty

ves

~—— ORIGIVAL, PAGE I8
UF POOR QUALITY

Figure 10-5. Top-down project procedural discipline



338 Project Organization and Management [CHAP_ 10

functional design, detect logic errors, develop test strategy, cross-educate
team members, and motivate full team cooperation. The verification is
meant to be a non-malicious collaborative procedure for probing and
problem detection. Errors found at this level can easily be an order of
magnitude cheaper to fix than at later times in the development.

The code should also be audited by someone other than the coder
himself, say by his supervisor, or a Quality Assurance representative. The
purpose of this audit is to assure that the code is, in fact, a direct
translation of the design, that it is properly anotated, organized, etc., and
that it is written in accordance with accepled standards pertaining to
format, coding conventions, etc. National Information Systems, Inc. uses
the procedure shown in Figure 10-6 to code the program from procedural
specifications.

As with the other activities, verification of the test procedure, too, is in
order: a non-malicious, but collaborative critical examination by a person
or persons other than the test designer. Depending on circumstances, such
an examination might will be performed by his supervisor, the Project
Manager, the program designer, the coder, an intended user of the
program, or a combination of these,

10.3.3 Concurrent Coding and Development Testing

Human fallibility and inability to cope with complexity in large
programs, even with the benefits afforded by the top-down approach,
dictate that there be some form of automatic checking of the design. The
concurrent coding concept provides just what is needed for doing this task.
It provides a way of checking how a program actually operates, to see if it
matches the designer’s intent, level by level through the program
development process.

Once modules at a given phase have been successfully verified
(corroborated and audited), the design documentation is inserted into the
Software Specification Document, the code integrated into the previously
verified program, the tests retained in the project test archives, and the
results documented in The Software Test Report (STR).

But suppose a test fails. What then? There is an error somewhere—in the
design, in the coding, in the dummy stubs, in the test data, or in the test
procedure jtself—and it must be fixed. This fix does not mean that those
concerned put their heads together and patch the code until it seems to
work. What happens is that, first, the cause of the failure is located. Then,
if the error is one in coding, it is corrected and the tests rerun. Similarly, if
the error is in the test, it is fixed, the test procedure reverified, and the test
rerun. However, if the error is in the design, the designer must reconsider



Sec. 10.3]. Conduct of the Project 339

CODE
PHASE n

X enters
code mnto
computer

y
C, verifies
¢ code vs

Corrected
{red-lined)
listing

C, reviews
corrections

yes

Figure 10-6. Joint coder-reader collaboration in
coding the procedural specifications

his design and make whatever changes are required. If the changes he
makes involve alterations at a previous phase, an appropriate return to that
phase for coding and testing is in order.

10.3.4 Task Interfacing

1 have defined project tasks that allow personnel to communicate with
each other through needed documentation in a formal way. However, the
documentation during this production need not be of publication quality.
Formal, high-quality documentation is very costly and time-consuming to
produce, and thereby gathers a lot of inertia. For this reason, designers and



340 Project Organization and Management [CHAP. 10

implementors loathe to make any but the easiest or. least drastic changes;
hence, premature formalized documentation has a tendency to “set things
in concrete” before they really should be.

The Software Development Library, to be discussed in the next section,
makes use of flexible, easily modifiable automatic documentation media to
the maximum feasible extent to avoid the costs and inertia of hand
maintenance. In many cases, however, hand-produced documentation is
necessary and desirable. Many designers prefer to sketch their ideas in the
form of flow charts and to use these as interfacing documentation to
coders. They have a tendency to work on an entire phase in one chunk, and
then, when they feel it is appropriate, to release a whole sheaf of program
modules all at once. If these have to be redrawn before a verifier or coder
gets to them, then there is an unnecessary delay while the documentation
is being brought up to quality. Several iterations of this process may be
required to remove typographical errors and the like.

Therefore, while I have placed documentation in series betiveen tasks, 1
by no means wish to have the redocumentation personel (typists,
draftsmen, etc.) appear in series between tasks. In many cases; design
sketches and handwritten notes can be given simultaneously to verifiers,
coders, and redocumentors to avoid delays.

One such scheme, used by National Inform:a.tlon Systems, Inc. on several
of its projects, where required documentation consisted of template drawn,
typed flow charts and typed narrative, is illustrated in Figure 10-7; the
procedural discipline displayed is almost identical to that shown in Figures
10-5 and 10-4. The key feature of the procedure stressed by the figure is
that designers and coders work generally from red-lined photostatic copies
while any changes are being retyped. Another key feature of this
procedure is that it keeps the documentation concurrent and accurate.

10.4 SOFTWARE PRODUCTION MANAGEMENT AND
CONTROL

Inberent to efficient and successful program development is proper
production management and control. The ability to maintain current status
and configuration control of project documentation is a vital necessity for
program management visibility.

10.4.1 The Software Development Library

The Software Development Library (SDL), Figure 10-8, is modeled after
the chief programmer team Programming Support Library [84], and exists
for the same purpose: to maintain the current status of the program and



Sec. 10.4] Production Management and Control

341

Photostat P1
Specs are D1 writes of originals
flowcharts _ proecedure to D1
and specs . .
narrative —_— Original
penciled
specs
Penciled and
typed Specs
originals to A typed
P2 = photostat
of typed
originals
D1 preofs
PZ2vs P1
' D2 reviews .o
P1' = changes on P2 {in pencil), P2’ =changes on

P1(in green‘,\ P2 (1n red}

F3 = photostat
of P2*.

Redlined P2"
to A

D1 integrates P2" = raviewed

P2’ {penciled)

Legend"
P = photostat

D = designer
A = archives
X = anyone

i ¥
D1 updates Code and
photostat test from Retype
P3 of P2 P2 from P3

P4 = photostat

of P3. Origmals
to A

|
i
P3' = updated Minor P4’ = proofed
P3 {in green} errors P4 {in red)
i ¥ i

X integrates

P5 = photostat

of P4°. Redlined
3 - P4'tc A

Treat Pb
asif it
were P3

ORIGINAL PAGE If
OF POOR QUALITY

Figure 10-7. Software development docurmentation flow



342 Project Organization and Management [CHAP. 10

SDL
Procedures,

Manuals

Code
Listings

Project II

Archives

Project
MNotebook

Test
Linkage
Archives

@
Coded Test Test
Modules Stubs Data

Figure 10-8. The Seftware Development Library

Documents I
{SRD, SDD, I

88D, STR)

‘associated test stubs and test data in a public form, so that project
personnel can work more effectively and with fewer errors, in a disciplined
manner that encourages pood engineering practices. It is responsible for
the control, retention, storage, and distribution of project documentation
and programs.

The SDL supports project management by providing visibility into the
development process, and it supports the software development team by
providing special services and configuration management. The SDL also
serves an archiving function, keeping a record of the project history. The
team members communicate through this visible medium rather than less
tangible interfaces, and thereby have the potential to raise productivity.
The SDL also provides a medium for enforcement of standards in all visible _
forms of the evolving product.

There are three parts of the SDL. The first is composed of the
requirements, design definition, design, and test documentation {(SRD, SDD,
SSD, STR) accepted into the project under change control. Such
documentation may not be altered without approval of the Project
Manager (or his designate).



Sec. 10.4] Produciion Management and Control 343

The second part of the SDL is composed of the actual developing
program modules, test stubs, and test data. Programs are always kept at
least in their symbolic (human readable) form, and possibly also in a
compiled, executable form, as well. Modules accepted into project control
may not be changed without approval of the Project Manager.

The third part of the library is a set of office and machine procedures
and computer programs for filing, updating, and listing the program
modules, dummy stubs, and test data during development There may also
be other special service programs and procedures, such as for running the
program or parts of the program in a controlled environment during
checkout, for generating and maintaining status reports, schedules, tier
charts, or other management information, for documenting the program or
tests, for accumulating development statistics, for automatic auditing of all
documentation against format standards, and for automatic cross-
referencing of definition requirements, design specifications and code
listings.

Insofar as is practical, all elements of the SDL will be maintained in a
machine readable form, Regardless of form, however, only the Interface
Control Engineer is permitted to make any changes in the library elements,
and if such changes pertain to elements under project configuration control,
then, only under direction from the Project Manager. In larger projects the
Interface Control Engineer may be assisted by a librarian with some
secretarial skills, or by other personnel to aid in effecting the “public
programming’ practices.

Submissions to the SDL are made to the Interface Control Engineer in
one of several ways: as “signed-off”, completed new modules; as
incremental, approved changes to existing modules, or reapproved versions
of modules already extant in the SDL; or as “working level” elements, such
as “look ahead™ module designs, stubs, decision tables, etc.

The Interface Control Engineer also has the responsibility of all program
“builds”; that is, the linking together of program elements (modules and
dummy stubs) in preparation for testing, as requested by the Software Test
Engineer, and as defined in the Software Test plan.

A full set of typical requirements for the SDL may be found in [84],

10.4.2 Software Configuration Management

The key to the success of the SDL is bound to its effectiveness as a
design-control facility. The techniques for accepting and revising elements



344 Project Organization and Management [CHAP. 10

in the SDL should recognize that changes are of varying depth, such as:

® Changes that can be made (temporarily) on existing documentation
without making it illegible or unintelligible.

® Additions that amplify, clarify, or augment existing documentation
without making obsolete the present contents.

® Changes that are a whole or partial replacement for existing
elements in the library.

Once placed under formal project configuration control, SDL elements
will not be altered or medified in any way without proper documentation
and approval (Figure 10-9).

During development it may not be necessary to have a rigidly
documented request-analysis-response cycle for changes, unless those
changes oceur acress program development phases (see Figure 10-3). When
this is the case, it is probably important to document the change-control
cycle rather carefully. Once the program or one of its documents is
complete, and has been accepted into coaﬁgurafion control, certainly no
change should be contemplated without the cycle. .

Problem/
Discrepancy

¥
Open Problem/
Discrepancy
Report

Change .
Request Analysis

Change
Order

Dacuoment
Change

Close Problem/
Discrepency
Report

Figure 10-9. The change-control cycle in response to a problem or discrepancy
affecting SDL elements under configuration control



Sec. 10.4] Production Management and Control 345
The requirement for a formal change may be established by one of the
following [85]:
® An open discrepancy or problem report.
¢ A request from the designer of an interfacing module.
® A chaﬁge requested by the custemer or design review board.
® A problem developed by changing an interfacing program module.

¢ A valid improvement in the functioning of a program module.

All changes during development must be authorized by, and then approved
by the Project Manager.

Let me assume, for illustrative purposes, that the SSD will be
typewritten documents with human-drafted graphics and flowcharis, and
that the coding for program modules and dummy stubs lie in SDL
computer files.

All original typewrtten and drafted pages of documents accepted will be
dated. Every striped module design will contain, probably on its flowchart,
a signature block, such as:

Designed by

Verified by

Audited by

Accepted by

in which are entered corroborative testaments that the design is correct
and adheres to design and documentation standards (or to specific waivers
of these standards). Other document items, such as I/0 formats, complex

data structures, decision tables, core maps, etc., may exhibit similar sign-
offs.

‘When all signatures have been affixed, the Interface Control Engineer
enters the module design documentation into the SSD and logs that event
into the project notebook. He also marks this event and enters any striped
submodules of that module on the tier diagram (see Section 5.1.4).

Any changes to the $5D thereafter must be submitted in writing to the
Project Manager as “red-lined” corrections or complete new modules, to
which are attached the requirements and analysis of the change. Changes
in the narrative of a clarifying or amplifying nature, when approved, cause
redating of the affected pages; changes affecting the module more



346 Project Organization and Management [CHAP. 10

drastically require the reinitiation of the signature block procedure. The
outdated items along with any attachments are retained in the project
change-control archives.

Additions or changes in other project-controlled documents and in the
code follow similar procedures.

The SDL should also possess copies of all “working level” “program
modules and documentation produced as a part of “look-ahead” efforts.
These may be distributed by the Interface Control Engineer, but for
information only. Other team members, therefore, must make no
assumptions concerning the state of completion of working-level interfaces
until they have been accepted into formal project configuration
management control. Changes in working elements may be made at the
discretion of the originating individual, but the Interface Control Engineer
must be notified.

It is literally imperative, in the interests of maintaining management
visibility into team activity and progress, to have regular submissions and
updates of all “loock-ahead” or other working-level material into the SDL.
This fact has been recognized for some time by the CPT adherents [80],
who observe and enforce its directive as a means to turn “private art into
public practice”. The surveillance of a constantly changing, evolving
program is apt to be difficult without keeping all such data bases in
computer files, to be accessed and updated in a controlled way. I shall
discuss this automation in Chapter 17, A Standard Software Production
System.

10.5 MANAGING THE SOFTWARE DEVELOPMENT

Managing a software development is largely keyed to defining major
project milestones, planning work and allocating resources to achieve them
in a timely manner, supervision of the team, monitoring its progress, and
enforcing standards. Much of the Project Manager’s ability to function
effectively stems from his having visibility into the project, its capabilities
and its working environment, as well as into the developing software, its
problem areas, its state of completion, and its rate of progress. On this
visibility is based any needed adjustments to the manpower plan, the
financial plan, and the project schedule.

10.5.1 Planning

There is a definite distinction between planning activities and doing
activities. Specifically, planning is a study-type function. It implies



Sec. 10.5] Managing the Software Development 347

gathering information and identifying decision-alternatives at a level that
does not impact current status, but may impact future doing and planning
activities. The magnitude of a planning activity should probably be roughly
proportioned to the risk or exposure associated with the individual project
[22]. The larger the risk, the greater the time, investment, and detail that
should be devoted to planning. But even this is not an iron-clad rule

The scope of planning should include such things as work flow, project
organization, project priorities, responsibility flow, resource management,
configuration management, quality assurance, and the mechanics of
program development, especially the mechanical aspects of installing,
integrating, and testing the software. Good contingency planning can avert
many work stoppages due to unforeseen circumstances.

Some of the planning will be design-dependent. In these cases, a portion
of the design must be done to assign programming responsibilities or to
determine the resource requirements.

The documentation of planning information will probably be scrutinized
by upper management and criticized by subordinates more than dny other
documentation in the project. It is sometimes, thus, very advantageous to
have the implementation planning documentation include excerptable
material directly switable for summary presentation to management (for
example, in the form of overhead projector slides). In this way, separate
material for the plan and for management review need not be generated.

10.5.2 Resources

The development resources include manpower, budget, hardware
environment, software environment, system loading and schedule, and the
program deadline. Doing the management of these resources is different
than planning for their management. Doing requires being able to come
up with dollar-amounts and man-months of effort. It requires the
preparation of reports and documents as spelled out in the plan, and the
phased allocation of resources among the team and within the development
environment.

Hopefully, resource management proceeds according to the plan. Work-
arounds (exceptions to the established plan) should be discouraged; rather,
any unplanned arrangements should be incorporated into the plan, so that,
in the end, the final plan agrees with the final methods actually used. In
future projects, similar plans are apt to be developed from policies
gathered across many projects. As long as work-arounds are permitted
without eventually producing a corresponding change in policy, there will
be little improvement in the development policies, and no way of assessing
whether the established policies will actually work or will always require
ad hoc exceptions to bail a project out of difficulties.



348 Project Organization and Management [CHAP. 10

10.5.3 Scheduling and Cost-Estimation

Developing an accurate initial schedule or cost estimate in the early
stages of a project is very difficult. It requires an a priori knowledge of the
size of the task, the productivity of the team, the phasing of activities in
interfacing projects, and a myriad of intangible other premature
estimations. Probably software tasks are intrinsically no harder to schedule
or cost out than hardware tasks are, when approached using the top-down
discipline. Perhaps the greatest unknown in accurate planning is the
amount of rework that will be attributable to human inability to cope with
program complexity or mid-stream redirections of effort. But a history of
such development factors and statistics should be recorded, maintained, and
summarized for each project to promote accuracy in futare project
estimates.

Optimization of a team’s productivity, the ability to produce software
according to a given schedule, and the accuracy of a pre-estimated budget
can only come about when all the contributory factors are modelled with
sufficient, fidelity to permit mathematical methods to produce them. Until
such models can be developed, we are stuck with more subjective, less-
accurate estimating techniques.

One method with some merit is performing a preliminary design study
prior to beginning the formal top-down, concurrently documented and
coded program development discussed earlier. This study consists of a look-
ahead, say as hand-drawn flowcharis and tables (with little, if any
supporting narrative}, through the complete design. The purpose of this
preliminary architectural design is to size the entire coming effort and to
identify work tasks in order that a work breakdown structure, schedule, and
cost estimate can be generated.

The preliminary design need not be detailed nor reflect a microscopi-
cally correct program, as long as the architecture is sound and as long as it
sizes the program to be written within, say, an accuracy goal of 10%. The
work breakdown structure should typically be detailed to tasks no longer
than 2-3 manweeks each.

Figure 10-10 shows the skeleton of a software development schedule.
The inverted deltas indicate milestones to be estimated, they also are
probably the dates of reviews. The figure shows that work on the
architectural design does not begin until the program justification (in the
SRD) is complete and has been approved. The detailed functional
requirements (FRD) and the program specification effort {incorporated’iin
the SSD) have been shown to begin a little later, with the view that work
can begin on top-level functional definitions, data-flow diagrams,



ACTIVITY

PROJECT SCHEDULE

¥ DESIGN REVIEWS
vV OPTIONAL REVIEWS

SOFTWARE REQUIREMENTS

SOFTWARE ARCHITECTURAL DESIGN

SOFTWARE FUNCTIONAL SPECIFICATION
PROGRAM DESIGN

CODING

DEVELOPMENT TESTS
INTEGRATION

ACCEPTANCE TESTING

MAINTENANCE PLAN

REQUIREMENTS
h 4

} [
|SJR| VI—ARCH ITECTURAL

1 ;
[— I@J{CHITICAL

: ] (50

i 4
| PLANNING I %
| |
AS-BUILT
§ PREPARATION \d
i
ACCEPTANCE
| PLANNING, PREPARATION v
L |

Eigure 10-10. Project schedule showing phased concurrency in development activities

ruawdojeeacy aipmyfos ay I Suidvunpy [¢0T 998

67E



350 Project Organization and Management [CHAP. 10

flowcharts, and data structures before the full functional detail is put into
the SFS. Coding, testing, and so forth, follow as I have previously
described.

I have indicated in the schedule that software development begins when
the Software Justification Report has been approved. That need not
necessarily be the case. I am assuming here that the approving authority
for committing manpower, funding, and other development resources does
not need as rigorous a set of technical requirements to allocate resources as
the oncoming development activity does. The SRD activity may thus
extend beyond the first approval stage, may perhaps be written in concert
with development personnel and during other developmental activities,
and may result in a detailed set of functional requirements, analyses,
tradeoffs, and plans.

The development of a maintenance plan and documentation for
maintenance is shown on the schedule, and may be part of the
development project. Its presence on the schedule signifies that there will
probably be activity in the operations area concurrent with the final phases
of the software development,

In scheduling a project it is useful to remember that more software
projects have gone awry for lack of calendar time than for all other causes
combined [86]. The reasons for this effect are primarily related to our
poorly developed techniques for estimating; all programmers seem to be
optimusts and estimate on the unvoiced assumption that “all will go well.”
The truth is that, whatever can go wrong, will, unless serious precautions
are taken.

Furthermore, most estimating practices confuse effort with progress,
tacitly assuming that men and months are interchangeable; whereas I
showed in Section 10.1 that this interchangeability is clearly not the case.
Intercommunication ameng individuals and other non-production activities
must be inserted into the equation.

Because large projects extend sometimes over a few (or many) years, one
must anticipate and account for manpower turnover, and a corresponding
lengthening of development time for training of new personnel and
integrating them into the team structure.

Estimating later milestones during the SRD preparation period may thus
require a lot of insight and padded judgement. Once the project proper has
begun, however, incremental schedules and costs are more easily estimated.
Once the architecture and work breakdown structure are established, each
development phase consists of a precise, known number of modules and



Sec 10.5] Managing the Software Development 351

dummy stubs to be designed, coded, tested, and documented. The program
tier diagram (the module hierarchy tree) is a very useful aid in defining,
scheduling, and monitoring the project phases. Section 10.5.6 gives more
details on the use of the program tier chart as a progress management tool.

Some standard techniques are also available for more detailed schedule
planning, such as critical-path-methods; PERT, PERT/time, PERT/cost,
and machine-processed scheduling programs. I refer the reader interested
in such topies to the DOD/NASA guide [87] for further details.

10.5.4 Reporting System

Regular reporting in the form of activity and progress reports has long
been the practice of a good engineering discipline. Good software
engineering is no different in this respect. Channels must be available for
problem and discrepancy reporting, engineering change requests,
engineering change authorization, test reports, progress and status reports,
new technology reports, management reports, and so on.

o

During development, reporting is primarily oriented toward providing
accurate and worthwhile media for developing effective management
visibility, for communicating the results of technical decisions, for
recording the development history, and for displaying the current level of
program completion.

10.5.5 Documentation

Job specialization, increasing hardware complexity, the proliferation of
programming languagés, and the wider range of programming applications
has created a crucial communication problem; a greater volume of
information of higher complexity passes among growing numbers of people
of dissimilar backgrounds. In such an environment, some attempt must be
made to rationalize the information flow in the form of documentation. A
state of anarchy (or near anarchy) would result if each individual were
allowed to decide what, if anything, would be recorded, and when.
Standardized documentation, in conjunction with an established system of
checkpoints, is a major aid to project control. Standards for documentation
must include provisions for workability, accuracy, legibility, and
completeness. Work should not be allowed to proceed to subsequent tasks
until a review of the documentation is satisfactory.

If documentation is in serious default, my recommendation is simple:
stop all activities not related to documentation, and bring documentation
up to acceptable standards. Management of software is virtually impossible
without quality documentation.



352 Project Organization and Management [CHAP. 10

Even if standards have been set, a big question is “What documents are
to be produced, and what is the level of detail in each?” I have principally
addressed in this work only that documentation actually needed to develop
a program. But other documents in a project are obviously required, such
as a management plan, operations manuals, standards manuals, test
procedures, user guides, SDL procedures, etc.

The only guideline I can give is simply to eliminate repetitive, high-cost,
low-use program documentation. In the development process, this strategy
provides, as final program documentation, only the Software Functional
Specification (SFS), the Programming Specification (PS), and program
listings. For the strategy to work, these must constantly be kept current
through change control. As for the other forms of .documentation in
support of this minimum and for the users of the programs, I leave such
decisions as prerogatives of the individual organization, project, or
customer requirements,

LN

One reason I have stressed documentation requirements for program
development is that I believe such documentation provides the primary
means for cost-effective program maintenance, 1 vigorously oppose the
practice wherein software is maintained only at the code and operator
manual level, without keeping the supporting design-level documents up-
to-date. Such practices trace their origins to earlier days of preparing
research programs for testing purposes. It is not acceptable today in the
development of operational programs having reasonable lifetimes of more
than a few months. Continuing the practice of maintaining code and
operating manuals only will result in continuing high costs for both
development and maintenance [88).

Insofar as is practical, all documentation and data bases used for report
generation and subject to change control or frequent modification should
be kept in computer files. Correlated data bases should be cross referenced
so that all side eflects are visible and can be checked out at each update.

The appendices provide suggested topical outlines for many documents
possibly produced during the development process. Other guidelines for
format and preparation of the material to be included appear in
subsequent chapters of this monograph.

10.5.6' Monitoring Progress

Monitoring a development team’s progress is based on visibility;
visibility is keyed to reporting, documentation, design review, and
supervision. Competent monitoring of the technical aspects of a
development is an absolute necessity. When not monitored, a team may



Sec. 10.5] Managing the Software Development 353

produce inefficient code or program parts that interface improperly or
inefficiently with each other. Fortunately, the top-down, hierarchic,
maodular approach puts technical visibility within the grasp of the Project
Manager, as well as each of the other members of the team.

~

I gave certain technical monitoring procedures earlier in this chapter as
a means for promoting program correciness. These had to do with
concurring opinions and audits of the design, coding, and testing activities.
Another means of technical monitoring is provided by regular development
reviews. 1 will give guidelines for such reviews in a later section of this
chapter.

In Section 5.1.4, I have referred to the use of tier charts as a
management tool for monitoring team progress. Figure 10-11 shows a
typical partial tier chart for a program, in this case, the MBASIC language
processor. the chart lisis the various modules, the tier to which they
belong, and their state of completion; “S” stands for “stub”, “P” for
“preliminary”, and “*” stands for “completed”. An asterisk in the “Page of
Next Tier” column indicates that there is no further expansion of that
module. Eventually, all entries in the final column contain either a page
link or asterisk—no blanks.

A “P” in the “Design” column indicates that a preliminary version was
submitted into the project; the asterisk was added later when the design
was completed. An “S” in this column indicates that a formal ‘dummy stub
was designed to test the module it phigs into, an “S” in the “code” column
indicates the stub was actually coded. An “S8” in the “Test” column shows
that the module was tested using dummy stubs at the next tier, and a ™™ in
this column shows that the tests were completed using the actual

completed code at the next tier.

Other designators may also be useful in these columns to monitor
progress. For example, “L” for “look-ahead”, “A” for “audited”, “C" for
“concurred”, and “R” for “returned for rework™.

The “Phase” column is useful in identifying which modules belong o
which scheduled milestones. In the example shown, all of tiers 1 and 2
comprised the first project phase, and all of tier 3, the next phase. The
chart shows that design and coding of Phase 1 is complete, but Phase 1
testing awaits the delivery of dummy stubs at tier 3. The main program has
been tested using the actual code at tier 2 and dummy stubs at tier 3

The tier chart helps to identify future phases of development, and relates
the state of completion of current phases. It can be used to allocate work;



354" - Project Organization and Management [CHAP. 10

[ Page 1 of 22
MBASIC/1
TIER CHART
Tier | Module Number | Module Mame | Phase | Design | Code | Test n:; :ffT"lfer
1 1, MBASIC 1 p* * » 1
2 2. SYSUP 1 p* - s 1
U1 USWAP 1 P x 1
3 SYSIZL 1 p* * 1
4 PARSE 1 p* * 2
5 RUNIZL 1 p * 2
6 RUN 1 pr * 3
7 BATCHC 1 p* . 3
8 BATCHR 1 p* - 3
g EXIT 1 p* . 3
2 U2 IZCORE 2 px S 4
u3 IPSWRD 2 p* 5 4
25 NOPWD 2 p* S* *
ua. FILDIR 2 | spr S *
28 BADPWD 2 p* g .
E1. SWAP SYSTEM 2 p* S .
Ui 7 SAVE RUN 2 p* s
Ut g SET PARSE 2 p* $
u1.9. SET RUNIZL 2 p* S
U1.10. SET RUN 2 pr s
Us. ADJSEG 2 P s
U6. (Z10 2 P S
33 NTINIT 2 P S
34. i2TBL 2 P S

Figure 10-11. A tier chart for the MBASIC Program

and it can serve as an aid in estimating schedules and production costs. If
errors are found in modules at a given tier, the extent of rework can often
be sized by looking at the chart.

The figure shows the chart as if it were a page of documentation; in
actuality the tiered data base best resides within the computer, which then
accesses the information at regular intervals for update and status
reporting,



Sec. 10.6] Design and Progress Reviews 355

10.5.7 Project Supervision

The methodology described in preceding pages of this monograph
provides a basic level of technical control over software development and
testing. The Project Manager has visibility into current status by way of the
project notebook and the Software Development Library, and thereby, has
efficient tools to balance resources and schedule throughout the project.

My first rule for supervising a software development is ruthless
enforcement of project standards, especially those relating to documenta-
tion requirements. Deviations from standards should be permitted on a
case-by-case basis only, and written waivers should be entered into the
project notebook or other suitable archive.

My second rule for software development supervision is close technical
leadership in the program development Proper project supervision lies in
technical and managerial proficiency, as well as the tools, methads, and
development environment provided for the team. There is no substitute for
competent leadership, sound judgement, and decisive action.

There may be vagueness in a software development plan for example,
concerning how conflicting requirements are to be resolved when they are
not specifically spelled out in a list of competing chatacteristics. There also
may be no statement defining what freedom the development team has in
interpreting requirements. It is the prerogative, then, of supervision either
to solicit such judgements from proper authority, or to analyze and decide
on the basis of its own sound technical judgement, the proper course of
action, -

As 1 indicated earlier in this chapter, the place for the highest levels of
skills is at the top. A supervisor with less technical skill than his
subordinates not only fails to give responsible leadership, but risks the
quality of the software by making incompetent decisions. Subordinates
soon tend to become demoralized and non-productive,

Fortunately, supervisorial skills can be taught to technically adept
personnel, perhaps more readily than supervisors seem to find time to learn
new technical skills. In either case, it seems to me that organizations need
to pursue training programs and encourage continued education for
persons in supervisory roles, as well as in the more junior positions.

10.6 DESIGN AND PROGRESS REVIEWS

A series of reviews and audits must be scheduled at meaningful points
during the development of a piece of software to permit assessment and
concwrrence with its progress and status. Adequate evaluation of the



356 Project Organization and Management [CHAP. 10

development process generally takes place if these reviews focus on
functional requirements and design during early development, and on
performance and configuration verification during later development.

Informal reviews may be held on an ad hoc basis as an effective method
for monitoring progress and supervising development. Formal reviews are
principally system, cenfiguration, and management oriented, although some
level of technical detail needs to be present. Each such review should not
be considered complete until all action items assigned by the reviewing
board have been closed. It may be proper to suspend certain future phases
of activity until all review criteria can be met.

I must assume that some authority empanels the formal review board,
appoints its chairman, and dictates to what level their recommendations
and action items are obligatory. The review board chairman then is
responsible for scheduling the reviews, notifying attendees, and for the
generation and distribution of the review minutes. The chairman reports to
the convening authority the review board findings and notifies him when all
assigned action items have been cleared. If certain phases of the project
had been suspended, the convening authority may then direct their
reactivation.

In what follows, I shall address the conduct and content of the four
reviews shown in Figure 10-10. The discussion of each contains a set of
criteria to be met by the presentors, the action solicited from the board,
and the procedures to follow. I presume, in all cases, that the board has
areas of competence matching the presentation review criteria.

10.6.1 The Requirements Review

The first review I bave shown is that acting on the software justification.
In Chapter 3, I defined the software justification as that collection of
information created to obtain management approval to proceed with the
software development. An embryo Software Requirements Document
(SRD) containing this justification should be prepared and available to the
review panel; it should fulfill the criteria given in Section 3.3.

The presentors are asked to perform the following:

a. Establish the need .or “market potential” for the program and
identify the objectives of the program, its user and system
environment, the configuration needed for its operation, the
resources required for its support, and the advantages and
disadvantages in the service it provides.



Sec. 10.6] Design and Progress Reviews 357

b. Demonstrate that the remaining developmental activities may
proceed under a reasonable assurance that major revision of technical
and management objectives will not be necessary,

c. Present evidence that the program and its use are feasible with
respect to technical considerations, manpower, schedule, and
developmental costs.

d. Provide variance estimates or bounds for all planned resources to be
expended.

e. Demonsirate that the SRD has been documented in accordance with
the content adequacy criteria given in Section 3.3 (and Chapter 11).

The review board action solicited by the presentation is authorization to
proceed with the software development plan and with the software
functional definition and design definition activities. If these activities are
to be accomplished in-house, formal work directives will need te be issued
and project teams established. If these activities are to be accommodated
via an external contract, then procurement procedures will need to be
initiated.

10.6.2 Architectural Design Review

The second review shown is the Architectural Design Review, and
occurs after the architectural design, but before the completion of the
detailed software functional specification, although some projects may well
elect not to begin program design until the complete detail of the program
technical functional definition has also been reviewed and approved.

The architectural review can take place at the completion of the
complete look-ahead design and the detailed work breakdown structure
(see Section 10.5.3). The review thus scrutinizes the embryonic program
Software Design Definition and Functional Specification Documents at a
point where they vividly describe the basic structure of the software and
the framework for the remaining software implementation. This review
also probes the reasoning that went into that material.

The presentors are asked to perform the following tasks:

a. Present the software development plan, which contains updated and
detailed project manpower, schedule, and development cost
estimates, along with refined variance estimates for these quantities
{10% goal). Include an implementation plan, which indicates work
priorities and how the implementation process accommodates this
priority ranking, including time phasing, if appropriate. Demonstrate



358 Project Ohrganization and Management [CHAP. 10

that the work breakdown has tasks small enough to facilitate
supervision and review by management to determine progress
relative to the plan.

b. Present a summary of project standards.

c. Present the program hierarchic functional definition and design
architecture, using data-fiow diagrams, flowcharts, and explanatory
narrative. Show that the program definition and design architecture
are technically feasible and compatible and responsive to the
software functional requirements. Provide sufficient information so
that the end user may assess the appropriateness of user.interactions
and I/0 formats. Identify all amendments to the original SRD, and
summarize their impact on the development.

d. Identify satisfactory progress status monitors to be in effect during
the final detailed design phase.

e. Provide evidence that the architectural design and documentation are
adequate for the later detailed design and implementation, without
significant conflicts being likely.

f. Provide the Software Design Definition (SDD) and perhaps the
preliminary current version of the embryonic Software Specification
Document (88D} to the review board, and show that these adhere to
project standards and are adequate by the criteria given in Sections
3.4 and 4.2.3.

g. Present implementation testing criteria, plans, and procedures, and
show that these will fulfill requirements to establish program
correctness.

h. Present the preliminary software integration plan if the software is
being developed in an environment other than that to be used in
operations.

i, Identify required software support and external program'interfaces,
and evaluate their impact on software delivery.

j Identify the degree to which the architectural design activity
necessitated backup coding and checkout. If minimum levels had
been established, state whether this minimum level was exceeded.

The actions sought from the review board are concurrence in the
adequacy of the software development in principle and authorization to
pursue the development according to the costs and resources and schedule
presented. Acceptance by the board signals the initiation of installation and
aceeptance planning, and authorizes the continuation of definition, design,
coding, and checkout under the standards presented.



Sec. 10.8] Design and Progress Reviews 359

10.6.3 Critical or “As-Built Design” Software Review

The Critical Review concludes the specification phase of the software
development. Obviously, the entire set of detailed flowcharts, or their
equivalent, cannot be reviewed in a formal way by the board in any
reasonable time. Besides, concurring opinions and audits have taken place
for each module, so this level of technical detail is not warranted in the
review. Instead, the presentors are asked to provide to the review board
the following:

a. Evidence that the design is complete. All internal modules are
present. All external modules that currently exist satisfy stub
interfaces. All external modules yet to be developed have specific and
definitive interfaces. (An audit, plus a randomly chosen sample walk-
through of the tier chart and sample examinations of final stubs of the
three above type should suffice.)

b. Evidence that all technical requirements have been satisfied. Identify
all exceptions or remaining problems, and the disposition of such
items relative to liens on delivery.

¢. A management report that portrays the team performance in relation
to the software development plan. All deviations from the previously
presented plan and updated costs, schedules, and manpower should
be compared with the initial plan. The software development plan
for remaining tasks should also be presented.

d. A summary of all waivers from project standards and any new
standards adopted, or old ones amended or deleted, since the last
review.

e. A status report on the concurrent coding and checkout efforts, along
with a report on the extent to which the design has been verified.
Preliminary performance measures and projections for the completed
program are in order.

f. The completed 8SD, with a QA audit that attests to its completeness
and adherence to standards. The presentors should then redemon-

strate that these documents conform to the criteria given in Sections
3.4 and 4.2.3.

g Status reports on integration, acceptance testing, and QA activities.

The action solicited from the board is concurrence that the design meets
project objectives and fulfills the SED, that the development plan is
adequate for the tasks remaining, and that exceptions.and liens are either
acceptable as presented or will be disposed of before delivery. Acceptance
by the board constitutes an approval to continue the project in the way
presented.



360 Project Organization and Management [CHAP. 10

10.6.4 Acceptance Review

The final review shown in Figure 10-10 is the Acceptance Review, which
normally signals the end of the development project. This review is
primarily held to certify that the program performs within acceptable
limits-of specified behavior.

The presentors are asked to provide the following for review-board
approval:

a. An analysis of the program performance requirements, a set of
acceptance criteria relative to these requirements, and the means
used to validate the measured performance relative to the given
acceptance criteria (the Acceptance Test Plan).

b. Evidence that measured performance satisfies acceptance criteria
(the Software Test Report).

c. Final 58D, Software Test Report, and annotated code listings, all
approved by a QA audit for completeness and conformity with
project standards.

d. A final project management report, delineating total manpower,
schedule, and development cost figures. These should be broken
down into detailed resources expended in definition, design, coding,
checkout, testing, Integration, and documentation areas.

Approval by the. board is the authority to initiate delivery procedures by
which the program will be put into operation.

10.7 EVALUATION OF THE SOFTWARE AND
DEVELOPMENT TEAM

The review boards and upper management are charged with responsible
evaluations of tangible quantities having sometimes intangible measures of
quality. For example, a working program, even if it meets its acceptance
criteria, may perhaps not be judged a “good” design. Whether the design is
“good” or “bad” is rather subjective, sometimes only a matter of broad
personal judgement on the part of a reviewer. The top-down, structured,
modular, hierarchic approach has provided the reviewer with some
visibility into the product allowing him to make a more conscientious
judgement. But still, in the end, the judgement may not be rigorously
defensible, only a matter of professional, hopefully expert, opinion.

To make a responsible evaluation, the reviewers need to agree on a set
of criteria for judging program quality and for evaleating the performance
of its developers. Then they may rate the software and the development



Sec. 10.8] Summary 361

team against these, based on evidence supplied at the review. The
reviewers also need to agree on how their individual scores are to be
combined into final scores and the significance attached to such scores.

To be fair to the developers, these criteria should stem from, or be
stated in, the SRD, or established at the outset of the project, or reflect an
accepted organizational or professional standard. That way, the developers
and the prografh are being graded relative to stated objectives, rather than
on ex post facto judgements: “the way things should have been done”.

I spoke in Chapter 4 to the subject of defining, and then ranking
competing characteristics in a program development in order of first- and
second-order dominances The same technique can. be used to aid in
defining and ranking criteria- for the development team effort. These
rankings can lead to weights for combining scores relative to each of the
written-down criteria linearly into overall grades. An interactive
dominance-ranking program and a project- grading program to aid in

making these processes more automatic and more standardized appears in
[89].

10.8 SUMMARY

Software development team productivity depends on many intangible
aspects of the programming art. A survey [83] made among “programming
managers and experts 1 programming management” indicated, in the
consensus of its participants, that the greatest positive correlative effect on
productivity was guality external documentation {(documentation generated
prior to programmer task assignment), the availability of programmer tools,
and programmer experience. The use of structured programming and the
complexity of application were judged not to affect productivity very
much at all. Whether or not program size affects productivity was shown
to be a very controversial issue, and no consensus appeared at all relative
to programming management experience on the part of a Project Manager.

Why, then, has the present chapter been so concerned with
organizational and managerial procedures, and why has the whole work
pushed structured methodology so hard? Because I believe that, while
treated as individual factors, the organizaticnal, managerial, and technical
disciplines may not contribute to productivity as significantly as do some
other single factors, nevertheless, when these are merged into a solid,
unified discipline, the potential contribution is as great as any of the
variables surveyed.



362 Project Organization and Management [CHAP. 10

The organizational approach I have discussed places interfaces along
lines of required project documentation and expounds the use of
corroborative collaboration among team members as a method to find
errors, improve program quality, train junior team members, and test the
adequacy of the documentation produced. I have given outlines for
materijal to be presented in reviews to further these goals.

The remainder of this monograph consists of material that details the
methods presented (or indicated) in these first ten chapters as “rules”, or
standards to be applied during a software development.

Good programming does not result from preaching generalities, as I have
been doing up to this point. Good programming comes from seeing, over
and over, how real programs can he improved by the application of sound
principles of good practice and a little common sense.



363

Problems for Chapter 10

10-1 Replot Figure 10-1 to depict team production rate R as a function of
the number of workers. Compare with Figure 10-2, and discuss the
differences, ,

10-2 Develop a formula for team productivity in terms of lines delivered
per dollar {(wages and salary only) for the software development team in
Section 10.2. Use individual salaries and productivity indices, and
determine & way to find the highest team productivity.

10-3 Assume that a coder coding a correct design from a specification
produces L lines of code, in which a certain fraction, f, are faulty. Some
of these, a factor of  of the faulty lines, are caught by a peer checking
the code. These Lfq lines are returned to the coder for recoding,
whereupon the cycle repeats. Assume errors uncaught in one cycle will
not be caught in the next cycle. Prove that the total number of lines
generated code is

L
Litotal ‘":qu

{only L of which are retained). Prove the number of remaining errors in
the code is

LK1 —q)

3 errors = 1-1q

Next, suppose that the program is run, and tests find a fraction Q of
these errors. These lines are returned to the coder for correction,
whereupon the coding cycle starts all over. Show that the grand total
number of lines coded and the number of remaining undetected errors

are

L
ber et = T g — QI — )

L o
NT_'-“—E‘ 1fq,..,l

_ Lil—g—Q)
F erroxs = T—fq~ QL —q)

. Li(l—q}(1—-Q) o
=~ 1—¢ ifge=1




364 Project O1ganization and Management {CHAP. 10

10-4 Design and Aowchart a structured program to maintain the tier chart
of a program as outlined in Section 10.5.6. Include the capability to
update and query the data base for number of modules identified,
designed, coded, tested, completed, by phase, etc.



10.

11.

REFERENCES

NASA Guide, Computer Piogram Documentation Guidelines, NHB
2411.1, National Aeronautics and Space Administration, Washington,
DC, July 1971,

Computer Program Systems for ADP Management: Documentation
Standards, NASA X-502-70-157, Goddard Space Flight Center,
Greenbelt, MD, Deec. 1969.

Comella, P. A., Computer Software Documentation, NASA TM
X-66161, Goddard Space Flight Center, Greenbelt, MD, Jan. 1973.

Boehm, B. W., “Software and Its Impact: A Quantitative Assessment,”
Datamation, Vol. 19, No. 5, May 1973.

Baker, F. T., “Structured Programming in a Production Programming
Environment,” in IEEE Trans. on Softwaie Engr., Vol. SE-1, No. 2,
pp- 241-252, June 1975.

Dijkstra, E. W., “The Structure of the THE Multiprogramming
System,” Commun. ACM, pp. 341-356, May 1968.

American National Standard Vocabulary for Information Process-
ing, ANSI-X3.12-1970, American National Standards Institute, Inc.,
NY, Feb. 18, 1970.

American National Standard Flowchart Symbols and Their Usage in..
Information Processing, ANSI-X3.5-1970, American National Stan-
dards Institute, Inc., NY, Sept. 1, 1970.

Robert, D. C., “File Organization Technigues,” Advances in
Computers, Vol. 12, Academic Press, NY, 1972,

Hoare, C. A. R., “Notes on Data Structuring,” Structured Program-
ming, Academic Press, NY, pp. 83-174, 1972.

Webster's New Collegiate Dictionary, G. and €. Merriam Co.,
Publishers, Springfield, MA, 1961 Edition.

365



366 Heferences

12,

13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

Mills, H. D., “Mathematical Foundations for Structured Program-
ming,” IBM Document FSC72-6012, Federal Systems Div., IBM Corp.,
Gaithersburg, MD, Feb. 1972.

Royce, W. W., “Managing the Development of Large Soltware
Systems: Concepts and Techniques,” Western Electronics Conference
(Westcon), Hollywood Park, CA, Aug. 1970.

Strupk, W., and White, E. B., The Elements of Style, MacMillan Co.,
NY, 1959.

Preparation of Software Requirements Documents, DSN Standard
Practice 810-18, Jet Propuision Laboratory, Pasadena, CA, Dec. 15,

1975.

Einhorn, M., “Programming, Documentation, and Scheduling,” Class
project, West Coast University (otherwise unpublished).

Wynne, D., “Writing Specifications for Programs,” Inst. and Conir.,
pp- 62-63, Oct. 1973.

Parnas, D. L., “A Technique for Software Module Specification with
Examples,” Commun. ACM, Vol. 15, No. 5, pp. 330-336, May 1972.

Walsh, D., A Guide for Software Documentation, Advanced
Computer Techniques Corp., 437 Madison Ave., NY 10022, 1969.

Cray, M., and Landon, K., Documentation Standards, Brandon/
Systems Press, Inc., NY, 1969.

Buxton, J. N., Randell, B., et al., Software Engineering Techniques,
Report on a Conference sponsored by the NATO Science Commitiee,
Rome, Italy, p. 12, Oct. 27-31, 1969 (available through Scientific
Aflairs Division, NATO, Brussels 39, Belgium).

Shaw, J. C., and Atkins, W., Managing Computer System Projects,
MeGraw-Hill Book Co., NY, 1970.

Meyers, G. J., Composite Design: The Design of Modular Progiams,
Technical Report TR00.2406, IBM, Poughkeepsie, NY, Jan. 28, 1973.

Dijkstra, E. W., “Notes on Structured Programming,” in Structured
Programming, Academic Press, NY, 1972.

25. Wirth, N., “On Multiprogramming, Machine Coding,. and Computer

Organization”, Commun. ACM, Vol. 12, No. 9, pp. 489-498, Sept.
1969.

26. Donovan, J. J., Systems Programming, McGraw Hill Book Co., NY,

pp- 265-348, 1972.



27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

References 367

Knuth, D. E, The Art of Computer Programming, Fundamental
Algorithms, Vol. 1, Addison-Wesley Publishing Co., Reading, MA, pp.
258-268, 1969.

Constantine, L. L., Fundamentals of Program Design, Prentice-Hall,
Inc., Edgewood Cliffs, NJ, 1976,

Stevens, W. P., et al., “Structured Design,” IBM Systems Journal, No,
2., pp. 115-139, 1974.

Aho, A. V., and Ullman, J. D., The Theory of Parsing, Translation,
and Compiling, Vol. II, Prentice-Hall, Inc., Edgewood Cliffs, NJ, pp.
791-807, 1973.

Rich, R. P., Internal Sorting Methods Illustrated with FPL/1
Progiams, Prentice-Hall Inc., Edgewood Cliffs, NJ, 1972,

Knuth, D. E., The Art of Computer Programming, Fundamental
Algorithms, Vol. I, Addison-Wesley Publishing Co., Reading, MA, pp.
315-328, 1969.

Aho, A. V., and Ullman, J. D., The Theory of Parsing, Translation,
and Compiling, Vol. I, Prentice-Hall Inc., Edgewood Clifs, NJ, 1973.

Dijkstra, E. W., “A Constructive Approach to the Problem of Program
Correctness,” BIT, Vol. 8, No 3, pp. 174-186, 1968.

Dijkstra, E. W., “Structured Programming,” Software Engineeiing
Techniques, NATO Science Committee, Edited by J. N. Burton, and
B. Randall, pp. 88-93, 1969.

Bohm, C., and Jacopini, G., “Flow Diagrams, Turing Machines, and
Languages With Only Two Formation Rules,” Commun ACM, Vol. 9,
pp- 366-371, 1966.

Hoare, C. A. R., “An Axiomatic Approach to Computer Program-
ming”, Commun. ACM; Vol. 12, No. 10, pp. 576-583, Oct. 1969.

Elspas, B., et al, “An Assessment of Techniques for Proving Program
Correctness,” Computing Surveys, Vol. 4, No. 2, pp. 142-145, June
1972.

Manna, Z., “The Correciness of Programs,” J. Comput Sys. Sci., No.
3, pp. 119-127, 1969.

Landon, R. L., “Bibliography on Proving the Correctness of Computer
Programs,” Machine Intelligence, Vol. 5, American Elsevier Publish-
ing Co., NY, pp. 569-579, 1970.



368 Heferences

4].

43.

44,

45,

46.

47.

48.

49.

50.

oL,

52.

53.

54.

Asheroft, E., and Manna, Z., “The Translation of ‘GOTO’ Programs to
“WHILE’ Programs,” in Proceedings of 1971 IFIP Congress, Ljubljana,
Yugoslavia, August 23-28, 1971. American Elsevier Publishing Co.,
NY, 1972.

Brinch Hansen, P., Operating System Principles, Prentice-Hall, Inc.,
Edgewood Cliffs, NJ, 1973.

Dijkstra, E. W,, “Cooperating Sequential Processes,” Technische
Hogschule, Eindhoven, 1965. Reprinted in Programming Languages,
Edited by ¥. Genuys, Academic Fress, NY, 1968.

Hoare, C. A. R, “Towards a Theory of Parallel Programming,”
International Seminar on Opeiating System Techmiques, Belfast,
Northern Ireland, Aug-Sept. 1971.

Brinch Hansen, P., “The Prograﬂmming Language Concurrent
PASCAL,” in IEEE Trans. on Software Engr, Vol. SE-1, No. 2, pp.
199-208, June 1975.

Coffman, E. G., et al, “System Deadlocks,” Computing Surveys, Vol.
3, No. 2, pp. 67-68, June 1971.

Perlis, A. J., “The Synthesis of Algorithmic Systems,” J. ACM, Vol. 14,
No. I, pp. 1-9, Jan. 1967.

Sammet, J., “Roster of Programming Languages,” Comput. Automat.,
June 30, 1971.

Dahl,, O. J., and Hoare, C. A. R, “Hierarchical Program Structures,”
Structured FProgramming, Academic Press, NY, 1972,

Wulf, W. A., et al, Bliss Reference Manual, Dept. of Computer
Science, Carnegie-Mellon University, Jan. 15, 1970 (Rev. Oct. 25,
1971).

Miller, E. F., Jr., “A Compendium of Language Extensions to Support
Structured Programming,” RN-42, General Research Corp., Santa
Barbara, CA, Jan. 1973.

Basili, V. R., “SIMPL-X, A Language for Writing Structured
Programs,” Nat. Tech. Info. Service Report AD755-703, U. S. Dept. of
Commerce, Springfield, VA, Jan. 1973.

Flynn, J., “SFTRAN User’s Guide,” Comput. Memo. 914-337, Jet
Propulsion Laboratory, Pasadena, CA, July 1973.

Waite, W., “The Mobile Programming System STAGEZ2,” Commun.
ACM, Vol. 13, No 7, pp.'415-421, July 1970. (Also in Appendix A of
Implementing Software for Non-Numeiic Applications, Prentice-
Hall, Inc., 1973.) '



55.

56.

a7.

38.

59.

60,

61.

62.

64,

5.

66.

67.

68.

69.

References 369

Fundamentals of MBASIC, Vols. 1 and 2, Jet Propulsion Laboratory,
Pasadena, CA, Feb. 1974.

Fundamentals of MBASIC, Vol. 1, Jet Propulsion Laboratory,
Pasadena, CA, pp. 18-21, Feb. 1974.

Mills, H. D., “Top-Down Programming in Large Systems,” Debugging
Techniques in Large Systems, Edited by R. Rustin, Prentice-Hall, Inc.,
pp- 43-43, 1971.

Tennent, R. D., “PASQUAL: A Proposed Generalization of PASCAL,”

“Dept. of Computing and Information Science, Queens University,

ngston Ont., Feb, 1975,

Katzan, H., Jr., Advanced Programming, 1. Van Nostrand Reinhold
Co., NJ, pp. 153-163, 1970.

McDaniel, H., An Introduction to Decision Logic Tables, John Wiley
and Sons, Inc., NY, 1968.

Pollack, S. L., Decision Tables: Theory and Practice, Wiley-
Interscience, John Wiley and Sons, Inc., NY, 1971.

Chapin, N., “Parsing of Decision Tables,” Commun. ACM, Vol. 10,
No. 8, Aug. 1967.

Proceedings of the Decision Table Symposium, CODASYL System
Group and Joint Users Groups of the ACM, Sept. 1962.

Reinwald, L. T., and Soland, R. M., “Conversion of Limited-Entry
Decision Tables to Optimal Computer Programs I: Minimum Average .
Processing Time,” J. ACM, Vol. 13, No. 3, July 1966, and “Conversion
of Limited-Entry Decision Tables to Optimal Computer Programs II:
Minimam Storage Requirement,” J. ACM, Vol. 14, No. 4, pp. 724-755,
Oct. 1967.

Veinott, C. G., “Programming Decision Tables in FORTRAN,
COBOL, or ALGOL,” Commun. ACM, Vol. 9, No. 1, Jan, 1966.

Press, L. I, “Conversion of Decision Tables to Computer Programs,”
Commun. ACM, Vol. 8, No. 6, June 1965.

Kirk, H. W., “Use of Decision Tables in Computer Programming,”
Commun. ACM, Vol. 8, No. 1, Jan. 1965.

Pollack, S. L., “Conversion of LEDT's to Computer Programs,”
Commun. ACM, Vol. 8, No. 11, pp. 677-682, Nov. 1965,

Shwayder, K., “Conversion of Limited Entry Decision Tables to
Computer Programs—A Proposed Modification to Pollack’s Algo-
rithm.” Commun. ACM. Vol. 14. No. 2. nn..69-73. Feh. 1971.



370 References

70.

71.

72.

73.

74.

73.

76.

77.

78.

79.

80.

81.

82.

Ganapathy, S., and Rajaraman, V., “Information Theory Applied to the
Conversion of Decision Tables to Computer Programs,” Commun.

ACM, Vol. 18, No. 9, pp. 532-539, Sept. 1973.

Knuth, D. E.,, The Art of Computer Programming, Fundemental
Algorithms, Vol. I, Addison-Wesley Publishing Co., Reading, MA, pp.
187-189, 1969.

King, J., “A Verifying Compiler,” Debugging Technigques in Large
Systems, Edited by R. Rustin, Prentice-Hall, Inc., Edgewood Cliffs,
NTJ, pp. 17-40, 1971.

Brown, J. R, “Practical Applications of Automated Software Tools,”
Paper No. 21/3 of Automatic Software Verification, Wescon Record,
Sept. 19-22, 1972,

Krause, K. W., and Smith, R. W., “Optional Test Planning Through
Automated Network Analysis,” IEEE Symposium on Software
Reliability, Apr. 30, 1973.

Brinch Hansen, P., “Testing a Multiprogramming System,” Informa-
tion Science Dept., Californja Institute of Technology, Pasadena, CA,
Nov., 1972.

McCornock, M. D., “Midnight Musings on Real-Time Systems
Development,” MKM Computing, Inc., 3438 Verduge Road, Glendale,
CA 91208, Apr. 1974

Mills, H. D., “On the Statistical Validation of Computer Programs,”
IBM Report FSC72-6015, Federal Systems Div.,, IBM Corp.,
Gaithersburg, MD, 1972.

Feller, W., An Introduction io Probability Theory and Its
Applications, Vol. I, John Wiley and Sons, Inc. NY, pp. 43-45, 1950.

Tausworthe, R. C., “Random Numbers Generated by Linear
Recurrence, Modulo 2, Mathematics of Computation, Vol. XIX, No.
90, pp. 201-208, April. 1965.

Baker, F. T., “Chief Programmer Teams: Principles and Procedures,”
IBM Report FSC71-5108, Federal Systems Div., Gaithersburg, MD,

June 1971.

Boehm, B. W., et al, Software Development and Configuration
Management Manual, TRW Systems Group, Santa Monica, CA, Dec.
17, 1973.

Baker, F. T., and Mills, H. D., “Chief Programmer Teams,”

Datamation, Vol. 19, No. 12, pp. 58-61, Dec. 1973.



83.

84.

85.

86.

87.

88.

89,

References 371

Scott, R. F., and Simmons, D. B., “Programmer Productivity and the
Delphi Principle,” Datamation, Vol. 20, No. 5, pp. 71-77, May 1974.

Luppino, F. B., and Smith, B. L., “Programming Support Library
Functional Requirements,” Vol. V of Structured Programming Seiies,
RADC-TR-74-300, U. S. Air Force, July 25, 1974.

Foster, R. A., An Iniroduction to Sofiware Quality Assurance, Space
Systems Division, Lockheed Missiles and Space Co., Sunnyvale, CA,
1973.

Brooks, F. P., “The Mythical Man-Month,” Datamation, Vol. 20, No.
12, pp. 45-52, Dec. 1974.

DOD and NASA Guide, PERT COST, Office of the Secretary of
Defense and NASA, Washington, DC, June 1962.

“Improvement Needed in Documenting Computer Programs,” Report
to the Congress, B-115369, by the Comptroller General of The United
States, Washington, DC, Oct. §, 1974.

Fundamentals of MBASIC, Appendices, Vol. 2, Jet Propulsion
Laboratory, Pasadena, CA, pp. A-35-49, Feb. 1974



INDEX

NOTE: Page numbers that eppear in boldface iype indicate the reference for
the primary discussion or definition of an item.

Abnormal program termination,
152-157
Abstract resource, 21-22, 65-7T2
Abstraction, 21-29, 67
Acceptance review, 360
Accuracy vs precision, 12
Activity, scope of, 17
Algorithm, 12
Bubble-Sort, 235-236
Decision Tables as, 256
Euclid’s, 289
File-Sort, 238-239
Milly, 191-126
Preorder traverse, 108-109
Pollack’s procedure, 261-266
Postorder traverse, 234
Shuttle-Interchange Sort, 237-238,
303
Sieve of Eratosthenes, 257-258
Annotations (in CRISP), 233-234
Arbiter, resource, 176, 180-181,
194206
Arbitration, 180, 188, 194201,
202, 240
Architecture (see Structure)
Architectural design, 90, 348,
357-359
“As-built Specifications”, 64, 359,
(see also Software Specification
Document)
Asheroft, E., 120, 140
Assertions, 280291
Audit, 301-302

Axiomatization, 22

Background process, 192, 199-200
Base language (for CRISP), 219

Binding (see Cohesion, module)

Block, CRISP, 220

Block-structured languages, 218

Boehm, B, W, 31

Bohm, C., 100

Bottom-up minciple, 5, 20

Brinch Hansen, 2., 173, 183, 185,
189, 240

Bubble-Sort algorithm, 235

Buffer, 171

Calibration error, 309-315
Canonic program structure, 101-102,
142, 153
Card Cross-Reference Program,
91-94, 274-283
Card Listing Program, 174
Change control cycle, 344
Checkout, 19, 298-301, 304-305
Chief Program Designer, 332
Chief Programmer Team, 321-324
Classical cohesion, 85
Clause, CRISP, 220
Coder-reader collaboration, 336-339
Cohesion, module, 82-87
coincidental, 86
communicational, 84
composite, 86
functional, 83
logical, 85
procedural, 84
temnporal, 85
Collecting node, 106
Competing characteristics, 89
Complexity of a program, 115,
294-295
Composite strength, 86-87

373 Preceding page blank



374 Index

Computations, 11, 12
Computer program, 10-
Concufrent-design/coding /testing,.
999301, 838-840 ‘4is bl
Concurrent development, 41, 64-65,
48-49, 338-339 - -~
Concurrent documentation principle,
32-39, 63
Concurrent PASCAL, 182, 214
Concurrent processes, 10, 171177,
206-214
design methods, 189-206
design requirements, 178-186
event driven, 210-214
Conditional critical regions, 188-189
Confidence level, 118, 308-316
pre-test factors, 310311
post-test factors, 314-316
Configmation control and
management, 340346
Connection, data, 7276
Connectivity (see Coupling and
Cohesion)
Consistency, relaxation, 202
Consistent programs, 178-180
Constantine, L. L., 77-78
Constraints vs requirements, 43
Control flow, 14
Control logic analysis, 295-298, 301
Control, scope of, 14, 87-88
complexity of, 115, 295-296
Corn eciness
assertions, 280291, 293
assessment, 118-119, 145, 287320
andit, 301-304
confidence, 308-316
control-logic, 295-297, 301
designing for, 64-65
poof of, 117-118, 288-294,
295-299
real-time, 306-307
recursive subroutine, 119-120
testing, 298-304
theorem, 100, 115
Coupling, 11, 77-82
common, 30
content, 82
control, 80-31
data, 78
external, 81-82
CPT (Chief Programmer Team),
321-324

CRISP, 217248 -

block, 220

clause’, 220

teoding, 235242

comments, 228

design documentation, 244-246

macros, 228 229

PDL, 249244

preprocessor, 227-231
Critical 1egion, 176
Cross-referencing modules, 106-109
Customer/user representative, 335

Data flow, 51-52, 72-80
Data graphs, 68-69
Data Space, 12
Drata structure, 15, 65-69
allocations, 85
definition, 15
example, 27, 28
scope of activity, 17
Data type, 16
de-node, 106
Deadline integrity, 179
Deadlock, 178, 183, 194
Deadlock prevention, 183-186
Decision logic optimization, 263,
271-272
Decision node, 106
Decision Tables, 249-286
extended-eniry, 253
limited-entry, 251253, 254-277
mixed-eniry, 253, 273
optimization, 263, 271-272
sequential testing procedme, 255,
285
simplification of, 254-255
translation to programs, 258-271
use vs flowchaits, 249
Decomposition, hierarchic, 58-62, 66
Design,
bottom-up, 5-6, 20-21
concurrent, 32-39, 336338
concuyrent programs, 189-206
hardest-out, 32
hierarchie, 59
merogatives, 41
priorities, 89
process, 56-57
requisites, 57-58
top-down, 59-65
tradeoffs, 69



Development, supervision, 356
Development tasks, 17-19, 323
Dewey-Decimal numbering system,
106--108, 228, 233
Dijkstra, E. W., 6, 19-20, 99, 176,
188
Directed graph, 14, 18
d-node, 106
Documentation
amount, 34, 40
automatic, 340-346
concurrent, $2-39, 63
design, 64-65, 244-246, 339-341
goals, 33-34
management (for), 331-332, 347
project, 351
types, 35-38
“Don’t-care” discriminant, 264
Dummy stubs {see Stubs}

Easterling, M. F., 63
Effect, scope of, 87
Efficiency of structuring programs,
138-140
ELSE-rule, 154, 254, 272-273
Elspas, B., 118
Error
calibration, 310-315
detection of, 312-313
indigenous, 310
Euclid’s Algorithm, 285
Executive Service Request, 211213
Exit
abnormal, 142144, 153-157
condition, 146
flowchait, 158-159
multi-, 145-153
parancrmal, 206--214
Expansion Theorem, (Mills), 113

Trile Sort, 239
Flag, 16, 128-130
Flowchart, 12-13, 102-116
exit, 158-159
expansion, hierarchic, 106-112
numbering system, 106-109
optimum decision logie, 261-271,
272
structuring by Mills’ Algorithm,
121-137
Flowhne, 106, 150-155
Flynn, J., 131

Index 375

Fork, 172-173, 192195, 206-214

Functional requirement, 36

Functional specification, 18, 41-53,
335

“GO TO-less” programming, 218
\

“Hardest-out” principle, 32
Hashing, 91-94
Hierarchies, 19-20
concept, 20-22
resource allogation and access,
69-72
test, 301
Hoare, C. A. R,, 21, 118, 178

Indentation {in CRISP), 233, 246
Index loop (see Loop index)
Index of reliability, 118, 308-317
Indigenocus error, 310

Individual productivity, 325
Inductive assertion, 291-282
Tnformation flow, 50-5%
Information structure, 15-17
Interface Control Engineer, 334-335
Interfaces, 11

Interrupt, 166 (see also Trap)

Jacopini, G., 100

Join, 172173

Joint programmer-reader
collaboration, 336-338

Justification, software, 42

le-node, 106

Lead Programmer, 333

Level of access, 6972, 92-93

Level number. 19, 112

Levels of abstraction, 8, 20-29, 68-69

Limted-Entry Decision Table,
251-258, 276-278 .

Limits of concurrency, 171

Look-ahead design, 62-64

Loop index (see Index loop}

Macro processor, in CRISP, 228-229
Management, 346-355

reports, 351-354

reviews, 355-360
Manna, Z., 120, 140

Maximum likelihood error estimation,
309, 312



376 Index

McComock, M. D., 307
McEliece, R, ., 206
Message buflering, 186-187
Mills” Conrectness Theorem, 61-62,
methad, 120-137
testing, 299
Mode, program, 12
Modularity, 11, 59-76, 76-89,
327-328
Modularization guidelines, 87-88
Module, 11
abnormal termination, 155
coupling, 77-82
named, 77, 106-107
numbering system, 106-109,
232-234
strength, 77, 82-87 (see also -
Cohesion}
striped, 77, 106-107
termmation, 158-158, 224225
Monitor, 182
Multi-exit function expansion, 149
Multi-exit module, 145.-153
Multiprocess, 166
Multiprocessor, 10
Multiprogram, 10, 165-215
attributes, 168
design requirements, 177-186
interrupts, 168-170
Mutual exclusion principle, 176

Named module (see Module, striped)
Nested structures, 100, 113-117
concurrent, 172
real-time, 193
Non-productive time index, 324-326
Non-proper program, 140-153
Normalized team productivity, 326
Numbering modules, 106-109

Opeirating system, 10
Operation, 11, 166
Opossum, 23

Parallel processes, 11, 168, 170-173
Paranormal structures
conicurrent, 208-209
entry, 207-209
exit, 149153, 158-159, 212-213,
224-226

Performance criteria
program, 42, 5556, 266267,
313-316
team, 42, 360--361
Planning, 346-347
p-node, 106
Pollack Procedure, 261-271
Post-Order Traverse Algorithm, 234
Post-test confidence factor, 314-316
Precision, 12
Predicates, 291
Preorder traverse of a flowchart,
108-109
Procedural cohesion, 84
Procedure design language (PDL),
195, 242944
Process, 11
concurrent (see Concurrent
processes)
disjoint, 176
interacting, 173-175
nodes, 106
non-interacting, 173-175
Productivity mdex, 322
Productivity optimization, 348
Program, 10
complexity of, 115, 294295
consistent, 178-180
design language (PDL), 125,
242244
modes, 12
quality, 55-56
representation, 12-13, 15-17,
51-52, 217-227, 942244
requirements (document), 36-38,
4250, 348, 361
specification {document}, 35-38,
4648, H7-58, 64-65, 95, 338,
345-346
states, 176-177
tree, 109-111
Programming Specification (PS), 37,
38, 331, 337
Progress Reviews, 355-361
Project
conduet of, 335-340
management of, 321362
organization of, 321-362
Project Manager, 330
Proper program, 99
PS (see Progamming Specification)



Quality, 55-56
Queue, buffer, 171

Readability, 33-34, 40, 58, 160
Readers and Writers Program,
240-241

Real-time arbitration, 202, 197206
Real-time multiprograms, 165-166,

169-170
Recursive program segments, 119
Reinwald-Soland procedure, 263
Reliability, 55-56, 308-317
Beporting system, 351
Reguirements, software, 41-46
creation, 4546
customer, 42-46
guidelines, 43
implied, 44
vs constraints, 43
vs definition, 49
Resource
abstract, 2122, 65-72
access, 69-72
allocation, 183-185
arbitration, 180-181, 193-206
deadlock prevention, 183-185
manipulation, 22
protection, 178, 181-182, 189
representation, 22
Resources
devoted, 171, 180-183
mutual, 171
permanent, 183
tempoary, 171, 183-186
Rewviews, 355-361
acceptance, 360
architectural, 357
“as-built”, 359 °
requirements for, 356
Rigor, degrees of, 118
Root, of tree, 19
Routine, 10

Schedule, 349
Scope
of activity, 17
of control, 14, 87-88
of effect, 88
SDD (ses Software Definition
Document)

Index 377

SDL {see Software Development
Library)
Semantic refinement, 2229
Semaphore, 187-188
Sequential Testing Procedure (STF),
255, 285
SFS (see Software Functional
Specification)
Shuttle-Interchange Sort, 237-238,
303
Sieve of Eratosthenes, 257-258
Signature block, 345
Skills Inventory Problem, 25-29,
06, 248
Software Definition Document, 36-38,
348, 357-359
Software Development Library
(SDL), 334, 340-343
Software Development Team,
329-335
Software Functional Specification
(SF'S), 4649, 335
Software management, 321-364
Software Requirements Document
(SRD), 36-38, 42-50, 348, 361
Software Specification Document
(SSD), 37, 38, 4648, 57-38,
64-65, 95, 338, 345..346
Software Test Report (STR), 37, 35,
_ 331,338
Sorting algorithms
Bubble-Sort, 235
File Smat, 239
Shuttle-Interchange Sort, 237-238,
303
SED (see Software Requirements
Document)
SSD (see Software Specification
Document)
Stack, 65-66, 70, 121
Stage-2, 228
Stalemate, 183
Standardrzed documentation, 351-352
State
computer, 12
concurrent program, 176-177
Statistical inference technigues, 308
STP (see Sequential Testing
Procedure)
STR (see Software Test Repoit)
Strength (see Cohesion, module)
Striped module, 77, 106-107



378 Index

Structure, 13-17
control, 14
information, data, storage, 15-17,
51-52, 65-69
Structured program, 14
Structured walk-through, 336
Structure flag, 128-130
Structure graph, 109-110
Structuring unstructured programs,
120-153
Stubs, 61, 300
Subprogram, 11
Subioutine, 11
external, 107
inteinal, 107
recwmsive, 119-120
Synchronization methods, 186-191
Syntactic notation, 13
Syntax, CRISP, 217-247

Team productivity, 326
Tennent, R. D., 247
Terminal symbol, 158-159
Termmation:
abnormal, 142144, 153-157,
294, 296
paranotmal, 149153, 212-213,
224226
Test.Engineer, 333

Test progress chart, 313
Trer chart, 109, 111-.112, 353-354
Tier number, 112
Top-down
control flow hierarchy, 60-62
information flow hierarchy, 50-52
methodology, 20, 29-32
program development, 59-65
Topological sorting, 73-74
Translation, Decision Table to
program, 259
Trap, 166, 201
dedicated, 167-168, 191
interrupts, 167
multiprogram, 168-171
process, 197-200
Tree, 19
Tree diagram, 110-111
Type, 16

User representative, 330
User requirements, 42-46
Utility discriminant, 265

Verification, software, 19, 338-338
Verification testing, 298-320, 333-334

Waite, W., 182
Work breakdown structures, 335-336

Examples

+Card Cross-Reference Program,
91-94, 274-283
Card Listing Program, 174
CRISP coding
Bubble-Sort, 235-236
Concurrent input/output,
240-241 -
File Sort, 238-239
Shuttle-Interchange Sorting,
237-238, 302
CRISP Procedure, 234

FILL A, 115-117

Fhmn’s Problem No. 5, 131-137

Mills’ Method, 121-125

Mills’ Procedure, 125-137

Pollock’s Frocedure, 261-271

Reader’s Quandary, 251252, 260-261

Sieve of Eratosthenes, 257258

Skills Inventory, 25~29

Testing Module Control Paths,
302-304

Use of CRISP Macro Capability, 229



Index 379

Diagrams

- Abnormal terminations, 155-157

Arbiter functions, 196

Background process, 199-201

Binary-decision, 103

Block, 51

Canonic construction, 103, 142

Card Cross-Reference Program,
280, 282

Case, 142, 147

Concuirent processes, 172, 175,
207-213

Conditional critical regions, 190

CRISE, 159, 219

Data connection, 73-76

Decision Table, 250-255, 263,
276278

DOTHEN, 100, 101, 113

DOWHILE, 104, 142

Buclid’s Algorithm, 289, 297

Flowchart elements, 106

IFTHENELSE, 100, 113, 142, 148,
219

Information-flow, 50-52

Labeling exits, 158-159

Logic flow, 58

Loops, 105, 117, 127, 148, 222, 293

#U,5, GOVERNMENT FRINTING OFFICE:

Mode, 12

Module coupling. 79

Multi-exit, 146, 148, 149, 151

Mulbltiple-branch, 103

Multi-valued flag, 141

Nested structure, 114, 143, 172,
193, 207-213

Node, 122124

Pollack’s Procedure, 269-271

Process state, 177

Program graph, 16

Real-time stiucture, 192, 193

Resource allocation, 185

Resource-arbiter interaction, 180

Semaphore synchronization, 189

Sequence, 142 p

Shuttle-interchange sort, 239, 303

Software development, 331, 337,
341, 342

Striped symbol, 107, 108

Structure graph, 110, 128-137, 144

Synchronization, 189, 195

Fier, 112, 354

Trap, 167, 168, 192, 189-201

Tree, 111

Waite’s algorithm, 162
WHILEDO, 104, 142

1976 - 685-523



BIEST SELLEBRS

FROM NATIONAL TECHNICAL INFORMATION SERVICE

Government Reports Annual Index—1976
NTISANNI-7601/PAT PC$345.00

Interagency Task Force on Product Liability. Insurance
Study
PB-263 600/PAT263p PC$98.00/ MF$3.00

Engineering Design Handbook. Metric Conversion
Guide
ADA-029 902/PAT146p PC$9.00/MF$9.00

U.S. Technology Policy
PB-263 806/PAT182p PC$9.00/ MF$3.00

Interagency Task Force on Product Liability
Brieting Report: Executive Summary
PB-262 515/PATS56p PC$4.50/ MF$3.00

How to Obtain Information in Different Fields of
Science and Technology: A User's Guide
AD-780 061/PAT124p PC$5.50/ MF$3.00

Buying Solar
PB-262 134/PAT81p PC$5.00/MF$3.00

Methanol: lis Synthesis, Use as a Fuel, Economics,
and Hazards

NP-21727/PAT186p PC$7.50/MF$3.00

1

Citizens Radio Service Transactions
PB-235 959/PATPC$100.00 ( Mag. Tape )

Saudi Arabia Five Year Pian, 1975-1980
PB-246 572/PAT683p PC$16.25/MF$3.00

Engineering of Wind Energy Systems

SAND-750 530/PAT24p PC$3.50/MF$3.00
Rerformance Measurement and the Criminal Justice
System: Four Conceptual Approaches

PB-262 196/PAT419p PC$11.00/MF$3.00

Quter Continental Shelf Oil and Gas Costs and
Production Volume: Their Impact on the Nation's
Energy Balance to 1990 H

PB-262 533/PAT241p PC$8.00/MF$3.00
Operational Influences on Reliabitity

APA—035 016/PAT210p PC$7.75/MF$3.00

Reducing Excess Hospital Capacity
HRP-0015 199/PAT236p PC$8.00/MF$3.00

Guide and Checklist for Development and Evaluation
of State and Local Government Radiological
Emergency Response Plans in Support of Fixed
Nuclear Facilities

PB!-264 798/PAT82p PC$5.00/MF$3.00

%

[

W P S i — T S Y S i — ———

HOW TO ORDER

. When you indicate the method of pay-
ment, please note if a purchase order is not
accompanied by payment, you will be billed
an addition $5.00 siip and bifl charge. And
please include the card expiration date when
using American Express

Normal delivery time takes three to five
veeks. It is vital that you order by number

METHOD OF PAYMENT
[J Charge my NTIS deposit account no.

or your order will be manually filled, insur-
ing a delay. You can'opt for airmail delivery
for $2.00 North American continent; $3.00
outside North American continent charge per
item Just check the Airmail Service box. If
you're really pressed for time, call the NTIS
Rush Handling Service (703)557-4700. For a
$10 00 charge per item, your order will be
airmailed within 48 hours, Or, you can pick
up your order. in the Washington Informa-
tion Center & Bookstore or at our Springfield
Operations Center within 24 hours for a
$6.00 per item charge,

[0 Purchase order no.

O Check enclosed for $

NAME

You may also place your order by tele-
phone or if you have an NTIS Deposit Ac-
count or an American Express card order
through TELEX. The order desk number is
(703) 557-4650 and the TELEX number is
89-9405.

Thank you for your interest in NTIS. We
appreciate your order.

] Bill me. Add $5.00 per order and sign below. (Not avail-

able outside North American continent.)

ADDRESS.

[J Charge to my American Express Card account number

‘Card expiration date

Signature

O Airmail Services requested

Ciip and mail to,

+Natlonal Technical Information Service
U.S. DEPARTMENT OF COMMERCE
Springfleld, Va. 22161

(703} 8874650 TELEX 89.9405

CITY. STATE, ZIP
Quantity
ltem Number Paper Copy| Microfiche Unit Price* Total Price®
(PC) (MF)
All prices subject to ehange. The prices Sudb Total
above are accurate as of 8/77 Additional Charge
Enter Grand Total

Forelgn Prices on Request.

— — —


http:PC$5.00/MF$3.00
http:PC$7.50/MF$3.00
http:PC$5.00/MF$3.00
http:PC$8.00/MF$3.00
http:PC$5.50/MF$3.00
http:PC$7.75/MF$3.00
http:PC$4.50/MF$3.00
http:PC$8.0P/MF$3.00
http:PC$9.00/MF$3.00
http:PC$11.00/MF$3.00
http:PC$9.00/MF$9.00
http:PC$3.50/MF$3.00
http:PC$9.00/MF$3.00
http:PC$16.25/MF$3.00
http:959/PATPC$100.00
http:PC$345.00

