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PREFACE 

This monograph started as a set of rules given piecemeal as standards to 
a team developing a conversational, incrementally-compiled, machine
independent version of the Dartmouth BASIC language for the Jet 
Propulsion Laboratory, called MBASIC. (Originally, "M" stood for 
"management-oriented", indicating its intended set of users; however, its 
great flexibility and ease of use has since won over many scientific and 
engineering users as well.) The first draft was a mere collection of the first 
sketchy set of rules, along with some background material on structured 
programming. 

As the design progressed, the emphasis expanded from the design of a 
language processor to a project developing software methodology using the 
MBASIC development as a testbed activity. New rules were supplied as 
necessary and old ones had to be revised or discarded. Some of the ones 
that sounded so good when first imposed had effects just opposite to what 
was desired. The MBASIC design and documentation standards underwent 
several complete iterations, each under new rules to calibrate their 
effectiveness. The working drafts of this monograph were in constant 
revision to maintain a current set of standards for the project. 

Further expansions of the working drafts were made to include much 
tutorial material, since I used portions of the text as lecture topics for 
graduate-level computer science classes at West Coast University and for 
seminars in software standards at the Jet Propulsion Laboratory. 
Interactions with the students and professional programmers with widely 
different backgrounds proved to be very enlightening. 

I realize that some who have already "learned programming" may find 
fault with what they read here. I hope their objections are mostly with how 
the rules impact their perd'onal programming style. Style is a reflection of a 
programmer's personal programming habits and his own preferences in 
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iv Preface 

the way he does things. If the rules given here don't work, that is another 
matter. 

What I have attempted to do is to merge individual disciplines and good 
practices into a methodology that neither destroys personal style nor 
reduces motivation and involvement. The given set of rules is the base for a 
consistent and effective methodology; but there may be other equally 
effective and consistent methodologies. I do not allege to profess the only 
way toward improved software development-just one that works. 

The monograph does not reflect, nor is it meant to reflect, exact 
standards or practices now in effect at JPL; however, much of the material 
has formed the basis for Deep Space Network software guidelines and 
standard practices currently in effect. 

Several individuals at the Jet Propulsion Laboratory have reviewed the 
drafts and many have provided rules, suggestions, and other material. I 
have expected such criticism, and welcomed constructive material by any 
who cared to supply it. I have tried to be open to all correct, potentially 
worthwhile ways to improve the development of software and to build 
these into a uniform coordinated methodology for programming, a set of 
rules universally sound. 

I offer one apology at the outset-for my literary style. About half-way 
through writing this monograph, I was suddenly surprised to learn that I 
often referred to software development personnel in the masculine. Lest I 
be accused of male chauvanism, let me attempt to defend myself by 
explaining that the references appear thus because I tended to place 
myself in the roles of these individuals. In writing, I also tended to be 
addressing myself, rather than any envisioned reader or actual software 
development person. By the time I realized I might be taken to task for 
this by distaff readers, the style was set and writing was too far along
another case where a software error was discovered too late to change the 
product without having major schedule and economic impact! 

I would like particularly to acknowledge the aid given to me in the form 
of encouragement, ideas, criticisms, reviews, questions, and informative 
discussions by Walter K. Victor, Mahlon Easterling, Robert Holzman, 
James Layland, Robert Chamberlain, Edward Posner, Daniel Preska, 
Richard Morris, and Henry Kleine of the Jet Propulsion Laboratory, and 
Daniel Lewis, Frank Bracher, John MacMillan, Richard Jaffee, and Howard 
Mayberry of National Information Systems, Inc. Also, I want to express my 
appreciation to Margaret Seymour for typing the many drafts and to Shozo 
Murakami for editorial assistance on this final version. 
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Finally, I wish to thank those who have attended the many seminars and 
classes given from this work during its various stages of completion, many 
insights into the secrets of software engineering across a broad programmer 
base occurred to me as the result of these classroom discussions. 

Robert C. Tausworthe 
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I. INTRODUCTION
 

A computer system is a rigid, dispassionate machine; it is designed and 
built to react in definite, microscopically precise ways to programmed 
commands. The program it executes comprises a large collection of atomic 
instructions organized into macroscopic algorithms and computational 
procedures in performance of a desired task. The differences between a 
hoped-for behavior and the actual are evidences of human failures to 
instruct the computer properly. Nevertheless, such failures are referred to 
as "errors in the program" or "bugs", and justly so-the servant has 
executed but cannot comprehend any reasoning behind the instructions 
given it. Moreover, it has constrained the human capacity to communicate 
in doing even this much, as it has required instructions in its own 
programming language, rather than in more human terms. 

Computer programs have thus, from the very first been subject to error
missteps in coding committed by the programmer-and then not discovered 
until after the program's operation can be examined and seen to be in 
error. The cause of such errors may then be either obvious, very elusive, or 
somewhere in between. In any case, the diagnosis comes after thefact, as 
the computer proceeds at such a pace as to make concurrent diagnoses out 
of the question. Once diagnosed, any subsequent (trial) corrections must be 
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2 Introduction [CHAP.I 

rerun to validate the proper response, at extra expense. The human 
proclivity to err in programming is probably the singularly most 
prominent, overriding factor against producing economical, reliable 
software. 

Because the computer lacks judgement itself and responds to direction 
totally ignorant of the task to be done,, programmers attempt to build in 
some measure of quasi-judgement by instructing the device to perform 
certain tests on input and to check for known- or probable processing 
anomalies. They may instruct the computer, based on such information, to 
take some less abrasive action than complete failure. Such programming 
practices are often called "user forgiving", "error insensitivity", or 
"defensive". Regardless of the terminology, such practices are attempts to 
establish the proper master/servant relationship, whereby the machine 
adapts to the human, rather than vice-versa. 

R. Holzman, a colleague at JPL, once remarked (1972) "When you can 
tell a computer, 'Oh, you know what I mean!'-and it does-then that's a 
computer language!" The industry, of course, may never attain that goal of 
man/machine communication, but it is reaching. In its reaching, it has 
made several significant progressions to define methods, procedures, and 
standards for use by programmers to reduce the number and severity of 
their "program errors". 

Among the first significant developments were the inventions of higher
level languages, language processors, and the provisions for programmers 
to annotate their programs with some form of rationale for their own 
benefit. In addition, novice programmers learned to draw flowcharts, as a 
prelude to coding, as a means of developing their skill, and as a method for 
designing the program procedure-the algorithm scoping the task. But 
programmers still made errors, at about the same rate per instruction as 
they had previously. The only difference was that as many errors did not 
reach the run-time stage, and each instruction did more in a higher-level 
language. Still more higher-level languages have been developed; until 
today, there are probably as many programming languages as there are 
natural languages. 

At some point, programmers, or their supervisors, or their customers, 
recognized that, even though a program might be working, no one could 
understand how it was working well enough to make changes without 
introducing a lot of side-effect errors, or how well it was working enough 
to assess the programming quality. So the idea, "document what you have 
coded so I can understand it", sprang up. Managerial seminars developed 
methods to cajole and coerce [1,2] designers, programmers, coders, et al., 
to ,document. The necessity to document J3] was evident to all who had to 
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read and maintain the software, but dreaded by the documentor. 
Flowcharting was a nuisance and rarely matched the code, regardless 
which was produced first. Annotations of the code were in a similar state, 
as were narrative descriptions. Since the computer cannot execute a 
flowchart, narrative, or annotation anyway (only the code), and the human 
was just as likely to err in describing his code as he was in coding it, other 
systems emerged: self-documenting code, automatic flowcharting, standard
ized documentation formats, etc. Computer technology was beginning to 
evolve into an engineering discipline. 

1.1 THE NEED FOR SOFTWARE STANDARDS 
Years ago, the cost of computing was largely in machine costs; now the 

larger portion is paid to people developing, using, and maintaining 
programs. In fact, the trend in computing costs is the complete dominance 
of manpower costs over machine costs. 

Software is big business; the indirect costs caused by failures to meet 
schedule or performance requirements often exceed the costs of the 
software itself, because software development always seems to be on the
"critical path" of a system development. Boehm [4] suggested the following 
prescription for software headaches: 

a. Get software off the critical path in system development. 

b. Increase software productivity

c,Improve software management. 

d-Get an earlier start. 

e. Make software responsive to actual user needs, 

f. Increase software reliability. 

The present monograph is an attempt to provide formal disciplinesfor 
increasing the probability of securing software that is characterized by high 
degrees of initial correctness, readability, and maintainability, and- to 
promote practices that aid in the consistent and orderly development of a 
total software system within schedule and budgetary constraints. These 
disciplines and practices are set forth as a set of rules to be applied during 
software development to eliminate (this is the goal)-or at least to 
drastically reduce-the time spent debugging the code, to increase 
understandability among those who come in contact with it-especially 
managers, who must often make decisions relative to competing resources 
(such as budget, schedule, execution speed, memory size, etc.)-and to 
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facilitate operation and alteration of the program as the requirements or 
program environment evolves. 

To be effective, I recognize that a set of standards must not be imposed 
so much as adopted.But once a set is adopted, its rules should be enforced. 
Needless to say, some of the rules I give are broad and, therefore, open to 
interpretation. I have tried to make these as specific as I could without 
destroying their general applicability. But some vagueness may yet remain. 

One may question whether the strict adherence to definition, design, 
production, testing, and documentation rules hamper programmer 
creativity or decrease his motivation and involvement; this has not, in my 
experience, turned out to be the case. Programming methodology tends to 
be rather scantily taught in computer-science courses in the universities. 
What methodology a programmer possesses he may have had to learn 
largely for himself, tutored by his own coding, discovered osmotically from 
reading programs otheis have written, or found through discussion with his 
peers. Programmers, as any problem-solvers, generally welcome a 
workable, well-disciplined approach to problem solving, so they do not 
have to re-invent the wheel, so they know what is expected of them and 
how they will be judged on their'performance, so they know what level of 
reporting is required, and so they can really get into the design and make a 
clean, good, well-operating system. 

Good standards enforce themselves. Once the programmer recognizes 
that his own performance is improved by standardized methods, he is its 
foremost proponent. When he suddenly realizes that he is capable of 
understanding a program written by someone else, he is convinced forever. 
I have personally seen instances where experienced programmers have at 
first rebelled at the entire concept, but once forced, they recognized the 
benefits derived, assisted in further development, and helped enforce 
standards in their own organizations. 

The reports from industry are equally encouraging. Although productiv
ity indices tend to be highly variable across wide ranges of applications and 
across software development personnel, nevertheless, analysis of quantita
tive data [5] indicates that the standards forming the basis of this 
monograph generally produce better than 50% improvement in overall 
project productivity. This overall productivity figure includes analysis, 
design, testing, management, support, and documentation, in addition to 
coding and debugging. Moreover, the figures in support of this 
improvement have been computed in terms of delivered code-the 
incidental effort spent in developing code used to support the production 
and code, which later had to be replaced, have not been counted. 
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1.2 SOFTWARE DEVELOPMENT 

At the outset of a programming project, there are only a problem 
(program requirement) and a programming language in which the solution 
to that problem is tobe stated. In between, there is the gap to be bridged 
by the development process. 

The actual creative process which goes on in a program designer's mind 
is certainly not well understood. It probably rambles from broad concept to 
details and completeness, and, perhaps on occasion, from detail to the 
broader concept. 

When writing a paper or preparing a talk, one first jots down notes, then 
an outline of the material to be covered. After the outline is expanded by 
way of a few iterations, the narrative is written. Many revisions are usually 
necessary if the paper or speech is to be of any significance. 

A piece of software probably should not be much different in the way it 
is created. Successive refinements and revisions of a program are going to 
be necessary if it is to be of high quality. 

Moreover, the revision process in software development is unavoidable. 
People cannot think of everything, in the right order, correctly, in one pass 
(Figure 1-1). One can hope, however, that there are procedures that tend 
to let the creative process take a natural course,. but yet minimize the 
probability that, at some advanced stage of development, one must "throw 
out the whole thing and start all over from scratch." 

One of the most costly ways to develop software is to begin the 
production phase before the program definition and design have reached 
an adequate state of completion. A small change in the program definition, 
for example, can avalanche down through the work done, resulting in 
suboptimal design, patched programs and code, introduction of undesirable 
side effects, and excessive debugging time. 

The pressure of a schedule and the awareness that a great deal of coding 

has to be done cause many managers to let the design or coding begin, 
anyway, just to get started on a job that is obviously huge. Hence, the 
process of des!gn is begun throughout the system at the very bottom before 
the design has been properly thought out and precisely defined at the top. 
A classical "bottom-up" design emerges, leading to difficulty in integrating 
the resulting components in a system. 

Yet cooperative interaction between the definition, design, and 
production activities associated with developing a program can be 
mutually beneficial when properly interfaced. The proper interface in this 
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Figure 1-1. Bridging the software gap 

context is an organization of the tasks to permit revisions and refinementm 
without requiring extensive rework. 

The procedures of this monograph have evolved from the belief that 
successive refinement of a concept by adding more and more detail is a 
less costly, more certain discipline than refinement by succesive alterations 
of the original concept. 

One principle by which program concepts evolve in a natural, structured 
way emerged from Dijkstra's work in the THE Multiprogramming System 
[6]. He conceived that a program could be organized into hierarchic levels 
of support. The principle, known as levels of abstraction(see See. 2.5), 
formed the basis for what has become known since as structured 
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programming, the subject of Chapter 5- The augmentation of that same 
basic method into a uniform discipline for software development is the 
substance of this monograph. 

1.3 ORIENTATION 
This work, while getting down to a very fundamental tutorial level in 

many areas, is not aimed at being a course in programming fundamentals. I 
realize that one could have no better success in impressing a set of rules on 
programmers than to get at them during their very earliest experiences in 
machine computation, teaching them the method before their biases begin 
to prevail. However, my aim is to provide people who must cope with the 
development of large programs an organized methodology for accomplish
ing their tasks. Many such people obviously may have already had software 
experience. 

Neither do I want to get into the area of the complexity of computation, 
although I recognize that software designers need to be aware that there 
are limits of computability. But I believe that the extent to which a human 
being is capable of producing a correct program is primarily limited by his 
mental capacity to comprehend and retain, rather than by computational 
limits. The intricacy with which the various parts of a program interact, 
the sheer number of such interactions, the organization and methodology 
which produces the program, and the clarity, completeness, and 
information-retrievability of the working documentation which holds the 
rationale for those parts of the program already written and the intentions 
for those that will follow, are all important factors. 

This work, then, addresses these factors by structuring the ways in which 
programs may interact, by organizing the development of the software into 
workable tasks, and by providing enhancements to mental retention by 
means of clear, worthwhile documentation. The methods given are not 
100% foolproof, nothing ever is. The procedures and standards are meant to 
be aids toward increasing the probabilityof earlier, less expensive success 
than one would otherwise achieve. 

The rules given here are based on mathematical theorems and program
organization methods intended to motivate programmer concentration, 
help avoid errors of carelessness, and display the design process as a set of 
procedures that split the development process into increasingly more 
detailed program specifications, with checks and balances. The methodol
ogy represents programming as a top-down, modular, structured, hierarchic 
function-to-algorithmic-realization synthesis. Besides design rules, there are 
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rules for the function, level, content, and format of documentation, rules 
for the management of software projects, rules for how progress is to be 
monitored- and evaluated, and rules for defining and assessing program 
correctness and quality. 

The rules are meant to provide a precise, disciplined framework for 
achieving consistency, compatibility, correctness and control of complexity 
in the software definition, design, documentation, and implementation. The 
rules are oriented toward that middle ground between pure, extreme 
theory and pure, extreme practice, and are directed toward obtaining a 
quality-controlled product under economic and schedule considerations. 

Because of its content and orientation, this monograph could have 
merely been titled "Software Engineering". Engineering, to me, in any 
context means solving problems with given constraints in an organized,
responsible, professional way, and that is certainly the intended orientation 
of this work. Anything less than engineering is tinkering, however 
grandiose. Those involved in the software tasks that I shall be describing 
later are truly engineers: software design engineers, software implementa
tion engineers, software quality-assuranceengineers, and so on. The idea 
is to adapt good engineering practices to the development of software. 

Most of what the reader will find in the coming chapters is not new. 
Many, in fact, will claim they have been using some of the principles for 
years. What I have tried to do is take individual good ideas and bind them 
all together into a uniform, coordinated discipline of ideas that are still 
good when combined. 

The monograph focuses primarily on software development standards 
within, or for, technically-oriented organizations, although many, if not all, 
of the rules and methods apply'to other orientations as well. 



I!.FUNDAMENTAL PRINCIPLES AND
 
CONCEPTS
 

As I stated in the first chapter, the degree to which concepts in this 
monograph are "fundamental" is based on my intended audience: those 
who .have some experience in software development and are looking for 
methods to enhance their effectiveness. The purpose of this chapter, then, 
is to present basic principles for software development and to define some 
commonly used terms and concepts the way I mean to use them. I do this, 
not to be picky about existing definitions, or even rigorously precise in the 
ones I give, but to be as clear as possible in exposing the material to come. 

By and large I have used terms that agree with or generalize the ANSI 
standard vocabulary definitions [7] for information processing. In -some 
cases, however, I have restricted the ANSI definitions to a narrower or 
slightly different context. 

9 
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2.1 SYSTEMS, PROGRAMS, AND PROCESSORS 

First, let me define what will be meant in this monograph by references 
to such general terms as "system," "program," and "processor;" all of 
which could be, and many times have been, used interchangeably. 

A software system is an organized collection of procedures united by 
regulated interaction to accomplish a specific set of functions. The software 
system consists of two basic subsystems: the operatingsubsystem and the 
application subsystem. The operating subsystem (often called the 
operating system, or executive) consists of a number of parts that interface 
the applications subsystem to the computer resources, such as input/ 
output (I/O) media, storage media, supervision and execution management, 
etc. The application subsystem is that part of the computer software 
performing the body of user-oriented functions. 

A program-more correctly, a computer program-is a series of 
instructions or statements, in a form acceptable to a computer, prepared to 
achieve a certain result; iEe., to perform a certain function within a 
subsystem. From time to time, I will refer to a program as a system, to 
emphasize its characteristics as a functional unit and to de-emphasize its 
sequential nature. 

In software, a processor usually refers to a computer program that 
includes the compiling, assembling, translating and related functions for a 
specific programming language, such as a COBOL processor, a FORTRAN. 
processor, etc. The term is sometimes used in a looser context to refer to 
programs that process any set of data. In hardware, the term is synonymous 
with data processor,a device capable of performing the execution of a 
systematic sequence of operations on data, sheh as the Central Processing 
Unit (or CPU). 

A multiprocessor is a computer that employs two or more processing 
units (CPUs, I/O channels, etc.) under integrated control. By multiprocess
ing, I shall refer to the (perhaps simultaneous) execution of separate 
sequences of actions by such multiple hardware processors, I shall say that 
a single processor is multiprogrammed if it executes two or more 
programs or program modules by interleaving them in time. It is even 
possible for a multiprocessor to be multiprogrammed, in which case, 
several programs share each of several processors. Both multiprocessing 
and multiprogramming are capable of concurrent execution of programs, 
and I shall refer to both as concurrent processing. 
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2.1.1 Parts of a Program 

Identifiable subportions of a program also fitting the "program" 
definition will be referred to as modules. A routine is an ordered set of 
instructions (a module) that may have some general or frequent use. In this 
monograph, the words routine and subioutine will be used interchange
ably, and will always refer to modules that, when called, return after 
execution to their point of call. The term subprogram, on the other hand, 
will always refer to a module that invariably is only invoked at one point in 
the program. 

Subprograms and subroutines are modular subdivisions of- a program 
having specific interfaces or connections to other parts of a program. The 
interface of a module is defined as the set of assumptions that the 
surrounding program makes about that module. Modules have control 
interfaces via their entry and exit points, data interfaces via arguments or 
shared data structures (some of which may be control data), and interfaces 
that provide services between modules. 

An operation is defined as a finite-time execution performing a time
independent function based on its input. By this definition, every non-real
time program, as well as each instruction within that program, can be 
viewed as an operation. A sequence of operations performed one at a time 
constitute a process; two processes are then said to be concurreht if their 
operations can either overlap or interleave arbitrarily in time. Two 
concurrent processes are said to be parallel when operations in the 
processes occur simultaneously (within a predefined time-divisibility 
convention), shown in Figure 2-1. 

PROCESS 1 PROCESS2 

TIME OPERATION OPERATION 

OPERATION OPERATION 

COMpUTATIONS resOes COMPUTATIONS 

CONCURRENT (PARALLEL) PROCESE 

Figure 2-1. Operations, processes, computations, and resources 
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The results of processes are computattons applied to resources. The 
term "resource" is an abstraction for any set of system features, such as 
CPUs, storage, files, magnetic tapes, printers, etc. The condition of the 
entire set of resources is the computer state; that part of a computer's 
storage accessed by a program is its dataspace. 

Computations are characterized by accuracy, which means the degree 
to which it is free from error-the degree to which it conforms to truth or 
to a rule. Numeric accuracy contrasts with precision,which represents the 
degree of discrimination with which a quantity is stated. A three-digit 
numeral discriminates among 1000 possibilities and, therefore, is less 
precise than a four-digit numeral, which discriminates among 10,000 
possibilities. Nevertheless, a properly computed three-place numeral might 
be more accurate than an improperly computed four-place numeral. 

A prescribed set of well-defined rules or processes for the solution of a 
problem in a finite number of steps is an algorithm. Algorithms 'have a 
stated function; i.e., a specific purpose, or characteristic action. An 
algorithm is also generally expected to be effective. This definition means 
that all of the operations to be performed in the algorithm must be 
sufficiently basic and definite so that they can, in principle, be done exactly 
and in a finite length of time by a human using a pencil and paper. For an 
algorithm to be useful, it is not sufficient that the number of steps merely 
be finite, computers have their limits. The number must be reasonable. 

A program mode (short for mode of operation) is a way of operating a 
program to perform a certain subset of the functions that the entire 
program can perform. The subset of functions is usually data-coupled, 
rather than control coupled. However, the set of functions is usually 
selected by control data. For example, language processors usually consist 
of "compile" and "runtime" modes (and perhaps some transition modes 
between these two) that pass the compiled program as data between the 
two. Often the modes of operation will be shown graphically in a mode 
diagram,which displays the various program modes and the permissible 
transitions between modes, annotated to show the events causing the 
transition. 

2.1.2 Procedural Representation of a Program 

A flowchart is a graphical representation for the definition, analysis, or 
solution of a problem. Symbols are used to represent operations, data, flow, 
equipment, etc., and are annotated to describe the function of each symbol. 
As we shall encounter the term herein, a flowchart will generally refer to a 
drawing describing the logic and sequence of operations in a program 
(subprogram, routine, etc.) and drawn to conform to ANSI Standards [8], 
which are summarized in Appendix B. However, this definition does not 
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exclude pidgin English or the program code from being referred to as a 
"flowchart," given suitable interpretations of the terms "symbols,"
"operations," etc. Proper indentations of the lines of pidgin English or code 
and a limited program logic structure can, in fact, provide a very graphic 
display of the program function, as will be shown later in Chapter 7. 

2.1.3 A Word on Program Syntactic Notation 

In such program-related expressions to come as DO f THEN g,IF c 
THEN f ELSE g,etc., the italicized letters will stand for definite types of 
text that can occupy those positions in the constructions. For example, f 
and g above represent arbitrary program functions, while c represents an 
arbitrary test condition. The italics thus identify which parts of an 
expression are variable within the syntax of the construction. The 
unitalicized capitals, however, DO, IF, THEN, etc., are not; they designate 
specific syntactic Ilterals, to be interpreted as they stand. 

I shall thus designate hereafter all qualities to be identified as syntactic 
variables as italicized char7acters. Hence, if I am discussing a procedure, 
such as SEND(message, device), for example, then I shall mean that 
message and device are to be replaced by non-variables in actual usage, as 
perhaps, SEND ("HELLO", PRTNTER). Italicized characters thus represent 
variables in the meta-language I use to describe a program, not the 
variables in the program itself. 

In the example, LET variable= expression, which describes the format of 
an assignment statement in BASIC, the name of a program variable, such as 
Al, is to be substituted for the syntactic variable, variable,and an actual 

expression, such as (3+8*5)/2, is to replace the syntactic variable, 
expression. If a decision box on a flowchart is labeled d, then an actual 
condition to be decided is to be substituted. If I show that a subprogram is 
actuated by event, then an actual event, such as FILE ErROR, replaces event 
in practice. 

2.2 STRUCTURES 

Perhaps the most overused word in this monograph is "structure". I use 
it in many ways for many different concepts-information, data, and storage 
structures; structural design, structured programming; and so on. 

The concept of structuremay pertain to the manner or form in which 

something is constructed, or it may pertain to the actual system being 
constructed. Descriptions of structure focus primarily on the interrelations 

of the various parts of a system, as dominated by the general character or 
function of the whole. Defining the "structure" of a problem can be 
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described as a process of identifying, analyzing, and selecting among 
alternatives within design categories. 

In software development there are topological alternatives (control logic 
and data structures), clocking alternatives (sequential, concurrent, parallel, 
real-time), protocol alternatives (interface disciplines with the operating 
system or, other programs), connectivity alternatives (accessibility and 
security of programs and data), and resource allocation alternatives (fixed, 
dynamic), to name a few. Selection among major alternatives defines the 
architecturalframework of the program (another word for structure). 

Some of the things which influence a program's structure are its 
envisioned capability (utility, efficiency, cost, accuracy, throughput rate, 
etc.), its use needs (maintenance and support requirements, use constraints, 
etc.), and its implementation criteria (short-term vs long-haul solution, real 
vs virtual memory, etc.). 

2.2.1 Program Control Structure 
The statements in a programming language primarily affecting the 

logical sequencing of operations in a program are called control 
statements. Examples of control statements are jumps, conditional 
branches, subroutine calls, interrupt arming, etc. The control flow of a 
program is a general concept referring to the time-ordering relationships 
among the various operations comprising the program. The control 
structureof a program is then the topological format of this control flow. 

There are several ways that one may describe different aspects of 
importance in a program's control structure, depending on the needs of 
communication. One such way has already been mentioned, namely the 
program flowchart. A flowchart, such as that appearing in Figure 2-2, 
characterizes the control structure by showing its proceduralsteps (i.e., its 
algorithm), in execution sequence. Whenever the fundamental topological 
structures, which one may be permitted to use in programming, are limited 
to a set of very basic forms, then I will call it a stiuctuied program. 
Structured programs are discussed more fully in Chapters 5 and 6. 

Another way to illustrate some of the control structure of a program is to 
depict the program as a directed graph, such as that shown in Figure 2-3, 
in which each node represents a given function to be computed, and the 
edges connect that function to each of the first-order subfunctions called 
upon to perform the given function. The maximal connected subgraph 
emanating from a given node thus represents the entire set of subfunctions 
necessary to compute the node function; for this reason, this subgraph is 
called the scope of control of the given function. More discussion on the 
use of such program graphs is to be found in Chapters 4 and 5. 
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Figure 2-2. A program flowchart 

2.2.2 Information, Data, and Storage Structures 

A program operates on data. An information stiucture is a representa
tion of the elements of a problem or of an applicable solution procedure 
for the problem, a data structure is a representation of the ordering and 
accessibility relationships among data items, without regard to storage or 
implementation considerations; and a storagestructure i a representation 

of the logical accessibility between data items as stored in a computer [9]. 
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DOf DfH~ 

Figure 2-3. Representation of a program as a graph in which nodes represent
functions and edges represent control connections (each of p, f, and g may have 

further expansion) 

As an example, in the problem 

[ 5 = [1 
-1 0 3z 0 

the matrix and the two vectors are information structures. When we agree 
to represent these in our problem as the matrix A[I,J, I,J = 1,2,3 and 
vectors X = (X[I], X[2], X[3]) and B = (BIll, B[2], B[3]), then A, B, and X 
become our data structures; and when we represent these in computer 
memory, as for example 

location (A[I,J]) = location (A[11]) + J-1 + 3*(1-) 

then this becomes the storage structure. 

A data structure is generally specified as a set of data items (variables or 
constants), each typed: a) by a range of values (such as logical, integer, 
real, complex, double precision, string, or an enumerated set of values), and 
b) by a connectivity of items within the structure (such as those implicit in 
a linear list, stack, queue, deque, orthogonal array, tree, ring, or graph). 
The simplest example of a data-structure is a single integer-valued variable. 
A variable used to influence the control logic of a program is called a flag. 
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The ease with which data structures can be used often depends on the. 
handling capability of the programming language to accommodate that 
structure. For example, FORTRAN only accommodates integer, real, and 
complex data types, in simple or matrix-array data structures. It is certainly 
possible in FORTRAN to create and manipulate a queue of string records 
as a data structure; but it is not as easy as it is in PL/1, where string 
variables and linked-list data structures are included in the language 
repertoire. 

A data structure also possesses another attribute having to do 'with when 

and where it is accessed in the program. This is calledits scope of activity 
(or merely, its scope). The scope of a structure extends from the earliest 
point in a subprogram where information appears in that structure, until 
the latest point that the structure is needed, either by the current module 
or by another interfacing subsequent module. A data structure is said to be 
active whenever the program is executing within the scope of that 
structure. The scope need not be continuous. For example, an index 
variable for an iteration is only active during the iteration, and may be 
reused by other parts of a program once the iteration has been completed. 

2.3 SOFTWARE DEVELOPMENT 
That part of a software project up to the delivery ofa working program 

for operation by organizations and individuals other than those involved in 
this evolution, I shall refer to as the software development period. It 
begins with the flash in someone's mind that a computer shall do an 
envisioned task and ends when the program is "operational". 

Several mutually interacting activities during this period can be 
identified (Figure 2-4). First, a customer organization establishes a 
requirementwith certain resources (manpower, schedule, dollars) allocated 
to provide the needed service. When the requirement is given, it generally 
only contains a sketch or outline of the tasks that a computer will be called 
upon to perform, the expected results, and some of the problem-related 
constraints. 

The function of this requirement is to characterize the program, its 
environment, and needed resources in that amount of detail which justifies 
to a conscientious, informed management the commitment of such 
resources. It also forms the basis for the program functional requirement or 
statement-of-work specification to come. Additionally, the requirement 
may contain, besides the resource estimate and justification for its 
expenditure, some reasonable evidence that the estimate is accurate, 
within certain bounds. 
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REQUI REMENTS 

GENERAT16N , 

PROGRAM
 

DFINITION 

PROGRAM DESIGN 

VERI FICATION 

Figure 2-4. Software development activities and principal 
flow of these activities in a top-down development 

The second activity in the software development process is the precise 
definition or functional specification of the program behavior. This 
activity is perhaps the most difficult in the whole development process, as 
there is almost invariably a trichotomy between what the customer thinks 
he wants, what he really wants (this is particularly true of the non
programming customer), and what he can actually have within his 
resource constraints. In the end, the definition should contain enough detail 
to permit the program to be designed without ambiguity as to its external 
(black box) transfer function: specification of I/0 media and formats, input
to-output transformations, interactions with users, interactions with other 
programs, response to errors and other contingencies, and response to 
system failure. Any operating program that meets these detailed 
specifications may be said to be correct. 

The level of detail provided in a program definition, however, will rarely 
be such that any two correct programs independently derived from that 
definition will be interchangeable.Such detail would undoubtedly be too 
costly to develop. Moreover, human fallibility will almost assuredly 
produce vagaries, omissions, and contradictions in such detailed specifica
tions. 
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The third development activity one can identify is that of design, Design 
is an alternative-feasibility-study discipline. It bridges the gap between the 
program definition and the program code. It is the process that analyzes 
the external black-box definition of the program behavior and translates it 
into functioning and efficient abstractions of internal machine structures 
(data configurations, algorithms, etc.). 

It sets forth program and system restrictions, policies and protocols. The 
end product of this activity is a number of documented abstractions that 
represent the eventual system in a characteristic way. For example, 
flowcharts are an abstraction of the function and control logic of the 
program to be produced. Other abstractions have to do with data flow, the 
management of system resources, policies to prevent system deadlocks, 
inter-program data interfaces, and so forth. 

The fourth activity is program pioducton. It consists of coding, 
checkout, and integrating the program into the system that forms its 
environment. It implements the design abstractions, organizing the physical 
resources of a system to perform according to the program specification. 
Checkout here refers to .the testing of a program, or part of a program, by 
the programmers themselves. In Chapter 9, I discuss checkout disciplines 
for correctness testing. 

The final activity to be identified as a development task is veiificatton. 
Software verification is that aspect of development asserting that the 
program response falls within acceptable limits of functionally specified 
behavior. It testifies that design and production activities conform to 
program requirements and project standards; it generates test procedures 
and conducts tests to evaluate the program behavior; it identifies all 
anomalies for corrective action; and it ultimately certifies that the program 
is ready for user operation. 

2.4 HIERARCHIES 
A hierarchy is a structure by which classes of objects are ranked 

according to some subordinating principle. Pictorially, a hierarchy can be 
represented by a tree-graph, as shown in Figure 2-5. A specially denoted 
object (represented as the root node of the tree) heads the hierarchy, and 
other objects (represented by the other nodes) are ranked by order 
(indicated by lines between nodes) into levels of subordination. The level 
number of an object within the hierarchy is its degree of subordination. 
Each object (node) occupies a well-defined place within the hierarchy. 

Hierarchy can be applied to software development in many ways: to 
structure concept refinements in problem definition; to structure programs 
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Figure 2-5. Graphical representation of a hierarchy 

into modules, submodules, sub-sub-modules, etc.; to structure data by 
refinement of attributes; to structure tests to avoid repetitive testing of the 
same specification; and to structure documentation for refeience and cross
reference. I shall begin, in the next chapter, to develop methods to 
establish how hierarchies of program elements can aid in software 
development. 

2.5 CONCEPT HIERARCHIES 

Dijkstra's work [6] involving levels of abstraction permitted him to 
formulate the solution of a problem in terms of concepts capable of being 
implemented (and interpreted) in many ways, but which were perhaps not 
yet fully understood at a particular stage of the development. Later stages 
then provided refinements to each concept until the program was entirely 
complete. 

Alternately, the levels of abstraction could proceed from specific 
concepts, which may be combined into broader, more general concepts, 
until the most general (level-i) concept results. 

In top-down methodology, the hierarchy of development tasks proceeds 
from a job represented by a node at level n, upon completion, to jobs 
represented by its subordinate nodes at level n+ 1. By such methodology, 
one need never lose sight of the original assumptions which appeared at 
level 1. In bottom-up methodology, the opposite precedence of tasks 
results; one never loses sight-of the actual capability being built up. 
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Neither methodology is entirely satisfactory, because, as stated earlier, 
people just can't do intricate thinking tasks correctly in one pass, start to 
finish. 

The potential risk, doing a strict top-down development, is that there 
may be no way to ensure that operations at one level in the hierarchy are 
supportable by some abstract resource provided (later) at subordinate 
levels. 

The sense that I shall give to an abstractionin this work is that it is a 
mechanism for hierarchic refinement by which it is possible, at a particular 
stage of development, to express relevant details and to defer non-relevant 
details for later refinement. Such abstractions apply to concepts during 
problem definition, as well as to the considerations of physical resources 
during program design and to the manipulations of computer structures in 
program execution. 

The purpose of using an abstraction as a program development 
discipline is threefold: first, it somewhat matches our tendency to solve 
problems by outlining broad concepts, which may then successively be 
refined or generalized, second, it tends to permit detail to be added or 
generalizations made without requiring global revisions of the previously 
outlined concepts; and third, because such global revisions tend to be 
minimized, the various development activities (specification, design, 
coding, testing) can take place in concert rather than in series, thus 
speeding up the development process. 

I don't mean to imply that there aren't going to be times when 
development reaches a point where a serious conceptual error is detected, 
rather than an error in the detail within a concept, which will necessitate a 
major program revision. (An acquaintance of mine refers to this situation, 
labeled "Oops!" in Figure 1-1, as "#*%/+@!", an expression familiar to 
all who read the Sunday funnies.) The seriousness, in such cases, will 
naturally depend on how much the development effort has to be backed up 
to correct the concept, and how profusely the changed concept creates 
side effects in the work already done. 

The way abstractions are formulated also greatly influences the extent 
and likelihood that a program will need major revision during the 
development process. A proper disciplinefor abstraction can therefore be 
a great asset toward timely program delivery. 

An abstract resource may be characterized, according to Hoare [10], by 
three sets of hierarchies



22 FundamentalPrinciplesand Concepts [CHAP.2 

The representationof an abstract resource is the set of symbols that one 
may substitute for the physical aspects of a problem either in a concept or 
in its computer implementation. For example, a certain set of data may be 
represented in one abstraction by a queue whose name only is of 
importance at the first hierarchic level. Deeper levels in the hierarchy 
detail other attributes of the representation, such as queue dimension, 
location in memory, element-addressing method, etc. 

Manipulationsmust be defined to provide the transformation rules for 
representations, as a means of predicting the effect of similar manipula
tions on the physical resources. In the queue example above, operations 
INSERT and FETCH, which access elements based only on the queue 
name (its level-I representation) can be defined. 

Axiomatization is the generation of statements concerning the physical 
properties of the problem and the extent to which they are shared by their 
representations, in virtue of which, manipulation of the representation by a 
computer program will yield results that can successfully be applied back 
to the physical aspects of the problem. Axioms provide the assumptions on 
which the computer program is based, stating the necessary properties that 
must be possessed by a resource representation. 

The extent to which an abstraction leads to a successful program is 
dependent on three conditions. First, the axioms must adequately and 
accurately describe the problem. Second, the axioms must correctly 
describe the behavior of the program; and third, the choice of the 
representation and its manipulations must yield acceptable performance 
merits, such as cost to run the program, time to process a certain volume 
of data, etc. 

2.5.1 Semantic Refinement 

Many rules for writing technical specifications of any ilk also apply to 
those specifying computer programs. However, the more complex a 
function is, the more important a highly structured approach becomes. The 
basic elements to be preserved are an understanding of the function to be 
served and the mechanisms available to carry out the job. 

Semantic refinement is a method for hierarchic abstraction of meaning. 
The definition of a concept or function takes the form of a tree in which 
the level-i node is a broad, perhaps vague (yet unambiguous) statement of 
the concept or function to be defined. The next level in the hierarchy is 
composed of a set of nodes, each corresponding to a vague, incomplete 
component of the level-i statement. Each of these nodes supplies a more 
detailed explanation for that component of its parent node. This hierarchy 
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continues until the definition reaches a point where the entire meaning is 
clear. 

This technique can serve as a very useful method for stating program 
requirements and specifications, as well as some of the program design 
concepts, which will follow. The meaning given to "meaning" as the 
subordinating relationship of the hierarchy need not be made rigid, so long 
as deeper levels in the hierarchy provide useful information. However, it is 
worth pointing out that, if the set of final, terminal nodes in the hierarchy 
are statements in a precise, well-defined language (a problem definition 
language), and if each terminal set of nodes emanating from a given node 
provides the exact definition for the given node (i.e., no vague component 
remains unrefined), then there is no opportunity for misunderstanding the 
requirement. 

Meaning can be refined not only by language explanations, but by the 
presentation of mathematical algorithms or graphical material, as well. All 
these furnish detail relative to the semantic content of the entity being 
defined. 

As an example of the technique, let me proceed, with the aid of Webster 
[11], to define "opossum." Obviously, anybody who has seen one knows 
what one is, so the definition could well, for that person, end right there. 
Otherwise, the creature can be defined by a set of attributes that 
characterize it completely for an intended-Application. 

Webster offers the following explanation: "Any of a family ... of 
American marsupials, chiefly nocturnal, largely arboreal, and almost 
omnivorous." (Regrettably, this beautiful definition does not appear in a 
later version of the lexicon.) For a more detailed description, one may look 
up "marsupial," "nocturnal," "arboreal," and "omnivorous," arranging the 
information as shown in Figure 2-6, and, in turn, look up any new words 
that are not clear. 

The reader may well appreciate that circular definitions must be 
avoided, that refinements should get simpler at each succeeding level, that 
logical constructions should be sound, that the process should ultimately 
terminate, and that the hierarchy reveals everything intended to be 
revealed. Hopefully, the hierarchy reveals everything that will be needed
that is, that the definition will be complete enough for the intended 
application. 

However, no amount of descriptive detailing produces an actual 
opossum, only a representation. The extent to which we can treat the 
representation (our abstraction) as the actual animal is limited. Care must 
be taken to orient the abstraction to the application at hand. 
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opossum 

opossum: Any of a family . .. of American marsupfals, chiefly 
nocturnal, largely arboreal, and almost omnivorous 

marsupial: An nocturnal: arboreal: omnvorous: 
animal of the 
lowest existing 
mammals except 

Of, pertaining 
to, done, or 
occurring at 

Inhabiting 
or 
frequenting 

Eating
everything, 
... both 

the monotremes 
...the females 
have a pouch 

night trees animal and 
vegetable 
food 

for carrying the 
young 

mammal: Any of the monotremes: The lowest 
highest class . .of order of mammals, 
vertebrates .. , that consisting of the duckbills 
nourish their young

* with mnIk 
and the echinas 

Figure 2-6. Semantic refinement of "opossum" 

As a perhaps more relevant example, a top-level program requirement 
may read 

read data
 

process data 

print report 

At the time this requirement is formulated, the precise character of the 
concepts "read," "data," "process," and "print" may be undefined. But 
anyone reading the requirement can understand the fundamental job to be 
done. Details at further levels will answer the questions "what does data 
mean?" and "how is data to be processed?" 

In hierarchic refinements of sentences in the imperative mood, nouns to 
be explained at deeper levels tend to correspond to resources whose 
physical characteristics need to be tied down. As with "data" in the 
requirement above, one may detail "what kind?", "where from?", "what is 
its format?", "what is its nature?", in defining its nature, one may further 
detail "are there errors in it?", "what probability of error?", "how can 
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errors be detected?", "what is to be done if an error is detected?", etc. As 
the latter questions show, the physical characteristics of a noun can often 
lead to definitions in terms of tests, or criteria to be met. 

Adjectives or other modifiers applied at one level to nouns from a 
preceding level act to limit the scope of definition to special attributes 
(what kind of data? Test data!). The entire noun phrase may then become 
an indivisible concept insofar as further refinement goes. 

Verbs in the imperative mood direct that an action be taken. Explaining 
that action at succeeding levels is tantamount to providing an algorithm in 
successive detail. Adverbs and other modifiers act to define the scope or to 
provide some of the inner-workings of the algorithm. 

It is not necessary for a semantic refinement to be purely lexical, as in 
the "opossum" case, applying meaning to concepts on a word or phrase 
basis (Figure 2-7a). On the contrary, an entire concept at one level may be 
refined at the next, as alluded to in Figure 2-7 (b and c). For example "read 
data"may expand to "read datafrom terminal and read datafrom file" 
at the next level, and may refine at the next to "read control datafrom the 
user operationsteiminal" and "read personnel capabilitiesdatafromfile 
specified by input at user operationsterminal." 

The refinement of an algorithm may, in turn, be an extended algorithm 
that includes the algorithm at the previous level (Figure 2-7b), or it may be 
an entirely new algorithm that performs a similar function more efficiently, 
or with wider applicability, etc. (Figure 2-7c). Of the three methods of 
refinement depicted, one may ask which of the methods will be least 
susceptible to redefinition and revision of initial concepts; which will 
require the least work when an initial concept is changed; and which 
method will allow the creative process to flow in its most efficient way. 

I think it is rather obvious that if an entire concept changes at one 
hierarchic level, there is going to be serious undoing of any concurrent 
efforts based on the earlier concept. For this reason, I do not recommend 
developing software abstractions by the replacement method of refine
ment. 

2.5.2 Example: Skills Inventory 

The following example depicts a hierarchically refined program (partial 
design) using levels of abstraction. The representations, manipulations, and 
axioms at each stage are explicitly defined. Only the first upper levels of 
the hierarchic refinement process are given. 

Problem: An organization having 1000 employees wishes to make a skills 
inventory of its personnel. The organization has determined that about 800 
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Figure 2-7. Semantic refinement hierarchies 

basic skills will be utilized within the company, but that no employee 
possesses more than 8 of these basic skills. It has, therefore, issued a 
questionnaire requesting the return of an IBM card from each employee 
with his employee number and a list of his skills by code number. The 
company then intends to generate a computer listing containing each 
employee with a given skill designated. 

Analysis: The information structure of the problem consists of an 
employee identification (represented by a number), and a corresponding set 
of skills (each also represented by a set of code numbers), for each 
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employee. The manipulations that seem necessary on the structure are the 
conversion of identification numbers to names and skills, the collection of 
employee names for each skill present in the company, and the listing of 
such information on a line printer or some other device: For convenience 
to the reader, a requirement may occur to have the listings to appear in 
sorted form, by skill code and by employee name. 

The first-level data structures I have chosen to represent the information 
are as follows (see Figure 2-8): ENAME, a structure to hold 1000 Employee 
NAMEs as character strings; SKILL, a structure to hold 800 SKILL titles as 
character strings; INCARD, a structure to hold the INput CARD numbers (up 
to 9 of them) in integer format; and LINKS, a structure to hold up to 
8x 1000 = 8000 name-skill relationships (LINKS). 

The manipulations on these structures needed (at level 1) are: input from 
the card into INCARD, copying from INCARD into LINKS, translation of links to 
employee names and skill titles, sorting the links by employee name and 
skill code, and printing the sorted information. Axioms required at level 1 
are that employees and skills can be represented by their numbers 1-1000 
and 1-800, respectively; that ENAME and SKILL contain but representations 
of strings that faithfully reproduce names and titles when output; that 
INCARD and LINKS contain bit patterns corresponding to integers in the 
programming language; that the elements of ENAME(Ei) and SKILL(S/) 
access the name of employee numbered Ei and the title of skill S1, 
respectively; that LINKS(SJk) produces the kth employee found to have 

INCARD 

I I Sx
 

ENAME
 

• _k
 

Ej Employee Name E LINKS 

SKILL S ------ ,
 

Si Skill Title S 

Figure 2-8. Level-1 data structure definition for skills inventory 



28 FundamentalPrinciplesand Concepts [CHAP.2 

skill Sj; that sorting by the internal representations are lexicographic on 
output; and that sorting internal integers also sorts their external 
representations. 

Most of these axioms are usually taken for granted and left unstated. But 
for illustrative purposes, it is useful to write them down, to see that such 
correspondences of internal program behavior and external interpretation 
are present, even if implicit. 

The second level data structures, expanded versions of the previous 
definition level, are shown in Figure 2-9. ENAME consists of two parts, a 
pointer array EPTR and an array of employee names, arranged such that 
EPTR (Ei) locates the string name of employee Et. Similarly, SKILL possesses 
a pointer array sP-m that locates the string skill titles, and LINKS has a 
pointer array LPTR that links each skill number S1 to the linked list of 
identifiers for employees avowed to possess that skill. 
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Figure 2-9. Level-2 data structuire definitions for skills inventory 
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Manipulations for level-2 structures include list handling by. following 
pointers, such as locating from, an SJ on an INCARD the Ek-links in LINKS and 
then inserting an Ei-token into the chain. Other list handling manipulations 
needed are the ability to scan LINKS along pointers into ENAME and SKILL 

during printing. 

Axioms for level 2 are that strings begin in data substructures addressable 
by pointers (important in systems that are not byte addressable), that zero 
is not a valid pointer, and so forth. 

Storage structures are something else again. The placement of LINKS in 
core, for example, may not need to have an explicit array LPTR, because the 
first Ei-token for each S1 can take the place of the pointer in the top 800 
locations of LINKS, as shown in Figure 2-10. Similarly, EPTR and SP-m may 
not be required if the programming language has string data types. 

The reasons for deciding on the data structures shown are a process of 
design. I shall delay giving such rationale until Chapter 4, which treats 
design in more detail. The structures for this example, the reader may later 
note, are very similar (as is the problem) to the example given in paragraph 
4.6.1, Card Cross-References (Chapter 4). Consequently, the rationale for 
the structures shown here is essentially the same as that given in the later 
example. 

2.6 THE TOP-DOWN PRINCIPLE 
The fundamental, guiding principle throughout this work is tenacious 

adherence to the top-down procedure of software development. By this is 

meant that the program proceeds from the program requirements to 
functional specification, to design, to coding, to verification and testing, and 
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Figure 2-10. The storage structure for LINKS 
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finally, to operations. It means that the resulting design itself is readable 
from the top down and organized in a highly structured, modular, 
hierarchic way which decomposes and partitions each program subfunction 
into a sequence of simpler functional subspecifications, each producing yet 
simpler subspecifications to handle, until finally, the level of programming 
language instructions or statements is reached. It means that coding and 
then testing and verification of the design follow as each phase of the 
design is accomplished. It means that programming projects are managed
from the top down-from allocation of resources to utilization of 
resources-in a way assuring management visibility into and understanding 
of the end product. It means that the design-team skills are ordered with 
high design capability at the top, leading to special skills at the bottom. 

To minimize the risk mentioned earlier, that operations at one level in 
the hierarchy are supportable by resources at subsequently defined levels, I 
envision that those engaged in providing the top-down development must 
be very well trained in dealing with the characteristics of the program 
environment. In this way there can be reasonable assurance that the 
development gap will-be bridged effectively, with minimal redesign. 

The reason .for strict enforcement of the top-down principle is that it 
forces a complete requirement to be stated prior to its accomplishment. 
Properly done, unrequired actions never appear in the finished product. 

But, as a replacement, it requires a high level of discipline on the part of 
its adherents. Those involved must learn to think top-down. They must 
learn to think of function before algorithm. They must learn to describe 
functions functionally and accurately. They must learn to prove or assess 
that a program at any given stage in the design is correct, within its 
functional specification. They must learn that programs can be written 
with logical and interface precision. In the end, there is evidence [121 that 
a psychological reinforcement-a vital ingredient in self-discipline
emerges. 

As Mills [12] points out, once a programmer knows what is in his mind is 
correct, then getting it programmed precisely, checking details, etc., is all 
that is required for the program to work. On the other hand, if he only 
thinks that what he has in mind is probablyall right, but is subconsciously 
counting on debugging and integration runs to iron out logic and interface 
errors, then the entire process suffers in small ways to torment him later. 
Only 14 concatenations of subprograms that are probably 95% correct 
reduce the overall program probable correctness to 49%. An increase to 
99% probable correctness-a small 4%-in each subprogram brings the 
overall probable correctness up to 87%-a 38% difference! 
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Another reason for tenuously propounding the top-down method is that 
the bottom-up approach has classically been typified by programmers who 
spend more time debugging code than they do writing it. According to 
Boehm [41, programmers usually spend under 20% of their total effort in 
coding and auditing, with the other 80% about evenly ,split in design and 
debugging. They are apt to spend great amounts of time in redesign (and 
then more debugging) due to faulty logic or faulty communication with 
other programmers. In short, it is the thinking errors even more than the 
coding errors, which hold the productivity of programming to such low 
levels. 

In the top-down approach, the program designer proceeds to define the 
problem as a "black box" imbedded in an environment composed of a 
subset of available resources. This environment, with its attributes, exerts 
external influences on the developing system independent of and, 
hopefully, not contrary to the problem-constraints to which the developing 
program must conform before it can respond to the internal demands of 
the problem. 

The top-down approach also leads to structured programs [121 in which 
major programs can be broken into smaller subprograms through a 
combination of code and the design of subprogram "stubs" which are 
referenced or called by that code. By designing the program that calls the 
stubs before the stubs themselves are developed, the functional role of the 
called programs can be defined completely, so that no interface problems 
need be encountered later. 

Coding, verification, and testing can begin immediately with dummy 
stubs to test the control logic and interfaces of the calling module. These 
test stubs can check for the presence of data to be passed, its format, its 
range, etc., and can also return prearranged test-case data. 

This approach also satisfies the need on the part of programmers to get 
running.However, it is not the subroutines and the like that get written 
first-it is the encompassing code, always executed and checked before the 
next hierarchic level of executable code is created, checked, and integrated 
into the program. "Checking" in this top-down hierarchy means validated 
to the point of verifying the syntactic structure -of the code and making a 
correctness assessment of the program. I shall have more to say on testing 
in a later chapter. 

One should note that the top-down discipline may elicit some bottom-up 
response as a natural unavoidable by-product. For instance, when coding 
top-down in a very low-level language, dummy stubs used for checkout 
may be called to print trace information as evidence of the program's 
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execution sequence. But then there must be provided a bottom-level 
support function, PRINT, that may not even be a part of the final program.
Also, some critical low-level interrupt-handling routines must be 
programmed early to assure timing feasibility for an entire program. 

I do not consider this effort at variance with the top-down approach. 
Design has preceded coding, and the requirements for the stubs were 
established first, before any functions within the stubs were coded. 

Some developers may choose, and some problems may require, an other 
than top-down approach. Some, for example, may adopt a "hardest-out" 
philosophy - one in which the program development begins with the 
design of the most difficult, policy-setting decisions known to be within the 
system, and evolving upward to meet requirements, and downwards, to the 
code. Such a philosophy has many adherents and many virtues. The chief 
asset of such a design methodology is probably that it proceeds along lines 
of greatest feasibility. 

However, as a formal discipline, I know of no way to instruct a would-be 
adherent to isolate the "hardest"' nut to crack, without resorting to a top
down structurized design sketch, such as I discuss in Chapter 4. Once the 
hardest portion of the program is identified, that portion can be defined as 
a high-priority phase for further top-down design evolution. Therefore, 
even the "hardest-out" approach can be made to fit into the top-down 
design philosophy, even if not the top-down coding discipline. Such 
deviations from true top-down development are accommodated by the 
"look-ahead" design principle discussed in Section 4.2.2 of Chapter 4. 

The look-ahead principle is a pre-implementation design technique that 
"breadboards" potentially upcoming problem areas for feasibility, before 
the risk of incorporating that design into the program is too great for 
catastrophic recovery. 

2.7 THE CONCURRENT DOCUMENTATION PRINCIPLE 
The second principle guiding this work is that the definition, design, 

coding, and verification phases of development cannot be regarded as 
complete until the documentation is complete and certified by some form 
of correctness audit. This view, which reflects the importance and place of 
documentation, is taken because good documentation is inextricably bound 
up in each facet of the project, from conception, to design, to coding, 
testing, etc., and because the formalization enforces a discipline, creating a 
program methodology. 
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But documentation for documentation's sake is not necessarily any good 
at all. Documentation is part of a software development, inseparable from 
the analytical, design, programming, coding, and testing phases, and must 
be integrated into these activities. To be effective, documentation has to 
have purpose,content, and clarity. 

Just as the top-down procedure requires a special form of training, 
programmers must also learn what "good" documentation consists of, how 
to provide it, and how to use it to enhance the project. To do this, it is 
important that they understand the function of good documentation. 

2.7.1 Documentation Goals 

Until coding begins, documentation is the speeification and is the design 
[13]. If documentation is bad, the design is bad. After all, the rationale of a 
program is for humans, not the computing system. The goal of 
documentation is communication. During the project, documentation 
serves as a working vehicle to prevent distortion of ideas, promote project 
control, record design-phase decisions, permit orderly subsystem develop
ment, and make the system visible, both in its capabilities, as well as its 
limitations. When the project is complete, it records the history of 
development, serves as a tutorial guide to system operation, demonstrates 
that the program works, and provides a means for maintenance and 
evaluation of obsolete or amendable portions of the system. 

To fulfill these goals, the documentation must describe the program 
elements not only so that the design analysis and programming functions 
are exhibited clearly, but also so that management has visibility into the 
technical, budgetary, and schedule implications of system changes. It must 
contain a system description that a user can understand-function of the 
system, rules for use, domain of input, algorithms and procedures that turn 
input into output etc. It must tell how the program is to be operated-the 
system environment, how much storage is used, how fast the program runs, 
how to load and start or restart after failure, how to keep the program 
maintained, etc. 

That's a tall order, right? And, moreover, all this content has to be 
organized for clarity.Some clarity is a natural consequence of the way the 
content is presented-its fozmat. But format can't do it all; creativity and 
aptness in expression has to come from the documentor. 

I have often been presented with two versions of a program, one 
"structured", and the other "unstructured". To the naked eye, both 
versions are often equally obscure. It is insufficient to present only the end
product and then to expect a beholder to perceive its significance by 
inspection, or even after deep meditation. Instead, the beholder must also 
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be able to see at least part of the programming thought processes that 
went into that end product, starting with the original, highly abstracted 
motivations, and proceeding to the final program via a clearly presented 
sequence of clear refinements. 

The understandability of the product remains basically a matter of style; 
some programmers have good style, others do not. Good programming 
style is not automatically introduced by the rules of structured 
programming, any more than good English prose style is guaranteed by 
following the ten famous rules listed in, Strunk and White [141-though 
these rules can go a long way toward influencing programmers or writers 
in the direction of good style, by establishing a mental atmosphere 
conducive to it. 

2.7.2 Amount of Documentation 

Several problems always exist when a project insists that a program be 
documented. Probably the most serious are the sins of omission-the cases 
where something that will be needed later has been left out. Then there 
are the cases where the documentation does not serve a useful purpose 
because it does not match the running program. Another frequent form of 
misdocnmentation is irrelevant or redundant overdocumentation, which 
serves only to drive up development costs. 

Conceptually, if an ensemble of development projects were commis
sioned at varying documentation-level requirements, the plot of the 
attendant program costs would appear as in Figure 2-11. With no 
documentation provided-not even annotations in the code or mnemonic 
variable names-one can readily agree that the complexity of developing a 
large program poses a nearly impossible barrier, so that costs (dollars, 
manpower, schedule) would be astronomical. But the costs start to drop as 
the developers are permitted to write down some of their ideas for later 
reference. This type of documentation is an aid; it reduces errors in 
thinking (and remembering), so produces a more reliable program in a 
shorter time. 

At some point, as more and more documentation is required, over
documentation sets in, making the costs again rise. That is, having 
documentation can enhance the development process, but producing it 
takes time and runs up the cost. Undoubtedly an optimum exists 
somewhere in between. 

Maintenance software costs probably take a similar shape and results. If 
program documentation is too thin, the maintainer cannot understand the 
program. He thus requires a longer time to effect repairs or other changes; 
he is very apt to introduce undesirable side effects, as well. Provided with 
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Figure 2-11. Program costs versus documentation level 

too much documentation, he spends too much time reading irrelevant data, 
and then has problems maintaining uniformity when changes are made, 
catching all the changes to be made in redundant statements. 

The optimum level of documentation depends on several factors. When 
the costs involved cover the developmental phase only-by a fixed-man 
team-then a low level of documentation suffices. But when there is the 
possibility that design team personnel can change during the project, or 
when later maintainability of the program is stated as a documentation 
requirement, then a higher level is needed. Then too, if humans must draft 
flowcharts, type narrative, and then maintain these in an error-free 
condition, there is quite a different cost associated with documentation 
than when automatic documentation facilities are available. 

2.7.3 Types of Documentation 

Although the level may vary from project to project in rather a 
subjective way, I shall not leave the question of the documentation content 
to subjective interpretation. I shall produce, as Appendices to this 
monograph, detailed tables of contents for each of the most important 
documents to be produced, along with detailed instructions as to what each 
entry must include. Later chapters will provide disciplines for creating and 
limiting the entries. 

These outlines provide useful baselines from which actual project 
documentation guidelines can be drawn. In producing the outlines, I have 
tried to include documentation requirements for every pertinent aspect of 
the developing program. In forming them, I have extracted, merged, 
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rearranged, and reoriented outlines from several' sources [1,15-201 into 
what I believe is a uniform, coordinated approach to useful software 
documentation. 

I have failed so far to mention what is perhaps the best news about 
concurrent documentation to the one who must document the program 
development. It is probably the most natural and easiest technique, 
because things are written down as they occur during the creative process, 
rather than afterward, when some of the ideas may have been forgotten. 

Figure 2-12 depicts a model, or conceptual set of documents that may be 
produced during a software development. Many of the documents shown 
may not need to be formal, but may, in fact, only exist in the form of 
memoranda or even conversations. Which among these actually become 
formal documents, which remain memoranda and which remain scratcbings 
on the backs of envelopes, are largely the prerogative of project 
management; but some may also be specified as a requirement for delivery 
by the customer or operations organization. 

The figure shows four organizations, each having its own piece of the 
documentation pie; any two (or all) of these may, in actuality, be the same 
organization. Because of this possibility, the need for some of the 
documents shown may disappear (such as the implementation agreement 
when originator and implementor are the same). The major flows of 
information may also differ from case to case. 

The model shown depicts things getting started in a Software 
Justification, by which management is appraised of the needs and costs of a 
software development. Upon approval, User Requirements and other 
considerations coalesce into a Functional Requirement; while planning 
information collects into an Acquisition Plan, which tells how the required 
capability will be achieved (outside contract, in-house implementation, 
etc.). The requirements activity then culminates in a Software Require
ments Document (SRD). More about this document appears in Chapters 3 
and 11 and Appendix C. 

The implementing organization, upon receipt of requirements, enters 
into an analysis of organizational matters to determine such things as 
whether it can do the job at all, whether it can make a profit, how much of 
the job it is willing to take on, how much it will bid, whether it has the 
manpower available, and so on. Based on this Organizational Feasibility 
Study, it then enters into an Agreement with the requester, detailing what 
will actually be provided, when, and for how much. 

Once agreement has been reached, the implement6t is shown to produce 
a Software Design Definition (SDD). This document is a translation of the 
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requirements embodied in the SRD into a conceptual or architectural 
design of the program; its purpose is to determine the scope of the work, 
to refine the original cost and schedule estimates, to formulate the design 
base at the highest levels of abstraction, and to initiate team selection, 
work planning, and coordination activities. (A candidate outline for the 
SDD appears in Appendix D-) The actual detailed work plan appears as a 
separate Software Implementation Plan. 

The main body of the program development work culminates in the 
Software Specification Document (SSD), shown to be comprised of three 
subspecifications: 1) The Software Functional Specification (SFS), or the 
program definition; 2) the Programming (Design) Specification (PS), or 
merely the program design, and 3) the Software Test Specification (STS). 
The first of these is the product of the Program Definition Activity; the 
second, the Program Design Activity; and the third, a mutual product of 
both the Design and Production Activities. I address the program definition 
process in the next chapter, the program design in Chapter 4, and testing 
in Chapter 9. An outline for the SSD appears in Appendix E. 

User Requirements and the Software Functional Specification (i.e., the 
program definition) form the basis for writing User Manuals, a task I have 
shown as taking place in concert by the user and implementor. User 
instruction manuals (see Appendix F) concern themselves with instructing 
the person who must use the program. The contents include just what data 
to input, how to format and prepare it, how to get it into the system, when 
and how the output will be received, what that output will say, and 
perhaps, even how that output is to be interpreted. User Requirements and 
User Manuals are then the primary source materials used to formulate an 
appropriate Acceptance Demonstration. 

The results of all development tests and acceptance tests are deposited 
in the project Test Archives (not, as is all too often the case, the waste 
basket). In addition, a Software Test Report (STR) may be warranted (see 
Appendix J) to summarize the material in the archives. 

As in all good engineering practice, the project progress, design 
decisions, analyses, etc., are fecorded in a Project, Notebook (Appendix H). 
More about the Project Notebook appears in Chapter 10. 

If the user of the program is not also the operatorof the program, there 
will also be a Software Operations Manual (Appendix I), which contains 
instructions telling how to set up and run the program, where to send the 
results, how to respond to any promptings for command or data input, and 
the like. 
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The Operations Transfer Agreement represents the final delivery of the 
completed, accepted software package into the maintenance and operation 
organization. This organization is also shown to have its.own Software 
Management Plan and Software Maintenance Manuals. 

It is mandatory, in the interests of project unity, that the project 
manager define, at the outset, which of these (or other equivalent) 
documents are to be produced, and in what detail (see Chapter 16 for 
standard levels of detail). The greatest and most painstaking effort of all 
should be directed toward producing documentation having the highest 
impact on project success (including later operations). The documentation 
that survives the development phase and that will be of high use in later 
operations should certainly rate a high priority among candidates for that 
receiving the most effort. High-cost, low-use documentation should be 
avoided by proper project organization and management. 

2.8. SUMMARY 

The salient concepts I have tried to introduce in this chapter have to do 
with hierarchic representations of program specification, data structures, 
etc., from the topmost, most generalized abstractions, downward to the 
bottommost, most detailed considerations. I have identified a certain set of 
activities and interfaces contributing to the end product, and have 
indicated the role documentation must play, if that end product is to be a 
success. 

In forthcoming chapters, I shall extend these concepts in much more 
detail. Most of the exposed practices are based on the application of 
proven and effective standard engineering practices, combined with the 
concepts and theorems of structured programming, along with its 
consequent enabling of top-down methods. 
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Problems for Chapter 2 

2-1 Take a short (one or two page) program listing of your choice and with 
a set of colored pens draw lines to show the scope of each variable in the 
program. Does the scope of any variable depend on the program 
execution path? Do any variables possess scopes of activity that are 
entirely conditioned? 

2-2 Develop 3 story outlines based on the (root) theme "boy meets girl", as 
a top-down concept hierarchy using each of the semantic refinement 
techniques of Figure 2-7 down to about 4 levels. Compare the plots. 
Change one of the concepts (nodes) at level 2 and alter it to a new one, 
then recomplete the plot. Compare again each of the three. Which 
refinement technique caused the least rework to complete? 

2-3 Develop a two- or three-level abstraction hierarchy of data structures 
needed to model some particular characteristic of a waiting line at an 
airport terminal ticket counter. Identify the representation, -manipula
tions, and axioms needed at each level. DeveIop both the problem details 
(requirements) and solution details (data structure plus access functions 
and operations) in level-by-level concurrency, from the top down. 

2-4 Let a program with E lines of executable code have D of these, at 
random, documented in the form of comments attached to the code. If a 
line is fully documented, assume it takes a time to read andT a 
understand (i.e., to absorb the meaning); if a line is undocumented, 
assume it takes time Tc to recreate the rationale. Further, assume that 
the level of documentation, when it appears, is q, that the amount of 
time to read it and comprehend what is there is T 1q, and that the extra 
time needed to create the rest of the rationale is (1-q)Tc, where 0 < q < 
1. Assume the time to recreate the rationale if none was given takes the 
form Tc(1-dq)k for some k, where d=D/E (this model states that a time 
Tc is needed if no documentation, or worthless documentation is 
provided, and that no time is required if the code is fully and adequately 
dodumented). Discuss this model and solve for d and q which minimize 
the time to read and understand the program. Compare with Figure 
2-11. 



III. SPECIFICATION OF PROGRAM
 
BEHAVIOR
 

I identified two activities in the last chapter concerning the definition-of 
program function: requirements and functional specification. It is my view 
that these two, in their combined, content, should be detailed to that level 
which permits software design or production activities to make arbitrary 
(but identified and approved) decisions without jeopardizing program 
functioning. For example, if a functional specification states that the 
program, upon detecting an error, shall "print an appropriate diagnostic 
error message on the user's terminal," then I would expect that any 
message deemed "appropriate" by the program designer or coder would 
suffice. If the specifier has a different idea of what "appropriate" means, let 
him so state. 

I have alluded to certain beneficial reinforcements that can occur when 
requirements, definition, design, and production are permitted to take 
place concurrently on an interacting, cooperating basis. I have also alluded 
to disasters that can result when this concurrency is improperly structured. 

41
 



42 Specificationof Program Behavior [CHAP.3 

Dijkstra's levels of abstraction seem particularly appropriate in this 
context. A functional definition developed to a given hierarchic level 
permits a programmer to proceed immediately with the design, so long as 
he does not assume specifications beyond this level. In fact, the design 
process can be used as a tool to verify that the functional specifications at a 
particular stage are supportable in the design (thereby reducing the risk in 
top-down development). Unsupportable concepts are nipped in the bud, 
reducing the amount of revision which would undoubtedly be warranted 
had the fault been detected at a later time. Side effects are likewise 
reduced.
 

3.1 SOFTWARE REQUIREMENTS 
The concept of a "software requirement", as the term is often used, 

sometimes conjures up rather a fuzzy mixture of customer goals, program 
definition, and even program design. I shall try to be more explicit here, 
however, by differentiating between two types of requirements, and 
between software requirements and the program definition. 

The foremost characteristic of a requirement is that it primarily 
addresses the needs of the customer (or user) organization. Such 
requirements are levied in furtherance of the customer's goals, such as to 
lower production costs, provide a more reliable service, better the 
organization's capability to compete with other organizations, respond to 
operational missions, and so forth. These are the requirements for the 
software; they form the justification to purchase or develop an automated 
data processing capability. 

The second characteristic of a requireinent is that it establishes the set of 
interfaces and performance criteria on which the justification is based and 
to which the development that is to follow must conform. These criteria 
address the needs of the software. Such requirements, for example, specify 
how the user expects to interact with the data, to cause runs to be 
executed, etc. Some requirements will be highly technical in nature, 
specifying that certain existing interfaces be observed, certain functions be 
performed, certain accuracies be achieved, certain services be provided, 
and perhaps, certain mathematical algorithms be implemented. Other 
requirements may be more non-technical, such as for development in 
accordance with certain cost or schedule guidelines, or documentation in 
accordance with a company standard, etc. 

Many of the problems that traditionally arise in software developments 
are traceable to ill-conceived, poorly specified, misdirected sets of software 
requirements [211. Some of these problems are due to a mismatch between 
the levels of expertise of the originators and the developers; the mismatch 
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then manifests itself as a communication barrier between the two. Other 
problems arise when customers attempt to define their requirements in 
terms that properly are prerogatives of development. Other problems, 
needless to say, arise in redirected efforts, changes in requirements during 
the development phase, oversights, and so.on. 

It is important that requirements be requirements, not constraints, 
definitions, or design specifications. That is, those items listed as 
requirements should state restrictions or expectations relating to 
organizational goals, user (or operational) environment, or the accomplish
ment of the assigned mission. Functional requirements should be stated in 
the form of mathematical transformations, data processing modes, desired 
options, output criteria, input characteristics, etc., only up to the 
customer/user/operator interface. This interface may contain quite a lot of 
technical detail in some cases, but nevertheless, it is important that 
requirements concentrate on the program needs, not on the program that 
responds to those needs. 

For example, if FORTRAN is prescribed as the required coding 
language for a project, then one must be able to assume that it is really a 
requirement, 'and that no other language (which is readily available, 
conscientiously maintained, or within the expertise of the developers or 
operational crew) is acceptable because the use of another language is 
inconsistent with the customer/user/operator interface, or else cannot 
perform the intended function. 

Often, the justification of a software development is based on an assumed 
model, which relates how the requirer envisions the program to provide its 
service. He has, perhaps, based costs, schedules, and other plans on this 
model. But just how much of this planning model should carry over into 
true program requirements depends on many factors. 

'Useful guidelines for identifying requirements are: 

a. 	If the requiring organization is attempting to establish a need beyond 
its expertise to describe, then that need is probably not a 
requirement, but properly, a part of the program definition or design. 

b. 	If the developing organization is attempting to respond to an overly 
restrictive requirement when equivalent or simpler measures seem 
adequate, then again that requirement is probably artificial, and 
should be investigated more thoroughly. 

c. 	 If the developing organization must define program responses for 
which there must surely have been a requirement, but yet none was 
provided, nor was such expressed as a development prerogative, then 
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probably the software requirements are incomplete, and new 
requirements must be generated, approved, and appended. 

3.2 IMPLIED REQUIREMENTS 
Whenever a customer organization is capable of defining its goals in 

terms of software requirements, then there is probably little difficulty in 
providing the 'proper tradeoffs and justifications for development. But 
often, software goals are so non-technical in nature or implied by system 
considerations that fiscal and schedule estimates cannot be made without 
extensive consultation by software specialists. In some organizations, the 
software specialists may even be given the job of establishing requirements 
for their software to achieve a particular set of system goals. 

For example, a spacecraft project office may simply require that 
"spacecraft ranging data be provided at one-minute intervals over a 5-hour 
pass, accurate, in the mean-square sense, to one meter". Ranging data, let 
us suppose, can be extracted and processed in a real-time minicomputer 
that forms one part of the' spacecraft-tracking ground instrumentation 
system. Since a computer program must then be developed to accumulate 
and process such data (a fact immaterial to the users of the data), the 
developing organization finds itself charged with costing, scheduling, 
planning, and justifying a software development project in response to the 
spacecraft-project-imposed requirement. The development project justifies 
its requirements for the software as a response to the spacecraft project 
dicta, but must establish the requirements of the software as a set of things 
needed to do the ranging function and to provide the proper user interface 
characteristics. 

As long as such a developer orients his specifications toward the needs or 
goals of the customer/user/operator, such specifications still state 
requirements. 

In such a situation, the developers have a strong tendency to define the 
program's characteristics, rather than state requirements. My guideline 
here is the following: A statement that appearsthe same in the Software 
Requirements Document as it does in the Softwaie Definition Document 
may not be truly stating a requirement, to which the definition is 
supposed to respond, but rather a program definition. One may expect 
rife counter examples to this guideline, but it is still worthwhile to check. 
For example, the requirement "decode telemetry stream input using the 
Viterbi algorithm", although quite definitive, is very likely a program 
requirement, as it implies something about bow the telemetry data was 
encoded at the source; the program definition has no alternative than to 
respond as required. 
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3.3 CREATING THE SOFTWARE REQUIREMENT 
The justification of a software requirement, created to obtain 

management approval to proceed in a software development project, is apt 
to vary greatly among user organizations. One can, however, establish tw6 
phases in the creation of the requirement (Figure 3-1). One is the planning 
phase wherein non-technical (or low-level technical), highly interdiscipli
nary interactions (among users, system analysts, managers) determine 
feasibility, establish firm objectives, estimate costs, and provide orientation 
for the development project. This phase establishes the requirements for 
the software. Shaw and Atkins [22] estimate as much as 25% of the total 
development effort may go into this phase. 
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The other phase, which Shaw and Atkins estimate at perhaps another 
25% of the total development effort, may be termed the user requirements 
phase.This effort covers input, information flow, output, documentation or 
display, environmental, computer-resource, program acceptance, and 
operational support requirements. Information provided in this phase is 
again largely non-technical (in the context of program development), 
oriented towards establishing output criteria, prescribing the program 
functional capabilities, and scoping the program-embedding environment. 
This phase establishes the requirements of the software. 

Requirements are definite only to the extent they are visible in 
documentation. The output of the requirements activity is, therefore, a 
Software Requirements Document (SBD) satisfying the following criteria: 

a. 	It must be adequate to identify the objectives of the program, its 
environment, the configuration needed for its operation, the 
resources required for its support, and the advantages and 
disadvantages in the service it provides, as related to the customer 
organization. 

b. 	It must be adequate to permit the remaining developmental 
activities to proceed under a reasonable assurance that a major 
revision to the requirements will not be necessary. 

e. 	It must be adequate for review and approval by management on the 
basis of its conceptual feasibility in accordance with the other 
criteria above. It must contain manpower, schedules, and develop
ment-cost estimates, as well as reasonably accurate variances for 
these estimates, at least for the next phase of activity. 

A candidate outline for the SRD appears as Appendix C. It organizes 
planning information and user requirements into a hierarchic structure 
suitable for semantic refinement. Topics may be detailed to whatever level 
is needed to characterize the requirement. Rules for completing the SID 
appear in Chapter 11. 

3.4 'SOFTWARE FUNCTIONAL DEFINITION 
Up to this point, the software development activity has been largely non

technical. During the software definition activity, the analysis and 
documentation effort move toward the middle level of technical depth 
(Figure 3-2). Output of this activity will ultimately be a Software 
Functional Specification (SFS) containing technical material (as opposed to 
the conceptual layouts developed in the SRD) relative to input/output 
definitions (data base definitions, data base formats, i/O device handling, 
etc.), processing functions (decision tables, mathematical algorithms on 
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information structures), definitions of technical constraints (such as 
execution time, storage limitations, etc.), and stipulation of control 

functions. In the end, the SIS characterizes the program to be written as a 

"black-box" response. However, some aspects of a computer program 
differentiate it from other black boxes and serve to make writing a 
definition unique. Depending on the specific situation, the SFS could 
contain material stipulating the utilization of certain logical algorithms; but 

generally, these are left as prerogatives of the design and production 
activities. 

It is important that the definition concentrate on telling what the 
program is going to do. Descriptions of the environment, various conditions 
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to be met, and similar passive elements can obscure the main issues, if 
introduced at the wrong points. 

The Software Functional Specification (SFS), when complete, satisfies 
the following criterion: 

It defines the meaning of program correctness; any program meeting 
the technical and documentation specifications will be deemed a 
satisfactory deliverable. 

During the completion process, each phase of the SFS satisfies the 
following criteria: 

a. 	It is sufficient to initiate the development of user manuals as a 
separate activity, parallel to (but coordinating with) any concurrent 
program development activities (design and production). 

b. 	It is adequate for continuing the program definition and development 
activities (design and production) with reasonable assurance that 
major revisions will not be necessary. 

c. 	It is reviewable by project and user personnel on the basis of its 
technical feasibility and accuracy, in accordance with the SllD and 
the other criteria above. 

Appendix E gives a candidate outline for the SFS as a part of the overall 
Software Specification Document (SSD), which is arranged for hierarchic 
statement of program and documentation specifications. As was the case in 
Appendix C, the outline is very detailed and suitable for semantic 
refinement of both technical and non-technical program sub-specifications. 
Rules for completing the SFS appear in Chapter 11. 

The generation of user and maintenance manuals could rightly be 
considered an integral part of a software development effort, and may well 
appear among the tasks of the development team in many cases. Moreover, 
the costs of developing such documentation must certainly be allocated, 
accounted for, and managed as effectively as any other development 
resource. Regrettably, however, I have not been able to organize these 
manuals into the same sort of detailed uniform treatment given to the rest 
of the development documentation. Their content, format, and level 
depend so heavily on the intended audience and the program function. I 
do, however, give some guidelines for their content (Chapter 16) and for 
their role and interaction with the other parts of the development effort 
(Chapters 10 and 15)_ Suggested outlines appear in Appendices F and K. 
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3.5 	INTERACTION BETWEEN REQUIREMENTS AND
 
DEFINITION ACTIVITIES
 

Requirements are primarily set by the customer organization, and 
definitions, by the implementing organization. These need not necessarily 
be distinct, but in the general case, they are. Such requirements are 
generally levied by persons with a different expertise than those who must 
respond to those requirements. But it is important that those setting 
requirements and those defining functional specifications agree'to the 
feasibility of the technical task and the accuracy of manpower and 
budgetary estimates. 

What a program is supposed to do is sometimes subject to wide 
interpretation, even after a previous initial agreement. It is important, 
therefore, that the customer remain involved with the remainder of the 
development, especially during program specification activity (Figure 3-3). 

When a program 'is thus being developed, with concurrent interaction 
among requirements and definition (also definition and design), it is 
necessary to interpret the SRD and SFS criteria stated earlier as being true 
in a hierarchical sense. For example, in -the SFS, the criterion by which 
program correctness is to be judged should be interpreted to apply only to 

'that part of the definition stated so far, at the current hierarchical level. 
Before the design effort acts upon it, there should have been concurrence 
that 	the current level of definition agrees with the (perhaps also partially 
developed) software requirement. 

The need for proper requirement and definition hierarchies to enable 
this interactive process to continue successfully is evident. Semantic 
refinement by way of detailed subconcepts (see Figure 2-7a) is ideal in this 
respect, as it allows the detailing of a requirement at level-n+ 1, based on a 
requirement at level n, to take place concurrently with the writing of a 
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Figure 3-3. Interactions between software requirements and definition activities 
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definition in response to the level-n requirement, while design is working 
on a program to satisfy the previous working-level definition (see Figure 
3-4). 

PREVIOUS WORKING LEVEL DESIGN
 
AT LEVEL p
 

I 
CURRENT WORKING LEVEL 

Figure 3-4. Top-down precedence in requirement, definition, and design activities 
at concurrent working levels (unterminated arrows point to other detailed 

subconcepts not shown on this diagram; wide arrows show information flow) 

Detailed rules for encouraging and administering the cooperating 
interaction of disciplines will be given in Chapter 10, Project Organization 
and Management. 

3.6 INFORMATION-FLOW DIAGRAMS 

A similar diagram, flowcharts, have traditionally been an important 
design and production aid because they display how control is passed from 
program module to program module during execution. There is a tendency, 
therefore, for those doing program definition to also try to use flowcharts to 
describe what they intend a program to do. H6wever, specifying the 
control logic for a program so early in the development tends to obscure 
what the program should do functionally in favor of ways a machine can 
sequence its operations. Control logic is really the province of design, 
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whereas definition should precede it. Control-logic flowcharts, therefore, 
during definition may be premature. 

Information-flow diagrams, on the other band, can be a tremendous aid 
in specifying and clearly illustrating the necessary data routing and 
transformation procedures which operate on the information structures 
(see Section 2.2) of a program. Hardware design engineers have been using 
the equivalent of information-flow diagrams for years-they call them 
block-diagrams.They have an edge, however, because the blocks in their 
diagrams represent identifiable, real modules to be built. Whereas modules 
on information-flow graphs may merely be abstractions that serve to 
identify the problem and describe it in enough detail so that the design 
process can solve that problem unambiguously. 

Nevertheless, programs can be defined in terms of modular, hierarchi
cally-refined definition units characterizing the program response in a way 
that can be audited against the design for consistency. These units can be 
graphically displayed using information-flow diagrams. As an example, 
consider the chart shown in Figure 3-5, which depicts a generalized data 
processing problem. The information flows from a read unit, to a process 
unit, and finally to a print unit. In the program to be written, the actual 
order of reading, processing, and printing is likely to be intermixed, Hence, 
a flowchart at this stage obscures what is taking place with a lot of detail 
as to how it is being done, or how the flow of control is passed, or how the 
program is to be organized into execution modules. 

At the next level, the read unit expands to a chart, such as that in Figure 
3-6, showing the various data sources and information structures(not data 
structures) holding the data. The example shows that the data to be 
processed emanates from a data tape, while the printing format 
information comes from a control-data file. Additional information detailing 
both these inputs may appear at a next level of definition. The information 
at each level occupies certain structures assigned for communication with 
and reference by other definition units. 

DATA DAT J°" REPORT 

FORMAT DATA
 

Figure 3-5. A data processing program information-flow diagram 
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Figure 3-6. Expansion of the read unit of Figure 3-5 

The data processing unit has its expansion depicted in Figure 3-7, which 
identifies a data-decoding function composed of a synchronization unit and 
a decomutation unit. Data output to the print unit are characterized at this 
level only by the information structure labels A and B, to be detailed at 
later levels. 

Similar (data flow) diagrams are shown in the next chapter to be useful in 
the early parts of the design activity. As I have represented the two, 
definition and design take place in an integrated fashion, anyway. The 
difference between the two types of diagrams is that, in definition, 
information flow is concerned with communicating the program function, 
whereas, in design, the diagrams identify the connectivity between the 
executable program modules and data structures they access. 
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Figure 3-7. The process unit information flow diagram for Figure 3-5 
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3.7 SUMMARY 
In this chapter I have formulated the technique of hierarchic refinement 

as a tool for defining program behavior without designing the program. I 
have given criteria for the documents to be developed, and I have 
indicated how the developmental activities all dovetail together in 
hierarchic unity. More specific rules for writing program definitions appear 
in Chapter 11. 
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Problems for Chapter 3 

3-1 Establish a detailed software requirement for an opinion-poll company 
to automate its statistical data-reduction operations. State justification for 
expenditures based on company goals and current modes of operation. 
Sketch plans for acquiring and operating the automated capability. State 
technical requirements and criteria for accepting the program for 
operations. Develop this material into a set of view-graph slides suitable 
for presentation to a review board. 

3-2 Define the external characteristics of the program in problem 3-1 in 
hierarchic levels of detail. Was it necessary to augment, change, or 
otherwise refine the customer requirements in doing so? Was it 
necessary to design any of the internal aspects of the program in doing 
so? 

3-3 Structure the requirements of problem 3-1, the definitions of problem 
3-2, and aspects of the internal program design discovered in problem 
3-2 into hierarchic levels of detail such that requirements at level n are 
responded to by definitions at levels greater than or equal to n, and 
internal design aspects at still logically subordinate levels. 

3-4 Specify, for the software to be developed in problem 3-1 above, which 
documents among those discussed in Section 2.7.3 are to be made formal 
and which are to be informal. Discuss the general level of detail for each 
document as it relates to this particular project and identify what is to 
become of each document at the termination of the development phase. 
Identify any other documents to be produced, along with their 
corresponding levels of detail and final destination. 



IV. PROGRAM DESIGN
 

Even if there is very little hope of ever completely characterizing the 
"optimal design process", much progress in this direction can be made by 
adopting formal disciplines that encourage the identification of goals, 
problem constraints, design parameters, and solution alternatives. Design 
requires creativity, ingenuity, and innovation, and, for this reason, cannot 
be made a rigorously formal procedure. However, a sound approach 
methodology towards problem solving and a base of schooling and 
experience in software technology turns what otherwise would be an art, 
masterable by only a privileged few, into an engineering discipline that can 
be learned by many. 

This chapter, then, coordinates several worthwhile programming tools 
and methodologies into a formalized rationale for software design. Included 
are: top-down development, look-ahead analysis, program modularization, 
structured control flow, and hierarchic levels of definition. 

4.1 DESIGN CONSIDERATIONS 

The typical software development project goal is to "produce a 
program, maximizing its quality, but subject to budgetary and schedule 

55
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constraints". Quality, however, can be judged according to several, 
perhaps competing, criteria [23], among which are: 

* Reliability (characterized by the number of bugs in a program) 

* Maintainability (indicated by the ease in fixing bugs) 

* Modifiability (measured by the cost of altering the program) 

* Generality (characterized by the functional scope of the program) 

* Usability (indicated by ease of use) 

* Performance (characterized by running efficiency) 

Design is a process that generates a link between a problem and its 
solution. As I shall use the term in this chapter, it generates the link 
between the program functional definition and the internal program code. 
Even programs "created on the coding pad", without a formal design 
phase, have nevertheless, required some design effort. The quality of a 
program is a direct reflection on the quality of its design. It therefore 
behooves the programmer to consider the design aspects very carefully and 
very deliberately. 

The basic elements required to design good program area an 
understanding of the function to be served and the mechanisms available to 
carry out the job. The design must then be conveyed clearly and 
unambiguously to the programmer along with any special rules for added 
clarity. 

Not every first idea is a best one, and for this reason, there is usually an 
iteration process involved in coming up with a good design. Moreover, 
iteration and reworking a program rationale at design-time is the proper 
place for that iteration and rework, rather than later, when there may be a 
large investment in documentation and code. 

The techniques discussed in this chapter help to make the investment 
during development less sensitive to premature design decisions. However, 
these are not replacements for design aptitude, but tools which serve to 
guide that aptitude through an otherwise uncharted region. 

4.1.1 Characterization of the Design Process 
Because it requires creativity, design is a difficult process to pin down 

definitively. Basically, however, its input is a problem and its output is a 
specification, in the present context, the output is a specification for how 
the coding is to take place. 

As I shall be dealing with it, this process is that activity defining program 
data structures and logical algorithms in response to, and conforming with, 



57 See. 4.1] Design Considerations 

the software functional definition. It consists of describing the program 
organization, data manipulations, I/O procedures, and the like, carried to a 
level of detail that will serve as the working basis for programming and 
operational implementation. This activity defines the modular breakdown 
of the entire program, thereby specifying work units for coding. 

I have represented the design process in Figure 4-1 as being composed 
of (at least) two components and a number of considerations affecting the 
result. One part of design is non-procedural, that is, the allocation of 
program resources and definition of data structures. This part will then be 
accessed and manipulated by the second part, the procedure, or algorithms. 

4.1.2 Design Requisites 

The first requisite for a designer is technical skill. The aptitude of an 
individual for design is measurable to some degree by his ability to: 
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Figure 4-1. Considerations making up the program design 
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* Analyze problems 

* Identify constraints and potential solutions 

* Make trade-offs, choose alternatives, and render judgements 

* Draw on background of technology, methods, and tools 

He must know the fundamental principles of problem solving, and he must 
be capable of applying these to the problem at hand. He must be 
thoroughly conversant with the theory and practice of his trade, and he 
must be capable of identifying all potentially useful alternate approaches. 
Finally, he must be capable of making sound and responsible tradeoff 
judgements among these. In short, he must be a ,professional. 

Theneed for a well-organized approach and well-structured documenta
tion, with inputs and outputs clearly defined and logically arranged, is 
fundamental. The product of a design is documentation. No amount of rote 
nor helpful hints will eliminate the need for painstaking care and use of 
techniques which allow the designers to keep track of all the, program 
intricacies. 

Full use of graphic and narrative material lends clarity to the design. 
Some things which contribute particularly well are data-base and data
structure design tables, logical flow diagrams, data-connection diagrams, 
decision logic tables, mathematical formulas, and perhaps even Boolean 
algebraic expressions. 

4.1.3 Humans vs Tools in Problem Solving 

Problems pertaining to the design of software systems may perhaps be 
categorized with regard to the required degree of comprehension required 
by the designer at any one stage of the solution. Small problems fit into the 
designer's head all at once, without segmentation in any form. Large 
problems, however, require segmentation into pieces which can fit into a 
single comprehension span before solution is feasible. Because human 
experience and intelligence is variable, the differentiation between which 
things are comprehensible as a unit, and which are not, is very subjective. 

Moreover, small problems can usually be solved and implemented in a 
variety of ways, seemingly without undue difficulty; whereas, larger 
problems may require laborious study before they can, by abstraction, be 
made to resemble smaller problems, or can be dissected into a number of 
smaller subproblems that when taken together, solve the original problem. 
To convert large, incomprehensible problems concerning a great number 
of details into small, comprehensible subproblems with relatively few 
details means that the lines of dissection must be chosen to modularize the 
original problem into subproblems that contain only those details which 
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are relevant and conceal those details which are not relevant. This 
systematic selective hiding of design details is what makes solution of a 
large problem possible. 

The following design rules and restrictions are intended to guide the 
dissection of a large problem into comprehensible snbproblems, not only 
for the designer, but also for his supervisors, managers, and any future 
readers. The use of top-down methods, hierarchic decomposition, levels of 
abstraction, structured control flow, semantic refinement, use of graphic 
and descriptive material, etc., are very effective, each in its own way. 
However, it is not the set of tools that solves a problem, it is the human 
that uses the tools. Part of the acumen of a good designer is the ability to 
match the right tool to the right problem. 

Regrettably, then, this work will not be able to provide all designers with 
every tool they will need to solve problems, nor, once solved, to express 
their solutions in the most effective manner. However, it will provide a 
standard that can be applied in the absence of better methods. 

4.2 TOP-DOWN PROGRAM DEVELOPMENT 
The theme of this monograph is (I say again) top-down, modular, 

hierarchic, structured development of software. In keeping with the idea 
that cooperative interaction among development activities is beneficial, the 
design procedures I give permit the design to be checked concurrently by 
coding and testing through hierarchic levels from the top down. 

In doing a structured, modular, hierarchic design, one starts with an end
to-end overall description (definition) of the program and analyzes it into a
number of component parts according to a set of decomposition rules. In 
terms of flowcharts, one starts with a single box that represents the entire 
program at the top hierarchic level, and expands that box into a flowchart 
at the next level, which displays the component subfunctions as a 
structured algorithm, in keeping with certain flowchart-topology rules. 
Each of the subfunctions is given a precise, end-to-end subspecification, to 
be expanded into its own flowchart at the next design level, and so on, until 
such a level is reached that the collection of final subspecifications can be 
coded directly, without functional ambiguity. Figure 4-2 illustrates this 
hierarchic tree structure of the program modules. 

I shall discuss permissible flowchart topologies (structures) and how they 
enhance the design process in the next two chapters. In the remainder of 
this chapter, let me show how the modular, hierarchic breakdown of 
program functions into subfunctions works to great advantage in the top
down-development of programs. 



*n
 

0 0 o 

rn
 

r 

o 

0 "C
 

0 

CL
 

r cr 

C
L

) 



61 Sec. 4.2] Top-Down ProgramDevelopment 

4.2.1 Hierarchic Decomposition 

Hierarchic decomposition [12,24,25] identifies the programming process 
as a step-by-step expansion of mathematical functions into structures of 
logical connectives and subfunctions, carried out until the derived 

subfunctions can be directly realized in the programming language being 
used. The documentation of the program supplies the tool for assessing 
correctness of these expansions. 

The documentation-that is, the design, for documentation is the design 
at this stage-is purely for the benefit of humans, not the computing 
system. The computer executes whatever instructions it receives. 
Hierarchic decomposition will channel documentation detail into 
functional levels, so that humans can comprehend the program at each 
level by regarding the next lower level as a functional subunit. 

The technique thus provides a way to control program complexity in a 
disciplined, systematic way. With complexity under control, the possibility 

for producing a correct design is greatly enhanced. 

Such a design, moreover, is suitable for coding immediately; those 
subfunctions that permit can be translated directly into the chosen 
programming language. Those which require detailing at the next 
hierarchic level can be programmed as blocks of temporary code or 

dummy "stubs", as Mills [12] calls them-simple procedures that merely 
supply or test interfaces for the algorithm at the current level. 
Furthermore, the program can then be run and tested, within the 
capability of the dummy stubs. Once there is verification that the program 
works with the dummy stubs as it should, the dummy stubs can be replaced 
using later-level designs for their intended subfunctions. 

Of course, the dummy stubs cannot provide a full interface to the rest of 
the program for all possible inputs without being the full code for that 
stub. Rather, it is intended to work for one or more special test cases, to 
check the operation of that part of the, program already designed and 
coded. Any errors detected can be corrected immediately, before they 
have a chance to penetrate further into the design. 

Mills' correctness theorem in the next chapter states that (if flowchart 
topologies are structured as he prescribes) if the program at a given 

hierarchic level is known to be correct, then it will still be correct after all 
of the stubs are replaced. In principle then, using dummy stubs permits 
checking the entire design (and' coding) for correctness from the top down, 
and, in practice, greatly reduces the amount of checking needed to achieve 
a given level of confidence in the program. The concurrency of design, 
coding, and testing provides checks and balances; when the design is 
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complete, coding is not far behind, and the program is very likely to be 
correct. 

The flowchart topologies, or logical connectivity of the subfunctions, to 
be studied in the next chapters, are structures which permit programs to 
be even more readily readable, understood, coded, and tested, and then 
maintained and modified. Control branching is entirely standardized so that 
the flowchart, accompanying narrative, and resultant code can be read 
from top to bottom without having to trace the branching logic in an 
intricate, convoluted way. 

Thus, the design ultimately manifests itself as documentation that is 
readable from the top down, page by page, level 'by level. 

4.2.2 Look-Ahead Design 

The top-down method manifests itself in a series of hierarchies, not just 
one. So far, I have talked principally about developing the program 
control-logic hierarchy from the top down, in execution sequence. But the 
reader should not confuse this hierarchy with the top-down concept
development hierarchy by which the fundamental bases for the program 
emerge. One must realize that the mental abstractions needed to solve 
problems are quite different than the control- logic abstractions which 
result in flowcharts, code, or other equivalentsrof program procedure. 

For example, in solving a concurrent processing problem, one of the top
level considerations affecting the whole design might be concerned with 
the feasibility and efficiency of certain resource arbitration algorithms. 
Thus, primitive functions REQUEST and RELEASE might be closely scrutinized 
early to determine that these key design elements are feasible and have 
certain envisioned (or discovered) properties. 

Viewed with respect to the control-logic development hierarchy, 
however, these functions may appear as bottom-level modules. What were 
top-level considerations in the concept department are represented in the 
program tree by relatively bottom-level stubs. 

The apparent misalignment of these two hierarchies does not mean that 
the top-down method should be abandoned, Instead, there needs to be an 
accommodation made in the development discipline to permit these 
hierarchies to interact in the most effective manner. 

In bridging the software gap (Figure 1-1), there is always the risk, as in 
any systems design, of running up against an unsupportable specification 
made somewhere earlier in the design. This risk is true whether the 
procedure is top down, bottom up, or inside out. Concurrent coding and 
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testing tend to minimize the chances of having an incorrect or inconsistent 
design up to a given point, but they do not negate the risk that the 
program might actually fail to connect the problem to the programming 
language.
 

This type of risk is not exclusive to programming design, but occurs 
everywhere that conceptual system specifications are to be connected to 
the real-world. It can be averted by resorting to a technique that can be 
called a "look- ahead" design, or a "baseline" design, or a "preliminary" 
design. What the designer actually does, according to M. Easterling in an 
internal JPL memorandum, is to "sketch out the key details of the 
remaining work to assure that what he is doing at present will be proper 
when reviewed in retrospect, at a later stage in the design". (See Figure 
4-3.) 

In the present context, the top-down design hierarchy with concurrent 
documentation is intended to provide a logical and orderly way for the 

.various development team members to work together, to guard against 
mistakes, and to produce, the needed documentation directly in the process. 
The team interactions and individual progress milestones can take place -in 
a supervised, formalized discipline, as will be discussed in Chapter 10. 

A complete look-ahead design may well precede the formal detailed 
design, to form the "architecture" or basis for estimating costs, schedule 
milestones, and the work task breakdown structure for later activity. 
During this architectural phase, detailed correctness of the algorithms is 
not as important as the development of a sound foundation for the later 
formal, detailed design. The look-ahead notes can include flowchart 
sketches, worked out algorithms, data structure preliminaries, and narrative 
descriptions of things to come. Only when the designer has assured himself 
that what he is formally obliged to produce at the current level is correct, 

CURRENT 

FORMAL ' INFORMAL LOOK-AHEAD
DESIGN CONSIDERATIONS 

WORKING
LEVEL
 

Figure 4-3. Logical precedence and flow of information in a look-ahead design 
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does he submit it into the body of project-controlled design documentation 
at that point. Then, and only then, is it coded and tested. 

There are potential problems, however, that a project manager must 
avert in look-ahead efforts. Foremost, he must maintain adequate visibility 
into look-ahead activity, and avoid the ceaseless "tinkering" that sometimes 
has a tendency to occur. 

4.2.3 Designing for Correctness 

A correct program is one that performs according to its definition. In a 
correct, top-down design, the functionally specified behavior is considered 
paramount at each level of the development. 

But while the program design may be correct at each succeeding level, 
deep into the program, the program still may not perhaps bridge the gap 
all the way to realization. An impase may occur at a certain level in which 
the function specified is not implementable. The design problem is to find 
the correct bridge that spans the whole gap. There may be many; in fact, 
that is far more likely to be the case than there being only one. 

The end product of the design activity is a software specification, which 
can then be implemented into code- To avoid errors of omission in the 
design, I have provided a detailed outline (see Appendix E) for the 
Program Specification (PS). This PS, on completion, can be joined with the 
Software Functional Specification (SFS) and Software Test Specification 
(STS) to form the Software Specification Document (SSD). The SSD and 
code listings become the major portions of the program development 
documentation. During development, the SSD is the design document; 
afterward, it is the "as built" specification, satisfying the following criteria: 

a. 	 It is adequate to permit concurrent coding and checkout using 
dummy stubs at the completion of project-imposed design milestones. 

b. 	It is adequate, upon completion of these milestones, for continuing 
the design to later milestones. 

c. 	 It satisfies the program requirements set forth in the Software 
Requirements Document (SRD) and conforms to design and 
documentation rules and standards in a reviewable, demonstratable 
way. 

d. 	It is adequate for use as a later maintenance document. 

e. 	It is adequate for use as a design-control agent within the 
development project. 

In summary, the top-down approach keeps the design correct at each 
stage of the development, and look-ahead helps to make the bridge reach 
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the other side of the gap. Concurrent documentation provides a way of 
writing the ideas down in the sequence they are generated and needed. 
The SSD outline (Appendix E) helps avoid errors of omission. Concurrent 
coding and then testing validate the design. Everything coordinates and 
cooperates in the development process, so that when the design is finished, 
there is only a short step to program delivery, complete with 
documentation. That's the idea, anyway. But to make it work, I'll need to 
be much more specific about how things are carried out and coordinated, 
from top to bottom. 

4.3 PROGRAM ALLOCATIONS 
Allocation of data structures and other program resources need to be 

integrated with the procedural design. But this allocation as well as design 
of such resources cannot usually be separated from the algorithms and 
procedures that involve those resources. In fact, certain algorithms, by 
their nature, require certain structures. For example, an algorithm that 
creates and then consumes data on a first-in-first-out basis needs a queue, a 
last-in-first-out algorithm, a stack. If procedures are to be developed in 
hierarchic levels of subfunctions, then the corresponding resources need a 
corresponding design hierarchy. 

4.3.1 Data Structures 
Data structures to be used in a program are particularly well suited [101 

to being designed in the "levels of abstraction" imposed by the hierarchic 
modular decomposition of the program specifications. Recall that top-layer 
considerations are concerned with the problem, and that deeper layers 
traverse the span to programming language. The specification hierarchy for 
a data structure will thus begin with one fitting the needs of the problem, 
and wind up with detail at the programming language level. 

This technique permits one to concentrate on relevant features of the 
situation and to postpone for later consideration those factors believed to 
be less relevant. By this process, one decides to concentrate on properties 
shared by objects or situations by subordinating the differences between 
them. 

For example, suppose, in the upper layers of a design, that one may 
recognize the need for a "stack" to hold certain data in a module. No more 
information is supplied at that level, not even the name, because no other 
interfaces appear. However, at some eventual hierarchic detailing of the 
module (Figure 4-4), the name will become important, as well as perhaps 
functions which fetch and store data in that stack. Upon expansion of those 
functions, more detail is needed about the stack, such as its size, and the 
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pointer to its top element. Eventually, the entire detail of the stack, down 
to the bit-by-bit machine configuration will be specified. Figures 4-4 and 
4-5 show alternatives for the stack level-3 design. 

Thus, the process of hierarchic decomposition of the program into 
subprograms generates a hierarchic composition of the data structure 
definition. Only the details needed at a given level will have been supplied 
(although the designer is free to "look ahead" in data-structure design, just 
as he is in module design): And just as it is important to document the 
program logical algorithms-perhaps as narrative and flowcharts-it is 

Level 1. Stack structure for CONTEXT module (1.5 8) 

Assumed attributes: Stores integer data so that last-entered ("top") 
item is retrievable first 

Level 2: Stack name. NESTING (declared in submoduJe 1.5.8.3) 

Access functions, SPAWN: Create stack with no entries 

PUSH, Insert item for next retrieval (i.e., at top) 

PULL' Retrieve and remove top item, enable 
next top
 

PEEK: Return value of top item; do not remove 

EMPTY: Remove all entries 

Level 3. Structure of stack- (Used in access functions) 

NESTING a STTCls 

s d entry set th0 by EMPTY,
ink created by Cn re e levelsHoin STATIC list dSPAWN-to area no. itemsaUre s deretdbyULicremented by 
of proper size 

top iteml 

MAXSIZ 

Figure 4-4. A simplified data structure design hierarchy for the stack structure 
first referenced in a module named CONTEXT (only the first three levels of 

definition are shown) 
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Level 3: Structure of stack: (Used in access functions) 
SEMPTY returns all tokens 

to AVAI L list, sets NESTI NG 

(SPAWN sets ,pieb, 
NESTIaccess t top item by PUSH, PULL, 

-and PEEK. PUSH obtains list 
Fl-T-0-1taken from AVAIL list; PULL 

returns token to AVAIL list 

ext II.AVA L I 

Fundamental Algorithms, "
 
Addison and Wesley,
 
pp. 7251-257,1969, for 

Figure 4-5. An alternate level-3 design for the stack structure NESTING of Figure 
4-4 (note that levels I and 2 remain unchanged, as is the remainder of the design 

using the stack) 

likewise important to keep the data structure definitions current in some 
documented form. 

For this reason, the SSD (Appendix E) contains a Data Structure 
Definition Table, and I give specific rules for the format and content of the 
table entries in Chapter 12, Program Design Standards. 

The process of abstraction hinges on finding generalized representations 
(or a set of symbols) to stand for objects or situations, a set of operations to 
manipulate the representations, and a set of rules to relate how the objects 
or situations in the real world react, based on similar actions on the 
representations. 

I have not revealed how one goes about deciding which data structure to 
use in any given situation, any more than I have stated how one chooses 
procedures to solve a given problem. A programmer must still have the 
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professional skill required for his trade. Data structuring by abstractions 
will, however, organize the approach. 

As a starting point, one should probably begin with the most abstract 
concepts of the information structure of a problem and its envisioned 
method of solution. Then using stepwise refinements of both the procedure 
and information contents, one creates increasingly more concrete 
representations of the informational elements as data structures, accessed 
by certain operations in certain ways. One should concentrate primarily at 
each level with what is being done, rather than how it is to be done (which 
will be defined in later abstractions). It is proper to use look-ahead-design 
checks for feasibility; however, only design items approved at the formal 
current working level (Figure 4-3) may be used as interfaces for later 
design or coding. 

At each level of abstraction, it is useful to study the needs of the 
problem, that is, to discover all the relevant aspects of the information 
elements, such as: 

* Source 

* Amount of information 

* Types and other attributes of data elements (such as units) 

* Relationships among data elements 

* Decomposition of elements into subelements 

* Operations to be performed on elements 

* Access frequency to elements and response time required 

* Accuracy, privacy, lifetime 

Then, one may more rationally invent representations of data structures (or 
refinements of previously defined structures) and functions to accommodate 
the abstraction (see Figure 4-5). It is important to assess the correctness of 
the representation; i.e., to assure oneself that the defined functions on the 
invented representation correspond to intended operations on the actual 
information (in the real world). 

For this assessment, in a conceptual sense, data items can be viewed as 
nodes, and relationships among items, as interconnecting lines, on a "data 
graph". In fact, it is often useful to display such a graph as a design aid-it 
tends to keep the data structure definition simple and documentable. The 
disjoint connected subgraphs can become separate data structures, since 
there are no cross-relationships among the disjoint items. Levels of 
abstraction can furthermore designate certain nodes of the graph as entities 
for later refinement into subgraphs, in many cases
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Once the structure is graphed, then one must decide whether the links 
between data nodes are to be realized as actual connections (pointers) 
within the data structure, or whether such links are programmed into the 
access functions. This decision primarily concerns whether data is 
structure-linked or access-linked, whether it is unpacked or packed, 
whether it is a direct or indirect representation, and whether the program 
is structure-driven or program-driven. 

For example, a compiler may be built around rather simple algorithms 
that analyze each input string by following the set of language grammar 
rules stored off in some table, in comparison to algorithms that access no 
such table of rules, but have the grammar coded directly into the 
procedure. Which method is used depends on an analysis of each situation 

.against the criteria and guidelines for program quality established at the 
outset. 

These guidelines need to state both high-level and low-level policies for 
making design tradeoffs. Some of the things needed, for example, are an 
enumeration of the basic data types available in the programming language 
to be used (integer, floating point, string, etc.), and the facilities for 
building more complex types from these (automatic list generation, etc.). 
There also needs to be a guideline for the degree of data packing to save 
space, as opposed to the lack of packing to save access time. If packing 
saves both time and space, it may be necessary also to consider whether 
packing also causes the program to be more complicated or to require 
'extra expense (e.g., garbage collection). In some cases such as that 
illustrated in Figure 4-6, one may decide to support two types of 
representations of the same general structure. 

To make some needed judgements, it may be necessary to carry sample 
look-ahead efforts all the way from the top, down to the programming 
language level, and perhaps back up again, to learn about access times, 
storage, and other things. These items could seriously impact the data 
structuring and module functions if discovered after formal top-down 
coding has begun. 

4.3.2 Resource Allocation and Access Hierarchies 

Data structures are just one example of computer resources in which the 
top-down design process induces an increasingly more detailed definition 
hierarchy upon its constituents. The hierarchy describes the resource in 
levels of access. At the top, the only access was through the vague notion 
of the structure, or perhaps the type of structure. At the next level, the 
name could be used, etc. At some point in this hierarchy, the level of 
access becomes definite enough that hard program interfaces can be made. 
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LEVEL I: Allstack structures for program 

Assumed attributes: 	 1) Storesdata last-in-first-out 
2) Creates and accesses all integer stacks in program 

LEVEL 2: Access functions: SPAWN: Create stack with no entries 

PUSH: 	 Insert item for next retrieval (i.e., at top) 

PULL: 	 Retrieve and remove top item; enable 
next top 

PEEK: 	 Return value of top item; do not remove 

EMPTY: 	 Remove all entries 

LEVEL 3: Stack type: STATIC and DYNAMIC added to SPAWN function, 

1. 	 SPAWN STATIC(name) creates name: L to STATIC list 
(Figure 4-4) 

2. SPAWN DYNAMIC(name) creates name: I C 	 and usesAVAIL 

(Figure 4-5) 

3. All other functions are same as in level 2, but have stack name added, 

PUSH(name) 
PULL(name) 

PEE K(name) 

EMPTY(name) 

4. Typing is automatic within these functions. 

LEVEL 4 Structure of stacks. 

(Figures 4-4 and 4-5.) 

Figure 4-6. An alternate definition hierarchy for declaring and accessing all 
program stacks, both in static and dynamic lists 

It finally proceeds down to the level in which the individual computer 
components are accessible. 

As an example, let us suppose that data from a given last-in first-out 
(LIFO) stack may be accessed at some level of the design via functions 
PUSH, PULL, PEEK, etc., as illustrated in Figure 4-7. Then all accesses to the 
stack in the rest of the program can be made only via this level of access, 
except for those inside the access functions themselves which then have a 
deeper, more detailed level of access to the data structure. In this case, the 
access functions PUSH, PULL, PEEK are inextricable parts of the data structure 
abstraction. The functions own the stracture at that access level. 

The concept may be extended; suppose functions PUSH(stack), PULL 
(stack), etc., represent a level of access for a set of LIFO structures any of 
whose names can then be substituted for the syntactic variable stack above. 
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A,S S A S A 

SPAWN CSN) (PUSH (AS) PULL (AS) PEEK W.S) EMPTY (S)
 

Create stack Insert A on top Remove top Return A,as Flush all
 
Of S element of S, value on top elementsreturn as A of S out of S 

CORE 

Level- 1Accesses to Stacks 

Figure 4-7. The top level ol access to the STACK set of data structures 

Again, the access functions own the set of stacks exclusively at that level of 
access, in the sense that modules outside PUSH and PULL wishing to access a 
stack must access that stack only through these functions. 

The general idea here is that resources may be characterized by their 
levels of access as well as by the services they perform. A level of access 
for a set of resources is defined as an interface through which all accesses 
to any constituent part of a resource must pass, except for those at deeper 
levels within the hierarchy. 

Levels of access can provide a conceptual framework for achieving a 
clear and logical design for a system. At the lowest level are the access 
functions for individual resource units such as arithmetic registers, memory 
cells, file elements, etc. File elements are built into records by defining 
functions to process groups of file elements as a unit; records are built into 
files by defining functions to process groups of records as a unit, and so on, 
up the hierarchy. Each level supports an important abstraction (see Figure 
4-8). 

Each access level consists of one or more externally accessible functions 
(modules) sharing common resources. The connections in control and data 
among the various access modules induced by the top-down design 
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INPUT FROMx 

FILE (x)TAPE (x) 

CASSETTEMAG
TAPE DISC DRUM 

Figure 4-8. Levels of access for tape and file input are indicated by horizontal 
lines through information flow lines (note logical cohesion of functions within the 

accesses; see Section 4.42) 

hierarchy are limited in a natural way. Every resource used by a program 
will eventually be represented in a hierarchy whose levels map the needs 
of the problem into the characteristics of the resource. 

The process of hierarchic decomposition of a program into subfunctions 
(resource access modules) thus generates a hierarchic composition of 
resource requirements. The SSD (Appendix E) contains provision for 
Resource Access Requirements Tables to maintain the current state of the 
access levels in documented, visible form; I give specific rules for the 
format and content of those table entries in Chapter 12, Program Design 
Standards. 

4.3.3 Data Connection 

As I stated in the preceding chapter, an information flow analysis is a 
natural tool for specifying what a program function is in terms of
transformations of input data to the output wanted. In design, which 
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specifies how the computer is to implement these, it is useful to identify 
module data interfaces, to identify the precedence of data creation and use 
among modules, and to promote understanding of the program interactions. 
For example, if data created in modules A and B are going to be further 
processed by module C, then execution of A and B must precede C; if A 
and B do not share data, either may be executed first. 

One could conceivably erase all the flow lines from a program flowchart 
and replace them by lines representing the data structure accesses instead, 
as a graphic way to identify operations on the data and to display data 
interconnectivity between executing modules. Such a chart undoubtably 
would be convincing evidence that analyzing data connectivity can be far 
more complicated than analyzing program control flow. For this reason, 
data connectivity design should, from the very first, be made to adhere to a 
discipline that minimizes module connectivity and organizes it into 
understandable units. Such a discipline, when coupled with structured 
control-logic design methods, offers the possibility of maintaining program 
clarity and correctness in both respects, data flow and control flow. 

A data-connectiondiagram is a chart used to depict the same execution 
submodules (at a given hierarchic design level) of a given module as 
contained on the flowchart for that module, but with arrows drawn from 
submodules which create data to those that use the data. The executable 
modules follow their usual flowchart striping and naming conventions 
detailed in the next chapter. To distinguish data-connection diagrams from 
flowcharts, I use the conventions shown in Figure 4-9; data connections are 
shown as named wide arrows between executable modules, or unnamed 
wide arrows between a data structure (or enumerated table of such 
structures)- and a module. 

Data-connection diagrams, such as Figure 4-10 [26], thus depict the 
activity of a module as reading the data structures corresponding to 
incoming arrows, processing, and writing the data corresponding to 
outgoing arrows. Such diagrams hence display the logical precedence 
relations with which certain modules must precede others in execution. An 
analysis technique called topological sorting is often useful in revealing an 
execution sequence for the modules to achieve the intended data 
precedences. 

The topological sorting algorithm is simple [27]: 

a. 	Locate on the data-connection diagram a moodule such that none of 
its inputs comes from any module on the diagram. 

b. 	Label this module as first to be executed, and then break (or erase) all 
of its outgoing data connections. 
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(a) Simple data-name connection 

(b) 	 Enumeration of data structures in a connection 

MODULE11OUE 

(c} 	 Module external data connection 

Initial DataD 

Enumeration 
Table 

Figure 4-9. Data connection diagram conventions 

c. 	 Repeat this procedure to find each succeeding next-to-be-executed 
module. 

Having such an execution order for modules, a designer may proceed to 
design control logic to implement module execution in the indicated order. 

Topological sorting fails when there are data loops; i.e., modules whose 
data structures are iterated to reach certain states. In the example shown in 
Figure 4-11, module A reads data in the Tables T and U to update the 
contents of U, and module B reads Table U to update Table T. (I shall 
suppose that T, but not U, was initialized to a known state prior to 
execution of either A or B.) But what, if any, is the implied execution order 
of A and B? All that can be said with certainty without further information 
is that the first execution of A must precede the first execution of B. 

Topological sorting does, however, identify such loops, as well as the 
variable nature of the data structures within them. Hence, just as control
flow graphs do not fully describe a program satisfactorily, neither do data
connection graphs. But they can work together as tools for effective design 
and documentation. Each tends to identify characteristics not visible in the 
other, thereby not only catching many design errors immediately, but also 
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U
 

T 


Figure 4-11. Data connection loops (superscripts on the Tables T and Uindex their 
contents after the n-th and m-th executions of B and A, respectively) 

minimizing the possibility for side effects when changes are to be made 
later in the program's evolution. 

In summary, data connection diagraming, with accompanying narrative, 
is another effective tool for the designer's bag. It provides him a means to 
identify, and then to minimize, data connectivity side-effects among 
modules. It provides a means of attacking a problem in which questions of 
control, which often only obscure the solution, are secondary. It fits in with 
the top-down, hierarchic, modular, structured design discipline. It is a 
suitable mode of communicating the program organization to project 
management. It identifies the elements most important to the program 
mainstream, so that priorities and alternate operational modes can be 
established. 

Probably the most effective use of data-connection analysis will occur at 
the highest levels of the design. Then, as design progresses, the data 
intercormectivity becomes more firmly established in the mind of the 
designer (and reviewer), so graphic aids diminish in value. This is just the 
opposite from flowcharting, where the control at the top levels tends to be 
rather non-contributory to understanding, but becomes exceedingly more 
important at deeper levels. 

4.4 MODULARITY IN PROGRAM DESIGN 
I have alluded to the need for modularity in program design as a means 

toward organizing the program into subdivisions (which can be considered 
separately) to cope with complexity during the development phase, and to 
cope with side effects when later changes or corrections are made. The first 
order of business is to be more definite about what modularity is and what 
its characteristics are. In Chapter 2, I defined a "module" as an identifiable 
subportion of a program that also fits the definition of a "program". Clearly 
then, each flowchart box and every program statement is a "module" 
according to this definition. 
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Certain groupings of such "submodules" then can build other "modules" 
characterized by [231: 

a. 	Lexical binding. The submodules appear physically together, as on 
the same flowchart or on the same code listing page. 

b. 	Identifiable proper boundaries.The collection of submodules has a 
well-defined, named entry point (at the top) and end boundary 
(through which it normally exits), and all submodules between these 
two boundaries belong to that module. 

c. 	 Named access. The module can be invoked as submodule of another 
module by its name. 

d. 	 Named reference. The module may invoke other modules as 
submodules by name. 

Such modules I shall distinguish by the term named modules-
References to such modules on flowcharts are distinguished by the 
technique of "striping" the flowchart symbol, as shown in Figures 4-9 and 

'4-10, ,and for this reason, I shall often refer to named modules as striped 
modules. 

Modules are not only characterized by the functions they perform, but 
also by their connectivity with the rest of the program. Every module 
possesses what may be termed a "coefficient of modularity", although, at 
this writing, this measure is rather more intuitive than mathenatic. 

For the purposes here, such a measure needs to relate modularity to the 

human capability for understanding a module's function and to the 
likelihood of side effects caused by later changes in the program. Side 
effects here refer to those changes that have to be made in a program 
outside a given module as a result of making changes in that module. The 
two most important measures of modularity by these criteria, according to 
Constantine [28] and others [23, 29] are module coupling and module 
strength. The optimal modular design minimizes relationships between 
modules (minimal connections) and maximizes relationships among 
components within each module (maximum strength). 

In the remainder of this section, I will present an overview of 
Constantine's modularity-measure considerations [23, 28, 291. 

4.4.1 Module Coupling 

Module coupling is a measure of data coinectivity between a module 
and the program in which it is imbedded. Modules may have their own 
internal (local) data structures, but they must nearly always also access data 

outside themselves. Such communicated data can either be accessed as 
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arguments br parameters through the calling-sequence interface, or may be 
passed by direct accesses to global data structures, or else may be 
referenced to internal data structures of other modules. 

Module coupling also measures control connectivity. Modules could 
conceivably transfer flow of control in awkward ways to internal 
submodules of other modules; however, this possibility is overtly disallowed 
by the structured programming discipline to come. But modules may 
communicate control to other modules in the form of control data; i.e., 
data altering the functional mode of the module. 

Modules must at least communicate data or they cannot functionally be a 
part of a program. Perhaps some modules can get by without any data 
communication (such as a Top OF FORM module), but generally, pure data 
connectivity is a minimum necessary requirement. 

Not so the communication of control. Constantine has shown that the 
explicit passage of control data between modules is theoretically 
inessential. In a practical sense, however, control data communication is 
sometimes necessary or desirable. 

Coupling measures the independence of modules, one from another; 
modules that are not coupled are not apt to feel side effects. And obviously, 
the fewer the number of connections a module has, the more that module 
is apt to be independent of other modules. 

Besides the number of connections, the type is important. Meyer's [23] 
scale of coupling from lowest (best) to highest (worst) is: 

a. Data coupling Best 

b. Common coupling 

c. Control coupling 
d. External coupling 
e. Content coupling Worst 

The scale is not linear, and instances often have to be judged on a case-by
case basis. Figure 4-12 illustrates the 5 types of coupling. 

4.4.1.1 Data Coupling 

Modules are data coupled if one module calls the other, if all input and 
output communication is in the form of arguments or parameters passed 
through the call-sequence interface, and if all shch parameters are data (not 
control) elements. Constantine has demonstrated that this form of coupling 
is sufficient for any program. It, therefore, is the lowest form of coupling. 
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(a) Data Coupling 

(b) Common Coupling 

MO_D SUMO MOD SUBMOD 

COMMON 
Store 

(c) Control Coupling 

Control Data 
Pined as 
Arguments 

(d) External Coupling 

MOD SUBMOD MODAP MODB 

(e) Content Coupling 

MODA MODB 

Figure 4-12. Classes of module coupling (solid-line arrows indicate control flow; 

wide arrows show data coupling)(AWIGINAL PAGE IS 
OF POOR QUALITY 
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4.4.1.2 Common Coupling 

A set of modules is common coupled if they reference data held in a 
..common pool", or central repository for-certain data structures accessible 
by all the modules. Common coupling creates difficulties because it couples 
together the entire set of modules using the common pool, without regard 
to whether the modules have functional relationships or not. For example, 
if two modules are the only ones to access an array of fixed dimension, say 
7, in a common pool, and if it is desired to change that dimension to, say
10, then not only the two modules themselves, but every other module 
sharing the common pool must usually be recompiled. 

Common coupling between unsynchronized real-time programs is 
especially dangerous because the results of computations very often are 
unpredictable. Even so, it is generally less caustic than the remaining three 
forms of coupling. 

The disadvantages of common coupling become less severe if common 
environments can be segmented and localized within minimal subsets of 
modules that share data structures (e.g., in levels of access). Such measures 
tend to lower the overall coupling in the program. 

4.4.1.3 Control Coupling 

Two modules are control coupled if one module passes a flag or set of 
flags (control data) as argument(s) to the other, to directly influence the 
functioning of the receiving module. Control coupling is not very desirable 
because the two modules are not very independent; the sending module 
must usually have some knowledge of the internal processing of the 
receiving module. That is, a calling module cannot view its submodule 
completely as a "black Fox". Such coupling also usually implies low 
module strength, to be described in Section 4.4.2. 

The classification of elements as being either pure data-or control data is 
sometimes a process of judgement. Generally speaking, classification 
depends on how the sending module perceives the data, regardless of 
which module is the calling module. 

For example, if module MOD calls module SUBMOD and sends data DAT to it, 
and if MOD perceives DAT as pure data, then MOD and SUBMOD are data 
coupled, even if SUDMOD executes differently based on the value of DAT. (This 
is partly due to the top-down process: MOD places no restriction on how 
SUBMOD performs its function, but merely requires that it process DAT 
according to the function prescribed.) 
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In the converse case, if DAT is returned to MOD by SUBMOD , and SUBMOD 
perceives DAT as data, then the two are again data coupled, even though 
MOD may execute differently based on the returned value. Here again, the 
top-down philosophy is at work: MOD has decided how it will function based 
on DAT, and has required SUBMOD provide it with data to perform that 
fimction-SUBMOD is not controlling MOD. 

However, if MOD sends a control- flag FLG to SUBMOD, and MOD views the 
value of FLG as a signal for SUBMOD to perform one of its set of functions, 
then FLG is control data. And conversely, if SUBMOD returns FLG to MOD, and 
SUBMOD perceives FLG as a request for MOD to perform one of a number of 
functions, then FLG is again control data. 

If control data are communicated via the common store, then the 
coupling problems are further compounded. 

4.4.1.4 External Coupling 

Two modules are externally coupled if one module refers to 6lements 
residing in one module with the elements declared so as to be accessible to 
other modules. This type of coupling is high because the entire usage or 
content of a submodule may have to be taken into account to correct an 
error, or to make a change, or to verify that-it does not create side effects. 

As an example, suppose module AMOD uses an internal structure DATA, 
which it declares to be externally accessible. AMOD calls SUBMOD for a service, 
in which the value of DATA plays a part; upon return, AMOD goes merrily on 
its way, doing whatever-it wishes with DATA. Now suppose that the outside 
program is to be altered by adding a new module SMOD which in no way 

OSUBMOD
 

Figure 4-13. Addition of BMOD to AMOD-SUBMOD program, in which BMOD calls
 
SUBMOD and communicates through DATA Internal to AMOD
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resembles AMOD, except that it could use SUnMOD for the same service it gave 
AMOD, but based on different DATA to be passed (Figure 4-13). 

Suppose BmOD thus sends AMOD a value for DATA and then calls SUBMOD. The 
next time AMOD executes, it probably crashes because EMOD changed DATA. 

Recognizing that this would happen, the SMOD programmer could save DATA, 

set a new value, call SUBMOD, and then, upon return, restore DATA to the 
saved value. If AMOD and BMOD are capable of concurrent execution, AMOD still 
crashes. 

The point is that BMOD is coupled to AMOD, with which it has no logical 
connection at all, by external coupling. In addition, all the disadvantages of 
common coupling are probably present, as well. External coupling thus 
tends to have an adverse effect on program modifleation, both in terms of 
cost and potential bugs, and should be avoided wherever possible. 

4.4.1.5 Content Coupling 

Two modules are content coupled if one module makes a direct 
reference to the contents of another module, either modifying a statement 
in the other module, or accessing a set of internal data not externally 
declared. 

Another case of content coupling occurs when modules share the same 
physical code, as may occur when the statements of one module lie 
physically within another (not as subroutines). It should be obvious that 
content coupled modules are very dependent upon one another and that a 
seemingly innocent change in one can easily cause the other to 
malfunction. 

Effective programming does not permit modification of statements or 
shared code between modules, and therefore does much to minimize 
content coupling. 

4.4.2 Module Strength 

The second trait of a good module is its strength, or cohesiveness. The 
term "binding" is also used in the literature, but I prefer not to use it, as 
the same term has another meaning to most programmers. 
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The scale of iodule strength, or cohesion, from highest (best) to lowest 
(worst) is [23]: 

a. Functional Best 

b. Communicational 

c. Procedural 

d. Temporal 

e.Logical 

f. Coincidental Worst 

Again, the scale is not linear, and, in fact, items b and c appear differently 
and perhaps interchanged in two works [23,29]. Functional cohesion is 
much stronger than all the rest, and the last two are much weaker than all 
the rest. I will discuss each type and try to show how maximizing cohesion 
among module components has a positive effect in terms of programming 
quality. 

4.4.2.1 Functional Cohesion 

Functional cohesion is at the top of the strength scale. In a functionally 
cohesive module, all of the components are related directly to the 
performance of a single function. By a program function, I mean one that 
performs a prescribed, definable transformation or service. A useful 
technique for determining whether or not a module is functionally 
cohesive, is by writing a sentence describing the purpose (function) of the 
module, and then examining the sentence. If the sentence is a simple 
declarative sentence in the imperative mood (no commas, and only one 
verb), if there are no words relating to time or sequence (e.g., "first",
"next", "then", "after", "otherwise", "when", "if", "start", etc.), if the 
predicate contains a single specific object following the verb, and if the 
verb does not imply a general auxiliary relationship (e.g., "initialize", 
"clean-up", etc.), then the module is probably functionally bound. I say 
"probably", because cohesive strength exists in the final code, rather than 
in the English description. 

In practice, however, modules that are judged functionally cohesive by 
this criterion tend to be characterized by strong relationships among the 
components within the module: all components tend to be oriented toward 
a single goal. Such statements as, 

EDIT SOURCE STATEMENT
 

MATCH INPUT STRING 

PARSE UNIFORM SYMBOLS
 

OPTIMIZE INTERMEDIATE CODE
 

and so forth, usually describe functionally cohesive modules. 
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4.4.2.2 Communicational Cohesion 

A module with communicational cohesion is one in which the 
components are related through the program procedure (see 4.4.2.3) and 
additionally, communicate with one another. The submodules either 
reference the same set of data or pass data only among themselves. 
Communicational cohesion is higher on the scale than mere procedural 
cohesion since the module components have the additional bond, that they 
operate on the same data. 

The following statements of module actions are communicationally 
cohesive: 

INPUT SOURCE STATEMENT AND ANALYZE LEXICALLY
 

FIND SIMPLEX SOLUTION AND PRINT ANSWER
 

FILTER DATA STREAM AND PLOT RESULT
 

PROCESS TELEMETRY UNTIL LOSS OF QUALITY
 

IF DATA OK THEN COMPUTE STATISTICS: OTHERWISE
 

DIAGNOSE FAILURE AND PRINT MESSAGE
 

The first three of these statements show sequential functions that
 
communicate data between themselves. The fourth is an iterative 
procedure in which decision and processing components are communica
tionally related. The last is a conditional procedure in which the condition 
and each of the two subprocedures share a common data base. 

4.4.2.3 Procedural Cohesion 

Procedurallycohesive modules are modules whose elements are related 
in respect to the procedure of the program. Procedural cohesion results, 
for example, when the problem to be solved is first flowcharted, and then 
modules are defined to represent two or more blocks on the flowchart. 
Although this form of cohesion is high on the strength scale because of the 
close relationship of the components to the problem structure, it 
nevertheless is not as strong as the two previously discussed types. 

The following descriptions of modules are procedurally bound: 

CLOSE SOURCE FILE, THEN PRINT COST SUMMARY
 

SWAP IN PARSER WHEN RUNTIME ERROR DETECTED
 

ACCUMULATE BACKGROUND DATA UNTIL PROCESSOR SEMAPHORE RECEIVED
 

The first is a simple sequence of two functions, the second, a function 
executed conditionally, and the third, an iterative function. The latter two 
modules have implied inner functions, CHECK FOR RUNTIME ERROR and 
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RECEIVE PROCESSOR SEMAPHORE. All three module descriptions exhibit 
procedural cohesion since the subfunctions of each are related only through 
the procedure of the program. 

4.4.2.4 Temporal Cohesion 

A module is temporally (or classically) cohesive if the components of 
the module form a class of logically related (logically cohesive) functions, 
all of which are also related in time. Temporally cohesive components are 
all executed in the same time period; that is, there are no parameters or 
control data that determine which components are executed and which are 
not. 

The best examples of modules in this class are "initialization", 
"termination", "housekeeping", and "clean-up". Such modules perform a 
set of logically related functions (e.g., initialize function f, initialize 
function g,...) that are all performed together, rather than separately or 
selectively. Other examples of module descriptions that exhibit temporal 
cohesion are: 

SCAN ALL INDICATORS
 

RESET STACK POINTERS
 

CLEAR ALL BUFFERS
 

CHECK STANDARDS AND LIMITS
 

In each case, the functions performed are similar (single verb), but may 
differ in detail. All functions in each module execute together, rather than 
selectively. 

Temporal cohesion is weaker than procedural cohesion because the 
relationships between components only exist because of functional and 
temporal ties, no precedence of operations exists. Such modules, moreover, 
tend to perform services for other modules (e.g., initialize them) and, 
therefore, are coupled to each of them. 

4.4.2.5 Logical Cohesion 

A module is logically cohesive if its components perform a class of 
logically related functions. Logical cohesion is, therefore, much the same as 
temporal cohesion, except that temporally cohesive module components 
must additionally all be executed. A logically cohesive module need 
perform only one or a selected subset of its entire capability of 
subfunctions when invoked. 
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Examples of module descriptions exhibiting logical cohesiveness are: 

INPUT FROM FILE OR TERMINAL
 

PERFORM ALL 1/0
 

COMPUTE SIMPLEX MAXIMUM OR MINIMUM
 

One clue to judging logical cohesiveness is the following: If the predicate 
of the module description contains a single verb but does not refer to a 
single specific object, then the module is probably logically cohesive. If 
there is indication that the entire set of actions takes place, the module is 
probably temporally cohesive. 

Logical cohesion is clearly weaker than temporal cohesion, because 
temporally cohesive modules have an additional relationship (that all 
components are executed together) that binds the components. Since a 
logically cohesive module must often be passed control arguments, which it 
must then test to ascertain what action is to take place, and because the 
similarity of the actions often results in shared code (not subroutines) 
among the different submodules, such modules reside very low on the 
strength scale. In short, logically cohesive modules are usually character
ized by tricky code that is difficult to modify and by the presence of 
unnecessary control coupling. Structured programming helps to eliminate 
the shared 'code by putting it in separate modules; but such modules -are 
apt to have only coincidental cohesion. 

4.4.2.6 Coincidental Coherence 

A module displays coincidentalcoherencewhen there is no meaningful 
relationship between its components other than, as a coincidence, they lie 
in the same module and do contribute to the overall program function. 
Such modules are often created in an attempt to consolidate duplicate 
coding that may otherwise appear in several modules, or by arbitrary 
divisions of the program code in an attempt to "modularize". Obviously, 
since there are no meaningful relationships among elements, module 
strength is at the lowest scale point. 

Understanding of the module purpose is impaired, and one usually 
shrinks from making any changes whatsoever in such modules for fear that 
monumental side effects will result. Since such modules have no cohesive 
purpose, even a minor modification to alter the service requested by one 
caller can potentially make the module unusable by all other callers. It may 
even be difficult to identify all of the other callers, especially if these other 
callers are separately compiled 

4.4.2.7 Composite Strength 

Modules may be defined in such a way as to partly or wholly have the 
characteristics of more than one strength. If a module completely exhibits 



87 Sec. 4.4] Modularity in ProgramDesign 

several types of strengths, then it is assigned the higher strength. For 
example, when modules with communicational cohesion also exhibit 
procedural strength, they are classified by the higher strength, communica
tional cohesion. Temporally cohesive modules are also logically cohesive, 
but classified as temporally cohesive. 

However, if a module only partly exhibits characteristics of several 
strengths, then it is assigned the lower of the strengths. In the following 
examples, the component and module strengths are as indicated 

INITIALIZE PROGRAM AND THEN GET INPUT LINE
 

(temporal)+ (procedural)+ (functional)= (temporal) 

READ ALL SENSORS,CHECK STDS AND LIMITS,AND PRINT REPORTS
 

(temporal) + (temporal) + (logical) =(logical)
 

In the latter example, there are also the partial attributes of 
communicational cohesion; sensor data is being checked, the results of 
which select one of several reports. If the PRINT REPORTS module were to 
invariably print only one report, then that element is functional, so the 
module strength moves up to temporal cohesion. If then, in addition, all 
sensors were read in an identical fashion, and if standards and limits tests 
are identical except for values in the limits table, then all components 
probably move up the scale to functional cohesion, and the overall module 
probably moves up to communicational cohesion. 

4.4.3 Guidelines for Modularization 

It is only fair to admit that, independent of a module's strength or degree 
of coupling, there are always instances when any module can be modified 
in such a way as to make it unusable to all its callers. The scales for 
strength and coupling are rough indicators of the likelihood that this kind 
of thing will happen. It is therefore useful to keep these considerations well 
in mind while the program is being designed. Design the modules to 
exhibit high strength and low coupling unless these principles conflict 
with other design considerationswith higher merit. 

The scope of control of a module MOD is defined as the set consisting of 
MOD and all its subordinate submodules. The scope of effect of some given 
decision within a module is defined as the set of all modules whose 
execution depends on the outcome of that decision. 

In the example shown in Figure 4-14, when the decision d in module B is 
true, B invokes Dand, in addition, when control is passed back to A, then A 
invokes c. But when d is false, a invokes E, but A does not invoke C. The 
scope of effect for the decision d here is the entire set of modules shown: A, 
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because it calls C conditionally; B,because it executes different calls based 
on d; and, obviously, n and E,In this case, the scope of control of module B 
does not encompass the scope of effect of the decision d within & 

Moreover, Bmust pass back some information to A,upon which Acan 
then decide whether or not to call c. In some sense then, the test in B 
duplicates the test in A. At the very least, A and B appear to be control 
coupled. 

This example illustrates that when the scope of control of a module does 
not encompass the scope of effect of one of its decisions there is higher 
coupling, some artificial or redundant conditional statements, and probably 
lower module strength than had this not been the case. One guideline for 
improving modularity. is, therefore, the following: define programmodules 
in such a way that the scope of control of each module encompasses the 
scope of effect of every decision within the module. That is, constrain the 
effects of all decisions from the top downward through the program 
structure. 

X K 

tf .~- ---

/ /-/ Module B -,~~of "
Scope of control 

of Decision d "Scope of Effect ! gyt-ue\= D 

dA 
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Figure 4-14. A hierarchy of subordinate modules 
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4.5 ESTABLISHING DESIGN PRIORITIES 

Perhaps I have stressed structure and documentation a bit too much in 
the foregoing sections of this chapter. After all, a design is more than just 
documentation and structure, it must ultimately produce a program that 
actually does the intended fimction. And in most cases, even this is not 
enough, it must do it well. 

The quality of a program design can be judged on the basis of how well 
it minimizes a number of important characteristics that Icompete for 
project and machine resources: execution speed, memory used, level of 
documentation, development cost, development time, cost to execute the 
program, maintainability of design, etc. If the interrelationships between 
these characteristics could be known quantitatively,as well as the relative 
merit of each resource, it is conceivable that an optimal program within 
the constraints could be developed. 

However, quantitative measures are seldom (if ever) possible, so that 
optimum programs (in the sense of resource competition) simply do not 
exist. Design standards, therefore, cannot be expected to produce the best 
possible programs. 

But while competing characteristics may not be quantifiable, they 
usually can be ordered, at least subjectively for a given program, in their 
pairwise relationships with one another, as, for example, "reduced 
execution time is more important than development cost". Often, it may 
be necessary to qualify the relationships, as, for example, "reduced 
execution time is more important than development cost, unless the level 
of effort required to decrease execution time would result in a contract 
overrun". Given a set of pairwise relations among competing resources, the 
designer can then proceed to resolve simple conflicts, which may arise in 
the design process. 

Ranking the competing characteristics by such pairwise dominances can 
be a very useful tool for addressing and ordering the relative importances 
of resources from the very beginning of the design activity. Grading the 
remainder of the design on its merits relative to these characteristics is the 
province of the project management function, and will be discussed 
somewhat further in Chapter 10. I also provide sample interactive 
programs to aid in ranking competing alternatives and grading the design 
in Appendix L. 
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4.6 SUMMARY' 
In this chapter, I have distinguished the design activity as one that 

generates hierarchic detailings of program specifications into executable 
units, or modules. The activity has been disciplined to dovetail in with 
program definition and coding, for the mutual benefit of each. 

The program design discipline recommended in these pages starts with 
the identifiation of objectives; then an approach is sought to respond to 
the functional definition in scope, structure, and content. At this point, an 
embryo program begins to form, first probably as a one-page sketch 
revealing the upper levels of the program hierarchy into modules and 
identifying the major flows of data through the program. The designer 
iterates this sketch until he is satisfied that the configuration meets the 
program definition, that the modules have as low coupling and as high a 
cohesion as can reasonably be expected, subject to other competing 
characteristics. 

During this sketching and onward throughout the design, the designer 
attempts to isolate accesses to resources so as to reduce coupling, through 
definitions of levels of access. 

Hierarchic levels of design tend to postpone design decisions to a level at 
which considerations are appropriate for those judgements to be made. 
However, to lower the risk that this may occur inadvertently, I have 
introduced the concept of a look-ahead design, a sketch of what is coming 
into the future layers that may impact the current formal level of work. 

Once this architectural design is completed to the designer's satisfaction, 
a formal development of the program procedure begins from the top down 
ising hierarchic layering of subfunction and restricted control flow. When 
a design portion has been solidified, that design is documented, and then 
coded and tested within the assumptions valid at that level of the 
development. 

This process continues until the software is complete. Because 
documentation, coding, and testing are concurrent, major errors have 
hopefully been averted before the investment in the errored portion has 
become significant. Errors subsequently detected at a particular design 
level tend to percolate in side effects downward through the remaining 
design, hopefully at a lesser cost to correct than had the design not taken 
place top down. 

I have given criteria for design documentation, guidelines for the 
development of data structures and the allocation of other machine 
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resources, and indices for the qualification of program modularity. Specific 
design rules based on the concepts of this chapter appear in Chapter 12. 

4.6.1 A Design Example: Card Cross-References 

Problem: A FORTRAN source program exists on a set of not more than 
1000 cards. Write another program for the UNIVAC 1108 to read these 
cards, extract label and variable names, and then print a sorted list of 
variables and label names with the card-number cross-references adjacent 
to each name. The objective for design is rapid execution at a moderate 
increase in core storage outlay. 

Analysis: A 1000-line source program with an average of 8 references per 
card will have about 8000 card-reference items to be printed. Six-character 
labels and variable names can be held in one word each of core storage. 
Hence, if a 10,000 word array were to be reserved for the cross-reference 
array, then 2048 words could be used for a hash and linkage table (see [30]) 
to aid in searching for and inserting up to 1023 names, leaving 7952 
available to hold card references. Hashing techniques are very efficient as 
long as the name table occupancy is less than about 80%, or up to about 
800 names. 

Hashed search and insertion seems attractive, for with 800 names in the 
table, the average search for a name requires only about [30], 

1 799 1025 = 
800"E_102 -- 1.94 

"probes" per search to find or insert a name. The total number of such 
events for 800 names plus 7952 card references is thus about 15,500. 
Afterwards, a quicksort [31] of the name table will require about 

2(800)log(800) = 15,430 

comparisons and possible exchanges. 

A binary tree search and insertion, on the other band, if balanced, would 
take about 

1 799 

Ty- Zlog2 k = 8.2 
k=1
 

"probes" per name to find or insert a name. The total number of such 
events for the 7952 required items is then about 65,200 operations. Sorting 
the binary tree [32] to insert an item is linearly proportional to 800. The 
hashing technique is thus clearly the better alternative for this application. 
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The Program:The reader may note a great similarity between this problem 
and that given in Section 2.5.2. The problem statement is almost 
procedural. In it are identified certain implied (functionally cohesive) 
actions that form the basis for an architectural design: INPUJT CARD, EXTRACT 

NEXT ITEM, SEARCH FOR ITEM, ATTACH CARD NUMBER TO ITEM, SORT ITEMS,. SORT 

CARD REFERENCES, PRINT REPORT- The interface between the first two is the 
card buffer, and the remaining fmctions all share the data structure(s) that 
accumulate the names and card numbers. The first candidate hierarchy 
diagram for the program architecture is shown in Figure 4-15. The figure 
also indicates proposed levels of access to the data structures. Some of the 
other structures needed are not shown, but are known to be present at this 
point, such as the number of the card just input and the name just 
extracted. 

The next stage of the design details each of the data structures in 
accordance with the identified functions, which form its level of access. In 
the INPUT module, the actual input is normally handled via an executive 
request, READ$, which inserts packed characters into a designated area 
(another structure inside INPUT). For ease in the scanning needed by 
EXTRACT, I may specify that INPUT transfer these characters into a 72-word 
OBUFF, one character per word, right justified. 

The design of EXTRACT is by no means trivial-expecially since the source 
deck is FORTRAN. However, the algorithms for lexical analysis are known 
[33], so I will not pursue the design of EXTRACT further here. 

The functions that repeatedly access the -cross-reference array, XREFA, 

can be accommodated in one pass if XREFA is designed as a linked list, as 
shown in Figure 4-16. The SORT functions then could have been included 
into SEARCH and ATTACH by having these latter two modules insert new 
names and in order into XREFA as they are extracted, card by card, as 
perhaps in a binary tree. The above analysis shows, however, that it is 
probably best to sort the name array only once, after all the items have 
been entered. This not only makes for speed, but also promotes functional 
cohesion within the modules. However, the sorting of card references can 
be eliminated by attaching card reference tokens in order, following the 
"tail" pointer in LINKS (Figure 4-16). 

To speed searching and insertion of names, XREFA is shown to consist of a 
HASH table (see 130]) of names and a LINKS table of linkages to first and last 

card-reference tokens. 

The SORT ITEMS module then sorts both the HASH table and the LINKS 

array using the name as a key. The SORT CARD NOS module has nothing to do, 
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Hash function:
 
h (NAME I)
 

HASH LINKS TOKENS 
last-inserted 
card reference 

NAME C CARDT 0 

NAMESCARD U *. CARD V 0 

1024 1024 end of link 

7952 

Figure 4-16. The XREFA data structure 

the first card reference and each .succeeding reference in columnar format 
until the pointer field contains a zero. 

This completes the structural design considerations down through the 
second tier of the program hierarchy. 

Discussion: The text this presents a simpleof example narrative 
description of the major factors and a few tradeoffs in a program design.
The judgements presented, are based largely on experience and intuition, 
although more detailed mathematical analyses could have been used 
throughout-for example, to show that, indeed, hash searching and later 
quick-sorting is more efficient than other proposed forms of sorting and 
searching besides binary tree methods. 

4.6.2 When is the Design Complete? 

I have tried to depict design as an activity that is completely separate
from coding. The major learning -about the problem is done during design, 
and relatively little should be learned by coding the design. Changes iMthe 
design before coding begins have no consequent costs of coding and 
debugging. -When coding does begin, fewer and less talented people can do 
the coding; coding is easier to schedule; and coding has become a 
production job. 

A complete design will consist of a specification for coding in which: 

* All processing algorithms are specified 

* All interfaces, internal and external are defined 

* All data structures are defined 
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* All modules, and procedure of each, are specified 

* All error recovery responses are specified 

In particular, it should be possible for a person to determine, for any-input, 
the precise path followed in the program from the design, without 
recourse to the listings. 

Coding should begin only after a particular phase of thedesign has been 
thrashed through to the point that it is stable. Coding must then be a 
faithful, direct translation of the design. No short-cuts, no cute code, no 
coding-level changes to the design-only clear, concise code that is easy to 
check against the design. The role of checkout is to verify that the design
time assessments of correctness are valid. Errors detected in the design 
must be corrected in the design documentation (SSD). 

The Software Specification Document is for people, and people work 
best in their own language, rather than one created -for a computer. 
Reading the design should not require a translator, nor should it require 
learning a large data base, nor should it require consulting the listings to 
find out "the way things really are" in the computer. I will, therefore, 
attempt in the coming chapters, to provide the means, and continually 
emphasize the need, for-conciseness and clarity in program development. 
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Problems for Chapter 4 

4-1 Design the architecture of a program to simulate a waiting line at an 
airport ticket counter (see Problem 2-3). Identify levels of access to data 
structures and present trade-off analyses to justify your choice of 
manipulations. Retain all look-ahead notes, labeled in order, level, and 
module. 

4-2 Design the architecture of a program to process a stream of telegrams, 
whereby the number of words in each telegram is counted'and telegrams 
are printed with appropriate spacing on an output medium. Develop the 
remainder of the problem definition, if needed, as well as the program 
structure and procedure, in hierarchic levels. Retain all look-ahead notes 
labeled in order, level, and module. 

4-3 Design a data structure and a level of access by which a company 
skills-inventory (see Example 2.5.2) can be maintained, edited, and 
queried by employee name or number (for skills) or by skill (for 
employee names). Refine the data structure and access level to the next 
hierarchic detailing. 

4-4 Give a topological sorting of Figure 4-10. Are there loops? What can 
be done to remove the loop (if there was one)? 

4-5 Analyze a coded program of your choice having 5 to 10 named 
modules as defined in Section 4.4. Identify the data flow between 
modules and analyze for coupling type. Evaluate the cohesiveness of the 
module by giving a short English description, and then try to reconcile 
that description with the strength of relationships in the code. Identify 
the scope of control of each module, and the scope of effect of each 
decision which reaches outside its module. 

4-6 Sort the list of subprograms named below into increasing order of 
module cohesiveness. Name the probable type of module cohesion for 
each. 

a. INPUT (<*FROM*>device,<*INTO*>buffer) 

b. ACCUMULATE AND SORT TRANSACTION FILES 

o. SEARCH NAME TABLE. INSERT NAME IF NOT FOUND 

d. INITIALIZE BUFFER IF READY, CLOSE FILES IF THROUGH, 

AND PROCESS ANY REMAINING DATA 

e. CREATE TABLE OF LITERAL VALUES FOR PROGRAM 

f. READ DATA, DETERMINE ACTION, AND PROCESS ACCORDINGLY 

g. PRINT LINE OF TEXT WITH SPACES INSERTED TO RIGHT JUSTIFY 

h. TRAVERSE A TREE IN POST-ORDER 

i. INVERT MATRIX(A) 

j. MONITOR STATUS OF REAL-TIME PROCESSES 
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4-7 Sort the module fragments below in decreasing order of coupling, and 
name the probable type of coupling implied by each (and why, if 
debatable). 

a. INPUT (<* FROM*>device, <*INTOt>buffer) 

b. CALL SUBA(X,Y,Z) 

c. DECLARE AND INITIALIZE ALL VARIABLES OF ENTIRE PROGRAM
 

d. RESET INTERNAL DEVICE CODE AND OUTPUT TO DEVICE
 

e. SET A TO VALUE IN LOCATION (SUBPROGNAME 4358) 

f. IF(FLAG>O) THEN JUMP NEXT 68 LINES
 

g. RING BELL ON TERMINAL(number) 

h. PARSE INPUT FILE INTO TREE STRUCTURE AND'
 

DRAW TREE ON PLOTrER 

1. DECLARE AAAX EXTERNALLY ACCESSIBLE
 

j. READ PROGRAM OPTIONS FROM STRUCTURE FILE 



V. STRUCTURED NON-REAL-TIME
 
PROGRAMS
 

In 1968 and 1969, Edsger Dijkstra [6,34,35] produced a set of ideas and 
examples for clear thinking and construction of programs to begin what is 
now referred to as Structured Programming.He set forth a methodology 
that formed a powerful tool in mentally connecting the static text of a 
program and the dynamic process it invokes in execution. 

Bbhm and Jacopini [36] had, in 1966, indicated that it is possible to write 
programs using only the control logic structures consisting of sequence, 
two-outcome decisions, and restricted looping. Mills [12], early in 1972, set 
the mathematical foundations for structured programming, binding the 
ideas of Dijkstra, Bbhm, and Jacopini together in a way which initiated the 
transformation of programming methodology from a private craft to an 
engineering practice. 

5.1 STRUCTURED PROPER PROGRAMS 
Mills defines a proper programas one which can be flowcharted and has 

only one entry point and one exit point, every point reachable from the 
entry point. His structured programming theory encompasses only such 
proper programs. 

99 
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In this and the next chapter,.I extend theconceptrof structured programs 
to include certain types of non-proper programs, Such non-proper 
programs are often times unavoidable in programming, such as when traps 
or interrupts are involved. They are, at other times, very desirable and 
useful constructs (when program failure has been detected, for instance). 

5.1.1 Basic Theorems 

There are four basic mathematical results (Bt5hm and Jacopini [36] and 
Mills [121), which are central*: 

1. Top-Down Corollary: Every proper program logic can be 
representedby one of the three structures: 

(a) 	DO f THEN g 

(b) 	IF c THEN f ELSE g 

(c) 	WHILE c DOf 

where f and g are properprograms each with one entry and one exit, c is 
a determinablecondition (i.e., a test) and IF, THEN, ELSE, WHILE, and 
DO are logical connectives. 

2. Structure Theorem: Every proper program logic is equivalent to a 
program obtainedby iteratingand nesting the structures (a), (b), and (c) 
above. 

3. Correctness Theorem: If a program is structured as in (2) above, 
and if the domain of the data-space on which f operates in' (c) is not 
redefined dynamically1 in the looping process, then the correctness of 
the entire program can be proved by successively proving that the data 
spaces for each structure at each level of iteration, or nesting, are 
transformedin the specified way. 

4. Expansion Theorem: The freedom by which a proper-programlogic 
f may be refined into one of the forms (a), (b), or (c) above is limited as 
follows: 

(a) 	DO g THEN h can replace f whenever there exists a functional 
decomposition off into g and h in which f--h(g); i.e., f is the result 
of the program logic h operating on the computer state at the 
completion of g. 

*These are not listed in their order of mathematical proof given in [12], but in their order of 

logical precedence. 

t Refer to Section 9.1 for a somewhat relaxed generalization of the looping qualifications. 
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(b) 	 IF c THEN g ELSE h can replace f whenever a logic condition c 
can be found whose domain is the same as that off. Then g and f 
arefully determined. 

(c) 	WHILE c DO g can replacef whenever a function g can be chosen 
which, when iterated, ultzmately reaches f. The condition c is 
determined as that condition which recognizes that g has reached 
f. 

Flowcharts for the canonic constructions (a), (b), and (e) are shown in 
Figure 5-1. The interesting fact concerning these flowcharted structures is 

(a) 	DOITHENg 

Subprogram fI 

(b) IFcTHENfELSEg
 
Subprogram g
 

(c) WHILE c DO f 

true 

L Subprogram f 

Figure 5-1. Canonic program structures (true is always drawn as the leftmost 
branch of a decision) 
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that each has only one entry (at the top) and one exit (at the bottom). 
Furthermore, each of the subprograms inside the structures are entered at 
the top and exit from the bottom. Thus, it can. be seen that program 
flowcharts formed by inserting any one of the three structures as a 
subprogram of any of the three (i.e., by iterating and nesting these three 
structures) can literally be read from top to bottom. Programs formed of 
such iterations and nstings are examples of canonic structuredprograms. 

5.1.2 Other Structures 

Needless to say, there is no particular mprit to limiting program 
structures to the minimum three* necessary to represent all proper 
programs. After all, the theorem merely states that programs can be so 
represented; it doesn't say they are efficient. In fact, two other structures, 
shown in Figures 5-2 and 5-3, are. generally accepted as valid program 
structures, along with those in Figure 5-1. I additionally use the structure in 
Figure 5-4 as a simplified convention. The multiple-decision structure is 
certainly derivable from the binary decision structure by mere concatena
tion, and the reader may convince himself that the DO f WHILE c 
structure is representable as the structure shown in Figure 5-3(b). 

The reason for including such structures in the permitted canonic set of 
programming constructions is obvious: they are simply related to the 
minimum set and they tend to yield programs that are more understand
able and efficient than the minimum set. 

Each of the structures, as previously indicated, has one entry point and 
one exit point. The iteration of any of these in any way results in a 
structure again having only one entry point and one exit point. 
Furthermore, programs made by iterating and nesting the allowed 
structures are planar;that is, they can be floweharted on one page (if large 
enough) without any intersecting program flow lines. 

5.1.3 Structure Notations 
Before proceeding, it is convenient to introduce some terminology 

regarding flowchart structures. 

*The minimum is actually only two, as IFTHENELSE is not theoretically needed, but can 

be replaced by the use of two WHILEDOs and a structure flag (see problem 5.10). 
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(a) 

Question 

Ianswr 2 answer n 

Subp rogram 1 Subprogram 2 * Subprogram n 

Figure 5-2. Multiple-branch decision structure and its equivalent binary-decision 
structured program (outcomes of all decisions are always drawn in case order 
from the left) 
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(a) DOfWHILEc (b) DOfTHENWHILEcDOf 

Subprogram f 
fl 

Subprogram f 

true 

ISubprogram f! 

Figure 5-3. The DO f WHILE c structure and its equivalent form using subprogram 
duplication and a WHILE a DO f structure 
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(a) 

Initialize 
loop index 
f =n 
Next loop 
index 
i--i[qn 2 

FOR i=n 1 

I 

Rep 
Condition c 

true 

BYn 2 WHILEcDOf 

(b) 

Initialize 
loop index 
i=n 

SSubprogram f 

F itialnzeloop index 

Next looip' Condition c 

sfeindex 

Next loop 

i=-!+ n, 

1 

true
l 

Subprogram f 

Figure 5-4. Special notational symbol for indexed loops, the flowchart (a) 
represents the structure (b), and (c) is an alternate form of the convention in (a) 

ORIGINA, PAGE IS 
Q~gORQUALtj~ 
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5.1.3.1 Designating Flowchart Elements 

Abstractly, a flowchart is composed of flow lines and nodes. The nodes 
can be grouped into four categories (see Figure 5-5): process nodes (or 
p-nodes), decision-nodes(or d-nodes), loop-collectingnodes (or ic-nodes), 
and decision-collecting-nodes (or dc-nodes). These categories are 
indicated on flowcharts by flowchart symbols having distinctive shapes. 
P-nodes are given a variety of shapes to indicate the procedure involved [8] 
and d-nodes are diamond-shaped. Collecting nodes of both types are 
commonly annotated only by the meeting of flow lines; however, for the 
treatment in this monograph, they will always be denoted by circles, open 
for ic-nodes, and filled for dc-nodes. 

loop-collecting node (Pc-node) 

'Opc snnddecisionhiote' (d-ndde) 

process nodes (p.nodes) 

decision-collecting node (dc-node) 

decision node (d-node) 

Figure 5-5. Elements of a flowchart 

Flowchat arcalway to be' drnt'n"such that binary q ddcisii "llodeg
always li'e truh to the&!eft. Miultipledecisin nodes are M&lays'diAwn With 
outcomes in logical case order from the left. 
5.1.3.2 Dewey-Decimal Numbering Scheme 

The ANSI technique 9ed fr 'denotfnghirarchi 'flowchart'e4nsion S 
striping the box to be expanded, as shown in Figure 5-6. The striped 
module is given a procedural name, NAME, a cross-reference identifier, x, 
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CHART m CHART X 
cross-reference 
identifier; becomes 
m.n if NAME is 
not asubroutine 

o x number, i 
across-referenc 

idetifier7 
is chartath am e 

x n 

NAME flwhr 
for NAME 
module 

a box on 

Figure 5-6. Hierarchic expansion of striped flowchart symbol 

and a number,a, on its current flowchart, I shall augment that method as 
follows. If the current flowchart identifier is , then the box can be 
uniquely identified as the Dewey-decimal number mn, and this number 
can be used for cross-referencing as long as no ambiguity arises. In such a 
case x need not appear at the point of striping. 

Striped symbols can refer to hierarchic expansion in one of three ways
(a) subprograms, which can either be segments of in-line code or 
procedures that, on normal termination, continue execution always at the 
same point in the program; (b) internal subroutines, which are segments 
of code invoked at several places in the 'program, which always return, 
upon completion, to the point of call, and which are part of the body of 
the program; and (c) external subroutines, which are subroutines 
(returning to the point of call) whose designs are external to the program 
(e.g., library subroutines) and not described in this set of documentation. I 
have previously referred to such program segments as striped or named 
modules. Notations for these three cases are illustrated in Figure 5-7. 

The hierarchic place that a module occupies in a design is denoted by its 
Dewey-decimal cross-reference. For example, suppose that on a flowchart 
numbered m,a box numbered n refers to a procedure (not subroutine) to 
be expanded later -in the design process. Then the flowchart for that later 
expansion is made Chart No. m.n.One reading the flowchart wishing to 
trace out how the function in box n of flowchart m is achieved, merely has 
to locate Chart No. m.n to proceed. 
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(a) Subprogram (b) Internal (c) External 
Subroutine Subroutine 

nA I B) a 
NAMEI NAME2 NAME3 

Figure 5-7. Striped symbols: n is themodule number on this chart; A is a numeric 
or alphanumeric chart number where the hierarchic expansion of that subroutine 
begins; and B is a designation that indicates where interface information can be 
found 

More specifically, suppose a striped module appears on Chart 1.2.6, and 
has the number 5. Then one can state that box number 2 on Chart 1 was 
expanded as Chart 1.2; on that chart, box 6 was expanded as Chart 1.2.6; 
and module number 5 may appear expanded later as Chart 1.2.6.5. 

The reference to a flowchart, however, cannot always be cross
referenced this way because subroutines, which can be called from many 
places, would not then possess a unique chart number. Therefore, each 
subroutine is assigned its own unique level-one chart number. One 
convenient way of distinguishing procedures from subroutines is by 
assigning an alphanumeric chart number for subroutines; for example, S6 
refers to Subroutine 6, T4 to Trap routine 4, etc. The choice of an 
alphanumeric designator can be fised to group subroutines with common 
properties together in documentation. Expansions within subroutine 
flowcharts follow the normal numbering: for example, S6.4.2 refers to the 
box numbered 2 on Chart S6.4. 

5.1.3.3 Numbering Flowchart Nodes 

One natural way of numbering graph nodes is the so-called pre-order 
traverse method. A pre-order traverse of the chart enumerates the boxes 
on the flowchart as follows (see Figure 5-8). 

Starting at the top of a structured flowchart, number boxes and loop
collecting nodes sequentially down the chart until a branching node is 
sensed. Number this node. The general rule to be followed upon reaching a 
branching node is to take the leftmost branch for the numbering sequence. 
When a decision-collecting node is encountered, return to its correspond
ing decision node, and if it has a yet-unnumbered branch (or branches), 
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11
 

13T 

L14 

Figure 5-8. Pre-order traverse of structured flowchart nodes; decision-collecting 
nodes and loop-collecting nodes for WHILEDO structures are often left 

unnumbered, depending on intended coding language (see Section 7.3.1) 

then proceed to number the leftmost of these branches; if all of its 
decisions have all branches numbered, then continue on. 

5.1.4 Structure Graphs, Program Trees, and the Tier Chart 

The structure graph of a program is a representation showing the 
control connections between striped modules. The graph has a root node 
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(which represents the main program) at the "top" of the graph. A set of 
lines are dtawn from this root node to each of the nodes representing 
striped modules that appear on the "flowchart" of the main program. For 
each such new node added to the structure chart, a set of lines is drawn to 
each of its striped modules, as depicted in Figure 5-9, until the entire set of 
striped modules is represented on the graph, properly connected. For 
example, if a subroutine is called several times in various program modules, 
corresponding connections appear on the structure graph; if a module is 
recursive, the graph contains loops. Because modules can be recursive or 
may invoke subroutines, the structure graph is likely to be non-planar 
(crossing connection lines). 

B C DE
 

Subrtine Subprogram
 

F ur rogram Subprogram 

J K
 

ExternalInternal
 
Suruie Subroutine 

Figure "-.The structure graph of a program (note the loop around recursive 
modules, and multiple ancestors (calls) of subroutines) 

The program tree is a somewhat simpler version of the structure graph 
containing no recursive modules. Rather than drawing the several (possibly 
crossing) lines to a common node for each subroutine of the structure 
graph, the program tree treats each subroutine call as a separate node, 
which then begins its own (identical) subtree, as shown in Figure 5-10. Such 
a graph is again planar, but each subroutine appears as a subtree as many 
times as there are calls to that subroutine. 
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(a) Structure Graph (b) Program Tree 

A A 

B C B C
 

S S S 

FF E E 

Figure 5-10. Conversion of a non-recursive structure chart to a program tree 

Mills' proof of the correctness theorem is based on the representation of 
programs as trees. The tree diagram is also useful in identifying the 

separate roles that a subroutine plays in a program when changes need to 
be made. From it can be assessed the effect of these changes on the 
remainder of the program. But, as a general tool, the program tree 

probably loses its effectiveness because of its tendency to become quite 
large. 

The tier chart of a program resembles the program tree and is, in fact, 
derived from it, The tier chart is merely a listing of the program tree node 
names in order of hierarchic degree, as shown in Figure 5-11. Each tier of 
the chart consists of all modules possessing the same degree of hierarchic 

nesting from the main program (root). Subroutines may appear more than 
once in the program tree; however, only one instance of the subroutine 

subtree is kept on the tier chart, that having the least nesting degree. If a 
subroutine appears twice at the same (least) degree, only the first, in order 
of module numbering, is kept on the tier chart. 

As previously explained (Section 5.1.3.2), the main program, each 

subroutine, and perhaps some major subprograms, all begin at Dewey
decimal-level 1. Each of these then has its unique level-1 flowchart 
number; subprograms of these modules build onto the Dewey-decimal 
notation in a prescribed w,ay. 

By this convention,. ,subroutine that first appears at tier 4 in the top
down developmentprocess then begins its own hierarchic expansion again 
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1.2.3 

1.2 z It.. 

1.2 

1.5 at tier3, but its 

This subroutine appears 

T1 tTer 2,Terrti 

Figure 5-11. Organization of program into hierarchic design tiers 

at documentation-reference-level 1, such as Sit. To avoid confusion, I thus 
refer to the depth that a module appears in the program tree as its tierbut beins itnumber, and its documentation reference depth as its level number (Note 
that in a program without subroutines or separate level major 

subprograms, the tier numbers and level numbers coincide.) 

The main use of the tier chart is as a tool for keeping track of which 
modules are currently being worked on, which have been completed, and 
which are yet to come at the next immediate phases of effort. More 
discussion on the use of the tier chart appears in Chapter 10. 
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5.2 HIERARCHIC EXPANSION OF PROGRAM DETAIL 
Structured programs can be organized into the hierarchic program 

segments (discussed in the previous chapter) such that each segment is at 
most some prescribed size, say one page, with entry only at the top and 
exit only at the bottom of each segment. Segments can refer to other 
segments at the next level, each by a single name, to represent a 
generalized data-processing operation at that point. This property of 
readability is a major advantage in testing, maintaining, or otherwise 
referencing program segments at later times. 

Figure 5-12 illustrates a structured program created by nesting and 
iterating the structures given in Figure 5-1. The main program structure is 
of the WHILE c DO f type, where f is a sequence structure. The sequence 
structure f is of the DO g THEN h type, in which g is a function-box and h 
is an IF d THEN i ELSE j structure, and so on. 

In this simple illustration, all the detailed program subfimction are 
shown explicitly, all on the same flowchart, all on the same page. In more 
complex programs, however, all the detail cannot be hoped to fit all on the 
same page. How can such programs be represented for human 
comprehensibility, when many pages of flowcharts comprise a program? 

Decomposing a given program function into one of the three basic forms 
necessitates the invention of: (a) two proper program subfunctions, f and g, 
for DO f THEN g; or (b) two subfunctions, f and g, and a condition c for IF 
cTHEN f ELSE g; or (c) one subfunction', f,and a condition c for WHILE 
cDO f. 

Each of the subfunctions, being proper, can likewise be partitioned into 
subftmctions, and so on, until the functional detail of each sub...subfunc
tion is simplified to any required degree. 

This process makes it possible to limit the size of a program unit to that 
most convenient for understanding, say, a one-page flowchart, or one page 
of program-code. Each of the subfunctions, by the definitions in Section 
4.4, can be called a module. Each module which requires further detailing, 
or expansion, can be relegated to its separate page as a procedure
subprogram or subroutine-for a later level of design. 

The expansion theorem defines the freedom available in expanding any 
functional specification into'a structure at the next level. To expand a given 
program function f into the form "DO g THEN It" merely requires 
choosing any two pairs g and h whose successive application leads to f.The 
invention of an "IF c THEN g ELSE h"program to replace f is equivalent 
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C1 

I7---------------------m 

L- 

1 1t11
Figue 512.A sructredproramwitnesed ubsrucure 
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to partitioning f into non-intersecting subfunctions g and h, and the 
invention of a "WHILE c DO g" program to replace f is equivalent to the 
determination of a suitable g which, when iterated, ultimately reaches f. 

The only freedom in an "IF c THEN g ELSE " construct is the choice 
of the condition c, which then splits f into determinable functions g and h. 
The only freedom in a "WHILE c DO g" .construct is the iteration process 
g for c is then fully specified as that condition under which the iteration of 
g has produced f. Any other supposed freedom is illusory. 

Mills' structure theorem and top-down corollary state that any proper 
program logic can always be represented by one of three primitive 
structures, or by iterations and nestings of the three. This doesn't mean that 
such a program can always be written. For one thing, there may not be 
enough storage to accommodate the entire program. However, insofar as 
the abstraction of the program matches reality (see Section 2.5) Mills' 
theorems apply. 

By way of illustration, Figure 5-13 shows that any of the three basic 
structures can be used to create a program "FILL A" to insert up to 100 
numbers into array A. The function to be accomplished in each box is clear 
and each version of the program can be proved to perform the required 
function. However, if the algorithm by which each subfunction is to be 
realized is also to be detailed, it can be expanded at the next hierarchic 
level, as illustrated in Figure 5-14, which expands the function appearing in 
Figure 5-13(a). 

Note the use of the name "LOOP" appearing in the striped box of 
Figure 5-14(a) and in the entry symbol of Figure 5-14(b). This is the ANSI 
standard [8] notation for hierarchic expansion of flowchart functions. 
Notice also that the correctness of each hierarchic segment of a program 
depends only on the segments already written or read, and on the 
functional specifications of any additional segments referred to by name. 

The correctness theorem assures that a program, proved correct based 
on the functional specification of its modules, does not have to be re
proved after each of its modules has been designed in later levels of the 
hierarchy to satisfy its specified requirement. Because of the simplicity of 
control structures and hierarchical nesting of functions, the control 
complexity of a structured program is approximately linearly proportional 
to the program length; that is, the program control logic can be understood 
by an argument related linearly to the length of the program (see Chapter 
9). 
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(a) 

A 
:FILL 

M= MIN(N.O0j 

~(b)
 

A RANDOM
 
FOR I = 1[11 M
 

CLc2 

nno 

A --RANDOM 

I= 1+1 

with random numbers, svailable through the function 
Figure 5-13. Three realizations of the pragram,dimersion of A Is 100, and the variable Iis available 

FlI the first N elementsRANDOM; oarray Athe maximumas an index, itialized to 1" 
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(a) 
1 

FILL A T1---" 

(b) 
1.2 

LOOP 

1 ) 

M= MIN(N,100) 

LOOP'2---R 

AL = RANDOM 
FOR Il11] M~A 

-- yet 

3 
= RANDOM 

I= 1+1 

EXIT 

Figure 5-14. Hierarchical expansion of "LOOP" box, which performs "A, = 

RANDOM for I = 1 [1] M"in Figure 5-1+3(a) 

5.3 PROGRAM CORRECTNESS 
A computing process can be viewed as a succession of machine states 

dictated by the input data. Generally, the number of possible input 
sequences, and hence the number of possible states, is so great that it 
would take an impossibly long time to demonstrate them all on a computer 
of practical speed. While it is possible to test the logic flow of a program 
in finite time, demonstrating the correspondence of the actual output to 
that required under given input is what takes -so long. 

How else can we assess a program to be totally correct? Program 
correctness is a question of predictability. Given a function f, however 
specified, and a program F, then F can be verified to perform the function 
f only by comparing of the input and output data sets of F against the 
transformations specified by f. If not by enumeration, then perhaps by 
formal mathematical means. 
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Hoare [37] has argued that formal proofs are possible in concept, and 
Mills [12] has shown that, if such be the case, then these proofs can be 
applied to structured programs in a simplified way. In particular, for 
structured programs, proof of correctness turns into a series of nested 
problems, each of which is one of three simple types, which can be 
prescribed in advance. It must be remembered, however, that a formal 
proof is merely another formal statement of about the same size as the 
program it refers to, and, without any automatic aid, is also subject to just 
as many human errors. Moreover, rigorous, formal proofs by humans are 
generally prohibitive in the amount of work required for a program of any 
size. 

It has also been argued that there is no such thing as an absolute proof of 
logical correctness; there are only degrees of rigor, as "technical English", 
"mathematical journal proof', "formal logic", etc., each of which is an 
informal description of mechanisms for creating agreement and belief in a 
process of reasoning. 

Automatic program provers have not been forthcoming either, although 
some progress has been reported [38,39,40] and it has furthermore been 
hinted by Elspas, et al., [38] that the generalized prover might be 
equivalent to just enumerating all the cases in the first place. 

5.3.1 Assessment of Correctness 

Programs must be correct, or at least they must operate in a way that 
appears to be correct, to be useful. The degree to which the program 
appears correct can be termed its index of reliability, or its confidence 
level. 

Currently, human intelligence is the only general means available to 
check program reliability. Therefore, another reason for the concise 
expression of programs is to remain within the limits of human 
understanding. Computers are often used to test the response of the 
program to certain "typical" input data sets, but it is up to the human to 
design the tests (sometimes with computer aid) to assure that the program 
operates witlin a qualifiable level of confidence. 

Nevertheless, test hypotheses can be formulated on a systematic basis, 
and technical judgements can then be applied to determine the level of 
validation that is feasible and desirable for a given program. The 
correctness problem comes down to the demonstration of agreement 
between a-functionaldescriptionand a program behavior. 
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But formal proofs are infeasible and fallible, and complete testing is 
impossible in all practicality. We must be content with not being able to 
demonstrate program correctness on a rigorous scale, and settle for an 
informal assessmentof the program functioning. 

What information must accompany a program to permit an assessment 
of correctness on any reasonable scale? The first requisite, of course, is that 
the program, functional behavior be known. It is an absolute necessity 
that the response of a program to every input stimulus be checkable. If 
what a program is supposed to do, given a certain input, has not been 
defined at all, then the resulting output cannot really be said to be 
incorrect, regardless of what it is. 

, One typical, though sometimes subjective, method for program 
behavioral specification is the "principle of least astonishment" default. 
According to this principle, one expects rational operation of the program 
in its more pathological moments in keeping with similar situations that 
were envisioned and specified. 

The second requisite is that the program must be readable (documented) 
enough to permit a feasible proof. For structured programs, only that level 
of detail sufficient to assess correctness on an individual module basis is 
needed. Documentation certainly should not be overdone. But, neither 
should it be underdone. 

I shall defer further discussions of criteria and procedures for increasing 
probable correctness and program validation to later chapters of this 
monograph, so as to include considerations necessitated by real-time 
programming, as well as other constraints. 

5.3.2 Recursive Subroutine Correctnesc, 

Program segments that may call each other as subroutines are termed 
recursive. Certain subroutines can be recursive with themselves; these are 
said to be self-recursive subroutines. 

Mills' proof of the correctness theorem assumes that each striped module 
can be replaced directly by the program it represents at each level of the 
hierarchy, and assumes that this process ultimately terminates. He then 
uses finite induction to demonstrate that correctness of a program is 
provable. However, coroutines and recursive subroutines do not satisfy this 
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hypothesis, because the substitution of coding or a flowchart for the 
subroutine call never ceases. Does the correctness theorem then apply to 
such routines? 

The answer is yes, at least for recursive subroutines, a direct 
consequence of the top-down hierarchy and the functional correctness of 
segments at every preceding level in the hierarchy. If a program is 
designed top-down and proved correct at each level prior to going on to 
the next level, then each subfunction in the algorithm at the correct level is 
defined and independent of the algorithm used at later levels to realize it. 
It does not matter if the subfunction definition is the same as that of the 
function itself. It is the job of the correctness proof at that level to show 
that the algorithm given, having one of its subfunctions the same as the 
function, actually terminates and produces the specified result. 

5.4 STRUCTURING UNSTRUCTURED PROPER 
PROGRAMS
 

Mills' proof 112] of the structure theorem provides a constructive method 
to convert any proper program (i.e., one entry, one exit) into a structured 
program using only the basic canonic forms given in Figure 5-1. The 
method does not produce particularly efficient structured programs, but 
they are, nevertheless, structured. While I do not necessarily advocate 
turning already operating programs into structured programs just for the 
sake of having structured programs, the procedure by which programs can 
be structured is an instructive one. 

Once the reader sees how any proper program can be structured, he will 
know better how to devise structured programs from the beginning for his 
own designs. He can always resort to the Mills algorithm to structure his 
own program, or perhaps to other methods such as that of Ashcroft and 
Manna [41], but, more likely he will develop a natural ability to create 
structured designs on his own. 

I have introduced structured programming as a discipline and 
methodology to aid in human comprehension and orderly program 
development, but that does not mean that the code resident and operating 
in the computer itself necessarily has to be structured. Just as for any 
programming language, compilers can be made to optimize the object 
code to be executed. A compiler for a structured programming language 
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may well optimize using proven algorithms to unstructure the object code 
in specified ways. In that case, even though structured programs may 
appearintheir source form to be less machine-efficient than unstructured 
programs, this need not necessarily be the actualcase. 

While the structured programs that result from applying Mills' method 
to existing programs are perhaps less efficient than the existing programs, 
there is no indication that entire programs designed in a structured way 
from the very first are any less efficient than an unstructured design written 
to do the same job. The reason for this is that a structured design facilitates 
thinking, so that a better product naturally emerges. 

5.4.1 Mills' Method 

I shall describe Mills' method itself as if it were a structured computer 
program. The algorithm I give does not appear in this exact form in Mills' 
paper, bat is, in essence, the same. It does not, for instance, include some 
rather obvious refinements for producing more compact flowcharts. 

The algorithm stated below makes use of a "flowchart stack", a structure 
for storing and retrieving as-yet-unstructured flowcharts on a last-in, first
out (LIFO) basis. The procedure furthermore yields structured programs 
with DO...WHILE loops, rather than WHILE...DO loops. 

MILLS ALGORITHM: 

.1 CONVERT all multiple-branch nodes int6 their binary-branch 
equivalents. Create specific binary Ic and dc nodes where flowlines 
meet. 

.2 INITIALIZE the flowchart stack to contain only one 
namely, the entire program. Initialize the Master flowchart 
page with an entry flowline at the top. 

flowchart, 
as a blank 

.3 WHILE the stack is not empty, perform the following procedure: 

.4 REMOVE the last-entered flowchart for current consideration. 

.5 SCAN down from the top of the retrieved flowchart, drawing all 
flowlines and p-nodes (these are already structured) on the Master 
flowchart, until a d- or Ic-node is reached. 

.6 IF a d-node was reached in the scan 

.7 THEN DRAW the d-node on the Master chart and partition the 
remainder of the flowchart being scanned into flowcharts fcl, 
fP , and fc3,as defined by Figure 5-15. 
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t~ue falsfe 

fc3 

Figure 5-15. Partition of a flowchart after a d-node 
is reached in Mills' algorithm 

Any of the fc1 may be trivial (only a flow line). fro and fcj 
together comprise the entire set of flowchart nodes reachable 
from the "true" output of the node. Similarly, fc2 and fr3 
together comprise the entire set of nodes reachable from 
"false"; f03 is comprised of that set of nodes common (and 
separable) to the two paths. 

.8 	 PLACE the non-trivial, non-structured flowcharts among fcJ, 
fc2, and fc3 on the stack, the largest (most nodes) first. (Placing 
the largest on the stack first minimizes maximum stack depth.) 
Draw trivial or structured flowcharts on the Master flowchart, 
and leave space on the Master for the charts put on the stack. 

.9 OTHERWISE the node reached is an ic-node. Hence, 
.9.1 	 CONSIDER the next mode. 

.9.2 WHILE this node is not a d-node, perform steps .9.2-.9.7 
below. 

.9.3 IF this node is an Ic-node, 

.9.4 THEN CHANCE the ic-node to a dc-node, and move it 
into the returning flowline, as shown in Figure 5-16. 
Continue at .9.6 below. 
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(a)is replaced by (b) 

Figure 5-16. Combination of Ic-nodes in Mills' algorithm 

OTHERWISE, it is a p-node. Hence, 

JUMP* the Ic-node below the p-node, draw the p-node 
on the Master chart, put the p-node in the returning 
flowline, and redefine the remaining flowchart as fct 
(Figure 5-17): 

(a) is repraced by (b) 

L fc 

Figure 5-17. Duplication of p-node inside loop in Mills' algorithm 

.9.6 CONSIDER the next node, then 

.9.7 REPEAT from step .9.2 above until a d-node is reached, at 
which time continue on. 

* This step can be refined so that a duplication of p may not be necessary. 
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.9.8-.9.10 	 SPLIT fc' into fci and fc, and insert flag* set and test nodes as 
shown in Figure 5-18 to form flowcharts fcj and f 2. 

*A new flag must be used for every nesting of a loop within another loop. Mills uses the 
convenience of a flag stack for this purpose; upon entry to the loop (the ic-node), the stack 
is "pushed" down to access an unused flag, and upon exit (after the final flag test) the stack 
is "popped" up to release the flag for later use. 

(a)
 

r 
ue 

fals e 

ro
Hrt o I 

isreplaced by 
(b) 

/c,; 
Fr 1 pIng the 	 L o i 

: false 

trueJ
 

Figure 5-18. Splitting the flowchart Inside a loop after a cl-node by Mills' algorithm 



125 Sec. 5.4] Structuring UnstructuredProperPrograms 

.10 PLACE the non-trivial, non-structured flowcharts among fc1 and 
fc2 on the stack, the largest (most nodes) first. Draw the d-node 
and the flag-test node on the Master chart, as well as any trivial 
or structured fci or fc2 not stacked. Leave space on the Master 
for stacked charts. 

.11 

.12 

REPEAT by going back to step .3 for another chart until the stack is 
exhausted, at which time 

STOP. The Master flowchart is now structured. 

Notice, in the statement of the algorithm above, that certain key words 
are capitalized and that parts of the narrative are indented and blocked in 
a way which modularizes the algorithmic steps and reveals the flowchart 

nesting levels. The algorithm as it stands is a structured program; it's just 
written in English rather than some definite (and non-ambiguous) 
programming language. The indenting convention can be used as an 
alternate to flowchart production of programs. More detailed information 

concerning indenting and structured-program languages appears in later 
parts of this monograph. A flowchart of the algorithm appears in Figures 
5-19 and 5-20. 

As seen in the algorithm above, it may be necessary in the course of a 
structured design to introduce flags and tests for flags solely for the purpose 
of achieving the topology indicated by the Structure Theorem. However, 
an examination of the procedure shows that such flags are only strictly 

necessary in loops that require more than one test of the loop-termination 
condition within the loop, and in which the processing of data subsequent 
to one end-test invalidates the results of any later retest needed. The flag in 

such cases is introduced to record the outcome of the first end-test. 
Introducing such auxiliary flags may be desirable, even when not required, 
as for example, when a condition is to be tested several times in a program, 
and a flag test is faster and simpler to code than the corresponding 
condition test. 

Auxiliary flags set to indicate the outcome of a test condition for later 

use in order to achieve a certain structured design, whether required or 
desired, are referred to hereafter as structureflags. 

5.4.2 Examples Using Mills' Procedure 

To give a little familiarity with structured programs and methods for 

turning unstructured designs into structured ones, I will work out a few 
simple examples. From these examples, the reader will hopefully be able to 

see many shortcuts and reductions that can be made in the Mills' 
procedure. The first two examples are simple enough that the separate 
steps of the structuring procedure are not shown, only the resulting 
structured program. 
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MILLS' 

ALGORITHM 
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Figure 5-19. A flowchart for Mills' algorithm (flowchart numbers correspond to 

steps given in the text) 
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Figure 6-20. Hierarchical expansion of the LOOP subprogram appearing in Mi 
algorithm (Figure 5-19) 
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Example 1. In the following example (Figure 5-21), note that the function 
D must be duplicated to achieve the structure requirement. 

(a) Unstructured (b) Structured 

C 

A 8 

o de 

Figure 5-21. Example I using MilIs' algorithm (no structure flag required) 

Example 2. The following construct (Figure 5-22) is widely used; some 
advocate its inclusion as a valid structured program for the form DO A 
LEAVE IF c ELSE B AND REPEAT. 
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(a) Unstructured (b) Structured (Mills) (c) Structured (Reduced) 

A A 

A 

false 

truee 
true 

AA 

A A 

ueddscue fag 

Figure 5-22. E=xample 2 using Mills' algorithm and reduction to get rid of an 
unneeded structure flag 

In this example, Mills' procedure duplicates the function A and 
introduces a structure flag F to achieve a structured flowchart. In this case, 
however, the flag is not needed, as shown in the rightmost flowchart, part 
(c) of Figure 5-22. An alternate structuring procedure, in which the 
duplication of A is unnecessary, is shown in Figure 5-23. 
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A
 

true false
 

C_
 

Figure 5-23. Alternate structured solution to Example 2 using a structure flag to 
avoid duplication of A 

Note, in this last construction (Figure 5-23), that the structure flag F is 
initialized to zero at the beginning, and not changed to unity until the 
looping is complete. In this case, the only program overhead required to 
structure the given flowchart is a flag cell, initializing it at the beginning, 
checking it during looping, and setting it (and a final check) at the end. 
When A and B are rather large or time-consuming program segments, the 
overhead is negligible. 
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Example 3. The last example of this section is from John Flynn of the Jet 
Propulsion Laboratory; it is quite a bit more complex than the previous 
two we have seen. For this reason, the following structuring steps-are more 
detailed. The given ebart is that shown in Figure 5-24. 

-- c-node 

p-node 

0 A 

C 

true 

Figure 5-24. Flynn's "Problem No. 5"(to be structured by MOWls algorithm) 
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The first steps are the placement and retrieval of this chart from the 
chart stack, and the initialization of the Master chart to the entry flowline. 
Scanning for a d- or ic-node stops at the first node, an ic-node. The next 
node is the p-node, A, which is put on the Master chart and duplicated into 
the returning flow line; the collecting node is then moved below A. The 
flowchart between this point and the end is labeled fc. The progress at the 
end of the first steps is shown in Figure 5-25. 

(a) Master (b) Current chart 

F 
A fc1 I 

remainder of flowchartL . . . . . . .. . 

Figure 5-25. First steps to structure Example 3 

The d-node with the condition p is detected next, whereupon fci above 
is split into f02 and fc s (see Figure 5-26(b) and (c) below). The to- and 
d-node labeled p, together with a d-node labeled "Fl-?" and the 
rdturning flowline are put on the Master chart as shown in Figure 5-26(a).
Flowchart fc s, having the most nodes, is stacked; then fc2, on the flowchart 
stack. (Note the reversal of the true and false legs of f6 3 at this stage for 
readability.) 
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(a) Master (b) fc2 still unstructured 

Figure 5-26. Configuration stthe end of the first cycle (continued on next page) 
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(ci Ac3 still unstructured 

ft 
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true se 
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Figure 5-26. Configuration at the end of the first cycle (continuation) 



135Sec. 5.4] StructuringUnstructuredProperPrograms 

The process then iterates: fc2 is fetched from the stack and processed. At 
the end of this cycle, fc2 is structured, and appears as Figure 5-27, which is 
then drawn onto the Master chart. 

fC2 structured 

true false 

ut W
 

A 

B 
F1 

F2 = I 

2 = 

T-0F

0 F2= ORI~ qAL PAGE '18OF PooR QUALITy 

Figure 5-27. Structure of fc2 is achieved at the end of the second cycle 
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On the next iteration, fc 3 is retrieved, and E and C moved to the Master 
chart. The remainder after applying Step .9.6, resulting in fc4 in Figure 
5-28, is stacked for the next iteration. 

a p c istill unstructured 

F1 

C _D 
Fiue52Flow ar tteedo h Atchr yl rmidro c.f 

application =f0es5ad 96 
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Finally, the next iteration structures fc 4 and places it on the Master 
flowchart, which is now complete, and structured as shown in Figure 5-29. 
(Note that the previously reversed true and false legs have been restored 
to their initial order.) 

Master (structured) 
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6 Frem i f"s e 
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5.4.3 Efficiency of Structuring Programs 

The expansion of a simple 8-box flowchart by Mills' algorithm into a 30
box chart is hardly what one would call "efficient" in either memory 
utilization, speed, or perhaps even understandability. But then, much of the 
duplication in memory can be avoided by making A, B, C, and D 
subroutines, and the flag-sets and tests do not introduce a large speed 
overhead either if A, B, C, and D are long-duration processes in 
comparison. 

As for understandability, one at first has a natural tendency to believe 
that the original is snore readable than the final structured result. But the 
original is deceivingly complicated: the various looping paths intermingle 
to the extent that one cannot really tell (until after much study) just what 
the state upon entry to any box is, or when (and under what circumstances) 
the program terminates, or then what the results will be: The structured 
version avoids this difficulty to a great extent by its top-down development 
and controlled looping. It identifies separate distinctive actions as separate 
program modules, even though they were the same originally. Thus a 
looser coupling probably occurs between modules in the structured version, 
because each replication of a function is not playing its total role played in 
the unstructured program. 

If the designer had decided to program Flynn's example in a structured 
way from the first, he could have been more efficient. As shown in Figure 
5-30, the duplication or subroutining of A, B, C, and D is not really 
necessary at all, and the structured design only has 14 boxes. The design 
uses one structure flag and combines the tests p and r with structure-flag 
tests. Because no boxes ire repeated, there is probably tighter coupling 
among modules. 

But is th6 program depicted in Figure 5-30 a better program than that 
shown in Figure 5-29, and is either better than the one in Flynn's original 
problem? The answer is no-they are equivalent functionally. The 
structured forms even take slightly more memory and execution time. But 
several other questions are equally relevant: How long would it have taken 
a. designer, starting with a functional requirement, to come up with and 
establish the correctness of each of the three? Which is most readible and 
understandable? Which most naturally fits a top-down logical development, 
problem to solution? What length of time would be needed to debug 
logical errors in each? With what degree of ease and with what side effects 
can alterations be accommodated in each version of the program and its 
documentation? 

More and more programmers are discovering that the answers to these 
latter questions tend to favor the structured, top-down approach. In 
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Figure 5-30. Another solution to Example 3, ini which no function boxes are 
duplicated 



140 StructuredNon-Real-Time Program [CHAP. 5 

response to the side effects question, for example, suppose that there is an 
error or a change to be made in Flynn's program, and suppose that it has 
been determined that module C of the original problem is at issue. Any 
proposed alteration of C must be checked to verify whether it will work or 
not under all conditions of execution. But the conditions under which C is 
invoked are masked by the convoluted connectivity of the original problem 
to the extent that the effects of a proposed change are apt to be very 
difficult to assess. The version in Figure 5-30 is quite a bit better because 
the connectivity is structured; but still, the single occurrence of C has 
placed a burden on the evaluation of side effects. 

On the other hand, the 30-box version has 3 copies of C on the chart, 
each executed under different conditions. Hence, one can probably identify 
more easily whether or not a change proposed for one of the C modules 
also works for the others. If it does, then the change can be made. If not, 
then separate C modules are needed. If C were programmed as a 
subroutine, the change would then have to be executed conditionally, 
according to the conditions in effect when C was called. 

Another general method for structuring an arbitrary unstructured 
program was devised by Ashcroft and Manna [411. Their method employs 
iteration with an index variable and a multiple-branch decision logic to 
route program control to the proper next function. Each series of actions 
on the original flowchart is assigned a valub of the index variable; in the 
structured version, then, the outcome of each decision sets the index to its 
proper next action value, whereupon the program repeats at the multiple 
branch. The solution to Flynn's "Problem No. 5" using this method appears 
in Figure 5-31. In this figure, none of the original functions or decisions 
have been repeated, but eight settings of the index variable and two flag 
tests have been necessitated. 

5.5 PROGRAM STRUCTURES FOR NON-PROPER 
PROGRAMS
 

Structured programming, as I have presented it so far, forms the basis of 
an attractive software design and production methodology applicable to 
proper programs-those that have only one entry and one exit. 1 have 
argued that such programs developed using top-down, modular, hierarchic, 
structured programming techniques tend to be easier to organize, 
understand, modify, and manage, especially when the structure-set includes 
other simple extensions of the minimal three, as shown in Figure 5-32. 
However, there are typical cases where the strict adherence to the "one
entry one-exit" rule for a program or program module is a hindrance, 
rather than-a help, to effective software development. 
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Figure 5-31. Another structured solution to Example 3 in which no functions are 
duplicated (note the use of multi-valued flag and decision structure) 
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(a) SEQUENCE Mb,WHILEDO (c) IFTHENELSE 

l
I I 

1 6 1 

(d) DOWHILE Ce)CASE 

T-

Figure 5-,32. Extended canonic program structures 

Structurefor the sake of structureshould not overrule structurefor the 
sake of clarity, One notable example of such counter-productivity occurs 
when one is designing a program that is capable of detecting the existence 
of situations for which further processing in the current mode is either 
useless or unnecessary. Often, in such cases, the most desired, most logical, 
and most clearly understood course is to divert program control to a 
recovery mode or back to the user/operator for subsequent decision 
making and manual operations (Figure 5-33). 

The alternative to programming abnormal exits of a module is to 
introduce structure flags as necessary to force these exits to the normal exit 
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Entry 

Normal Mode 

Normal Exit 

Figure 5-33. Abnormal exit from a nested structured program 

point. However, this flag then has to be tested each time a "normal" action 

in the program comes up for execution. If an abnormal condition has 

occurred, the normal action must be bypassed (see Figure 5-34). Bypassing 

is necessary until an appropriate nesting level is reached so that the 

appropriate recovery procedure can be invoked in a properly structured 

way. This not only introduces a clutter of excessive, distracting detail to 

slow down the programmer, but it also creates a somewhat larger, slower 

program. Hence, besides interfering with programmer effectiveness, strict 

adherence to canonic proper-program structures causes the program itself 
to suffer. 

It may also be the case, in many of the higher level languages, that some 
orstatements can cause unavoidable, automatic branching to prespecified 

default program locations when certain conditions occur. For example, in 

FORTRAN, executing the file-input statement can result in normal input 

(the program continues at the next statement), an end-of-file condition (the 

program branches to a prespecified statement), or a file-error condition (the 

program branches to a separately specified statement). "Structured 

programming" (using canonic structures) is thus not possible whenever 

such statements appear. 
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(a) Unstructured (b) Structured form of (a) 
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Figure 5-34. Bypass program in which p and r are tests that indicate further 
execution is useless; R is recovery module, which then initiates program restart 
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5.5.1 Criteria for Structuring Multi-Exit Modules 

The context of structured programming obviously needs to be extended, 
in such cases, to include constructs that fit the language and that will tend 
to increase design productivity and program efficiency. But great care must 
be taken in extending the basic set of structures so as not to undo (or 
potentially undo) the progress that canonic structures have contributed to 
software development. Mills' proof of the correctness theorem depends on 
the "one-entry one-exit" character of programs. Permitting modules to 
have multiple exits (or entries) can, therefore, be a very dangerous policy 
unless that policy is limited to justifiable situations where correctness is not 
impaired. Candidate structures to augment the canonic set should satisfy at 
least the following criteria: 

a. 	 The top-down development and readability of the program design 
must not be impaired by the extended structures. 

b. 	The hierarchic, modular form of the program must be maintained 
using the extended structures. 

c. 	Program clarity and assessment of correctness on an individual 
module basis must not be jeopardized. 

d. 	The situations under which an alternate exit of a module is 
permissible must be limited to special situations where the need is 
clear and desirable, or where it is unavoidable. 

e. 	The new structures must conform to the same codability conventions 
used for the canonic set, such as modular indentation of lines of code, 
easily identifiable entry and exit points, and clear connectivity of 
program modules. 

5.5.2 Structures for Multi-Exit Modules 

Iterations and nestings of canonically structured proper program 
modules always result in proper programs. Whenever a branching (one 
entry, multiple exit) node Appears in a structure, there also. appears a 
collecting node and one or more process nodes within the structure 
arranged so that the global view again has only one entry and one exit. 

The extension of this philosophy to modules having multiple exits 
suggests the following simple extension to structured programs (Figure 
5-35). 

The entire structure is a proper module, although module A obviously is 
not. However, if the function A has been stated explicitly enough that the 
two exit conditions are determinable, based on entry conditions to A, then 
proof of correctness is conceptually the same as for an IFTHENELSE 
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reason 2 
A 

BC 

Figure 5-35. Multiple exits configured into an IFTHENELSE-like structure 

structure. I shall use the following convention (Figure 5-36) to denote and 
emphasize the condition for that other exit. 

I wanswer 

C 

Figure 5-36. Multi-exit program configuration with exit condition explicitly 
annotated 

The condition or event e under which the exit occurs is directly displayed 
for more clarity and better understanding: 

When there are more than two exits, these can be accommodated by 
another configuration (Figure 5-37), analogous to the CASE structure. 

Box A in Figure 5-37 represents, for example, the way end-of-file and 
file-error conditions are actually treated in programming languages such as 
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A a - * 

aanswer I 

I C z 

Figure 5-37. Multi-exit CASE-like configuration with exit condition explicitly 
annotated 

FORTRAN. Using the configuration shown permits file input modules in 
such languages to take a structured appearance not otherwise achievable. 

Normally, I draw the collecting node of CASE and IFTHENELSE 
constructs directly under the bottom vertex of the decision symbol. 
However, the exits in Figures 5-36 and 5-37 are unusual exits from a 
module, so I do not. Normal flow is straight down. 

Looping structures could similarly be extended by this technique to yield 
the four configurations of Figure 5-38. However, the case for permitting 
such structures is a weak one, because the configurations in Figures 5-36 
and 5-37 serve to bring the design back into a structured form. Such 
structures do not satisfy the criterion "the need is clear and desirable, or 
unavoidable". I shall not include them, therefore, in the set of permissible 
program structures. 

Structures (a) and (d) of Figure 5-38 represent program examples that 
endlessly process streams of input data until the data quality falls below a 
specified event e, at which time some alternate procedure is invoked. 

Structure (b) represents a program A in which e senses an abnormal 
condition: B is a recovery module that initializes A for another try. 

Structure (c) could find application, for example, when information is 
being inserted at a terminal by A for processing by B. If e detects an error, 
the program returns to A for correct input; otherwise, it continues. 
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(a) (b) 

A A 

Cel (d)
 

A A 

Figure 5-38. Conceptual looping configurations for multi-exit structures 
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5.5.3 Hierarchic Expansion of Multi-Exit Modules 

The configurations in Figures 5-36 and 5-37 certainly satisfy the first four 
criteria for extensions to the basic proper structures, at least when viewed 
macroscopically. But what happens when a multi-exit function (box) at one 
level expands (to a flowchart) at the next hierarchic design level? 

Using top-down hierarchic-expansion methodology, one starts the design 
of the module at the next level with a functional description of the module 
and the conditions under which the several exits occur. He then proceeds 
to design an algorithm to perform the intended action using the usual 
canonic structures. In addition, he perhaps finds occasion to use one of the 
extended configurations. At some point then, he breaks away from proper 
program constructs to divert the flow of control to the alternate module 
exit(s). He does this by replacing a box normally appearing in a structure 
by an exit symbol, as shown in Figure 5-39. 

The resulting flowchart has one normal (structured) exit point, and one 
or more extra-normal (unstructured) exits. It is worthwhile pointing out 
again that the extra exits may derive from perfectly normal, non
pathological events. For example, when reading data from a file, it is a very 
common practice to read until an end-of-file indication occurs. Hence, the 
alternateexit from a box labeled "input from file" taken when the end-of
file occurs cannot be said to be an "abnormal" event. I shall refer to it 
rather as a paranormalexit (para from Greek meaning "beside"), to 
differentiate it from the (normal) exit taken after the more usual, stated 

S 	 to structured 

termination 

to structured unstructured unstructured 

termination termination termination 

Figure 5-39. Modes of generating multiple exits in otherwise structured programs 
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function (reading elements from the file) has taken place, and from a truly 
abnormalexit (one in response to an abortive event). 

Paranormal events' thus lie between the normal and abnormal; they are 
the simple "alternate exits" that should be allowed in the software 
designer's bag. They will permit him, among other things, to create 
modules which can recover efficiently from minor failures in the program 
or from erroneous input data. 

On the flowchart of a multi-exit module, several occurrences of each 
paranormal exit might appear, as depicted in Figure 5-40. How does such a 
flowchart stand in relation to the criteria I gave earlier? The flow through 
the chart does not appear disorganized, nor do any of the first four criteria 
seem violated; some branches just terminate early, back to an activity 
defined and assessed to be correct at a previous hierarchic level. The 
expansion of a multi-exit symbol as a separate flowchart thus does not seem 
objectionable according to the given criteria, at least whenever the 
invoking events are unavoidable or when an early exit is clearly desirable. 

However, if a multi-exit chart such as that in Figure 5-40 were to 
replace its flowchart symbol at the previous level in the hierarchy, the new 
expanded chart would have crossing flowlines. A simplified case of this is 
illustrated in Figure 5-41. 

Non-planar flowcharts are particularly annoying to anyone trying to 
understand a program, because crossing flowlines detract from readability, 
reduce clarity and understanding, impair assessment of correctness, and 
attack the program organization generally. Flowcharts with on-page 
connectors to avoid the crossings are no better. Programming conventions 
that can lead to such difficulties are of questionable utility and are clearly a 
violation of the criteria I stated earlier. 

The violation comes as the result of substituting the flowchart with 
paranormal exits back in place of the simple box at the earlier level. 
Neither of the flowcharts-that with the multi-exit box, nor its expansion at 
the next design level-is objectionable on a separate module basis. For 
example, there is no objection to having Figure 5-41 be the next-level 
embodiment of box A in Figure 5-37. But there is objection to substituting 
Figure 5-41 for box A in Figure 5-37 because then the flowlines become 
jumbled. In Chapter 7, 1 shall reconsider this issue in the code for such 
modules, since flowlines in the code tend to be less visible than they are on 
flowcharts. 
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entry 

eexi t 

exit 2 

noma 
exit 1 

normal
exit 

Figure 5-40. Possible expansion of a module with two extra-normal exits 
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-cross 

I I
 
flaw] ne 

extra-normal 

Figure 5-41. Crossing flowlines can-appear when the flowchart of a multi-exit box 
replaces the box 
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The exit points of canonic structures, coded or floweharted, are readily 
located, because they invariably either appear at the bottom or result as 
the immediate consequence of the loop test at 'the top. Logical flow in 
nested structures having exits somewhere in the middle is naturally going 
to be harder to read and follow, even if the flowchart remains planar. 
Hence, even if flowlines don't become jumbled as one flowchart replaces 
its box at the preceding level, the resulting chart is very apt to be less 
readable, because of the lack of uniformity in substructure exit 
conventions. The lesson here is that paranormal exits from canonic 
structuresshould be used sparingly. 

Canonically structured flowcharts at one hierarchic level can replace a 
striped symbol at the preceding level without violating any of the criteria 
given earlier. But in order to avert such difficulty with the extended 
structures, one must accept the following guideline: Do not redraw 
flowcharts at one level, substitutingflowcharts from the next level for 
multi-exit striped modules. Fortunately, this restriction is superficial in a 
top-down design, because flowcharts are developed from striped symbols, 
rather than vice-versa. I discuss the. implications of this philosophy upon 
coding modules with multiple exits in Section 7.1.2. 

5.6 ABNORMAL TERMINATIONS OF STRUCTURED 
PROGRAMS
 

The programming structures discussed so far extend structured
programming techniques to cases where programming normal events using 
canonic structures could prove counter-productive. However, there may be 
abnormal contingencies encountered during a top-down design that may 
not have been fully identified at earlier levels. In order for the program to 
perform correctly, these abnormal situations must be dealt with, and 
hopefully not by redesigning the previous levels. 

For example, it may be known intuitively ahead of time that some 
arithmetic operations can result in overflow-errors under certain (perhaps 
unknown) input conditions. But it may not be known, until an actual 
algorithm is designed, just where the overflows will occur, or what the 
input conditions that cause them will be. 

In other cases, there may be knowable, specifiable contingencies that 
represent abnormal departures from the program's normal functionings, 
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which the program must respond to (or recover from). A decision table (see 
Chapter 8) drawn up for this program would likely classify such abnormal 
conditions into the "ELSE-rule" category-all cases not specifically defined 
by the program's intended behavior under normal, error-free input. 

In some cases, recovery procedures can be instituted by the program 
itself; in others, operator intervention may be required. Different types of 
abnormalities will conceptually require entirely separate recovery 
procedures. For example, a program which generates a report from several 
files may conceivably be asked to complete the report because some 
identifiable parts of the report may yet be useful, even though one of the 
files continues to be read occasionally in error. However, in the same 
program, execution may be halted and control returned to the operator if 
one of the files cannot be found. 

Abnormal exits from many unstriped modules are often overlooked 
because the abnormal exit is implied in the code for that module. A 
flowchart box labeled "A=8+C" would, for example, be coded in FORTRAN 
as "A=8+C"; but if Aand Bare large enough, an overflow trap automatically 
kicks the control to some error-handling procedure. Yet these connections 
are seldom put on the flowchart. Indeed, if such implicit actions were 
required to be drawn onto flowcharts, as in Figure 5-42, few "structured 
programs" would exist. And imagine all the confusion trying to follow the 
jumbled mess of lines! 

A similar statement holds concerning abnormal terminations of striped 
modules. In order for us to be able to design and program using what 
appears to be structured programming techniques, it is usually necessary 
for us to suppress the flowchart connections for abnormal situations, at 
least down to that design level where an abnormal event is sensed explicitly 
and an explicit branch to the recovery procedure appears. But if program 
modules (unstriped, as well as striped) may have abnormal contingencies 
whose connections may not appear in an explicit form at a given design 
level, then program response can only be fully and readily assessed if the 
conventions for suppressing the connections are easily remembered, fully 
understood, and rigorously adhered to-

Of course, it may be entirely possible that a program can invoke a 
recovery procedure and return to normal processing in a purely structured 
way. Such cases, even though induced by abnormal events, nevertheless can 
be handled by the normal- and paranormal-exit structures already 
discussed. It is the others that must be covered by the convention. 
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The following rule for displaying abnormal terminations seems, to me, to 
be most in keeping with the first four criteria given earlier: Flowchart 
lines showing abnormal terminations exiting from modules may be 
omitted at all hierarchic levels beyond that at which the recovery 
module first appears on a structured flowchart; this higher-level 
flowchart will also show the abnormal-exitflowlines from the modules 
(within which unstructured exits occur) to the appropriate recovery 
modules. Such omissions at later levels are permissible, provided the 
rulefor such exits is clear,easily remembered, and rigorously adheredto. 

Figure 5-43 depicts a chart at which a particular abnormal-termination 
first appears. The recovery procedure appears as a module (here named 
RECOVERY) executed whenever the abnormal error event occurs in later 
levels. The exploded views of striped submodules of B being aborted do not 
show either the ezror condition or the module termination symbol labeled
"RECOVERY" unless there is an explicit need to do so (e.g., when error is 
actually tested as an unstriped module), or unless showing them contributes 
to readability, understandability, assessment of correctness, etc. As the 
latter of these represents an optional case, the abnormal exit can appear 
merely as a comment, as shown in Figure 5-44. 

true false 

AuA+T, VE 

-
A=B+C OVER - -' 

na I=N ToRecoveryOverflow 

yes 

Figure 5-42. Implicit abnormal contingencies in asimple "structured" program 
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A 

I -

Figure 5-43. A program A THEN B, in which an occurrence of error during the 
execution of B Initiates the RECOVERY procedure (if no recovery under criterion c 

is possible, control returns to the operator) 
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'SUbmodule 

Expicit references 
Sto error and 

Io B 
VRECOVERYABOR


This module 
may have 

Anralerror exits to 
ECOVERYRECOVERY RCVR
also upon error 

Otonoral exitncs 

Figure 5-44. Notation for abnormal module terminations at levels deeper than 
RECOVERY
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5.7 LABEUNG FLOWCHART EXITS 
There is obviously a need for correct and consistent labeling of the exit

terminals of a module flowchart, so that the reader can tell immediately
and with certainty whether itis a normal, paranormal, or abnormal 
subprogram exit, or a subroutine return. Further, he must be able to locate
the procedure next to be executed, following the exit easily and 
unambigously. 

The conventions summarized in Figure 5-45 (of which only a subset may
actually be operable within a given system) contain a type designator
within the terminal symbol, and in some cases, an additional number 
designator that labels the outcome. This number, denoted by n in the 
figure, can be optional whenever all outcomes are indistinguishable to the
preceding flowchart level- The number becomes mandatory if outcomes 
are distinguishiable. The normal exit of a flowchart need not be given an 
outcome number, but is always assumed to be labeled "0". The CRISP 
(Control-Restrictive Instructions for Structured Programming) language
(Chapter 7) implements such paranormal EXIT and RETURN by setting an 
OUTCOME flag to n prior to resumption at the previous level. This flag can be 
tested to determine appropriate action, as in Figure 5-46. 

(a) Program termination. 
Return control to 
system. 

(b? Program termination. 
Return control to 
operator-

(c) Subprogram normal 
termination. Return 
control to invoking 
module at preceding 
design level. 

SYSTEM STOD
 

(d) Subroutine normal 
 (e) Paranormal exit. (f) Abnormal exit.
termination. Return Return control Return to procedurecontrol to calling to previous level that has flowline
module with outcome with outcome flag labeled tat someflag set to n. set to R. earlier design level. 

Figure 5-45. Module termination symbol annotation conventions 
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(a) MODULE with paranormal EXITs 

.DULE
 

EXIT 

n 
>. 

(b) CRISP method. 
MODULE paranormal 
EXITs set OUTCOME 
flagtovalueof EXITnumber MODULE 

0 

+OUTCOME 

* n 

Figure 5-46. Paranormal EXITs and RETURNs 
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5.8 SUMMARY 
I have approached "structured programming" not as a coding 

methodology in this chapter, but rather as a flowchart design discipline. By 
doing so, I have not had to consider how the flowchart topologies translate 
-into any particular programming language. Ultimately, of course, codability 
of the flowcharts has to be addressed, and I do so in Chapter 7, showing, by 
the way, that coding can also take a highly structured form. 

I do not wish to have the reader believe that I necessarily advocate the 
use of flowcharts as the primary expression of the procedural design of a 
program. Whether this should be the case or not depends on W.,hether 
flowcharts are economically supportable by the programming system. 
However, they do form excellent tutorial aids for my present purposes, and 
that is the principal reason I have used them thus far. In Chapter 7, 1 will 
show a mathematical equivalence between flowcharts and CRISP code 
structures, and thus in Chapter 17, I am able to discuss the components of 
a programming support system that makes the design documentation take 
the most useful, desired form. 

Upon inspecting a variety of programs, one is very apt to see many 
programs that look like "structured programs" because they religiously 
adhere to the canonic restricted-control structure, but which, on closer 
inspection, are quite unreadable and contain bugs. One is also apt to find 
programs that look "unstructured", but which are quite understandable and 
entirely correct. The final measures of quality and readability of a 
design are still inherently dependent on human ingenuity. 

To accommodate some of the inherent difficulties associated with 
"canonic" structured programming, I have introduced additional structures 
to increase programming productivity. These structures permit efficient 
designs of programs that must terminate their normal activity to initiate an 
other-than-normal activity. 

The next chapter carries structuring one step further, into the realm of 
programs.that may contain interruptible or concurrently executing parts. 
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Problems for Chapter 5 

5-1 Structure the flowchart below using only the extended canonic 
structures shown in Figure 5-32: (a) by Mills' algorithm, and (b) by 
another method of your invention. 

A
 

E F
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5-2 Prove that the structured flowchart generated by Problem 5-1(b) has 
the same function as the given flowchart. Make as rigorous a proof as 
you,can.
 

5-3 Structure the flowchart below using only the extended canonic 
structures of Figure 5-32: (a) By Mills' algorithm, and (b) by another 
method of your own invention. 

A 

C4 

Note: This flowchart !s 
Waite's template-matching
algorithm. The numbers within 
the on-page connectors correspond 
to Waite's "rules". See "The 
Mobile Programming System
STAGE2", Comm ofACM, Vol 13,
No. 7, pp. 415-421, July 7970. 
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5-4 Prove that the flowchart of Problem 5-3(b) has the same function as 
the givei flowchart 

5-5 Draw a structured flowchart for a subroutine that uses recursion to 
compute n!. Prove that the program function is actually n! for all n>O. 
What does the program do if n<0? 

5-6 Flowchart the skills inventory program of Problem 443 as a structured 
program using hierarchic levels of flowcharts, such that each flowchart 
fits on one 8-1/2 X 11-in. page and with no more than 10 boxes per 
page. Number flowcharts as discussed in Section 5.1.3.2. 

5-7 Prove in Step .10 of Mills' algorithm that the stack depth is minimized 
by placing the largest flowchart on the stack first. 

5-8 Prove that structure flags are n6cessary only in loops that require more 
than one test of the exit condition within the loop and in which the 
processing of data subsequent to one end test invalidates the results of a 
later retest. 

5-9 Flowchart the first level of a program that inputs data from a 
sequential data file. The format of the data on the file and the structure 
to hold the data in memory are to be defined at later levels of the design. 
Account at this level, however, for the error and end-of-file traps that 
occur when a read is attempted. 

5-10 Show that IFTHENELSE can be made using two DOWHILE 
structures, one following the other, by the introduction of a flag variable 
to terminate the loop selected after one iteration. 
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VI. REAL-TIME AND
 
MULTIPROGRAMMED STRUCTURED
 

PROGRAMS
 

The program structures in the previous chapter provide a natural means 
for writing non-real-time programs in a top-down way. But real-time, 
interrupt-actuated programs and multiprograms often have many (perhaps 
implicit) entry points, many exit points, perhaps simultaneous computa
tions, etc., and so these are inherently much harder to understand than non
real-time programs (which are usually bard enough, even when aided by 
the structure requirements imposed in the last chapter). There obviously 
needs to be an extension of the top-down structured design and production 
techniques to such programs. This chapter addresses that need. 

The physical constraints of the computing system and the complexity of 
the programming process might at first seem to be of secondary 
importance to the computational problems to be solved. Yet, programming 
efforts typically are dominated by the human incapability to comprehend 
the total picture of what is really going on in the computer on an instant
by-instant basis. 

165 
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A single computer with but one central processing unit can only process 
instructions sequentially, whether on an interrupt-priority, queued-priority, 
or background basis. We normally think of a computation as a set of 
operations applied to data to solve a given problem, and' we know that 
these operations must be carried out in a certain order to ensure that the 
results are correct. We realize that many computational requirements do 
not imply a strict operational sequence; some of the operations, to be sure, 
must be carried out before others, but others may be carried out in 
arbitrary order, or in parallel, if there are other processors available for 
concurrent computation. 

Sequential processes thus closely reflect how we think. But a computer 
must often be called on, for efficiency, to process certain operations out of 
their normal sequential order. For example, suppose two independent user 
programs, time-sharing a computer, are regularly interrupted by the 
system executive, to deactivate the one currently active and to pass control 
to the inactive one. In this example, the computer sequences back and 
forth between the two processes (which could be operated concurrently), 
and, in fact, the two programs appear to each user as if they are being 
simultaneously processed (except for the speed factor). Whether 
concurrent processes are multiplexed or multiprocessed, many of the 
attendant programming problems are much the same. 

This chapter also addresses some of the inherent differences between 
programming real-time and uon-real-time processes. 

6.1 ATTRIBUTES OF MULTIPROGRAMS 
In the remainder of this chapter, I shall refer to operations, processes, 

and computations. By way of review (Chapter 2), an operationrefers to a 
finit-tine execution performing a time-independent function based on its 
input. In this sense, each instruction, and indeed each of the non-real-time 
programs of the previous chapter, may be viewed as operations. A process, 
on the other hand, refers to a sequence of such operations performed one 
at a time. Two or more processes that have overlapping or interleaved 
operations are concurrentprocesses. 

6.1.1 Program Interrupts 

According to ANSI vocabulary standard definitions [71, an interrupt is 
the stopping of a process in such a way that it can be resumed. A 
particular type of interrupt is a trap (Figure 6-1), which is an 
unprogrammed conditional jump to a known program location, automati
cally activated by hardware with the location from which the jump 
occurred recorded. By this definition, a process that has placed a processor 
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in a stopped state awaiting input data before continuing has been 
interrupted, but not trapped. 

Trap interruptions to normal program sequence can be classified into 
three categories: (a) interrupts caused or actuated by specific internal 
operations in the program, such as overflow, underflow, input error, etc., 
(b) interrupts resulting from external contingencies in response to internal 
program operations, such as disk or magnetic tape endfile, input buffer full, 
etc.; and (c) interrupts resulting from external events not prompted by 
internal program operations, but to which the program must respond, such 
as a real-time clock, emergency stop (BREAK), etc. Although a program 
responding to such contingencies is not a proper program, top-down 
procedures can still be developed and applied to aid Jn understanding and 
to provide discipline to the design process. 

The program structures introduced in Section 5.5 of the previous 
chapter are useful in the handling of dedicated or predictable 
interruptions in the normal sequence of operations. Such events, you may 
recall, are indicated graphically by merging the function with the event 
actuating the interrupt, as exampled in Figure 6-2. The resulting control 
logic is then similar to the IFTHENELSE structure. 

Particularly useful examples of this structuring convention are the 
handling of disk and magnetic tape end-of-file indicators, as shown in 
Figure 6-3. 

The use of such program structures promotes top-down readability and 
simulates the form of a proper program in the design. Either subprogram I 
or subprogram 2 is executed, but not both; either may result in other-than
normal termination procedures discussed in the previous chapter. As will 

Interrupt 
location 
saved 

[ Reentry to same 

point in 
PROGRAM 

Figure 6-1. Hardware trap event causes PROGRAM interruption to service 
PROCEDURE
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actua;ting trap 
process> 

trap*no trap occurs 
occurs
 

subprogram 1 subprogram 2 

Figure 6-2. Dedicated-trap program structure 

(a) (b) 

no 6 end-c f-file end-of-fileend-of-fie no end-of-file 

subprogram 1 subprogram 2 subprogram I subprogram 2 

Figure 6-3. End-of-file trap program structures 

be shown in the next chapter, the program code for these constructions can 
also appear to be structured in a highly organized way. 

6.1.2 Multiprogram Interrupts 

Interrupts that cannot be made to fit the structure illustrated in Figure 
6-2 (or similar extensions of those given in Section 5.5) yield truly improper 
programs. It is specifically this type of interrupt that causes problems in 
understanding real-time programs. Obviously, a subprogram actuated by a 
real-time trap is manipulating the computer state in some way which can 
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affect operations in the interrupted program. Programs having this type of 
interrupt I shall refer to as multiprograms. 

Multiprogramming can easily be an order of magnitude more difficult to 
understand than mere sequential programming because of the interruptable 
aspects of process execution and because of the possibility that, once a 
program has been interrupted, its pertinent data state can be changed in a 
damaging way before the eventual resumption of its previous activity. 
Clearly, such a difficulty must be averted at all costs. 

A typical multiprogram interrupt is illustrated by the structure in Figure 
6-4. Once the interrupt occurs, a subprogram executes, and control returns 
to the point in the program where the interrupt occurred. If there is a 
functional invariance between the interrupted segment and the interrupt 
program, then the two segments could well have been executed 
independently by a parallel processor, if one were available and if the 
difference in execution speed were immaterial. Therefore, multiprogram
ming is, in many ways, a more general concept than concurrent 
programming (multiprocessing) because the program segment and the 
interrupt subprogram can be viewed as potentially concurrent. Certainly, 
the inherent problems of concurrent programmingmust be averted as a 
subset of the problems attendant on multiprogramming. 

The structure to be imposed on real-time concurrent processes is 
modular partition into sequential activities which can be programmed 
separately and then combined for execution in a way that allows for 

trap 

subprogram 

CLEAR 

Figure 6-4. Multiprogram interrupt (returns 
after execution of subprogram to point 
where interrUption occurred) 
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precise assertions concerning the data space before and after each activity 
[42]. 

In order for real-time sequential programs to simulate true concurrent or 
parallel structures, any process interrupted by a multiprogram trap must 
be permitted, at a later time, to continue on to its normal termination. 
Subprograms actuated by such, traps must thus eventually return control 
after execution to the point where the interrupt occurred (or else pass 
directly to an abnormal termination point). Three permissible forms are 
depicted in Figure 6-5. 

Interrupt structures that exit to other points in the program violate the 
top-down aim of structured design. They, therefore, must be forbidden. 

The only conceptual differences between structured real-time multipro
grams and programs with structured concurrent segments are imposed by 
time-response constraints and interrupt priorities. In a hard-real-time 
situation, interrupts may be triggered by external events which require 
response within a very short time, before a certain condition evaporates. 
Parallel programs may not need to react in the same hard-real-time
constrained way. Furthermore, the priority of a trap subroutine ascribes a 
level of CPU privilege to that routine; the multiprograns may thus 
communicate or share resources in a slightly different way than parallel 
programs do. 

ta 
trapcra 

subprogram subprogram subprogram 

CLEAR AABRT 

resta ogic and return 
dfrectly, or return by
priority queue 

Figure 6-5. Multiprogram-interrupt structures 
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6.1.3 Resource Sharing 

Certain resources, by their very nature or by the nature of the operation 
with which they are accessed, must be dedicated exclusively to only one 
operation at any given time; these I will call devoted resources. Other 
resources, which I call mutual resources, can be engaged in simultaneous 
operations when certain stated limitations are met. 

Memory cells form one example of devoted resources. The reader can 
well appreciate that it is impossible to make meaningful statements about 
the net effect of parallel computations which are able to change the 
contents of a shared cell location simultaneously (or change and read it 
simultaneously). Rather, when one process is storing, other processes must 
be excluded from accessing that location in any way, storing or reading. 

A physical resource that interconnects producing and consuming 
processes is a buffer. If it possesses the capability of holding simultaneously 
many products to be consumed, the buffer can be viewed as a mutual 
resource of the processes involved. The resources being buffered are said to 
be temporary resources. 

If one process stores data into, and another process retrieves data out of, 
a first-in first-out buffer (queue), then simultaneous use of the buffer by the 
two processes is permissible except when the buffer is empty (and possibly 
when it is full). Hence, the buffer is a mutual resource of the two processes 
under the stated limitations, and, in this case, the mutual resource is 
composed of devoted resources (memory cells) as subunits. 

A mutual resource need not necessarily be made up of devoted subunits. 
For example, a read-only memory may service any number of parallel 
processes without any doubt of the theoretical (as opposed to implemen
table) outcome of accesses. However, any mutual resourcewhose state is 
capable of being changed must contain devoted subunits to comprise 
that part of the resource whose state is alterable. 

6.1.4 Concurrent Program Structure 

Two or more processes are concurrent when their operations overlap (or 
interleave) in time. Processes result in computations, which are applied to 
resources (CPUs, memory, files, magnetic tapes, printers, etc.). 

On a flowchart, concurrent processes are indicated as illustrated in 
Figure 6-6. The parallel lines at the top and bottom of the figure represent 
the limits of concurrency. Entering the top of the figure, execution is 
sequential; then P1... P, are executed concurrently (or interleaved); and 
after all the concurrent processes are complete, the overall process 
continues sequentially again at the bottom. The upper line is sometimes 
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called fork, and the lower, join [25]. Others have called these cobegin and 
coend [431. I shall use the former. 

Each of the processes F, depicted in Figure 6-6 may itself contain forks 
and joins, and so on, iterated to any desired level, as illustrated in Figure 
6-7. 

Figure 6-6. ANSI-standard flowchart [8] representation of concurrent-mode 
processes PI,..- ,Pn 

A 

B 

D F 

Figure 6-7. Nested concurrent processes (processes A and B are functions 
executed in sequential order to form process P1;the function C is executed prior 
to the initiation of the parallel processes D and E; together these form process 

P2;and P1 and P2 are executed in parallel) 
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Parallel processes generally progress at independent rates, although 
operations in one branch of a fork may be synchronized to mutually 
exclude or precede operations in another. Inasmuch as parallel processes 
represent simultaneous operations, and a join returns computations to a 
sequential state, it is clearly impossible to recontinue the sequential mode 
simultaneously at two different points. Furthermore, parallel processes 
cannot join and proceed with the sequential mode until all the branches of 
the fork terminate, either normally or abnormally. 

In keeping with the philosophy given in previous parts of this work, it is 
reasonable, as a structure requirement for parallel processes, to forbid one 
process from disrupting the action in a parallel branch of the fork except 
when that disruption is an abnormal termination of the entire parallel 
structure. Each process, therefore, eventually reaches its join by normal 
termination, and a set of parallel processes terminates normally only when 
all of its component processes have normally terminated. Processes 
reaching the join earlier than others must wait until all the others have 
reached the join. 

For concurrent programs, there are certainly other control-structure 
topologies that can be dreamed up and that some might even find useful. 
However, none appear in this work. If there was an advantage in the use of 
structured control flow in sequential programming, this advantage becomes 
almost a necessity in concurrent programs, insofar as program reliability is 
concerned. The doubting reader is referred to the work of Brinch Hansen 
[42]. 

6.1.5 Consistent Concurrent Processes 

Concurrent processes that ,operate on non-overlapping sets of variables 
or physical resources are said to be disjoint.A simple example of a disjoint 
process is illustrated in Figure 6-8. Ten records to be input from a card 
reader are to be output on a line printer. Input and output resources are 
separate, and hence may be used simultaneously. However, in order to 
keep the records themselves from being a shared resource, two separate 
record buffers, RODIN and RCDOUT, are used; RCDIN is copied into RcDOUT 
during a time when the card reader and line printer are not in parallel. 

Disjoint processes are an example of a somewhat wider class of 
consistent processes called non-interactingprocesses. A set of concurrent 
processes is said to be non-interacting when resources can be used by each 
concurrent process without synchronization. 

For example, non-interacting processes P, and P2 may both read a 
variable v so long as neither changes its value; but if P, changes v,then P2 

may neither read nor change it with consistency (unless synchronized). In 
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LI ST
 

Seti = I 

Input Record 
into RCDIN ' 

Copy RCDIN 
to RCDOUT 

Print 
RCDOUT 

Input Record 
into RCDIN 

Set I=lI+ I 

yes 
I< 10? 

Print 
BCE) OUT 

STOP 

Figure 6-8. Card-listing program with concurrent input and output 

the former case, P, and P2 are non-interacting, although not disjoint; in the 
latter, P, and PFare interacting. These situations are shown in Figure 6-9. 

Other processes, which can access fand change the state of common 
variables or other shared physical resources, are said to be interacting. 
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resource 

resource 

(b) Non-Interacting 

P, resource DIt, P 

(c) Interacting 

P, resource P2 

Figure 6-9. Concurrent process (wide arrows indicate data connectivity between 
process and resource) 



176 Real-Time andMultiprogrammedStructturedPrograms [CHAP.6 

Interacting processes must make some provisions for excluding certain 
operations on shared resources from simultaneous occurrence. This 
principle is called mutual exclusion. 

When the resource to be accessed on a mutually exclusive basis is a data 
structure (e.g., variable, array, queue, record, stack, etc.), then the process
using the structure is said to be in a critical region with respect to that 
structure. 

The work of Dijkstra [43] indicates that mutually exclusive use of a 
shared resource among concurrent processes of equal priority must be 
arbitrated by a program or device external to the processes involved and 
having higher priority. Such a program or device (or combination of the 
two) is called an arbiter. Arbitration of a shared resource between one 
process and an interrupt process with higher priority, however, may not 
need higher authority to guarantee mutual exclusion (see Section 6.4.3 later 
in this chapter), but can be handled within the higher priority process at a 
loss of program structure. 

It is the job of the arbiter to assure that resources which should be 
devoted to their operations are actually devoted. That is, it must be able 
to enable certain operations involving shared resources and to exclude 
others in time. The scheme by which the arbiter constrains the ordering of 
operations in time is known as synchronization.Interacting processes must 
be synchronized if they are to be consistent. By making arbitration a 
service of the operating system, program structure of the type previously 
described is possible. 

6.1.6 Program States 
Before addressing what is needed to make concurrent programs 

synchronizable, let me mention that a process may be in any one of a 
number of states. A typical process state diagram appears illustrated in 
Figure 6-10. The UNINITIATED state is, of course, that state before the 
process has begun; upon initiation, the process enters the RUNNING state, 
during which time it performs its programmed computations. At various 
times, it may enter a WAITING state until certain events can take place in 
other processes; then it continues running. Finally, it exits to the 
TERMINATED state. During the time it is running or waiting, however, it 
may happen that other processes may require, and thus be permitted, to 
preempt some or all of the resources allocated to the current process. In 
such cases, the process may be said to enter a DORMANT state until such 
time as its needed resources can be returned. 

During the WAITING state, CPU time is not required; hence, 
preempting the CPU resource and giving it to another process during this 
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continue 

RUNNINGreturn to waiting 

termination 

return DOMN
 

. _ to running--

Figure 6-10. A process state diagram showing five states and actions that cause 
the changes in state 

time does not really preempt a needed commodity, so the process need not 
enter what I have called the DORMANT state. However, if some of the 
other resources need to be reassigned during WAITING and are actually 
preempted, then the processor does enter the DORMANT state. 

The scheduling of resources on a preemptive basis and control of the 
DORMANT state is generally the province of a higher-level privileged 
process (an executive), beyond the scope of the present discussion. I shall 
only address the fundamental needs attendant to synchronization and 
arbitration (see Section 6.4). 

6.2 MULTIPROGRAM DESIGN REQUIREMENTS 

In real-time program development, the designer sets the interrupt policy 
and subprogram queueing strategy, determines the individual subprogram 
durations, and verifies that the operating program can meet its real-time
event deadlines. The analysis of event timings often influences what 
computations need to be made, as well as the way they need to be 
programmed, and, of course, the reverse is also true. However, the 
structured methodology simplifies the design job by separating proofs of 
computational correctness from proofs of timing correctness. 
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6.2.1 Consistent Program Constraints 

If there are errors in a program, there must be some facility for 
diagnosing what they are and where they occur. Error detection at run 
time is practically impossible unless programs have a functional behavior 
to permit errors to be reproduced under controlled circumstances. In 
addition, no system can be said to be operating 'correctly when its 
processes are "deadlocked" in attempting to perform their intended 
functions. 

Program design methods should therefore be constrained so as "to 
encourage these two qualities in programs, as a first step toward achieving 
correctness. I will refer to programs that satisfy the following two 
constraints as consistent programs: 

a. 	Repeatability: The results of all computations must be reproducible 
in a practical sense in spite of logical errors, which may be present. 

b. 	Deadlock-Free: It must not be possible for the program to reach a 
state in which two or more concurrent processes are waiting 
indefinitely for conditions that will never occur. 

As a direct consequence of the repeatability requirement, Hoare [44] has 
shown that two more provisions are necessary for consistent concurrent 
programs: 

c. 	 Speed-Independence: The results of computations in one process 
must not be dependent on the rate at which computations are made 
in a concurrent process. 

d. 	Resource Protection: Data and physical resources of each process 
must be guarded against inadvertent or malicious interference by 
other processes. 

The latter of these seems rather obvious, but it is by no means a trivial 
commodity to achieve. Many present-day computers have lock-out features 
that can separate instruction and data sets of processes from each other and 
from other processes. Other computers do not. In either case, there must 
be great care in overseeing the allocation of common resources. I .shall 
address some aspects of process protection in a later section. 

The necessity of the speed-independence provision may appear 
surprising at first; we normally envision real-time concurrent processes as 
communicating data back and forth and using resources in a very time
dependent way. However, it is extremely difficult for us to comprehend 
the combined effects of a large number of intricate, interacting activities 
that evolve nearly simultaneously at independent rates. On the other hand, 
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our understanding of what a single sequential process does, will not 

generally depend on its actual execution speed. All our understanding 
requires is the knowledge that operations are performed one at a time, and 
that certain assertions concerning the data space can be made before and 
after each operation, 

Because the dynamic behavior of external events is possibly very 
unpredictable, and because of the lack of influence that an operation can 
exert on its own execution rate (which itself may be dynamic, if processes 
are interleaved in time), and because of the general inability of humans to 
understand concurrent processes in terms of their absolute speeds, the 
necessity of speed-independence is unmistakable. Besides, speed-indepen
dence does not prevent time-dependent interaction among concurrent 
processes; it just makes it possible to program assuming that the responses 
to given inputs will be the same, regardless of how slowly or quickly the 
computations are carried out. 

Obviously, when incoming events occur too rapidly for the program to 
respond, the program output is again likely to contain unreproducible 
errors. We may, therefore, add another necessary condition for consistent 
programs: 

e. DeadlineIntegrity: Processes must meet appointed timing deadlines. 

Programmers who knowingly violate consistency requirements, do so 
with great risk. They must do so knowing, that while they may well reduce 
a program's overhead once it is correct and working, it may not be possible 
to reproduce errors, and hence, some errors are going to be difficult, if not 
impossible, to fix. 

Some may argue that all errors can be perfectly reproducible in any 
program if only the program could be subjected to the identical input 
sequence, timing, and process interaction in effect when the error was 
detected. But here the human aspects again become a factor, it is too big a 
chore for human intelligence to keep track of all the simultaneous goings 
on in a large real-time system, much less design a program that can react
differently to each of the slightly different situations which can occur. 
Therefore, to the extent that errors can be identified on a practicalbasis, 
those events causing time-dependent errors must be classified as non
reproducible. 

I thus limit my concern in the remainder of this monograph toward 
generation of programs in which computations can be verified indepen
dently of other concurrent operations. 
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6.2.2 Resource - Arbitration Requirements 

Where multiprocessors are concerned, there must be a hardware 
arbiterto provide the mutually exclusive accesses to each unit of devoted 
resources (resources shared among processors and accessed one at a time). 
In simple computers with concurrent CPU and I/O processors, the arbiter 
is usually a simple device that "steals" infrequent memory cycles from the 
CPU during I/O operations, thus interleaving CPU and VO operations in 
time. 

Inasmuch as arbitration is a process capable of changing the state of a 
shared devoted resource (namely, by reassigning it from one process to 
another), it follows that it must act on a privileged basis, taking priority 
over any other processes desiring use of that resource. Each process using a 
devoted resource must go through a procedure (see Figure 6-11) by which 
it: (a) invokes the arbiter to request the resource and waits until the 
resource is granted, then (b) uses the resource, and, finally, (c) invokes the 
arbiter to release the resource. 

The hardware arbiter for parallel processors is more complicated than 
that needed to multiplex a single processor's resources among multipro-

REFQUEST
 
Request resource 

R, wait for 
notification 

Use Resource R rbeorR 

RELEASE
 

Release
 
resource R
 

Figure 6-11. Structured interaction of a process and arbiter (wide arrows show 
data connections between the requesting process and the arbiter) 
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grams. For a true multiprocessor, the hardware arbiter must have 

properties equivalent to the following [42]: 

a. 	The arbiter may be invoked by either of two commands, which I will 

call REQUEST and RELEASE. 

b. 	If the arbiter is invoked while it is BUSY, the process identifier(s) and 

command type(s)are entered in a hardware queue. 

c. 	 f the arbiter is invoked simultaneously by two or more processes 

when the arbiter~is NOT BUSY, and the queue is empty, the arbiter is 

granted to one of them immediately, and the identifier and command 

type of the other(s) are entered in the hardware queue. 

d. 	When the arbiteris granted, a function corresponding to the invoking 

command (REQUEST or RELEASE) is performed, and the arbiter is 

marked BUSY until the function execution is complete. 

e. 	If the arbiter is NOT BUSY and the hardware queue is NOT EMPTY, then 

the next action in the queue is granted. 

f. 	The process invoking the arbiter is placed in a waiting state until the 

arbiter is granted to that process and its command-function has 

completed its execution. 

6.2.3 Resource Protection Requirements 

The simultaneous presence of data and programs belonging to co-existing 

processes requires that something must be done to protect processes from 

each other. In larger multiprogrammed installations, some measure of 

protection comes from services provided by an existing, privileged 

operating system. In smaller applications or applications where an entire 

computer is dedicated to a fixed set of related, hard-real-time tasks, and 

where the operating system is less elaborate, the user may have to achieve 

protection by some other means. 

Guarding against inadvertent (or malicious) destruction of data or misuse 

of any other resource is not easy, and a satisfactory general solution is not 

yet known, to my knowledge. One can, however, identify some of the 

characteristics of the solution. 

Brinch Hansen [42] classifies protection according to two aspects: 

operations and security. Resources are characterized not only by the 

functions and meaning attached to their use, but also by the operations by 

which they are accessed and by the authority to make such accesses. 

For example, suppose that a numerical array with known dimensions can 

be operated upon in several well-defined ways, such as termwise addition 

with an equally-dimensional numeric array. There are unpermissible 
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operations, such as addition with an array having different dimensions. But 
even the permissible addition must, at times, be temporarily banned, as is 
the case when another process is engaged in a permissible operation 
changing some of the array elements. There may also be permanent bans 
needed to guard against malicious processes accessing the array at all. 

Hence, three attendant problems are associated with protecting a 
resource:
 

a. 	Authority recognition. 

b. 	Identification of resources and permissible operations. 

c. 	Checking that operations on a resource stay within its limits of 
integrity. 

Programmers must identify to what extent these three are needed by
their programs, and to what extent the operating system fulfills these needs. 
Any shortcomings must be taken care of by implementing such 
accommodations into the operating system or by inventing accommoda
tions for each potentially interfering program segment. Those accommoda
tions falling outside the operating system domain must become 
programming standards and should be documented as a necessary part of 
the inter-process interfacing requirements. 

At least one language, Concurrent Pascal, combines the concepts of 
levels of access (Section 4.3.2), resource protection, and synchronization 
into a single concept, called a monitor [45]. A monitor is a level of access 
to a shared resource and provides both arbitration among users at run time 
and check of access rights at compile time. A monitored resource can only
be 	accessed via interface functions that hide the resource from the outside 
users; synchronization is implemented within the monitor, and parts of a 
program attempting to directly access any resource within a monitor 
definition are caught by the compiler. 

6.2.4 Synchronization Requirements 
Mutual exclusion of shared devoted resources alone is not suuficient to 

satisfy the concurrency requirements. Other known criteria for proper 
process synchronization include the following [44]: 

a. 	When a devoted resource has been requested by one or more 
processes, it must be granted by the arbiter to one of them within a 
finite time. 

b. 	When a process has acquired a devoted resource, it must eventually 
release it again. 
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c.When a process has requested, used, and released a devoted resource, 
its request for use must not remain in the request queue. 

d. 	While a process is using a devoted resource, it must make no 
assumption concerning the state of any other process with which it 
shares that resource. No assumption concerning the relative speeds of 
the various processes must be made. Processes may even be in the 
DORMANT state when not using a shared resource (as long as no 
real-time deadlines are missed). 

Other additional features are sometimes useful, or contribute to more 
efficient synchronization, but are not required by consistency, such as: 

e. 	The waiting state should not waste CPU time endlessly. (Wasting 
CPU time during a waiting process is sometimes called the busy 
form of waiting.) 

f. 	The arbiter should be "fair" in its policy by which resources are 
granted to requestors. 

The subject of "fairness" in arbitration is entirely application-dependent, 
and will consequently be left open; the discussion in Brinch Hansen [42], 
however, is very informative and recommended reading. 

6.2.5 Requirements for Deadlock Prevention 
A 	 deadlock results when a parallel process lies in a waiting state for 

conditions that will never hold. Deadlocks are also called stalemates or 
deadly embraces. A process in the waiting state cannot transit out of the 
waiting state until another process releases it. Hence, deadlocks occur 
when each of the deadlocked processes is waiting for one of the other to 
act, and all are unable to do so. Deadlocks can involve permanent 
resources (those that can be used repeatedly by many processes, such as 
line printers, card readers, etc.) and temporary resources (ones that are 
produced by one process and consumed by another, such as signals, 
messages, etc.). 

For a deadlock to occur involving permanent resources, it is known [46] 
that four conditions must simultaneously hold: 

a. 	 Sets of permanent resources have been acquired by two or more 
processes for their mutually exclusive use. 

b. The 	deadlocked processes are in the waiting state, awaiting their 
needed, but unacquired, resources. 

c. 	Certain subsets of these resources, which, if reassigned to other 
processes, could break the deadlock, either cannot be released or 
cannot be preempted to the proper process. 
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d. 	 Two or more of the deadlocked processes are capable of acquiring 
their needed resources in partial allocations, and the resources lacked 
by each deadlocked process have been acquired by others. 

The obvious solution sufficient to prevent such deadlocks is to choose 
design rules by which all of the four conditions will not simultaneously be 
true. Negation of (a), of course, cannot be allowed, as it would permit 
simultaneous access to devoted resources (forbidden by the consistency 
requirement). Furthermore, it is natural for processes to wait for a resource 
being used elsewhere, so negation of (b) does not seem feasible, although it 
can be combined with the negation of (c) to form what is called 
preemptive reallocation. 

Preemptive reallocation forces some processes to release resources 
temporarily in favor of others, on a priority basis. Such scheduling is 
sometimes impractical on many resources (such as magnetic tapes, etc.) 
and inefficiert on many others. It sometimes may be required, however. 

The most generally suitable possibility for preventing deadlocks comes in 
the area of proper resource allocation to user processes. The simplest 
technique for allocation that prevents deadlocks is the allocation of all 
resources needed by a process at one time (complete allocation).In such a 
case, joint processes must operate on disjoint sets of resources; if that is 
feasible, it presents a simple solution. However, computational efficiency 
can usually be enhanced by resource sharing, and when that is the case, the 
decreased efficiency engendered by complete allocation is often too dear a 
price to pay for deadlock protection. 

Allocation algorithms exist [42] by which a master arbiter can make very 
flexible use of the system resources. The idea behind such algorithms is the 
allocation of resources in nondeadlocking sets. 

As an example of such an algorithm, suppose P1, F2 , and P3 are three 
concurrent processes that require resources A, B, C, and D. As illustrated in 
Figure 6-12, P1 requires A, B, and C, while P2 requires B, C, and D, and P3 

uses only A. If the arbiter has granted B to P1, it will not then grant C to P2, 
as C will be required to complete P; but it can grant D to P2. Similarly, it 
can grant A to either P1 or P3 because, if given first to P3, then A will only 
be used for a finite time, after which it can be reassigned to P1. 

The arrangement of resources into acceptable non-deadlocking sets and 
the algorithms associated with arbitrating the allocation (both in the 
sequence that resources may be granted to each user as well as which 
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Figure 6-12. Resources A, B, C, D, and processes P1 , P2, and P3 using them 

resources may be granted to him) is a topic beyond the scope of this work. 

I recommend the interested reader to the book by Brinch Hansen [421 for 
further discussions of deadlock prevention by resource allocation. 

Deadlocks may also occur in the use of temporary resources. However, 

in order that a deadlock involve temporary resources, such as messages, it 
is necessary that either a buffer is full and a PUT is being executed, or a 
buffer is empty and a GET is being executed, or both. 

Deadlocks involving temporary resources can be averted if one programs 
according to the following rule [42]: a temporary resource must never be 
produced unless it will eventually be consumed, and a temporary 
resource must never be expected unless one wzll eventually be produced. 
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The following design rules are sufficient to ensure that this stipulation 
holds: 

a. Provide a consistent interface between the producer and consumer 
processes with regard to where the next temporary resource will be 
available. 

b. Design so that, within each process, all operations that produce or 
consume temporary resources eventually terminate. 

c. Provide processes producing temporary resources and requiring the 
return of like or other resources with an empty (buffer) element into 
which the returned resources can be delivered immediately. 

d. Make all communications complete in the sense that, when one 
process has consumed a resource produced by another, the 
consuming process requires no further resource from that producer 
for the current transaction. 

These four rules are not the only sufficient conditions for temporary 
resource deadlock prevention; other sets of sufficient rules can also be 
formulated. It is important that any set of rules proposed for use be known 
to be sufficient, however. 

6.3 SYNCHRONIZATION METHODS 
Synchronization, or the scheme by which the arbiter constrains the 

ordering of operations in time, can be designed, to a great extent, to fit the 
needs of the problem and the limitations of the resources involved. In this 
section, I shall discuss three typical methods: buffering, semaphores, and 
conditional critical regions. 

6.3.1 Synchronization by Message Buffering 

As I indicated earlier, not all shared resources need to be devoted, but 
can be mutual resources between two processes. In the case of cooperating 
processes, where resources are apt to be temporary (i.e., produced by one 
process and consumed by another), there still has to be some physical 
resource (i.e., buffer) capable of holding the product of the producer (e.g., a 
message) until it can be used by the consumer, and the use of this physical 
resource must be arbjtrated. 

The producing process may use the buffer in the cycle 

REQUEST(buffer) or merely 
PLACE (message,buffer) PUT (message,buffer) 

RELEASE (buffer) 
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which will copy the data structure message into the designated buffer. The 
consuming process may similarly use the buffer in the cycle 

REQUEST (buffer) or merely
 
TAKE (mestage,buffer) GET(messagebuffer)
 
RELEASE (buffer) j
 

which removes information from the designated buffer and places it in the 
message structure. 

As I have shown the arbiter calls above, PUT and GE- operate the buffer 
on a mutually exclusive basis, whereas they only need to be mutually 
exclusive when the buffer is empty (and sometimes, when full). The arbiter 
can accommodate such cases by using a second argument of the REQUEST 
call above, as 

REQUEST (buffertop) 

or 

REQUEST (bufferbottom) 

where top and bottom are pointers within buffer. A request for access to 
buffer,top is a request for access to a different data, location than to 
buffer,bottom, except when the buffer is empty (or full, if-circular). Hence, 
the arbiter can exercise mutual exclusion on these different locations 
accordingly. 

6.3.2 Synchronization by Semaphores 
The simplest mode of synchronization is the communication from one 

process to another that a particular event has occurred. The shared 
resource in this case can be a timing signal from one processor to another, 
a program-actuated trap, or a flag to be set by one process and tested by 
another. 

In any case, the temporary resource can be regarded as a simple 
message, and all operations which access or activate that message must 
exclude each other in time in a consistent (error-reproducible) way. The 
only difference between these messages and the ones considered earlier are 
that the messages considered here take a much more primitive form-mere 
occurrences. 

If the communicated event in question can happen more than once 
during the life of a given process, the recipient may need (in order to 
prevent deadlocks) a way of knowing whether the message he is now 
examining is the same as an earlier notification, or is, in fact, a new 
message, informing him that the same event has reoccurred. He has one of 
two alternatives: he can mark the current message himself for later 
identification, or he can establish an agreement with the sender to 
distinguish the messages. 
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But if he marks messages himself, he runs the risk of missing one or more 
messages that arrived during a time he was otherwise occupied. If that risk 
is untenable, he must require that distinguishable messages be sent. 

Dijkstra [43] introduced the semaphore as a simple device for handling 
such communications. In its simplest form, a semaphore S is a data 

structure composed of a variable s whose value is 

s = (number of messages sent) - (number of messages received) 

and a queue q, which contains a list (if not empty) of processes currently 
waiting for the signal. In this form, each "receiving" process "consumes" 
one of the transmitted messages. 

Both the send and receive operations yielding synchronization via 
semaphores access the count variable, and must therefore be mutually 
exclusive in time. The subprograms invoked by the semaphore arbiter in 
response to SEND(S) and RECEIVE(S) requests are similar to those found in 
the generalized resource arbiter (see Section 6.4.2). But, because of the 

simplified nature of semaphores, they can be implemented somewhat 
differently, as shown in Figure 6-13. 

Synchronization via a semaphore takes place as follows. Somewhere in 

the program before forking, s is set to zero and the queue emptied. A 
positive value of s thereafter will be equal to the number of sent, as-yet
unreceived signals; a RECEIVE(S) request thus causes no waiting but reduces 
the value of s. Ifs = 0, more RECEIVE requests have been encountered 
than SENoS; hence, the processes issuing RECEIVES are inserted into the 
queue q and put into the WAITING state until more SENDS occur. When a 
SEND occurs with a non-empty q, a process identifier is immediately 
removed from the queue and the corresponding process removed from the 
waiting state; otherwise, when the queue is empty and a SEND occurs, s is 
augmented. 

The SEND and RECEIVE operations for a semaphore are similar to PUT and 
GET for a message buffer, except that the buffer for a semaphore is realized 
as the count variable. 

6.3.3 Conditional Critical Regions 

It is sometimes the case that a process, say P1, inside a critical region 
(i.e., it owns data on a mutually exclusive basis) must wait for a condition c 
to come true, but the condition c is based on critical-region data to be 
supplied by another process, say P2, temporarily locked out. So P1 must 
release its resources in favor of F2 to avoid a deadlock, but immediately 
request those resources again so that it may continue after P2 has 
completed its critical region and enabled condition c. The-situation appears 
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(a) Conditional (b)AWAIT 

REQUEST 

trute 

I RELASE]AWAIT c 

RELEASE RELEASE 

Figure 6-14. Conditional critical region and the AWAIT function 

The design ease for a given application is greatly influenced by the 
aptness of a language for describing that problem and for arriving at a 
solution. The suitability of a candidate language can be ganged by how well 
it permits the user to abstract the (large) problem into smaller abstractions, 
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each with only relevant details appearing at that level, to focus his 
attention appropriately on these details, and to manipulate and evaluate 
design decisions and parameters. 

It would be nice if the problem-solving and analysis language could be 
the same as the implementation language, for then there would not need to 
be an extra translation of that design description into implemented
procedures, data structures, etc. Thus, the power of a language with 
respect to particular problem measured by thea may be number of 
statements required within that language to implement the solution to that 
problem. Higher-level languages intrinsically hide a great quantity of 
implementation detail from the problem solver. Therein lies their power,
but only in special circumstances does any one programming language 
seem to conceal the proper level of detail so as to be appropriate for 
describing the system design also, especially for real-time systems. 

For this reason, graphical and symbolic representations are rife in 
software designs. Besides flowcharts and data-flow diagrams, one finds
finite-state-machine graphs, timing-interaction plots, state-transition 
networks, data-structure diagrams, etc., used throughout the design process.
Each describes an aspect of the design in a different set of abstractions; the 
particular description/analysis tool used in a particular instance depends on 
how concisely it portrays the relevant issues and conceals the irrelevant 
ones. 

Whatever methods used for describing a non-real-time program design
must be augmented (and perhaps, replaced, at certain levels) in real-time 
designs by descriptions of the time-critical interactions among the various 
processes involved. The program code cannot stand alone to document the 
design rationale or analysis. 

6.4.1 Real-Time Program Structures 
I have shown two forms of interrupt-handling structures in previous

sections of this chapter, The first is the IFTHENELSE-like dedicated trap
structure shown in Figure 6-2, in which one of two subprograms, but not 
both, executes in response to a process that can potentially cause the trap 
to actuate. The second is the fork/join concurrent structure shown in 
Figure 6-6; each of the processes in the structure executes exactly once 
(barring abnormal terminations) leaving the "fork" befoie entering the
join 

Real-time process-control applications, however, are typified by
repeated executions of trap routines in response to recurrent external 
events. Once a trap has been enabled and armed (external signals enter a 
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priority hardware or software queue and are eligible to cause activation of 

the trap routine), the trap routine executes each time the computer detects 
that the external event has occurred. Background and interrupt processes 

are concurrent processes-their operations overlap and interleave in time. 

But the iterative nature of the trap executions is not correctly represented 

by fork-join flowcharts (Figure 6-6), and the true form (Figure 6-1) lacks the 

aesthetic benefit of a structured appearance. 

For this reason, I use the convention shown in Figure 6-15. It merges the 

ANSI-standard symbols for parallel processes with the interrupt/terminal 

symbol. The fork symbolizes that point in the background program at 

which the trap first becomes eligible to interrupt (probably the enable/arm 
noinstruction), and the join is that point beyond which the interrupt is 

longer eligible (probably the disable/disarm instruction). The priority p (if 

pertinent) is shown by annotation. 

This structure may be iterated within each of the processes shown. For 
top-down development integrity and consistency, it is necessary to make 

certain restrictions. In Figure 6-16, it is fairly evident that the priority of T3 

must exceed that of T1, otherwise T3 would never activate F. The structure 
convention I have presented means that T2 may interrupt C, T3 may 

interrupt E, and, certainly, T, may interrupt A and C. The question is, 

should T2 be allowed to interrupt T or T? 

The answer is that design and analysis considerations should probably set 
interrupt priorities to assure that process deadlines are not missed, rather 

than have them assigned as a consequence of top-down hierarchic 
development. And since process durations cannot be rigorously prespeci
fled by a top-down design, the hope of a top-down proof of timing 
correctness is fiction anyway. As a result, deadline errors are apt to 

PROCEDURE PROGRAM 

Clears trap and 
returns to PROGRAM 

Figure 6-15. Concurrent background and real-time trap-actuated processes 
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I4 

Figure 6-16. Nested real-time structures 

manifest themselves late in the development and be difficult to correct 
without massive redesign. 

For this reason, many will prefer to design trap routines and their 
background interfaces from the bottom up, at least on a preliminary basis. I 
do not consider this a violation of the top-down design principle, but 
rather, another instance of the engineering "look-ahead" technique 
described in Chapter 4. Inasmuch as trap routines tend to be very short 
anyway, the departure from true "top-down" practice is vestigial. 

Synchronization of a real-time multiprogram in a single-processor system 
is then only slightly different than it is for the concurrent programs 
previously discussed in this chapter. The same statements concerning 
consistency apply to real-time programs equally as well as they do to 
concurrent programs. However, arbitration may be implemented differ
ently. 

6.4.2 Resource Arbitration Methods 

A simple attempt at sharing a single resource iR among N concurrent 
processes P1 . Pa of equal priority, using only a hardware simultaneous
memory-access arbiter, is shown in Figure 6-17. Each of the processes has a 
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need to perform a subprocess involving the resource over and over. The 
program segment shown uses a flag to arbitrate which process shall gain 
possession of the resource. Initially, FLAG is set to 1. 

When the program reaches the fork, only the process P, can activate and 
use R. Not until "rLAG=2" is encountered can another process-this time 
P2-acquire R and use it. When P2 sets FLAG=3, then next uses B, and so on. 
The processes thus arrange for mutually exclusive use of R by alternating 
cyclically, Pi... PP--... ---, etc. However, the program is not consistent, 
for, say P1 terminates; then after PN has released R and has set FLAG=1, none 
of the other process can begin. The program deadlocks because P, is 
scheduled next to use the resource, but P1 has terminated, and lies dormant, 
waiting at the join until the rest have also terminated. 

The reason why the scheme above fails to be consistent is not just 
because it was a bad design to begin with; indeed, any such attempt would 
have failed! A hardware arbiter on single load and store operations is just 
not enough to provide arbitration of resources on a larger scale. Something 
else is needed. 

Since it is fundamental to real-time multiprograms and multiprocessing, 
arbitration is usually handled by executive requests to the operating 
system. However, in some minicomputers or dedicated process-control 
applications, arbitration may be handled differently. In the next few pages, 
I shall discuss the inner-workings of arbitration so that the reader can 
realize what provisions must be made to make programming of consistent, 
equi-priority, concurrent processes possible. I will address non-equal
priority real-time resource arbitration later (Section 6.4.3). 

TIe functional integrity of a devoted resource must be maintained from 
first use to as long as required by a process. For example, if a shared 
variable is given a value in one process and that value is used later in the 
same process, another concurrent process may not change that variable 
(unless it can assuredly return the variable to its former value by the time it 
is needed). 

Before reserving a resource, a process may sometimes be able to test the 
availability of that resource, and if not available, to go on to something else 
in the meantime. When a process requests a resource, however, it must be 
prepared to wait until the resource has been freed and assigned 'to that 
process. 

A shared resource may take many forms: a single variable, a whole 
complex data structure, a line printer, etc. Regardless of the units of access, 
program consistency requires that eacht devoted unit of a shared resource 
must have associated with it: (a) a facility by which a process may REQUEST 
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again; F1 = 0 again; FA = 0otherwise trwe 

no no 

Figure 6-17. Simple synchronization of a resource among several processes (the 
program, however, is not consistent) 
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the resource, (b) a facility which causes a process to wait until the resource 

has been acquired, and (c) a facility by which a process can RELEASE the 
resource to other processes. 

These functions of an arbiter are illustrated in Figure 6-18. Since RELEASE 

and REQUEST access and change shared commodities, and since many 

processes may call them concurrently, they must be mutually exclusive 

operations; hence, even the arbiter calls requiretan arbiter at a higher 

authority. At the highest level, arbitration requires a hardware device to 

permit only one process at a time to perform either REQUEST or RELEASE 

operations. Not only are REQUEST operations mutually exclusive with 

respect to other REQUEST operations, but with respect to RELEASE operations 
as well, and vice versa. 

With a simple hardware device to make REQUEST/RELEASE subroutines 

mutually exclusive operations, other arbiters can be programmed. It is not 

necessary to have one hardware arbiter for each resource, one will do for 

REQUEST RELEASE 

'Valueof PROC Value of PROC 

isidentifier of . isidentifier-of 
equesting releasing 

process process 

yes Request no Remove PROC 
from queue 

waiting state empty 

Remove NEW 
from queue 

in queueCancel waiting 

state for 
process NEW
 

Figure 6-18. Mutually exclusive REQUEST and RELEASE functions of an arbiter 
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all when properly programmed. It may often be advantageous, in the 
interests of execution speed, however, to have more than one. 

The hardware arbiter for a multiprogrammed single CPU computer can 
be realized by triggering the two highest-priority traps via program 
instructions to call REQUEST and RELEASE subprograms. Since individual 
instructions in a single CPU are time-exclusive operations, since neither 
REQUEST nor RELEASE subprograms call each other, and since the 
multiprograms are initiated by traps having lower priority than those 
assigned to the arbiter, mutual exclusion of the two arbiter functions is 
assured. Further, no hardvare queue is required; however, the arbiter must 
be able to ascertain which of the multiprograms has invoked the arbiter. 
(See Section 6.4.3 concerning relaxation of arbitration between a higher
order interrupt program and the program it interrupts.) This is usually no 
reat difficulty, as the identifier of the current process can be maintained in 

a program register. 

Again, only one hardware arbiter is required (the two program-actuated 
traps), but more may be used to increase operating efficiency. Whenever 
an arbiter controls more than one resource, it is necessary -to call the 
arbiter using a resource identifier as an argument. A separate request
queue for each resource is then maintained by the REQUEST and RELEASE 

subprograms shown in Figure 6-18. 

6.4.3 Arbitration Among Real-Time Processes 

Real-time multiprograms sharing a single CPU are actuated in response 
to external events assigned to priority interrupts. When a higher-priority 
process interrupts one of lower priority, it (usually) executes to its 
termination before allowing the other to recontinue. The higher-priority 
process is not, therefore, in jeopardy of having the states of any of its 
resources altered by the lower-priority process while it is executing. If no 
yet-higher-priority processes access these resources, then that process has 
gained mutually exclusive use of them for the process duration. It need not 
appeal to a higher authority for arbitration. If a lower-priority process was 
not accessing those resources when the interrupt occurred, the trap process 
may go ahead and use them. 

If the overall program is to be consistent, however, the lower-priority 
program(s) must thus have some way of either preventing the higher
priority interruption from occurring, or communicating to the higher
priority process that a shared devoted resource is busy. In the latter case, 
the higher-priority task must have some way of transferring CPU control 
back to the low-order process, just long enough to permit it to complete its 
use of the resource. Then the higher-order task resumes. 
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A simple example of this type of control interconnectivity and loss of 
program structure is illustrated in Figure 6-19. Arbitration takes place 
within the trap process T: Before the background process EB-or trap process 
with priority less than T-uses the resource, it sets BTURN true, as a signal to 
T not to preempt the resource. When T activates, if BTuRN is false, T may be 
certain that B is not using the resource, and so may use it, reset the 
priority-trap logic and return to the point of interruption. However, if 
BTURN is true, T registers its intention to use the resource by setting TURN 

to true, and returns CPU control to the point of interruption at the same 
level of priority (the trap-priority logic has not been reset). If T had 
interrupted a task T1 with lower priority, the CPU would complete the 
lower-priority task at the higher priority, and so on, until control eventually 
passes back to 1. Then B would finish using the resource and resume T as 
shown. I have labeled the two unstructured control connections between B 
and T as si and $2. 

Aside from there being a lack of structure here, arbitration in this case is 
also somewhat unfortunate, because it has inverted the order of priority 
between processes T and T1, which do not share resources at all! To repair 
this misfortune, when BTURN is true it is necessary for r to locate and use 
the return address (and the saved state) of the lowest-priority suspended 
trap process T1 (that's the one that interrupted E)fo return directly back to 
B. The repair is shown in Figure 6-20. Upon resumption of T (control passes 
through si), the "state-save" area of the lowest-priority active trap will 
have to be replaced with appropriate data to assure proper resumption at 
$2 after T is complete. (This implies a common save-mode for all trap 
routines). When T completes, it reassumes the saved state (that of B if T is 
the only active interrupt), clears the trap logic, and returns (to $2 if T was 
the only trap active). How intricate the control has become! 

The configuration shown thus requires some increased overhead to avoid 
a higher-authority arbiter. The situation, however, becomes much more 
complicated if more than two processes share a devoted resource, and it is 
probably wiser to use the higher-authority arbiter to queue all requests for 
a resource until it has been released. Upon release, control passes to the 
highest-priority waiting task. 

The ad hoc configuration in Figure 6-20 not only does not extend to 
arbitration among more than two user processes, but, moreover, its non
structured control interconnectivity detracts from readability. Even if 
multi-exit modules RELEASE and REQUEST are used, as shown in Figure 6-21, 
the cross-connectivity is still distressing. However, this sort of interconnec
tivity and overhead is inherent when real-time priority-driven processes are 
synchronized withoit having arbitration administered by the operating 
system. 
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Figure 6-21. A somewhat more structured-looking version of Figure 6-20 

6.4.3.1 Arbitration by Priority Reassignment 

Some computer systems (or operating systems) permit processes to 
declare priorities of their subtasks. Others permit the traps to be disarmed 
(prevented from entering the trap routine) without bieing disabled 
(prevented from entering the hardware queue). In either case, it is 
sometimes possible to cut down on the arbitration overhead. If priorities 
are reassignable, the REQUEST merely becomes a reallocation among the 
priorities using the resource to favor the current process. RELEASE then 
restores the original priorities. Alternatively, if interrupts can be disarmed 
without disabling, then the REQUEST function can disarm -any higher-priority 
traps that may access the resource. 
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In either case, howeer, it is not merely the 'esource use that is 
prevented, but the entire trap process in which that use occurs. Such 
drastic means should thus only be allowed into a design when there is 
demonstrable assurance that the program integrity is not violated. For 
example, if the time required by a lower-priority task to use a resource is 
small, or can be made small (perhaps by segmenting the resource into 
mutual subunits), and if no real-time deadlines are critical within this time, 
then lock-outs of higher priority tasks are generally permissible. 

6.4.3.2 Relaxation of Consistency 

There are also instances where global program consistency is achievable, 
even though some program segments may be inconsistently programmed. 
For example, if a background process B reads a structure written by T, then 
T can write into that structure and set a flag to communicate to Bthat he has 
done so. Then u resets the flag, reads the resource, and checks the flag 
again; if still reset, the reading was okay. If the flag had been set, however, 
B would have to reread the structure, presuming that, in doing so, no 
deadlines are missed. (See Figure 6-22.) 

There are also situations in which inconsistency can be identified to 
cause no problem. For example, suppose a consistent program continuously 
monitors and controls a hardware device, such as a receiver or command 
modulation assembly in a deep-space tracking station. Its operation mode 
has been selected and set by a control-data structure initially stored, but 
can be altered while the program is running by piecemeal, low-priority 
entry of new control data via an operator keyboard terminal. During this 
entry, the program is adapting in a piecemeal fashion to its new control 
data, and if an error occurs, its repeatability is questionable. However, once 
the program is reconfigured, it runs consistently again: 

In each case, the designer must analyze the effect of not arbitrating and 
prove that momentary inconsistency does not violate the program 
specification. 

6.4.3.3 Higher-Priority Arbitration 

When all the special techniques one can think of (and prove to work) to 
gain mutual exclusive use of a resource fail to apply in a case at hand, 
there is always higher-level arbitration to fall back on. The real-time 
arbiter I shall describe here makes use of four program-instruction-actuated 
traps, the highest priority traps available. I spoke of such REOUEST and 
RELEASE traps earlier in Section 6.4.2. The other two I shall call ENTRY and 
RESUME; every other trap routine save these four has ENTRY as its first 
module and RESUME as its last, beyond which it resets the interrupt logic 
and returns to a process at lower priority. (See Figure 6-23.) 



203 Sec. 6.4] ConcurrentProgramDesign Methods 

FLAG false 

Write
Resource 
R 

Read Resource 

FLAG = true 

true 

DS 

CL 

Figure 6-22. Communication of a data structure written by trap process T to 
background process B without arbitration 

Processes accessing a shared devoted resource do so by actuating the 
REQUEST and RELEASE traps, possibly passing a resource-busy-queue name, if 
more than one resource are to be arbitrated. Figure 6-24 shows flowcharts 
for the four trap routines. Four are needed because mutually exclusive use 
of the priority P index is required. 

The ENTRY module saves the entry state (registers and address for 
resumption of the suspended process) on a stack indexed by P, the current 
priority. RESUME unstacks the saved state, resets the trap logic, and resumes 
execution at the saved resumption location. REQUEST sets the resource 
queue TURN entry at the current priority level true to indicate its intention 
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Figure 6-24. Program actuated trap routines for real-time, single CPU, priority 
arbitration 
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to use the resource; but if some other process T is using it, then T is the 
least index having a true TURN entry. In such a case, REQUEST saves the 
current state (registers and resumption location), retrieves the saved state 
of the interrupted process currently owning the resource, and resumes that 
process at the priority level of the latest REQUEST. 

When a process RELEASES a resource, it removes its true flag from the 
TURN queue; if any higher-priority tasks have registered intentions to use 
the resource, the greatest TURN index T with a true value will correspond to 
that highest priority waiting task. The same sequence of state transforma
tions used in REQUEST follows, to resume execution of the higher-priority 
task, now free to use the resource. 

The uniformity of all usages of shared devoted resources permits the 
suppression of the control flow connections between REQUEST/RELEASE 
modules in processes; such connections are understood as a standard 
operating mode. Whenever a trap process requests a resource, it may 
expect that that resource will be granted within the maximum time needed 
by any trap of lower priority (including REQUEST/RELEASE overhead). The 
real-time program designer may thus build modules using entirely the same 
structured programming techniques as does the concurrent process 
designer, except that he must additionally analyze and keep track of timing 
schedules, planning so that no deadlines will be violated. 

6.5 CONCURRENT STRUCTURE DESIGN 

In Chapter 5, I presented an architecture by which sequential programs 
may accommodate a certain set of situations wherein the normal canonic 
structures prove awkward, but where multiple (paranormal) exits from a 
module seem both desirable and effective. I also gave rationale and criteria 
for the use of such structures, and I produced a flowchart notation that 
represents the use of these constructs in much the same way as other 
program constructs use branches in the canonic set. 

The same types of arguments as appear in Chapter 5 to substantiate the 
use of paranormal exits, when applied to real-time programming structures, 
reveal that the spawning of concurrent processes (the establishing of 
concurrent processes, cognate to branching in a sequential program) may, 
at times, also not conveniently fit into the strict fork-join form, which I 
have been discussing so far. Rather, one can readily identify situations in 
multiprogramming where the strict adherence to fork-join structures is 
either impossible (a fault of the operating system), or else, extremely 
awkward (usually in lower level langauges). 
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6.5.1 Paranormal Entries into Concurrency 

There is advantage irextending the permissible set of multiprogram 

control-logic structures to permit the unconditional spawning of concurrent 

processes from within a striped module, as is illustrated in Figure 6-25. The 

striped module shown is much the same as the multiple-exit striped 
modules of Chapter 5, except that the processes A and B shown are not 

selectively processed, but are both executed concurrently. 

x 

Sentry into 

waiting state A B
 
untl both
 
A and B reach 

resumes whien both 

Figure 6-25. Convention for denoting the entry into concurrent mode nested within' 

module X (process B is concurrent with A, as well as some portions of process X) 

Selective spawning of a concurrent processes is also desirable at times, 

and a convention for structuriug these situations is shown in Figure 6-26; 

the event or condition that causes the "striped fork" to activate can be 

attached to the module symbol as shown as an aid in the top-down 

correctness assessment of the program. When both conditional and 

unconditional entries 'into the concurrent mode appear within a striped 

module, the two conventions can be merged, as shown in Figure 6-27. If 

many such processes are spawned, the convention in Figure 6-28 can be 

applied. 

On flowcharts that expand a given striped module into its algorithm of 

component submodules, entry into the concurrent mode can then be 

denoted as shown in Figure 6-29, which represents the next level expansion 

of the striped module in Figure 6-27. Concurrency is signalled by the 

occurrence of parallel lines across a flowline, and module departures are 
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represented by regular ANSI-standard terminal symbols. Unstructured 
(paranormal) departures of flow from the flowchart connect to correspond
ing concurrent processes designated at the earlier flowchart level. When 
more than one concurrent paranormal exit appears, it is necessary to label 
these by number or process name. Both labeling techniques are illustrated 
in Figure 6-29. 

x 

A B 

1~ 
Figure 6-26.Convention for denoting the conditional entry into a concurrent mode
nested within module X (process B is conditionally concurrent with process A,as 

well as some parts of process X) 

4exit 
C 

A B 

Figure 6-27. Paranormal concurrent structure showing both unconditional entry 
into concurrent mode on the left, and conditional entry, on the right 
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ccondition 2 

Sexit 

A I 

Figure 6-28. Generalized paranormal concurrent structures; the module X has both 
unconditional (on the left) and conditional (on the right) concurrent departures 

'C 

f
 

EXITi12 

C 

Figure 6-29. Expansion of module X in Figure 6-27, showing unconditional and 
conditional structured paranormal departures into concurrent mode 
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6.5.2 Event-Actuated Concurrent Structures 

Another structure often needed for designing programs with concurrent 
processes is one that permits the activation of a concurrent process 
repeatedly for the performance of a task, invoked during the execution of 
another on-going process. The convention for declaring such tasks is shown 
in Figure 6-30; it merges the ANSI-standard symbols for concurrent 
processes (the parallel lines) with the interrupt/terminal symbol. The fork 
symbolizes that point in the invoking program at which the concurrent task 
is declared (to the operating system usually) available for invocation when 
event occurs, and the join is that point beyond which the event no longer 
may invoke the task. 

The event that invokes the process, shown as A in Figure 6-30, can be an 
external interrupt, a call for an executive service from the operating 
system, or some such similar device that initiates concurrent execution. 
Interrupt-driven invocations wete discussed earlier in Section 6.4.1. 

Once invoked, the process A executes (perhaps concurrently with B) 
completely and reaches the join, where it enters a dormant or waiting 
state. While waiting for B to complete, Amay be activated again and again. 
Once both A and a are at the join simultaneously, however, A becomes 
inactive (ineligible), and the program again enters a sequential mode. An 
arbitrary number of concurrent processes, such as B, may appear between 
the fork and join, and any number of modules, such as A, may also appear. 

ventctine entered only when 

tin dtln 
(wmithin timne-slice or 
queue restrictions) 

AA 

Figure 6-M0. Event-actuated concurrent structure (A does not execute until
 
Invoked while B is executing)
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Any one of the processes can invoke any of those available for invocation 
(such processes may even be concurrent with themselves, if programmed 
to be reentrant). 

A slight variant of the join-philosophy applies when no modules of the 
type labeled "B" in Figure 6-30 appear. In this case, depicted in Figure 
6-31, when an event-actuated process reaches the join, it enters the 
dormant or waiting state until all of the other processes also reach-the join, 
at which time, the processes merge into sequential flow again without 
disabling any of the functions. This convention fosters nested-refinement of 
concurrent service tasks, as shown in Figure 6-32. Using the convention, 
one may proceed with a top-down design, knowing that certain concurrent 
functions (such as A and B in the figure) will be invoked within a process 
(such as D)without specifying how those functions will be configured until a 
later refinement. The concurrent functions, shown enclosed in a "dashed 
box" on the chart, in such cases would appear as a single striped module at 
the upper level, to be expanded into more detailed submodules at a later, 
more appropriate design phase. However, there must be an early 
recognition that a concurrent mode of operation is to take place; hence, 
major structural decisions tend to percolate to the top level in such designs. 

When the event invoking the initiation of a concurrent process shown at 
an earlier design level is an executive service request (ESR) of the 
operating system, the invocation appears much the same as an ordinary 
subroutine call. Moreover, to the program that invokes the service, the 

does not deactivate 
either AorB 

Figure 6-31. Concurrent configuration establishing processes A and B for 
invocation without deactivation 
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function is in many ways indistinguishable from one performed by a 
subroutine. The only visible difference in logic is usually a need for 
synchronization (see Section 6.1.5). For this reason, such invocations can 
appear on a chart, as shown in Figure 6-33; horizontally or vertically 
striped, as appropriate, with an appropriate cross-reference identifier, X. 
When the ESR invokes a simple operating system function, neither the 
stripes nor the cross-reference nay be necessary. 

II 

I__ _ _ _ __ _ _ _ _ _ _ ... I 
I e t 2 Ievent 

Aand Bcan be 

etered uniti 

Whenever a subprogram x declares internaLly that a concurrent process 
A is to be invocable while in the remainder of x, as well as during a 

subsequent process B,the paranormal concurrent departure from x is of the 
invocable variety (and perhaps conditional as well). Figure 6-34 illustrates a 
notation for declaring such program structures when the departure is 
unconditional; the addition of a decision symbol extends this notation to 
cover a conditionally invocable paranormal process. 
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D 

x x 
A 

or 

function Aton 

0 

Figure 6-33. The invocation of a programmable event-driven concurrent process A 
within module D (see Figure 6-32) when event 1 is a programmable executive 

service request 

:ESR arg 

ESR argDeclaration 

detail at next level 

invocation detail 

at next leve 

Figure 6-34. Declaration of a, paranormal structured, entry into concurrent mode 
within X to execute process A whenever invoked in remainder of X, or within B by 

a programmable executive service request (ESR) 
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6.5.4 Concurrent Structure Design Options 

The choice of which fork-join discipline should be followed in designing 
a program very often depends heavily on, or is dictated by, the intended 
programming language or operating system services available to 
implement the concurrent structures discussed so far. 

If, as a programming standard, the code must be made to correspond 
modularly, on a one-for-one basis, to the flowcharted design, then some of 
the structures shown may not be available in some implementation 
languages. For example, if an operating system dictates that concurrent 
portions of a program be registered as separately compiled segments and 
be invoked by executive service request events, then there is no way that 
the code for such processes can appear adjacent, as might be depicted on a 
strict fork-join flowchart. If, however, concurrent processes can be coded in 
adjacency, as in Concurrent PASCAL [45], then the code can be arranged 
so as to match the flowchart modularly. 

On the other hand, if implementation standards do not require exact 
modular correspondence between flowcharts and code, then conventions 
can be adopted so as to allow wider, less restrictive use of concurrent 
structures, yet retain strict logical 4consistency between code and 
flowcharts. However, in such cases, the code corresponding to adjacent 
functions on a given flowchart may appear segmented among many 
program segments, and the design-to-code cross-referencing problem is 
more acute. 

Further discussion relative to such coding conventions and restrictions 
will be delayed until the next chapter and Chapter 13. 

6.6 SUMMARY 

In this chapter, I have tried to indicate some of the inherent difficulties 
in concurrent, real-time programs and, thereby, the greater need for a 
structured approach in developing these programs. Real-time multipro
grams and concurrent processes have many of the same attendant 
problems; to avert many of these, I have imposed the requirement for 
consistency-repeatable results even when errors are present-a position 
that necessitates synchronization of processes accessing common resources. 
In all but the simplest situations, synchronization must be gained by way of 
higher-level arbitration, often at considerable overhead. 
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As was the case in the previous chapter, and for the same reasons, I have 
presented the material using flowcharts as illustrations, rather than giving 
examples in a programming language. Having now determined the control
logic characteristics of structured programs-real-time and concurrent, as 
well as non-real-time-as flowchart topologies, I am in a position to define 
corresponding code structures. I do so in the next chapter. 
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Problems for Chapter 6 

6-1 Prove that the program in Figure 6-21 is consistent. 

Q-2 A set of numbers (X3 stored on a computer file represent samples of a 
function X(t) for t =nAt, n=0,l,... ,N. A computer program is to "filter" 
these by the algorithm y,=(At)X,+e- 2 Aty.- 1 and to plot these as 
samples of the resultant output process y(t). Develop a floweharted 
program in which file reading, computations, and plotting can be 
concurrent. 

6-3 A computer system has resources R1,...,R, shared among concurrent 
processes Pi,...,Pm. Design and flowchart an arbiter to assign resources 
to process in deadlock-free sets. Prove that there will be no deadlocks 
using such an arbiter. 

6-4 A real-time process X(t) is sampled by an analog/digital converter once 
per millisecond and processed by the numerical algorithm in Problem 
6-2. Floating-point arithmetic operations are to be used, but these are 
supplied in the form of subroutines that cannot be used inside interrupt 
routines. Once every second the filtered function is plotted on a cathode 
ray tube display. Assume 1-millisecond and 1-second interrupts initiate 
reading and display subroutines. Flowchart such a program using the 
real-time programming structures of Section 6.4.1. Prove your program 
is consistent and correct. What are the timing requirements for the three 
program parts, and what are the interrupt priorities? 



VII. CONTROL-RESTRICTIVE
 
INSTRUCTIONS FOR STRUCTURED
 

PROGRAMMING (CRISP)
 

The purpose of a higher-level programming language has historically 
been to simplify the expression of algorithms or subprogram functions 
created by an important class of problems. The flexibility and productivity 
of such languages are gauged by the ease with which, and the degree to 
which programmers may vary the composition and execution of programs 
[47]. The widely diverse classes of problems have, over the years, led to the 
development of an exceedingly large number of languages [48], both wide
application (general-purpose) and restricted-application (special-purpose). 
There is no doubt that standardization is needed, but defining a "standard 
language" is probably only feasible within a distinct problem class. 

The characteristics sought in a standard language, however, are noble: 
the language should be capable of solving problems over a wide range of 
applicability, and should contribute to the solution of those problems large 
measures of stability, maintairiability, readability (or self-documentation), 
understandability, and machine (or installation) independence. Further
more, it should lend itself as much as possible -to program production tools, 
automatic design methods, easy assessment of correctness, easy or 
automated verification and testing, and easy or automated quality assurance 
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measures. To be acceptable, as a minimum requirement, a standard 
computer language must not hinder the programming process. On the 
contrary, the purpose of a standard is to help. 

The principles set forth in this chapter do not attempt to specify a 
standard programming language, but instead, provide a programming 
language standard-thatis, a disciplined way of programming to achieve 
the goals of the preceding paragraph. 

In the current chapter, I present a language control-structure concept 
that will be used throughout the rest of the monograph. The notes here are 
not meant to provide a programming manual in the sense that the reader 
will necessarily be able to write his own programs. Hopefully, however, the 
concept comes across to the extent that the programs I write are 
understandable to the point that their correctness is intuitive, if not 
rigorous. 

7.1 THE CRISP CONCEPT 
In block-structured programming languages, such as PASCAL, ALGOL 

and PL/I, structured programs are GOTO-free. Structured programming, 
however, can be extended to almost any language, and should not be 
characterized simply by the absence of COTOs, but rather by the presence 
of an organized control-logic discipline. The use of a language having 
structured control-logic instructions facilitates the process. 

Program control-logic is specified in the remainder of this chapter by a 
set of Control-Restrictive Instructions for Structured Programming, called 
CRISP, augmenting an arbitrary programming language. Programmers 
construct code using statements from the arbitrary language, such as 
FORTRAN, BASIC, or assembly language, except for statements governing 
the program control-logic (branching, looping, etc.); such control is 
accomplished by using a CRISP statement instead. 

The CRISP control structures are precisely those found in the two 
preceding chapters. The CRISP concept thus extends the advantages of 
structured programming [49] to those languages which most fit a particular 
problem. 

CRISP preempts all, control statements from the base language and 
substitutes a set of statements that will force programs to be structured; 
that is, any program written in CRISP is automatically structured without 
the need for GOTOs. "GOTO-less" structured programming is currently 
available in some other languages, such as BLISS [50], IFTRAN [51], and 
SIMPL-X t52]; special limited preprocessors for FORTRAN, such as 
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SFTRAN [53], are also now available. These do not however, have a 
common control syntax. 

The strength of .CRISP, as opposed to these other structured 
programming languages lies in the fact that only the control statements are 
preempted. Given an operating CRISP preprocessor for the base language 
most suitable for the problem at hand, the programmer may proceed to 
solve the problem in the language be wants, and is already familiar with. If 
he is called upon to solve another problem in another familiar language, 
then he again finds the same set of control-logic statements by which to 
organize that problem in the other language. 

7.1.1 Elements of CRISP Statements 

A CRISP statement begins with a reserved word or symbol identifying 
the type of structure, or a module within a structure, or the end of a 
structure. Because the CRISP statements are keyword-actuated, it is 
necessary that all non-control statements in the base language not begin 
with these keywords. Otherwise, alternate CRISP keywords must be 
chosen. More detailed restrictions appear in Appendix G. 

Additionally, CRISP statements may contain strings that are part of the 
base language or are other CRISP statements. For example, in the CRISP 
structure shown in Figure 7-1 below, the substring denoted by c is a 
condition string, which will be substituted directly into a conditional 
statement in the base language to produce code having the structure shown 
in Figure 7-1. The strings s, are either base language statements or other 
nested CRISP constructions. 

IF Wl, 

S2
 

S2 trm4e 
(ELSE) 

p I 
S 

ENDIF 

Figure 7-1. The CRISP IFTHENELSE structure 
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The complete superset of CRISP constructions is given in Appendix G, 
along with their flowchart equivalents. (Not all of these will apply to a 
given base language.) Each such program structure will be here referred to 
as a CRISP-block (not to be confused with the definition of a block in 
block-structured languages such as ALGOL and PL/I); subdivisions of 
blocks into constituent parts will be referred to as clauses. Blocks and
clauses are typed by their initiating key-words, as for example, an IF-block, 
or an ELSE-clause. In some cases, block names may need further 
description, such as may be desirable to contrast a LOOP-block from a 
LOOPFOR-block. 

The CRISP syntax given here and in Appendix G has had the benefit of a 
considerable amount of cosmetic evaluation, both from my students as well 
as from colleagues. Probably the most profound such influence came as a 
result of my participation in the Language Standards Working Group of 
the jet Propulsion Laboratory Committee on Modern Programming. 
CRISP very strongly resembles the control structures adopted by that 
working group. 

The IrF-block shown in Figure 7-1 is the canonic "IFTHENELSE" 
structure used in Chapter 5. CRISP also has a single-line (IFTHEN) form 
with no ELSE-clause, 

IF (c) s 

The single-line IF form is signalled by the presence of the statement s on 
the same line as the IF-clause. 

The IFTHENELSE structure in CRISP is only a special form of the 
more generalized selection structure depicted in Figure 7-2 below. Within 
this generalized IF-block, only the case donsisting of statements 
corresponding to the first-encountered true condition c, gets executed. The 
ELSE-clause is always optional. 

CRISP also provides for another type of multi-valued decision structure, 
the CASE-block shown in Figure 7-3. The symbol i in the figure denotes an 
index variable in the base language; / and k are integers. A special CRISP 
internal flag, OUTCOME, can also be tested by the CASE-block (a description of 
the OUTCOME feature appears in the following Section 7.1.2). 

Iteration in CRISP programs occurs within Loo-blocks, which take the 
three forms shown in Figure 7-4. CRISP also permits, in addition to the 
forms shown, the use of: LOOP UNTIL (c), which means LOOP WHILE (NOT c); 
and REPEAT UNLESS (c), which means REPEAT IF (NOT c). Various options for 
indexed loops (LOOP FO ... ) also exist, and are described in Appendix C. 
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IF Jc7 ) 

(c2s-I}tru E 

ENDIF 

Figure 7-2. The generalized IF-block; the ELSE-clause is optional 

CASE ) 

sn 

SS 
7 i+1. . . . k 

SIS 

ENDCASES
 

Figure 7-3. The CASE-block (an ELSE-clause may also appear after case k) 
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LOOP WHILE (c) 

SII 
REPEAT s 

LOOP 
$I 
 St 

$S 

REPEAT IF (C) 
true 

C 

LOOP FOR , =n, BYn 2 TOn, out-of-range 

t 
t in2 

REPEAT WITH NEXT i 

Ffgure 7-4. LOOP-blocks 
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CRISP' structures can conceptually be iterated and nested to any level 
desired to produce the intended program. Indentations and annotations for 
readability, which I shall discuss later, however, will tend to limit the 
amount of nesting within blocks, because the listing tends to crowd toward 
the right-hand edge of the page. Rather than contend with this continued 
crowding, the user naturally finds himself inventing procedures to be 
substituted, linked, or called (and programmed later). As a result, CRISP 
program, subprograms, and subroutines generally fit on one page each (but 
link to procedures on other pages). 

As Mills [12] points out, segmentation of program listings to a prescribed 
size, such that each segment enters only at the top and exits (normally) at 
the bottom, is a major asset in coping with program complexity. 

CRISP makes allowance for up to three distinct types of procedure calls 
within a program. The first takes the form 

DO p 

which links the current block to the procedure named p in a 

TO p 

ENDTO 

block. In some CRISP processors, it is conceivable that the entire 
procedure named p could be substituted into the object code for the Do p 
statement in the source code. Arguments may conceivably be passed in the 
calling string p, but generally, all parameters are considered as global. 

The second procedure call is 

CALL f 

which creates a subroutine linkage to a named procedure f declared in a 

SUBROUTINE: f 

ENDSUBROUTINE
 

block. Subroutine arguments may be passed in the normal way between 
the CALL and the SUBROUTINE definition. Such subroutine blocks translate 
into the normal subroutine-defining mechanisms in the base language. 
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Functions, when permitted in the target language, are the third form of 
procedure call, and are identified by block declarations of the form 

FUNCTION: f
 

ENDFUNCTION ansver 

The answer string is an optional device that may be required in some base 
languages to return the function value. Functions are defined, invoked and 
linked in the usual base-language mode. 

The main program is identified as the block 

PROGRAM, name 

ENDPROGRAM
 

Within a program, the SYSTEM directive releases the control of execution to 
the operating system; STOP, to the operator. Again, both of these options 
may not be available in an arbitrary target language. ENDPROGRAM signals 
one of these actions as the normal exit consequence. 

7.1.2 Module Terminations 

As discussed in Chapter 5, there are times when module exits other than 
the normal structured exit are needed for program efficiency and clarity. 
These may take the form of responses to pathological or abnormal events, 
in which case, they are abno mal terminations.Sometimes, however, the 
event leading to a desired immediate non-normal (non-structured) exit is 
one that is expected. For example, it is a typical practice to input data 
until an end-of-file indication signals the program to begin processing in a 
new mode. I have called these non-structured exits from a module 
paranormalterminations. 

CRISP restricts a module to having only one normal (structured) exit 
statement per module. However, the top-down development of program 
modules having multiple exits may necessitate inserting several non
structured exit statements into the module and CRISP, therefore, allows 
them. However, these can sometimes create difficulty in isolating errors or 
in performing subsequent actions unless there is some way of telling which 
exit 9f the multiplicity was actuated. 
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Paranormal exits are signalled by EXIT n within TO...ENDTO, by RETURN n 
within SUBROUTINE: ..ENDSUBROUTINE, and by LEAVE n within LOOP...REPEAT 

The integer n identifies the value given to the special CISP flag variable, 
OUTCOME, upon exit; OUTCOME is always equal to 0 when the exit is normal or 
when n is omitted. OUTCOME is not altered if all ExITs omit n. 

The OUTCOME flag is accessible only by using the CASE-structure, as, for 
example, 

CASE (OUTCOME)
 

(1)<*NORMAL*>
 

(2)<*END-OF-FILE*>
 

(3)<*FTrLE ERROR*>
 

ENDCASES
 

Because there is only one OUTCOME flag, care must be taken to locate 
OUTCOME tests immediately after the block having the paranormal exits, 
before another such structure destroys the value. 

Other paranormal exits necessitated by error or other conditional traps 
are accommodated by the CRISP AT-block shown in Figure 7-5. If any of 
the trap events t1....t,occurs in the statements ..... s,,, then immediate 
transfer takes place to the indicated place corresponding to that trap. If 
none occurs, then the NORMAL-case clause executes-

The CRISP directive ABORT I terminates any activity abnormally and 
transfers control to the recovery procedure labeled I defined within its AT
block. Any label exclusive of commas may be used, including the name of a 
trap identifier; however, no ABORT-label may appear in more than one AT
block. 

7.1.3 Module Exit Conventions 

A top-down program may be written, as I indicated earlier, in a format 
whereby each module has its entry at the top and a normal (structured) exit 
at the bottom. Any exits in between are either calls to modular procedures 
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AT (tl,....t, 

(NORMAL) t
So s ~normal tm 

SSp 

ENDAT 

Figure 7-5. The AT-block 

(usually, but not always farther down in the code), or extra-normal transfers 
to points within modules at previous design levels (usually higher up in the 
code). 

Calls can be classified by the data-space state upon initiation of the 
called procedure. For example, subroutine calls will pass the return address 
and optional arguments to the subroutine procedure, often in a stack 
configuration. Coding for the normal exit (in the subroutine case, RETURN) 

reconfigures the data space for proper resumption of program execution. 
The same consideration must be given to extra-normal exits. (In the 
subroutine case, these exits must also unstack return addresses and 
arguments.) 

Abnormal terminations may transfer back through an arbitrary number 
of levels, all at once, to a recovery procedure. Paranormal exits may 
likewise transfer back through a number of levels, but only one flowchart 
level at a time (although in an optimized object code listing, this could 
appear as a single jump). 

Just as it facilitates flowchart readability and understandability to 
identify normal, paranormal, and abnormal exits separately (but consist
ently), it is likewise the case with the code corresponding to these exits. 
Many base languages may not have separate statements for all the cases 
and some may not even allow all of those given in Table 7-1 below to be 
implemented. CRISP syntax, however, does contain provisions for them. 
Table 7-1 summarizes the syntactic conventions. 
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Table 7-1. Striped module exit conventions 

Type 	 Meaning 

SYSTEM,ENDPROGRAM 	 Program termination, return control 
to system. 

STOP 	 Program termination, return control 
to operator. 

ENDTO Subprogram normal termination. 
Control transfers back to invoking 
module at preceding level. 

ENDSUBROUTINE, Subroutine and function normal 
ENDFUNCTION terminations. Control returns to 

calling module. 

EXIT u 	 Subprogram paranormal exit. Sets 
OUTCOME= n and transfers control 
back to invoking module. 

ABORT 1 	 Abnormal exit to module labeled I 
in an AT-block earlier in program; I 
must be unique. 

RETURN n 	 Subroutine and function paranormal 
exits. Sets OUTCOME -n and transfers 
control back to invoking module. 

7.2 A CRISP PREPROCESSOR 
A source-program consists of a mixture of CRISP and base-language 

code, which can then be translated into executable instructioihs for a given 
computer system. The translator may take the form of a compiler, by 
which the source statements are translated directly into executable form. 
But rewriting or modifying an existing compiler to accommodate CRISP 
can be averted by implementing the translation via a CRISP preprocessor. 

Such a CRISP preprocessor accesses sequential source records, written in 
CRISP or base-language syntax, and replaces the control-logic statements 
by target-language statements that perform the equivalent action. 

7.2.1 Operational, Modes 

The hypothetical CRISP preprocessor I am using tutorially in this text 
operates in a number of modes, and I will describe aspects of each in turn. 
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The main mode is the translation mode, which outputs base language 
statements. The second and third modes are edit modes: update and 
annotation. The update mode is a text-editor that permits insertions, 
deletions, and alterations of CRISP programs. The annotation mode indents 
CRISP blocks and supplies them with fBowlines and their Dewey-decimal 
reference and cross-reference numbers (see Section 5.1.3 2). 

The processor allows comments to appear anywhere in a source 
program, within target-language statements, as well as within CRISP 
control statements, and to be indicated by surrounding the comment string 
with "<*" and "'>", as, for example, <*comment'>.The comment may 
then contain any string of characters except "*>". CRISP comments do not 
continue automatically on the next line if the final "">" is omitted, 

comments must be continued in the same manner as other statements. 

The strings "<*" and "*>" naturally, must not be valid constructs in the 
base language statements. If either is, alternate comment delimiters, such 
as (* ... *), or [*... *, or /*.. .*/, may be substituted as a convention for 
implementing CRISP in that base language. 

CRISP statements may be continued on several lines by terminating each 
unfinished line with "&". Base-language statements (also continued using a 
final "&") are continued only if permitted within the base language syntax. 

7.2.2 Macro Processing 

The hypothetical CRISP processor has a minimal, but useful, compile
time text-macro capability. Base languages having better macro handlers 
may, therefore, choose not to have this particular feature implemented. 
There are two directives; the first is the macro definition, one form of 
which is 

%template MEANS base stringEND 

which declares that occurrences of the second type %sourcestring that 
match %templatewill be replaced, both in CRISP control statements, as 
well as in target statements, by base stiing. An instance of the type 
%sourcestring is an instance of a macro call.The base string may extend 
over many lines, defining a procedure and forming a block of text to be 
transferred. The end of a defining macro is signaled by %END. 

The macro template may also contain formal parameters to be 
transmitted into the target string; these-are signaled by the occurrence of 
the parameter marker in the template. Whenever a %occurs in an input 
source line, a scan of the-remainder of the line begins, much the same as in 
the STAGE2 macro processor [54]. When a match occurs between the 
input string calling macro and a macro template, the base string 
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corresponding to that template is evaluated with the actual parameters 
resulting from the template match. The result of this evaluation replaces 
the matched source string in the output. 

Correspondences between actual and formal parameters are set up 
during template matching. The template is a sequence of fixed strings 
separated by parameter markers (%), or "holes". When the matching 
process is complete, each parameter marker corresponds to some substring 
of the input line and the fixed strings exactly match the other substrings of 
the line. The i-parameter string gets inserted into the target string 
wherever occurrences of %iappear in base string. 

Macro definitions and calls may be used anywhere in the CRISP source 
code; in particular, a call can precede the macro definition. Macro 
definitions may contain macro calls, but not other macro definitions. 

7.2.3 Example of the Use of Macro Capability 

The following is an example of the use of the macro capability. 
Somewhere in a CRISP program, there is a definition module, 

%RANDOM ARRAY MEANS A%END
 

%FILL %(%.%) MEANS
 

DIM %1 (%2 %3)
 

LOOP FOR DUM=%2 TO %3
 

%1 (OUM)-RANDOM
 

REPEAT WITH NEXT DUM%END
 

The appearance elswhere in the program of the call 

%FILL %RANDOM ARRAY(" 50)
 

produces first the intermediate statements 

DIM %RANDOM ARRAY(I:50)
 

LOOP FOR DUM=1 TO 50
 

%RANDOM ARRAY (DUM)=RANDOM
 

REPEAT WITH NEXT DUM
 

which are then rescanned for CRISP control statements and possible 
further translations. In this particular case, there is further macro action, 
leading to the final CRISP code: 

DIM A(1-50)
 

LOOP FOR DUM=1 TO 50
 

A (DUM)=RANDOM 
REPEAT WITH NEXT DUM
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7.2.4 Other Compile-Time Features 

Perhaps the most unique of the compile-time features is what may be 
termed a "compile-time" edit statement: 

REQUIRE AT d:s
 

This statement causes the statement s to be inserted in the object code 
immediately before the code for statement d, numbered in the Dewey
decimal fashion. Its purpose is to permit truly top-down development and 
readability of programs. For example, suppose a Do p appears inside a loop. 
At the time the Do p statement was written, the programmer envisioned a 
certain, definite function would be performed by an as-yet undefined 
algorithm.However, in programming p at the next level, he may discover 
that, to program the intended function efficiently, an unforeseen variable 
needs to be declared and given an initial value back at an earlier program 
level, outside the loop. 

But the program development up to this point was not concerned with 
this value. It has only just become important. Furthermore, the declaration 
and initialization of a new variable does not in any way alter the 
correctness assessment of the program up to that point (except perhaps in 
timing, if critical). Hence, it makes sense to associate the statement 
initializing a procedure with that procedure, rather than back at the 
previous level. Otherwise, it threatens readability and understanding, both 
in the previous module ("what is this doing here?") as well as the one 
needing it ("where on earth did I initialize that variable, and what to?"). 

Every data structure need not be declared using a REQUIRE statement, 
some are naturally passed on to procedures as data on which they are to 
operate. Use of the REQUIRE, however, can enhance readability when local 
structures need remote initializations. 

Each module statement can also automatically be given a number by the 
CRISP processor in its annotation mode, and each flowline is assigned a 
special module-execution counter as a compile-time option to record the 
number of times that that particular path has been executed when the 
program runs. The execution count display prints upon execution of the 
CRISP directive 

DISPLAY THRU LEVEL n
 

The value n is the level of hierarchical nesting within the program as 
determined by the decimal count in the Dewey-decimal statement 
identifier. 

This path-execution-count capability is invaluable in program testing, for 
one may readily identify which paths have been executed and which have 
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not. Moreover, because of the program structure, it is possible to design 
and provide input data to exercise these paths (See Chapter 9). 

For fully verified programs, the overhead setting up and incrementing 
these counters can be removed by prefixing the source program by the 
CRISP directive 

CANCEL MODULE COUNT
 

Selected portions of a program may have their module counters enabled 
and disabled by using the directive 

ENABLE MODULE COUNT
 

with the CANCEL directive above. 

7.3 CRISP CODING 
I have not yet addressed how the CRISP structures stand in relation to 

the readability of the code, the fifth criterion in Chapter 5 for a set of 
control structures. Obviously, there are times when the coded procedure 
corresponding to a striped-module of a flowchart might need to appear 
directly in-line for speed efficiency, rather than having a coded call to the 
procedure. Using canonic structures, this presents no readability problem, 
but in multi-exit structures, there is likely to be a problem in identifying 
the connectivity of the code. Moreover, if it were deemed objectionable in 
Chapter 5 to replace flowcharts for striped multi-exit modules in a 
2-dimenisional medium, it seems to me even more objectionable to allow 
substitution of multi-exit code for procedure calls in the viewable source 
program, a linear medium. 

For these reasons, all the CRISP blocks conform to simple control
connectivity conventions. Coded procedures representing flowchart striped 
modules may have paranormal exits, to be sure, however, the code for a 
TO...ENDTO module cannot be inserted at the previous level to replace 
the Do... statement because the EXIT n-statements would have nothing to 
connect to. (Instead, such statements would attempt to exit the higher-level 
module,) 

Thus, the CRISP constructions automatically fall in step with all the 
structural criteria stated in Section 5.5.1. There is a one-to-one 
correspondence between structured flowcharts and CRISP code. For these 
reasons, flowcharts can be coded into CRISP almost directly, and the code 
can be matched, or verified, with the design by a reader very quickly. 
Moreover, if errors are found and corrected, these can be transferred back 
into the design documentation immediately. 
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7.3.1 CRISP Module Numbering Method 

Each CRISP block corresponds to a flowchart structure containing nodes 
and flowlines, and each CRISP statement either corresponds to a node or a 
flowline. 

Comparing flowchart structures and their CRISP code structures, such as 
is illustrated in Figure 7-6, one finds that when "IFTHENELSE" 
configurations are drawn with true to the left of false, and when multiple 
decision branches always are drawn in case-order left to right, then the 
code statements corresponding to numbezed flowchart boxes (Section 
5.13.2) always appear in the program in sequentialnumeric orderfrom 
the top-down. 

The CRISP processor can therefore easily simulate the preorder traverse 
of flowchart nodes and annotate certain lines of the code with appropriate 
numbers. This annotation for statements within procedure blocks takes the 
form 

statement 

.1 LOOP WHILE (c) true 

.2 CASE (I) 2 

.3 
(1) 
A 

< = 

.4 
(2) 

B = 2 =3 =4 

.5 
(3)
C 

(4) 
.6 D 

ENDCASES 
7 REPEAT 

Figure 7-6. A preorder traverse of flowchart nodes makes CRISP code modules 
appear in numeric order in the listing 
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The statement can either be CRISP or target language code. The .n, flush 
with the left margin for easy identification, is the number assigned by the 
preorder traverse. Module numbers for procedure-definition statements are 
the Dewey-decimal reference numbers assigned earlier in the program; 
they appear flush at the right-hand margin, as 

TO name MOD# d 

Thus a statement -n within a procedure having Dewey-decimal number d 
is uniquely identified as the Dewey-decimal d.n. 

Statements that invoke procedures (Do and CALL) may have module 
numbers of the form .n/Ar, which signals that module n of the current 
procedure calls the i-th subroutine of a class with alphanumeric 
designation A. 

7.3.2 Indentation and Annotation 

Although the syntax does not require it, the program structured 
hierarchy should be displayed by indenting the lines of code, such as shown 
in the syntax table in Appendix G. Examples in this monograph are 
indented according to the following rule: 

If a block contains only one clause (such as a LOOp-block), then indent 
statements comprising that clause by a prespecified number of spaces 
beyond the block header (the LOOP). If a block contains more than one 
clause (such as the CASE-block), then indent 3 spaces past the block header 
(CASE) to the clause header (the case label), and each line of the clause 
another 2 spaces beyond the header. Certain blocks do not have a separate 
clause header within the block, such as the IF-THEN block. For consistency, 
these are indented just as though they were multiple-module blocks. 

Programs indented this way are almost as easy to read as flowcharts, 
because the block type is identifiable by its header, which protrudes from 
the body of the block, and the beginning of each module within the block 
stands out in the same way. Successive indentations occur for block 
structures within modules. 

The CRISP processor supplies the necessary indentation automatically 
on the listing and, in addition, annotates the code with flowlines and, on 
option, module numbers as shown in the following example. The base 
language used in this example is an abbreviated form of English; the use of 
such expressions is discussed in Section 7.4. 
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procedure. post-order traverse of a binarytree
 

<* This procedure performs a post-order walk of a tree
 

<t represented as follows- each node of "tree" is
 

<* composed of 3 (or more) fields. The first is called
 

<* "value" (and may be actually more than one field);
 

<* the next is called "son", and contains a pointer to
 

<* the leftmost descendant of the current node, the last
 

<* is called "brother", and contains a pointer to the
 

<* current node's next sibling (having the same parent
 

<% node) to the right The procedure makes use of a stack
 

<*to keep place in the walk. The notation "p q" denotes
 

<*the value of the q-field of the tree node pointed to by p.
 

1 emptystack
 

.2 push pointer to root of-tree on stack
 

.3 let visited = false <*the tree-walk flag*> 

.4 loop while (stack not empty) 

.5 1 let current node = top_of stack 

6 1 if (not visited and currentnode.son = nil) 

7 f push current_ node. son on stack 

:->(else) <*node is a leaf or has been vjszted'>
 

8 4 do process this-node <*for intended application*>
 

.9 4 if (currentnode.brother = nil) 

10 f let top of stack = currentnode.brother, & 

4visited = false
 

4->(else} <*no brothers*>
 
.11 4 

12 1 


tendif
 
* 	 . endif 

*repeat 

endprocedure
 

pop the stack <*discard the node*>
 

let visited = true <*we are now backing up*>
 

Is0LGN JuPAB 


OF OOR, 
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7.3.3 Some Examples of CRISP Coding 

In this section, I shall present a few short programs and subroutines to 
illustrate what CRISP programs look like. The reader may note that the 
code is rather sparsely annotated, and is not suitable as stand-alone finished 
documentation. But I have three reasons for the formats given. First, I want 
to illustrate the readability of bare CRISP code; second, I want to display 
the various CRISP structures themselves rather than to formally document 
the program; and third, the designs are existing, proven algorithms that I 
have only adapted into CRISP format. I do, however, provide separate 
accompanying explanatory design and analysis narrative to aid the reader 
in digesting the solution methods. 

7.3.3.1 Example of Bubble-Sort Program 

The program presented in Section 7.3.2 rearranges and prints in 
increasing order a set of numbers input from a terminal, according to the 
"bubble-sort" algorithm [31]. 

Algorithm: Scanning the input list from top to bottom, interchange 
consecutive pairs that are not in increasing order. When the bottom of the 
list is reached, reduce the list size by one (the bottom of the list is in sort) 
and repeat. 

Analysis: This sorting program goes through N(N-1)/2 comparisons to 
sort any input array; the number of exchanges can range from 0 to the 
maximum, the number of comparisons. On random data, the average 
number of exchanges is N(N-I)/4. 

Program:The algorithm appears in the program in the form of two nested 
LOOP FOR...REPEAT loops, which are readily seen to embody the algorithm 
correctly. The base language in this example is MBASIC [55], which 
permits dynamic dimensioning of arrays by the DIM statement, exchange of 
variable values by the = = operator, and free-form input (integer, decimal, 
or exponential notation) by the # format. MBASIC also permits modifier 
constructions which reduce the numbet of lines of code; but for clarity I 
have not used them here. 

Illustrated in the program are The CRISP structures LOOP FOR 
.. TO... REPEAT and IF,.. ENDIF, and the use of the text macros to clarify and 

annotate the code so that the code actually executes the annotation. The 
CRISP preprocessor automatically adds the flowline and module number 
annotations to the output listing. 
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PROGRAM.BUB8LE-SORT MOD# 1 

< *SORT IN-PLACE AND PRINT A SET OF NUMBERS 

<* INPUT FROM A TERMINAL*> 

.1 INPUT USING %PROMPTING MESSAGE AND FREE-FORM INPUT: N 

,2 DIM %ARRAY TO HOLD NUMBERS 

.3 PRINT 'ENTER NUMBERS TO BE SORTED I 

.4 INPUT USING %FREE FORM: %ENTIRE ARRAY 

.5 LOOP FOR J N BY -1 TO 2 <4DROP OFF J-TH ELEMENT EACH CYCLE*> 

.6 t LOOP FOR I=1 TO J-1 <*BUBBLE LARGEST ELEMENT TO ELEMENT S!*> 

.7 t t IF (%ELEMENTS I AND 1+1 OUT OF ORDER) 

a t t : %EXCHANGE VALUES 
S: .ENDIF
 

t 'REPEAT WITH NEXT I 

* .REPEAT WITH NEXT J
 

.9 PRINT \'SORTED VALUES: '\%ENTIRE ARRAY, <*BACKSLASH GIVES
 

<*CARRIAGE RETURN AND SEMICOLON CONTROLS SPACING WHILE
 

<*ARRAY IS BEING PRINTED*>
 

ENDPROG
 

<*MACRO DEFINITIONS;>
 

%PROMPTING MESSAGE AND FREE-FORM INPUT MEANS
 

%'HOW MANY NUMBERS TO BE.SORTED? #'%END
 

%ARRAY TO HOLD NUMBERS MEANS A(N)%END
 

%FREE FORM MEANS '(#)'%END
 

%ENTIRE ARRAY MEANS A%END
 

%ELEMENTS I AND 1+1 OUT OF ORDER MEANS A(I)>A(I+i1)%END
 

%EXCHANGE VALUES MEANS A(I)==A(I+I)%END
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7:3.3.2 Example of Shuttle-Interchange Sorting Subprogram 

The following subprogram rearranges in-place and in increasing order a 
set of numbers contained in an array A(N), according to the "shuttle
interchange" sort algorithm [561. 

Algorithm: Scanning the input array from top to bottom, interchange 
consecutive pairs, that are not in increasing order; when an interchange 
occurs, hold that location and repeat the process from this location 
backwards until consecutive pairs are found in order. Then jump back to 
the saved location and continue the process onward. 

Analysis: The shuttle-interchange sort algorithm is very similar to the 
bubble-sort algorithm given in the previous example. There are, however, 
some significant differences. 

If the data is already in sort, there is only one pass through it, or N-1 
comparisons with no interchanges; if the data is sorted in reverse order, 
there is an interchange and backup involving I-1 interchanges at each of 
the N-1 steps on I, for a total of N(N-1)/2 exchanges. For random data, 
one may expect about N(N-1)/4 comparisons and exchanges. Therefore, 
shuttle-interchange sorting is more efficient than bubble sorting, especially 
foT nearly- sorted data, where it is better by a factor of about N/2 in the 
number of comparisons. 

Program:The program -is slightly more complicated than the mere bubble 
sort; it illustrates the use of CRISP structures LOOP FOR...UNTIL ...REPEAT 

and IF...ENDIF. The interchange action in the program can be seen to take 
place when A(I) and A(I+ 1) are detected to be out of order, then the 
backup begins if I>1 when A(I-1) and A(I) are out of order; and the 
backup, which exchanges A(K) and A(K+ 1), continues until K= 1 or until 
A(K) and A(KI+ 1) are no longer out of order, as detected by the setting of 
the structure flag, SORTED. The listing also illustrates that macro definitions 
may occur anywhere; in this case, within the first LOOP FoR-block and at the 
end of the program. 

A flowchart of the program appears in Figure 9-6 of Chapter 9 to 
illustrate how tests can be generated to verify that the algorithm is correct. 
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TO SHUTTLE-SORT ARRAY A
 

<'SORT IN-PLACE A SET OF NUMBERS CONTAINED IN
 

<*ARRAY A (N) UPON ENTRY*>
 

.1 LOOP FOR I=1 TO N-1 

t %OUT OF ORDER AT %,% MEANS A(%1)>A(%2)%END
 
f %EXCHANGE VALUE AT %,% MEANS A(%l)==A(%2)%END
 

.2 f IF (%OUT OF ORDER AT 1,1+1) 

.3 t %EXCHANGE VALUES AT I,I+1 

.4 t IF (1>1) <*NOT FIRST ELEMENT IN ARRAY*> 

.5 t : IF (%OUT OF ORDER AT 1-1,I) 

.6 4 : SORTED=-%FALSE<*INITIALIZE BACKUP FLAG*> 

7 f LOOP FOR K=I-1 BY -1 UNTIL (SORTED-%TRUE)
 

.B : : ft %EXCHANGE VALUES AT K,K+
 

.9 t t ' IF (K=i) <*BACKED UP TO FIRST ELEMENT*>
 

.10 t . t SORTED=%TRUE <*END BACKUP*> 

11 . - f4 :->(NOT %OUT OF ORDER AT K-,K) 
.12 t . t SORTED=%TRUE<*END BACKUP*> 

tt :..ENDIF 

t: . - REPEAT WITH NEXT K
 
t :.. ENDIF
 

- ..ENDIF
 

t :..ENDIF
 
<-*'REPEAT WITH NEXT I 

ENDTO 

%TRUE MEANS 1%END <*MBASIC LOGIC CONVENTIONS*>
 

%FALSE MEANS Q%END
 

7.3.3.3 Example of a Program to Sort a Short File 

Quite often, the items to be sorted will appear on a disk file rather than 
being input from a terminal. The program in this example accesses a user
specified file of numbers of unknown size, sorts them using the shuttle
interchange subroutine lifted from previous example, and then refiles them 
in a user-specified output file. 

Program:Numbers are read into an array, maximum size may not exceed a 
predetermined maximum, %MAXFIL. Numbers on the file are assumed to be 
readable in free-form by MBASIC. 

The program illustrates the AT. . ENDAT interrupt-handling structure and 
the use of EXIT n to direct control to the alternate procedure of an 
OUTCOME-block. 



239 Sec. 7.3] CRISP Coding 

PROGRAM: FILESORT
 

<*SORT A USER-SPECIFIED INPUT FILE*>
 

%MAXFIL MEANS 10000%END <*MAXIMUM ASSUMED CAPABILITY*>
 

DIM A(000} <*INITIAL TRIAL SIZE FOR ARRAY*>
 

STRING INFIL:50,OUTFIL-50 <*FILE NAMES, 50 CHARS EACH*>
 

INPUT USING <*PROMPTING MESSAGE AND FREE FORM'>&
 

'ENTER INPUT FILE NAME: #OUTPUT FILE NAME: #'.INFIL,OUTFIL
 

OPEN INFIL FOR INPUT AS FILE 1
 

OPEN OUTFIL FOR OUTPUT AS FILE 2 

DO INPUT FROM FILE TO ARRAY A <*SET N TO SIZE*>
 

CASE (OUTCOME)
 

. -> (0) <*NORMAL, SO NO ACTION REQUIRED*>
 

:->(1)<*NOT ALL OF FILE EXAMINED*> 

- PRINT 'FILE TOO LARGE, AT LEAST %MAXFIL ITEMS'
 

...ENDOASES
 

DO SHUTLE-SORT ARRAY A
 

WRITE ON 1:A<*ONE ITEM PER RECORD IN FREE-FORM FORMAT*>
 

PRINT 'SORTING COMPLETE. NUMBER OF ITEMS=':N
 

ENDPROGRAM <*STOP AND CLOSE BOTH FILES*>
 

TO INPUT FROM FILE TO ARRAY A
 

%END-OF-FILE MEANS ENDFILE(1)%END
 

<*INITIALIZE FOR ARRAY INPUT*> J=I,N=100
 

AT (%END-OF-FILE)
 

LOOP FOR 1=1 TO %MAXFIL
 

t INPUT FROM 1 A(I) <CFREE=FORM INPUT*>
 

t IF (3=100) <*A IS FULL*>
 

t: 	 J=O,N=N+1O0 <*RESET J AND NEW ARRAY SIZE*> 

: IF (N>%MAXFIL) N=%MAXFIL 

- DIM A(N) <tREDIMENSION ARRAY*> 

"..ENDIF 

J=J+l <*COUNT NUMBER OF ITEMS SINCE A REDIMENSIONED*> 

.-eREPEAT WITH NEXT I 

(NORMAL) <*MAXIMUM NUMBER READ INTO A"> 

--EXIT 2 

(%END-OF-FILE) <*LESS THAN MAXIMUM NUMBER READ IN*> 

N=I-1 <*RECORD THE NUMBER ACTUALLY READ IN*> 

ENDAT 

<--ENDTO 
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7.3.3A Example of Concurrent Input/Output Program 

This is Brinch Hansen's "Readers and Writers" problem [42]. There are 
two kinds of concurrent processes, called "readers" and "writers" which 
access a common data base. All readers can access the base simultaneously, 
but writers must have exclusive use; when a writer is ready to write, he 
should be given permission to do so as soon as possible, maintaining 
program consistency. 

Program:The solution below illustrates the use of FORK... JOIN to enclose 
concurrent procedures READER and WRITER. Mutually exclusive use of the 
data base is gained via AWAIT, REQUEST, and RELEASE arbitration discussed in 
Chapter 6; the arbitration, however, only encompasses two storage
locations that record, respectively, the number of currently active readers 
and the number of currently active writers. WRITING executes only when all 
currently active readers have finished; only one writer-at a time is active, 
others (readers and writers alike) are locked out because AWAIT has placed
both activity indicators in critical regions. READING executes when no 
writers are active and with no variables in critical regions; hence, readers 
may execute concurrently. 

The functions AWAIT, REQUEST, and RELEASE are not part of the CRISP 
language specification (in Appendix G); they are assumed to exist or have 
been programmed into the base language as privileged instructions, as 
discussed in Chapter 6. 
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PROGRAM:
 

%ACTIVE WRITERS MEANS ACTWTR%END
 

%ACTIVE READERS MEANS ACTRD%END
 

%INCREMENT(%) MEANS %1=%1+1%END
 

%DECREMENT(%) MEANS %1=%1-I%END
 

%ACTIVE READERS,%AGTIVE WRITERS=O
 

FORK n
 

>(I) <*PROCEDURE: READERt>
 

AWAIT %ACTIVE WRITERS=O,
 

CRITICAL ON (%ACTIVE WRITERS, %ACTIVE READERS)
 

%INCREMENT(%ACTIVE READERS)
 

:.,RELEASE(%ACTIVE WRITERS,%ACTIVE READERS)
 

DO READING
 

REQUEST(%ACTIVEREADERS)
 

%DECREMENT(%ACTIVE READERS)
 

.RELEASE(%AOTIVE READERS)
 

>{2)<*PROCEDURE WRITER 1.>
 

REQUEST(%ACTIVE WRITERS)
 

: %INCREMENT(%ACTIVE WRITERS)
 

:..RELEASE(%AOTIVE WRITERS)
 

AWAIT %ACTIVE READERS=O,
 

CRITICAL ON (%ACTIVE WRITERS,%ACTIVE READERS)
 

DO WRITING
 

%DECREMENT(%ACTIVE WRITERS)
 

..RELEASE(%AOTIVE WRITERS,%ACTIVE READERS)
 

ENDPROGRAM
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7.4 CRISP AS A PROCEDURE-DESIGN LANGUAGE 
It is certainly no more difficult to write structured-program code than it 

is to draw a flowchart when both contain approximately the same level of 
detail. Some may argue, since the code listings have to be produced 
anyway, that supplying further documentation in the form of flowcharts is 
then a duplication of effort. Moreover, maintaining consistency between 
human-drafted flowcharts and code listings during an iterative development 
cycle can be a very time-consuming task, even if such iteration isminimal. 

Furthermore, it can be argued that structured code is more rigorous than 
a flowchart. For one thing, it is written in a programming language whose 
syntax and semantics are well defined, For another, the structured code is 
part of the operating program, no tianslation being necessary (with its 
attendant possibility of introducing error). Structured code contains no 
unconditional branches and no statement labels to branch to. The logic flow 
of each program always proceeds linearly from beginning to end. Because 
there is straight line logic, flowcharts tend not to be needed for 
understanding. 

Nevertheless, structured code, even with annotated flowlines (as in the 
CRISP examples above), is somewhat less graphic than a flowchart, and the 
rationale and functional specification of program modules may be a little 
less understandable in code annotations than the narrative that properly 
accompanies a flowchart. 

In the foregoing discussion, I oriented the CRISP concept toward a 
compilable programming base language; the output of a CRISP processor 
in such cases would be, of course, executable code. However, the use of 
CRISP control structures superimposed on English as a base language can 
also be a very useful tool during the procedural design phases of 
development, not only to the designer himself, but to any readers, as well. 
The statement of Mills' algorithm in Section 5.4 was, in fact, a description 
using constructions much like CRISP, superimposed on regular technical 
English. The procedure shown in Section 7.3.2 is another such case. 
Neither description, as it stands, is compilable, but using macros as 
indicated (Section 7.3.3), this need not always be the case. 

The use of terse English phrases to describe concepts to be expounded 
upon more fully at later levels, imbedded in the CRISP control-logic 
structures, is much like the IBM technique referred to as "PIDGIN" and 
what others have called a "structured design language". I hesitate to label 
this technique using the CRISP control structures CRISP-PIDGIN for 
obvious reasons. 
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As another example of the use of structured English as a program 
procedure-design language (PDL), let me suppose that one wishes to 
describe a simple CRISP preprocessor design for an undisclosed target 
language. The level-I specification might appear listed as 

PROGRAM: CRISP PREPROCESSOR WITHOUT MACRO HANDLING
 

INPUT CONTROL CODES
 

INITIALIZE WORKSPACE
 

LOOP WHILE (SOURCE DECK NOT EMPTY)
 

t 	 INPUT SOURCE IMAGE INTO BUFFER
 

DETERMINE STATEMENT TYPE AND PARAMETERS
 

GENERATE TARGET CODE
 

-REPEAT
 

END PROGRAM 

Each of the subspecifications has been given a unique, descriptive name for 
reference purposes, by which refinements can be located at the next design 
level. Each subspecification can then be expanded into any needed detail at 
successive subsequent levels. For example, the next level of design for the 
DETERMINE... subspecification might appear as 

TO DETERMINE STATEMENT TYPE AND PARAMETERS 

INITIALIZE POINTERS TO FIRST CHARACTER IN BUFFER 

AND ROOT OF TEMPLATE GRAPH 

LOOP WHILE (INPUT POINTER NOT AT END OF INPUT BUFFER) 

IF (INPUT CHARACTER MATCHES TEMPLATE NODE CHARACTER) 

4 ADVANCE INPUT POINTER AND GRAPH POINTER 

S:->(ELSE) 
: IF (THERE IS ALTERNATE TEMPLATE NODE) 

t EXECUTE GRAPH NODE ACTION CODE FOR CURRENT NODE 

: SET GRAPH POINTER TO ALTERNATE NODE 

: :->(ELSE) 

: : SET STATEMENT TYPE TO "UNRECOGNIZED" 

t EXIT UNRECOGNIZED 

t ..ENDIF 

t :..,ENDIF 

t IF (INPUT BUFFER EXHAUSTED AND GRAPH NODE IS LEAF) 

I SET STATEMENT TYPE TO LEAF NUMBER 

_,..ENDIF 

-**REPEAT 

EXIT NORMAL 

ENDTO 
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The reader- may note at once that such CRISP-PDL procedural 
descriptions, being devoid of non-procedural explanations, may not always 
reveal everything that someone, other than the originator, needs in order to 
understand how the program works. In the procedure above, for example, 
the "template graph" data structure has not been described (it is in 

Chapter 12), and the reader may stumble about without such information. 
Besides descriptions of data structures, the reader may also need to have 
other forms of rationale provided to explain why things are being done as 
they are, or what the significance of a particular step is. As a 
documentation tool, the technique does much to emphasize human 
readability, but it is not the whole answer. 

Nevertheless, as a design tool, CEISP-PDL has permitted the designer to 
state the algorithms he is developing in a structured, procedural, and very 
readable way before any code has been generated. Such a tool allows him 
to write down several alternative procedures for evaluation, correctness 
assessment, etc., before they get committed into flowcharts, formalized 
documentation, and code. 

Changes in the design during this time do not cost in coding, debugging, 
or extra documentation. Many adherents to the use of structured English 
thus advise, "Don't code until you can't think of anything else to do!", as a 
means of saving costs. 

Once the CRISP-PDL descriptions are firm enough to flowchart and 
code, these processes can take place fairly rapidly by persons having quite 
a lower level of technical skill, and perhaps even aided by the computer 
(see Chapter 17). Once the design is done, implementation can be more of 
a production-type job; it is easier to schedule, since design-creativity is the 
commodity that comes in uncertain chunks. 

7.5 DESIGN DOCUMENTATION IN CRISP 
While CRISP alone goes a long way toward illustrating what a program 

does very graphically as a self-documented product, it may not go quite far 
enough in communicating all the whys necessary for a reader to review 
and understand the program, unless properly annotated. 

The code listing for a program is the only exact representation of what is 
executed by the computer. No matter what is written in memos, discussed 
at meetings, inserted into design documents, or attached to the code in the 
form of comments, the machine will read and execute only what is coded. 
Everything else is surrogate. 
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Nevertheless, I tend to believe that, as long as human beings are reading 
it, a program is not well structured unless it is accompanied by well' 
structured narrative-however irrelevant this may be to the abstract theory 
of program verification (see Chapter 9). In Chapter 17, I discuss provisions 
whereby the program listing can contain all the information necessary to 
document the program design. Narrative can be carried entirely in the 
form of readable and relevant comments using the same clear, concise 
prose as good technical writing. Design flowcharts, as well as flowcharts of 
the executable code, can be drafted automatically from the listings. 
Automated auditing of the design and code against the program 
specification, each for conformity with project standards, can also be 
achieved to a certain extent. 

Designing procedure specifications in CRISP and providing relevant 
narrative, from which flowcharts or narrative descriptions of the program 
can automatically emanate, should still precede the introduction of 
executable code, in keeping with the top-down development philosophy of 
earlier chapters. Module interface specifications can be done directly in 
code, so that there is less opportunity for misunderstanding and error.-
There is then also no programming toward hypothetical or temporary 
interfaces; every interface is defined at the proper logical point in the 
project, and used as a fully specified reference from there on. 

The CRISP code structures I have been discussing, together with the 
capability for macro extensibility and comment annotations, abet the
concept of phased concurrency in design, coding, testing, and documenta
tion. The documentation principle I expect to be in effect is that 
documentation will be certified at the end of each development phase by 
some form of audit before the next phase takes place. That is, for example, 
the design phase of a module may not end until that module is fully 
documented and audited. 

The surest way of assuring that a design at a given point can be coded is 
to do the coding. The first such opportunity occurs in the top-down 
approach when the very first part of the structured design has been made. 
To ascertain that there are no errors, the program can then be run. 

To be sure, the embryo program will not perform all, or perhaps any, of 
its specified tasks at this primitive level of the design. However, it can 
produce evidence that the program sequences through its stated 
snbfunctions in the proper order in response to controlled stimuli, and that 
variables advertised to be passed to, or obtained from, a subfunction are 
actually accessed in the correct manner. It does all this by substituting 
simplified dummy segments of code (stubs) for the as-yet-uncoded 
subfunctions to verify the correct sequencing of subfunctions and to 
validate all the interfaces of the program at the current state of design. 
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These principles are largely based on techniques put forth by Mills [57] 
who developed them as a means of implementing and testing programs, 
with reliability in mind. Besides being a check on the design and 
documentation, another advantage is that the central logic of the system is 
tested most, since it is run every time a new subsystem replaces one of the 
dummy stubs. System integration problems are almost entirely eliminated, 
because when a newly coded module is tested, it is integrated with all the 
already defined parts of the system. 

The reason for phased concurrency and auditing is that it is just too 
costly to produce possibly incorrect software, including documentation, 
with the view that it can be corrected later. Catching all corrections in 
documentation at a later time is a very risky, time consuming job. 
Concurrent coding and testing are aimed at revealing design and 
documentation errors at the earliest possible stages, before they can 
influence the remainder of the emerging program. 

7.6 SUMMARY 
In this chapter, I have introduced a set of statements to aid in creating 

structured programs in an arbitrary base language. Algorithms may initially 
be stated in a CRISP-PDL format, which leads, through a series of 
refinements, into compilable code. In the absence of a CRISP processor, 
the control structures may be translated into the base language through a 
simple discipline using conditionals and "GOTOs". If these constructs are 
coded in a consistent fashion, the programmer soon realizes that he is 
playing the role of a macro processor. General-purpose macro translators, 
such as STAGE2 [54], can place most of the CRISP capability within the 
access of programmers in a very short time and with very little effort on 
their part. 

Indenting CRISP code and addition of annotating "flowlines" turns a 
source listing into a two-dimensional, flowchart-like display of the program. 
The potential for program readability using CRISP code is, therefore, very 
high. In Chapter 17, I demonstrate that the CRISP code is also suitable for 
machine generation of actual flowcharts. Use of CRISP-like constructs not 
only then provides the opportunity for top-down concurrent design, coding, 
and testing, but it also provides a common, highly visible repository for all 
the documentation relative to these, namely, the source listing. These 
characteristics are very important ones in raising project productivity, as I 
discuss in Chapter 10. 

I realize that I have not discussed the use of many of the features of 
CRISP such as DISPLAY, REQUIRE, ABORT, etc., in very much detail. I have 
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tried to relate the reasons why these have been put into the syntax, 
however. Hopefully, the reader will gain a better appreciation for some of 
the features as the monograph continues. 

I have not developed language structures in this chapter for specifying 
abstract data types beyond those facilities inherent in the base language 
upon which CRISP is imposed. I did express, in Chapter 4, the view that 
the design of an algorithm cannot usually be separated from the design of 
the data structure upon which it operates. And thus, since I have given. 
structural topologies for program control flow in CRISP, it would seem 
that I have forgotten here about the other half of the problem. 

That accusation is largely true. If CRISP were ever to evolve into a 
modern programming language, the facilities for abstract data definition 
would have to be included. However, as long as it is intended merely for 
use as a structuring preprbcessor for existing unstructured languages, very 
little can be done to include abstract data declarations and operations 
capabilities into CRISP. When used as a program design language to 
format text, however, CRISP supports abstract data definitions as well as 
any language now extant; the programmer, in fact, is free to introduce any 
syntax for constructing data structure specifications within comprehension. 

Further discussion on data structure description languages and their 
implementation into a modem programming language may be found in 
Chapter 17. A useful bibliography of papers concerning data description 
language features has been compiled by Tennent 158]. 
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Problems for Chapter 7 

7-1 Program the flowcharts produced from Problems 5-1 and 5-3 in CRISP. 
Assume that A, B, C, etc., are names for the modules shown, and that a, 
b, c, etc., are condition strings valid in the target language. 

7-2 Program the skills-inventory problem (see Problems 4-3 and 5-6) using 
CRISP structures. Annotate the code with the appropriate flowchart box 
numbers. 

7-3 Design, flowchart, and then code using CRISP syntax the first three or 
four tiers of a complete CRISP preprocessor. Indicate which parts of the 
design are dependent on the implementing language, which are 
dependent on the target language, and which are independent of either 
of these. 

7-4 Program the flowcharts produced by Problems 6-2 and 6-4 in 
concurrent and real-time CRISP structures, respectively. 

7-5 Write a CRISP-FORTRAN subroutine to solve an N x N set of linear 
equations using the Gauss elimination technique. 



VIII. DECISION TABLES AS
 
PROGRAMMING AIDS
 

Although flowcharts are a widely accepted means of describing the logic 
of a computer program being developed, they haLve several significant 
disadvantages during program specification and early design. These 
disadvantages should encourage one to seek alternate methods for stating 
the pertinent aspects of a problem. Decision Tables (also called Decision 
Logic Tables) provide such an alternative. First, some of the disadvantages 
of flowcharting during the initial parts of program development can be 
listed [59]: 

* 	Although flowcharts are often very appropriate for describing 
scientific or mathematical algorithms where the logic is predefined 
and where each box can represent a certain amount of computation, 

* flowcharts are very often not appropriate for describing problems in 
systems programming, business data processing, or information 
retrieval, where actions in response to a long sequence of logical 
decisions must be made. 

* 	Flowcharts for programs with intricate logical structures tend to 
become lengthy, involved, and difficult to follow. 

249 
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a 	Flowcharting requires that one define his problem and develop his 
computer program in the same operation. 

Decision tables tend to overcome these disadvantages, while providing 
some advantages, as'well. They are, therefore, another useful tool that can 
contribute to the success of a software development project. This chapter 
exposes some of the salient features of decision tables and their use. 

8.1 DECISION TABLE TYPES 
A decision table [60] is a tabular display of the pertinent logical aspects 

of a programming problem, showing all relevant conditions, relationships, 
and actions to be taken under each set of circumstances. Used in 
programming design, decision tables separate program control logic from 
program computing functions, to allow each program path to be explicitly 
defined. The use of decision tables is not restricted, however, only to 
computer programming. In general, they can be used anywhere a 
complicated logical situation must be described. 

8.1.1 Decision Table Format 

The normal decision table representation has four separate parts in a 
specific format, as shown in Figure 8-1: The condition stub, the condition 
entries, the action stub, and the action entries. 

Condition 
Stub 

I Condition 
Entry 

Action 
Stub 

Action 
Entry 

Figure 8-1. Skeleton form of a decision table 

The condition stub is a list of all the relevant conditions, usually posed as 
questions, upon which resulting actions are to be based. Normal decision 
table theory does not require any order to the conditions, but certain 
programming aspects make an order more appealing and readable. 

The condition entries are columns ("rules") in which sets of pertinent 
answers are given to the conditions. In the simplest decision tables, rules 
contain only logical true/false or yes/no entries; however, they often 
display other answer types, as well. 

The action stub is a list of all possible actions that may be taken in 
response to the various sets of conditions. These need not be in any order, 
but for ease in understanding, a natural order may result. 
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The action entries are columns associated with the condition entry 
columns, They contain indicators to identify which of the actions are to be 
performed, and the sequence in which the various actions are to be taken 
when a given rule is satisfied. 

A decision table thus presents the sets of condition entries and their 
related sets of action entries as a set of vertical rules represented side-by
side. Whereas flowcharts depict decision processes serially, the decision 
logic tables represent the same processes in parallel. 

8.1.2 Limited-Entry Decision Tables 

Limited-entry decision tables (LEDTs) are the most widely used type 
and, in fact, most of the theoretical results apply only to these "LEDTs". 
They are readily identified by the fact that the condition entries are 
restricted to "Y", "N", or are immaterial (represented "-"). Other notations 
are often used: "T", "F", and blank for "Y", "N", and "-", respectively, etc. 
If only one action per rule appears, the action entries contain only the 
character "X" to indicate which particular action is to be taken. 

As an example of how to use a limited-entry decision table, consider the 
following problem: Having reached this point in the monograph, the 
reader undoubtedly faces a number of uncertainties and wonders what to 
do next. His quandary can be solved by preparing a decision table, such as 
the one shown in Figure 8-2. 

Rule 6 

READERSQUANDRY 1 2 3 4 5 6 7 8 

1. Isthe readertired: Y Y Y Y N N N N 

2. Isthe reader interested? Y Y N N Y Y N N 

3. Is the reader confused? Y N Y N Y N Y N 

1. Reread first part of chapter X X 

2 Continue reading chapter X X 

3 Skip to next chapter X X 

4. Stop reading and rest X X 

Figure 8-2. Limited-entry decision table. "The Reader's Quandary" 

Here, various pertinent conditions and a set of actions that could be 
invoked are listed. The table recommends one of four actions for each of 
the eight sets of circumstances involving three decisions to be made. 

The table recommends the reader "Stop reading and rest" (Action 4) 
whenever he is tired and uninterested, regardless of whether he is confused 

or not; he may "Skip to next chapter" if he is not tired, but not interested, 
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regardless of his state of confusion. When situations of this type occur, the 
"don't care" response, indicated by "-", is useful, as shown in Figure 8-3. 

Despite the possibility that the recommendations given may not be the 
same as those that would be chosen by someone else, the table in Figure 
8-3 is too simple to be effective. For one thing, there is an implied looping 
back to the beginning of the chapter when the reader is confused. If 
rereading does not clear up his confusion, but he insists on following the 
table's advice, then he ultimately tires or becomes uninterested. 
Consequently, he stops to rest or skips the rest of the chapter and, in either 
case, never reads to this point. (I may assume, therefore, that either you 
are not confused, or you don't take advice.) 

Since I obviously want this chapter read, either the first part of the 
chapter should be fixed so there can be no confusion after rereading, or else 
I should supply another condition, so as to allow the reader to proceed in 
the text, hoping his confusion will be- alleviated later. Such a condition is 
added in Figure 8-4. 

QUANDRY REDUCED 1 2 3 4 

1. Is the reader tired' - - Y N 

2. Is the reader interested? Y Y N N 

3. Is the reader confused? Y N 

1. Reread first part of chapter X 

2. Continue reading chapter X 

3 Skip to next chapter X 

4. Stop reading and rest X 

Figure 8-3. "The Reader's Quandary" with reduced rules 

QUANDRY REDEFINED 1 2 3 4 5 

1. Is the reader tired? - - - Y N 

2. Isthe reader interested? Y Y Y N N 

3 Is the reader confused? Y Y N - 

4 Is this the second reading? N Y - - 

1. Reread first part of chapter X 

2 Continue reading chapter X X 

3 Skip to next chapter X 
4 Stop reading and rest X 

Figure 8-4. "The Reader's Quandary," redefined 
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The addition of condition 4 permits the reader to continue, if interested, 
after the second reading of the material, confused or not. 

Several of the advantages of decision tables have been illustrated in the 
foregoing example: 

* 	 Logic is stated precisely and compactly. 

* 	The logic is easy to understand and the relationships among the 
various aspects of the problem are readily visualized. 

* 	Decision tables lend themselves easily to update and change. 

8.1.3 Extended- and Mixed-Entry Decision Tables 

Another type of entry used in the condition entry stub is the extended 
entry. Here the answer to the condition is not expressed as a logical true/ 
false, but is whatever value is required to answer the condition: 

I 	 What color is the house? White Yellow Pink Other 

It can readily be seen that an extended-entry question is equivalent to 
several yes-no questions asking if each of the possible entries is true. For 
example, the above extended entry can be represented as the following 
limited entries: 

is the house white? - Yes No No No 

Isthe house yellow? No Yes No No 

Isthe house pink? No No Yes No 

Features characteristic of both limited-entry tables and extended-entry 
decision tables (EEDTs) may be combined into a single table called a 
mixed-entry table. In any one horizontal row, however, entries are limited 
to one of the two types, exclusively. Mixed-entry decision tables (MEDTs) 
have one major advantage. Conditions that can be appropriately expressed 
by binary values (i.e., Y or N) may be represented in that fashion, such as 
conditions that are defined by relational expressions. 

8.2 ADDITIONAL ASPECTS OF DECISION TABLES 

In this section, I discuss some additional aspects of decision tables as an 
aid in developing them. These aspects include the reduction of entries by 
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combining rules or by a single rule covering multiple entries, and the 
testing of decision tables. 

8.2.1 Simplification of Decision Tables 

If two or more rules have the same action sequence and if their rule 
entries are logically similar, the two rules may often be combined into one 
rule. For example, two LEDT rules having identical actions and differ only
in the entries for one condition may be combined by substituting a "don't
care" entry for that condition: 

T T 
T 

F F F 
T F 

Similarly, don't-care entries may logically contain other, more explicit 
LEDT entries: 

T TT 

- F 

The complete rules for combining LEDT entries having identical actions 
are identical to those for combining terms in Boolian expressions used in 
logical design. This type of reduction is not always as straightforward for 
EEDTs or MEDTs, and in many cases such tables must be converted to 
their LEDT counterparts before processing can be attempted. I refer the 
interested reader to the literature [61,62] for further details concerning 
reduction of tables. 

8.2.2 The ELSE-Rule in Decision Tables 
Each of the condition entries in all of the decision tables discussed so far 

contains explicit answers to explicit questions. Questions may be asked in 
any order, arbitrarily, with the same action(s) taken in each case. All 
possible sets of answers appear in condition entries (although some answers 
may be immaterial). Matching a given array of answers with those in the 
condition events can likewise be done in any order. 

In many cases, however, a designer may want to specify explicitly only a 
relatively few condition entries with their corresponding actions, under the 
implicit understanding that all unspecified situations are to be handled alike 
as another single rule. He does this by stating the explicit rules in the 
normal way, and then adds an extra column of action entries to be 
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performed in the event that none of the explicitly defined rules is satisfied. 
This rule is called the ELSE-rule. 

A conversion of the problem in Figure 8-4 to the ELSE-rule format 
appears in Figure 8-5. 

QUANDRY WITH ELSE RULE 1 2 3 ELSE 

1. Is the reader tired? - Y N 

2 Isthe reader interested 7 Y N N 

3. Is the reader confused? Y 

4. Is this the second reading2 N 

1. Reread first part of chapter X 

2. Continue reading chapter X 

3. Skip to next chapter X 

4 Stop reading and rest X 

Figure 8-5. "The Reader's Quandary" in ELSE-rule format 

Using the ELSE-rule avoids exhaustive enumeration of all the immaterial 
answers to a set of conditions for which the actions are all the same 

anyway. Since all sets of answers are not enumerated, a given array of 
answers must be checked against those appearing in the explicit rules first, 

before deciding to take the ELSE actions. There is therefore now an 

implied order by which one goes about deciding whether to apply one of 
the explicit rules, or else, the ELSE rule. The procedure for searching 
through the table to see which rule applies to a given array of answers is 

called a sequential testing procedure (or ST-P), and is the subject of the 
next section. 

8.2.3 Sequential Testing Procedures 

In executing a decision table as if it were a program, there is an implicit 

order in testing the conditions to find the valid condition entry, and, 
thereby, the action to take. A sequential testing procedure (STP) is an 
algorithm for processing the upper half of a decision table, to determine 
which rule is to be activated. 

One simple STP is the following: Starting at the first condition and first 
rule, perform the condition test and compare the result to the entry 
("don't-cares" do not have to be tested). If the result matches the entry, go 
on to the next condition test and the next lower entry. If the result does not 
match the entry, step back to the first condition and the next entry column 

(rule). When all of the condition tests satisfy a rule, then all the actions for 
that rule should be done in the order stated. However, if no entry column 
satisfies the condition tests, then do'the actions for the ELSE-rule. 
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8.3 APPLICATION OF DECISION TABLES 

When the logical conditions stated in a decision table can efficiently be 
the same as those tested by a program, then that table reveals much about 
the program design, as well. It doesn't reveal everything, of course. A 
flowchart and program written directly from a decision table would seldom 
be very efficient. For one thing, specifications of data processing generally 
state the global effect of operations, rather than the sequencing and 
intermediate operations that compositely build that global effect. 

Nevertheless, a flowchart drawn from a decision table may form a good 
starting point for the program design. In fact, the design process may take 
the form of a series of refinements of the specification decision tables into 
design tables. I give an example of this later in this chapter. 

Obviously, any proper program can be represented by one or more 
decision tables, because proper programs have an equivalent structured 
form. The program organizations allowed by structured programming may 
be easily implemented in decision table format, and these structures are 
sufficient to code any program. 

8.3.1 Decision Tables as Programmable Algorithms 

Decision tables are an entirely different way of thinking about an 
algorithm. The advantage is not so apparent on smaller problems, and, in 
fact, decision tables may seem, at first, to be an awkward way of 
representing a small problem. However, when decision tables are used to 
analyze a larger problem, they allow one to cope with one rule at a time, 
independently of the other rules. They also tend to show when, or what 
will happen when, rules have been omitted unintentionally. 

The structure 'IF c THEN f ELSE g' is simply represented by the table 
(Figure 8-6): 

IF ... THEN ELSE 1 2 

Isc true? Y N 

Perform f X 

Perform g X 

Figure 8-6. If.. .THEN.. .ELSE decision table 
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Similarly, the structure 'WHILE c DO f is simply represented as the 

table (Figure 8-7): 

WHILE.. DO 1 2 

1. Isc true? Y N 

1. Perform f 1 

2 Repeat table 2 

3. Continue on X 

Figure 8-7. WHILE.. .DO...decision table 

Action 2 (Repeat) causes the condition entries to be reevaluated and 

subsequent action taken according to the activated rule; the numbers 

occurring in the first action entry indicate the sequence in which the 

actions are to be performed. (Since only one action occurs for the second 

rule, an "X" is sufficient to. -mark it.) Action 3 (Continue on) causes 

cessation of the action for this table. 

Normally, the flow of a program represented by the chart would carry 

on to the next structure in order. Often, it is useful to designate actions to 
connect decision tables: 

n Perform table t next X 

In this way, decision tables can reflect the hierarchic nature of the 

specificatibn or design process. Tables can also be kept to a reasonable size 
by relegating certain actions to subtables, as indicated above. 

8.3.2 Example: The Sieve of Eratosthenes 

This example illustrates how a decision table can be used to define a 
program; in this case, the program generates the first 300 prime numbers. 

The prime-number generator works merely by setting the first prime 

equal to 2, and then considering each odd number N, trying to divide it by 
the primes discovered so far. In trying to find prime divisors, we need try 

only primes already found up to N 112 as divisors. (If N is not prime, it must 
have a factor less than or equal to N119. This fact is easily demonstrated by, 
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supposing the contrary were true, namely, that N ab where a and b both 
-exceed N112 . But we would then have N = ab>N, which is impossible.) 

The following table (Figure 8-8) describes the program: 

SIEVE OF ERATOSTHENES 1 2 3 4 ELSE 

1. First passO T F F F 
2 K < 300? - T T T 

3 N/TABLE(I) an integer 7 - T F 

4. TAB LEM >SQRT(N)? - - F T 

1. Set N=2 I 

2. Set N=3 6 
3. Set K= 1 2 
4. Set I= 1 3 1 4 
S Set TABLE(K) N 4 3 
6. Set K-=K+1 2 
7. SetN=N+2 2 5 
8. SetI=I+1 1 
9. Print N 5 1 

10 Repeat this table 7 3 2 6 
11. Terminate X 

Figure 8-8. The Sieve of Eratosthenes 

The first pass (Rule 1)prints the first prime (2) and inserts it in the table at 
index K=1. On future passes, whenever an N is considered and is divisible 
by a prime (Rule 2), it is discarded. When it is not divisible by the Ith 
prime but N"12 is greater than the Ith prime (Rule 3), the next prime 
divisor is tried. Then (Rule 4), when I has sequenced to that point in the 
table of primes where N1 12 is less than the Ith prime, then N is judged to 
be prime, and is printed. Ultimately, when 300 entries into the table have 
been made, the ELSE-rule terminates the program. 

The table in Figure 8-8 serves to illustrate that decision tables have the 
advantage that each program path (i.e., rule) is specifically enumerated and 
defined independently from all other rules If a modification needs to be 
made to the actions for any rule, it can be made with assurance that the 
actions for other rules are not changed. 

8.3.3 Translating Specifications to Computer Programs 

The use of decision tables to specify a program function has several 
distinct advantages, among which are that it forces a clear problem 
statement, and it defines completely at the top hierarchic level those 
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decisions to be implemented. Moreover, as a technique, it is not 
inconsistent with the concepts introduced in Chapter 3, detailing program 
characteristics in hierarchic specification units. Decision tables lend 
themselves to hierarchic decomposition quite conveniently, as was 
illustrated in Figure 8-6. 

Earlier in this chapter (Section 8.3.1), I indicated that decision tables 
form a good starting point for beginning the design process. The tables 
depict algorithms whose global effects have been stated explicitly and 
concisely. Therefore, turning these into flowcharts or coded procedures in 
a series of refinements (in the interests of efficiency) assures program 
correctness with respect to matching actual program response to specified 
response. 

Also, sequential testing procedures ultimately lead to the decision trees 
generated when an LEDT is converted to a flowchart or computer 
program. Translation of decision tables to programs can be done manually 
or with the aid of special computer programs developed for this purpose 
or for simulating the execution of the table [63,64,65. The translation can 
be oriented toward minimizing either the amount of memory used or the 
speed required to decide which rule is in effect. 

Several enhancements can be used to speed up computer processing 
substantially. One simple and obvious enhancement is to save the result of 
the condition tests as a set of flags as they are performed, so that they need 
not be redone when one rule is not satisfied and the testing starts again at 
the top. This saves re-executing the condition tests for each column (rule). 

A second enhancement is equivalent to arranging the table so that the 
most heavily used rules appear first in the columns. These rules can be 
determined by simulating the execution, keeping a running count of rules 
satisfied during execution. 

Dynamic simulation enables self-adaptive optimization as follows: When 
a rule is satisfied, compare its count with that belonging to the rule (if any) 
on the left; if it is less, switch the rules. 

If a prioristatistics are available, they can be used to determine the STP 
directly, as will be outlined later in this chapter. 

There are many manual and automatic ways [66,67] that decision tables 
can be turned directly into computer programs. Programming in CRISP, 
however, is almost as automatic a first translation as could be hoped. For 
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example, the Reader's Quandary (Figure 8-4) merely becomes the 
following: 

Assume that flags TIRED, INTERESTED, CONFUSED, and SECOND TIME reflect 
the state of the conditions, and that the actions are REREAD, CONTINUE, SKIP, 

and STOP; then the CRISP embodiment of the Reader's Quandary (in which 
condition 2 is tested first, then 3, 4, and finally 1) is the short program: 

IF (INTERESTED) 

IF (CONFUSED)
 

IF (NOT SECOND TIME)
 

DO REREAD CHAPTER 

" ->(ELSE) 

* DO CONTINUE READING 

* . ...ENDIF 

: -> (ELSE) 

* : DO CONTINUE READING 

* 	 : .. ENDIF 

-> (ELSE) 

: IF (TIRED)
 

* DO STOP READING 

->(ELSE) 

DO SKIP TO NEXT CHAPTER
 

:. ENDIF 
: .,ENDIF " 

By this example one cansee that programs derived from decision tables 
are inherently structured and modular. Aside from not being quite so 
compact as the table, the program is perhaps just as straightforward and 
readable, however. 

But the same table could have been coded by testing condition 1 first, 
then 2, 3, and 4 in order. The result then would have been a much longer 
program, as follows: 
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IF (TIRED)
 

IF (INTERESTED)
 

* 	 . IF (CONFUSED) 

IF (SECOND TIME) 

* : DO CONTINUE READING
 

:. - ->(ELSE)
 

:. .: DO REREAD CHAPTER
 

- : ENDIF
 

:-> (ELSE)
 

* : DO CONTINUE READING
 

: : "• ENDIF
 

:->(ELSE) 

: . DO STOP READING 

* •ENDIF 

-> (ELSE) 

IF (INTERESTED) 

: . IF (CONFUSED) 

IF (SECOND TIME) 

- DO ,CONTINUE READING
 

: . ->(ELSE)
 

S: 	 DO REREAD CHAPTER
 

ENDIF
 
•>(ELSE) 

* DO CONTINUE READING
 

- ENDIF
 

:->(ELSE) 

- DO SKIP TO NEXT CHAPTER 

* ENDIF
 

:ENDIF
 

The order in which the tests are made thus can affect the program size 
and speed, sometimes to a large extent. The reason why the second 
program above is more complicated than the first is directly traceable to 
the fact that, even though only 2 of the 5 rules requires a test of condition 

1, nevertheless, this test was conducted first. As a result, condition 2 had to 
be repeated in each leg of the first IFTHENELSE structure. 

The first version of the program tested condition 2 first; but then, 
because condition 1 had. "-" for every 'Y' answer, testing that condition 
could be omitted from the THEN branch. Similarly, testing condition 3 and 
4 are superfluous to the ELSE branch, and so on. 

8.3.4 Conversion 	of LEDT to Computer Program 

Several algorithms have been put forth for the automatic conversion of 
LEDTs into computer programs, with the aim of minimizing storage 
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requirements, execution time, or compiling time. The following procedure 
based on Pollack [68] converts an unambiguous LEDT into a flowchart: 

a. 	 Select one row of the original LEDT by a suitable criterion C (to be 
discussed later). The condition in that row becomes the first 
comparison of the flowchart. 

b. 	Decompose the table into two subtables having one less row-either 
subtable may perhaps only contain one action-and associate each 
subtable with a branch of the flowchart decision. That is, one 
subtable consists of all the remaining conditions and the set of rules 
for which the condition selected in (a) above is true; the other is 
similar, except that the condition answers are false. 

c. 	 If a subtable has more than one action, select one of its rows by 
criterion C and attach the condition for that row to the proper 
branch of the previously selected condition producing that subtable. 

d. 	Continue (b) and .(c), above on each subtable until each rule of the 
original LEDT or the ELSE-rule is represented in a branch of a 
condition (or until a subtable indicates that the original table 
contained redundant or contradictory rules). 

The criterion C above can, among other things, check for redundancy or 
contradiction among rules. If, rat any stage, two rule columns exist without 
containing at least one YN pair in some row, redundancy or contradiction 
exists. Such a condition, for example, exists in the table shown in Figure 
8-9: 

Condition 1 2 

cI y -

c2 N N 

Figure 8-9. Redundant or contradictory rules 

If the actions for rules 1 and 2 are the same, the rules are redundant and 
one can be eliminated; if the actions are the different, the rules are 
contradictory, and the table is in error. 

By choice of the proper criterion C, Pollack and others [66-70] had 
hoped to produce flowcharts that would minimize either the memory 
space occupied by the decision process or the time required to make the 
decision. But none of these criteria always achieved its intended purpose, 
nor indeed, can any one-pass criterion ever be found which will. The 
reason for this is that the algorithm has no provision for backing up to 
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select a different flowchart, even if a suitable criterion could detect that it 
is now producing a suboptimum flowchart. 

In 1966 and 1967 Reinwald and Soland [64] gave algorithms that do 
produce optimum flowcharts, minimizing either execution time, or storage, 
or any increasing cost function of the two. The algorithm is essentially the 
same as that given above, except the criterion keeps track of a cost metric; 
whenever this metric for a partial flowchart exceeds a certain bound, the 
procedure backs up to consider alternate flowcharts. 

To explain the coming criteria, it is useful to rearrange and augment the 
decision table so that it appears as in the example shown in Figure 8-10. 

AUG- Rule 
MENTED 
[EDT 1 2 3 4 15 C) 7 8 Time 

Cost, 
Storage 
Cost, 

Conditions 
0.10 015 0.25 

Probabiity 

020 005 005 
__ 

005 0,15 

(Wsec/
decision) 

(cells/
decision) 

c. Y Y N Y N N N Y 50 30 

Y Y Y N Y N N N 68 75C2 


Y N Y N N Y N Y 25 18c3 

Actions A1 A2 A3 

Figure 1-10. Example of LEDT showing rule relative frequencies and execution
speed and memory costs 

In this table, the rules have been grouped together wherever they have 
the same action (A1). What these actions are, and what the actual 
conditions are, have been suppressed. The table appears in its full form, 
without "don't-cares". Tables having indifferent entries, as I have said, are 
sometimes useful as an aid to problem specification and for simplification 
of the table into a more manageable, understandable form. The table in its 
reduced form is acceptable by some of the various criteria used in the 
Pollack procedure. 

But rules can often be combined in many different ways to produce 
"don't-cares", which may lead to different non-equivalent "minimal cost" 
results in the procedure. I shall instead, for the treatment here, parallel the 
Reinwald-Soland technique, starting with the unreduced table, and proceed 
to define flowchart cost metrics for minimization. 
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The LEDT in Figure 8-10 has some elements not present in previous 
tables: the probabilities (relative frequencies) with which each of the rules 
occurs, and the costs, both in execution speed and memory occupancy, 
associated with making tests of the conditions. The figures I have put into 
this table are entirely hypothetical. 

Notationally, I shall represent the table in a skeleton form by a row 
vector p, whose elements Pr are the 2" rule probabilities, and column 
n-vectors x1, t, and s. The column vector xr contains the Y, N results of tests 
of conditions for the rth rule; t is the time-cost vector; and s is the storage
cost vector. In Figure 8-9, for example, n = 3 and 

[N50] 30] 
X3- y , t 68, s 75, 

Y 2 18 

p = (.10,.15,.25,.20,.05,.05,.05,.15) 

The component of xr corresponding to condition c will be denoted as xCr; 
for t, as t,; and for s, as s,. For example, x2,3 = Y, t,= 50, s3 = 18. 

As a further notational convention, I will refer to the events ci = Y and 
ci = N merely as i and 1, respectively. I shall also refer to k-tuples of such 
events in the notation, 

e = (e1,e2, ,ek) 

The entire set of rules satisfying an event set e will be denoted R(e). In the 
example above, 

R(2,)= {6,8} 

The former of these reflects that the set of rules is not restricted; the latter 
contains only rules 6 and 8, since both have e - (3F,3), that is, c2 = N and 
C = y. 

Two functions are needed to define the flowchart decision-time metric. 
The first is the don't-carediscriminant, 

I If rules r, and r2 agree except at 
condition c (i.e., xor1 =#: xc.), and 

DO(rbr)he both lead to the same action, A, 

s Otherm'se 

The symbol "' "means "'equals by definition". 

http:10,.15,.25,.20,.05,.05,.05,.15
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Reinwald and Soland have shown that the expected extra time 
contributed to the execution -of a flowchart, caused by making a test of 
-condition c next after the outcomes of events (e1 .... ek) = e are known 
(having already been tested by the flowchart), is given by the second 
function, 

AT0 ( ) = to 59 (Pr, + prj) D(ri,rj) 
R(e) 

where the sum extends over all pairs of rules r, < f1 satisfying e. The 
condition c, of course, is not included anywhere in e. 

The formula for ATc(e) is somewhat intuitive; it says that, once the 
'decisions reflected by e have been made, the expected time loss incurred 
by testing condition c is the time t. required to test c, times the probability 
that the actual rule in effect has c as a "don't-care" condition. 

_einwald and Soland have further proved for a given LEDT, that the 
average total decision time T for any flowchart which tests condition c first 
cannot be smaller than a computable lower-bound T,: 

T. =E ti -F ATk, + AT, 
k=1 k=1 

and, therefore, that the average decision time T of any flowchart 
equivalent to the given LEDT cannot be made smaller than a value To, 
given by 

T>T,- ttk -7 ATk + min AT, 
kE=T k=1 C 

Another pair of functions will produce the storage-cost metric for a 
flowchart; the first of these is the utility discriminant, 

1 male r exists in R(e) 
sech that D0 (r,r 2 ) = 0 forU0(e) every other rule r. in R(e) 

0 Otherwise 

This function reflects the utility of a condition c with regard to whether 
some rule in that subtable conditioned on the events e actually requires a 
test of condition c. 

Reinwald and Soland have then shown that the additionalstorage cost 
incurred due to testing condition c, conditioned on the prior-tested events 
e, is given by the second function, 
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AS 0(e) = so [1 - Ue(e)] + >] s-Uk-(e,C) Uk(e,5) 

The sum on k extends over all conditions in (e,c). Again, c does not appear 
anywhere in e. 

This formula, too, is somewhat intuitive,. in that it states (in its first term) 
that a test of an irrelevant condition c uses up s. storage locations 
needlessly, and (second term), that since Uk(e,c) Uk(e,Ec) equals one only if 
condition k is relevant in both the subtables conditioned by (e,c) and by 
(e,-), there will be an expenditure of an additional s storage locations for 
each remaining condition k, since condition k must then appear in both 
branches of the flowchart beyond c. At each subsequent point at which a 
condition k is relevant in both subtables, an additional cost of sk is again 
incurred. 

There is a lower bound on the amount of storage S used by a program 
equivalent to a given LEDT; if the program tests condition c first, this 
lower bound is 

S= S kU + AS, 
R{=1 

Thus, the decision-storage required by any program equivalent to an LEDT 
cannot be Smaller than a lower bound So, given by 

II 

S > S0 = skUk+ min AS, 
k=i 

This lower bound, however, is rarely achieved. 

8.3.5 Criteria for the Pollack Procedure 

Even though I have repeatedly stated that the Pollack procedure does 
not always produce the optimum result, nevertheless, it is a simple 
algorithm. Large LEDTs are very unwieldy anyway, so simple procedures 
can provide a means for achieving a fairly good program, even if not 
optimum. 

Since the Beinwald-Soland functions, which I have called AT, and AS, 
above, are direct measures of the extra time and storage required as the 
consequence of a decision c, they make excellent metrics for minimization. 
The criteria given by Pollack [68], Press [66], Shwayder [69], etc., are 
somewhat similar. 

8.3.5.1 Criteria 

For the Pollack procedure, a- criterion that will tend to reduce the 
expected execution time of the flowchart is thus the following: 
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Criterion C1 (Reduced Execution Time)-Compute the metric AT, for 
each condition c in the subtable remaining for consideration. Choose that 
c for which AT, is a minimum value. 

One can readily see that, if a flowchart exists which actually achieves the 
lower bound, then that optimum flowchart will be found by the Pollack 
procedure using criterion C1 above, except possibly in cases where two or 
more conditions at a certain stage of the development have equal values of 
AT, least among all remaining ATc. Then there is a possibility that the 
wrong condition may be chosen at that stage. The converse, unfortunately, 
is not true, flowcharts found by the Pollack procedure are not always 
optimum. 

A criterion for the Pollack procedure that will fend to reduce the storage 
occupancy is the following: 

Criterion C2 (Reduced Storage Occupancy)-Compute the metric AS, for 
each condition in the subtable remaining for consideration. Choose that c 
for which AS, is a minimum value. 

The two criteria can be combined into one criterion by the introduction 
of a suitable cost function, which I will denote by $(AT,,AS). The only 
restriction on $(x,y) is that it be an increasingfunction, nondecreasing in 
each argument. 

Criterion C3 (Reduced Cost)-Compnte AT,, AS,, and the metric 
$(AT,AS) for each condition in the subtable remaining for considera
tion. Choose that c for which $(AT,,AS0 ) is a minimum. 

8.3.5.2 Examples 

The following two examples illustrate the minimization of execution 
time and storage allocation by the Pollack procedure using Criterion CI 
and C2, respectively. 

a) Example: Flowchart for Figure 8-10 "minimizing" execution time by the 
Pollack procedure (Criterion CI). 

First, the values for AT0 are: 

AT1 = 50 (.10 + .25 + .20 + ,05) = 30 

AT2 = 68 (.05 + .05) = 6.8 

AT3 = 25 (.10 + .15 + .05 + .05) = 8.75 

Since AT 2 is least, condition 2 is chosen first. The two remaining subtables 
with c2 exclud6d are: 



268 DecisionTables asProgrammingAids [CHAP.8 

1 2 3 5c 2 Y Cost0.10 015 025 0.05 

Y Y N N 50c1 

Y N Y N 25c3 

Al A 2 

4 6 7 8 

02 N Cost 
020 0.05 005 0.15 

01 Y N N Y 50 

C3 N Y N Y 25 

A3A2 

At this second stage, one can verify that 

AT, (2) = 50 (.35) = 17.5 AT,(2) = 50 (.25) = 12.5 

AT3(2) = 25 (25) = 6.25 AT 3(2) = 25(.I0) = 2.5 

Therefore, condition 3 is to be tested on each branch of condition 2; these 
now result in the four subtables: 

1 3 2 5
 
c2 =Y,c 3 =Y - Cost c2 =Y,c 3 =NCost
 

010 025 0.1t 00t0 05
0.15 

Y N 50 Y N 50 

A, A1 A 2 

6 8 4 7c 2 = N, c 3 =Y Cost c 2 =N, c 3 =N Cost
005 015 0.20 0.05 

50 

I I
 
A2 A3 A2
 

N Y so C' Y N 

The rules in the first and last subtables all belong to one action, and, 
therefore, need -not be tested. The resulting flowchart appears in Figure 
18-11. 
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Figure 8-11. Flowchart resulting from decision table in Figure 8-10 by Pollack's 
procedure using criterion C1 (average decision time is 113; storage used is 171) 

In this case, the Pollack procedure has produced the actual optimum 
flowchart, even though the average execution time slightly exceeds the 
lower bound To = 143 - 45.55 + 6.8 = 104.25. 

b)Example: Flowchart for Figure 8-10 "minimizing" storage allocation by 
the Pollack procedur6 (Criterion C2). 

First, the values for AS, are: 

AS,= 30 (1 - 1) + 75- 1 1 + 18 - 1 - I = 93 

AS 2=75(1 -1 ) + 30"11+ 18'1I = 48 

AS3 -'18(1-1) +30-I-I + 75"1 = 105 

Hence, as in the last example, condition 2 is to be tested first; the two 
subtables are the same as in the previous example, except the costs are 
now 30 and 18 cells, rather than 50 and 25 psecs. Next, 

AS,(2)= 0 AS 1(2)= 0 

As3(2) = 0 AS2) = 0 

Thus, the extra storage incurred by either conditions is zero on both 
branches, so either condition can be chosen for either branch; let us say 
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condition 1 for event 2 and condition 3 for event 2. The four subtables that 
remain are: 

c 2 =Y, l = Y I1 2 Cost c2 Y, c 1 = N 3 5 Cost 

c3 Y N 18 c3 Y N 18 
IA 1 A, A2 

U------....-

=c 2 --N.e 3 
=Y 6 8 Cost c2 N,e 3 =N 4 J7 Cost 

c1 N Y' 30 cl Y N 30 

IA 2 A3 I A2 

Again, the rules in the first and last subtables all belong to one action 
and, therefore, need not be tested. The resulting flowchart appears as 
shown in Figure 8-12. The chart is undoubtedly optimum, since the 
minimum additional storage cost decision was chosen at first step, and the 
remainder had no additional storage costs. 

Figure 8-12. Flowchart resulting from decision table in Figure 8-10 by Pollack's 
procedure using criterion C2 (storage used is 171, the same as is used in Figure 

8-11, but the average decision time is 124.25) 

I 



271 Sec. 8.41 The Use of DecisionTables in Programming 

Unfortunately, such an easy indicator of optimality (zero additional cost 
at each step) appears only rarely in processing an LEDT; the lower bound 
on storage is So = 171, achieved by the optimum. The chart in Figure 8-11 
achieves both the optimum average execution time and storage costs. 

By way of comparison, the chart shown in Figure 8-13 has an average 
decision time of 134.25 and a storage requirement of 216, more than either 
of the two previous charts. 

yes C1 no 

Figure 8-13. A non-optimum flowchart equivalent to decision table in Figure 8-10 
(average decision time is 134.25; storage cost is 216) 

8.4 THE USE OF DECISION TABLES IN PROGRAMMING 

As was stated earlier, decision tables provide a way of differentiating 
between conditions and actions; specifically, all conditions are tested 
before any of the actions are performed. When programming without the 
aid of decision tables, one generally intermixes the two, following an 
impulse to "act as soon as you know you must" [64]. Frequently, one delays 
the execution of an action implied by a subset of conditions already tested, 
by setting a flag to remember the test outcome for later reference (a good 
example is the setting of a loop structure flag). None of the previously 
stated minimum-cost procedures allows for such intermixing of condition 
tests and actions, or the use of flags to delay execution of an action. 
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However, minimum cost techniques very often lead to more efficient 
programs; the development of algorithms incorporating these features is 
thus desirable, and probably feasible. The fact that decision tables tend to 
become unwieldy when there are more than half a dozen conditions is, in 
many ways, an advantage, because it is almost always symptomatic of poor 
program organization. It encourages the programmer to reexamine the 
problem, break it into smaller, more manageable modules wherein each 

- module finds its expression in a single table. 

8.4.1 The Reinwald-Soland Procedure 
The procedure developed by Reinwald and Soland is essentially the same 

as the Pollack procedure, with two significant differences. First, a 
cumulative metric is maintained for the entire flowchart, up to its current 
state, whereas the previous procedures only examined, and then discarded, 
the incremental costs. And second, the procedure can backtrack to a 
previously-considered stage in the flowchart development (one that was 
rejected at that time because its metric was too great) whenever it 
ascertains that the metric at the current stage has exceeded the metric at 
the previous stage. I shall not elaborate on the algorithm in any greater 
detail; the interested reader, however, may consult the references [64]. 

8.4.2 Testing the ELSE-Rule 

Very often, the reduction procedure leading to an optimum flowchart 
leads to subtables that correspond to only one single action, but in which 
some conditions remain untested and not explicitly indifferent. For 
example, suppose the decomposition process has, at a particular stage, 
resulted in the (hypothetical) partial tables below: 

1 2 3 4 

c1 =Y !- CI =NN 0.1025 0.25 1 0,1 

c2 Y Y 0 3 Y N 

CY N A2 A3 

A1 

Condition c3 in the leftmost table is immaterial; however, c2 is given as an 
explicit condition, which must be Y before action A, is to be invoked. But 
what action is to be taken in the event the answer to c2 is N? It depends. If 
c, = Y, c2 = N is a possible event, then the action to be taken is 
contained in the action entry of the ELSE-rule, in which case a test of c2 
must be made. However, if c1 = Y, c2 = N is not a possible event, then cj 
need not be tested. If the event is possible, but highly improbable, there 
may arise concern as to what course should properly be taken in the 
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program design: incur the extra expense to test the condition(s), or leave 
out the test(s) and run the risk of encountering the unlikely event(s). 

The design decision, of course, is mitigated by the seriousness of 
omitting the test, compared with the cost of making it. For example, if 
omission of a test merely causes momentary erroneous data once in a great 
while, there is a great temptation to leave it out, in the interest of 
"efficiency". But if not testing that very unlikely can blowevent the 
program, obliterate or falsify a great body of data, cause physical hazards, 
etc., then most certainly the test will be made, whatever the cost. 

In keeping with the goal of this monograph-correct programs-design 
standards should require that the ELSE-rule be tested completely, except 
on a case-by-case basis where it can be shown that the likelihood of an 
untested ELSE-event is extremely low and the consequences of not testing 
that event are clear and justifiable. The program documentation should 
carry the rationale for each such exception. 

8.4.3 Extensions to Mixed- and Extended-Entry Tables 

The procedures given in the preceding sections of this chapter for 
turning decision tables into flowcharts (i.e., programs) are restricted to 
tables with binary branchings. With minor revisions, these can be 
generalized to tables in which multiple branching is permitted. 

One obvious way of doing this is to convert all non-binary decisions to 
binary decisions, and proceed as in the previous sections. Depending on 
how multiple-branch decisions can be implemented in the target computer 
language, such a procedure may not be so inefficient as it may seem at first. 
Many multiple decisions are, in reality, merely cascaded binary decisions 
anyway. 

In general, however, one can preassign a cost to each outcome of each 
decision. Previously, I considered these to be the same for Y and N answers 
(but they needn't have been), and collected these in the rightmost 
column(s) of the LEDT. If the costs of a test depend on the outcome, then 
these can be inserted, as shown below, into the table adjacent to the 
corresponding outcome. If a, is an answer to rule j: 

EXTENSIONS 1 2 r 

cla,. t1 t a2. ti I • ar I 

Decomposition of the table takes place just as it did previously, except 
there will now be a subtable associated with each answer a, to the chosen 
eonditinn. 
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The procedures for minimizing costs are the same as given previously, 
except, instead of associating a cost with each condition (say I, 
corresponding to condition i), now a cost is associated with each answer to 
each condition, as ti4 corresponds to the jth answer to condition L 

8.4.4 	An Example of the Use of Decision Tables in 
Programming: A Card Cross-Reference Program 

The following example demonstrates the use of decision tables from the 
conceptual stages of program specification to the development of a 
computer program. 

Problem: A program in source-language form exists on a set of cards. 
Another program, to be written, reads these cards and identifies the 
variable and label names on each card according to specified control data 
input. It then prints, adjacent to each pre-specified variable (or to every 
variable in lexicographic order when no variables are specified in the 
control data), the card number on which that variable appears within a 
specified card-number range (or the entire program when no range ,is 
given). Similarly, it prints for each specified label (or all labels, in 
lexicographic order when none are specified), the card number of all cards 
having a branch to that label within a second specified card-number range 
(or the entire program when no second range is given). The format of the 
control input is (variable list:card-numberrange;label list:card-number 
range). Nothing is to be printed if (;) is input, all variables and labels for all 
cards are printed if (:;:).or 0 is input. A specification such as (v) prints only 
for specified variables in the list v over the entire range, (:nj-n 2) prints only 
for all variables over the specified card number range. Similarly, (;l) prints 
only for the specified labels in the list hLover the entire range, and (:;n 1-no) 
prints only for all labels over the specified card-number range. 

Analysis: The problem statement (i.e., requirement), while being rather 
long, is nevertheless, fairly vague, in that it only explicitly identifies actions 
for 7 events. A programmer, however, will readily identify the following 
set of logical conditions to be tested: 

1. v-list given? 

2! first "'" given? 

3. v-range given? 

4. ; 	 present? 

5. I-list given? 

6. second ":" given? 

7. I-range given? 
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and actions to be taken: 

1. print for selected variables 

2. print for all variables 

3. print for no variables 

4. over selected 'range for variables 

5. over entire range for variables 

6. print for selected labels 

7. print for all labels 

8. print for no labels 

9. over selected range for labels 

10. over entire range for labels 

11. print error message 

Wishing to make a benevolent design, the programmer has himself 
added action 11, an ELSE-rule action. He also, upon study, sees that there 
are 5 printing formats for variables and 5 for labels, and thus that, to 
provide the flexibility for accommodating'any combination of these, there 
must be 25 separate rules. Two inputs, ( ) and (:;:), yield the same action. 
He thus concludes that 27 rules, in all, are necessary. 

On further study, and aided by the seven sample events, he fills out the 
program definition decision table shown in Figure 8-14. Let it be assumed 
that this table is then approved (by those writing the original problem 
statement). Now the design process begins. If the designer decides to 
flowchart using the Pollack procedure as a design prelude, he will find the 
need for 62 binary decisions (ELSE-rule completely tested)! 

At this point, he seeks ways to simplify and reorganize the program 
definition without affecting the conditions and actions. 

Reorganization: He recognizes that actions printing the variables and 
labels are very similar; independent tables such as those in Figures 8-15 and, 
8-16 can express these actions with simpler conditions. All 25 of the 
required-actions are represented in the two tables; however, the null input, 
0, is improperly accounted for (neither table prints anything), and the 
ELSE-rule is incorrectly invoked. To eliminate a retest of the condition in 
which a null input might have occurred, Figure 8-15 introduces the setting 
of a flag. 



CROSS REFERENCING LEDT 1 2345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ELSE 

Conditions: 

1, vistgiven? Y Y Y Y Y Y Y Y Y Y N N N N N N N N N N N N N N N N 

2 First ""given? Y Y Y Y Y ----- Y Y Y Y Y Y Y Y Y Y N N N N N 

.= 3. vrangegiven? YYYYYNNNNNYYYYYNNN NNNNNNNN 

4 "present' Y Y Y Y N Y Y Y Y N Y Y Y Y N Y Y Y Y Y Y Y Y Y Y N 

_ 5, I-listgiven? Y Y N N N Y Y N N N Y Y N N N Y Y N N N Y Y N N N N 

6 
7. 

Second .. given? 
t-rangegiven?YN7 I-aggieY 

Y - Y Y 
N Y NN 

N Y 
N YY 

- Y 
YN Y 

Y N Y - Y 
N NN N Y N Y 

Y N Y 
N NN IN Y 

- Y 
NN Y 

Y 
N 

N Y 
JIN Y 

- Y Y 
NNN Y N 

N 
N 

N 
NN 

Actions, 
1. Printforgivenv X X X X X X X X X X 

2 Print for allvv X X X X X X X XX X 
3 Print for nov X XX X X 
4 Selectedvrange X X X X X X X X X X 
6. Entirev-range X X X X X X XXXX X 

6. PrintforgivenI X X X X X X X X X X 

7 Printforall2 XX X X X X X X X X X 

8 Print for nol X X X X X 

9 Selected .range X X X X X X X X X X 
10 Entire I range X X X X X X X X X X X 
11 Print error message X 

0z 

Figure 8-14. LEDT for a Card Cross-Reference Program (rules indicated by * are explicit in problem definition, 
the remainder are Inferred; no relative frequencies or decision costs have been provided) 



277 Sec. 8.4J The Use of DecisionTables in Programming 

VARIABLE REFERENCES 1 2 3 4 5 ELSE 

1 vIistgiven? Y Y N N N 

2 First" "given? Y - Y Y N 

3 v-range given? Y N Y N N 

1 Print for given v X X
 

2 Print for all v X X
 

3 Print for no v X
 

4 Over selected v-range X X
 

5 Over entire v range X X
 

11. 	 Print error message X
 
and terminate abnormally
 

= 012 SetFLAG X X X X
 
= 1
13 SetFLAG X
 

14 Perform table in Fig, 8-17 X X X X X
 

Figure'8-15. Partial LEDT for the Card Cross-Reference Program, actions to print 
references to variables 

LABEL REFERENCES 1 2 3 4 5 ELSE 

5. -listgiven? 	 Y Y N N N 

6. 	 Second "' given7 Y - Y Y N 

7. 	 I-range given? Y N Y N N 

6. Print for given I X X
 

7, PrintforalllI X X
 

8 Print for no I X
 

9. 	 Over selected I-range X X
 
10. 	 Over entfre .-range X X
 

11. 	 Print error message X
 

Figure 8-16. LEDT for the Card Cross-Reference Program, actions to print 
referencesto labels 

The designer,. however, recognizes from Figure 8-14 that, aside from the
 
last two actions, the table in Figure 8-15 is always executed. Thus this table
 
can be isolated as a separate action, prior to execution of Figure 8-16,
 
which is to be executed then only when a semicolon is present. The table
 
linking the two appears in Figure 8-17; the resulting flowchart appears as
 
Figure 8-18. The total number of decision boxes has been reduced by this
 
procedure to only 18 (tables in Figures 8-15 and -8-16 take 6 and 7,
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VARIABLE AND LABEL REFERENCES 1 2 3 ELSE 

4. Is","present? Y N N 

5 I-list given? 

6 Second ":"given? 

7 -range given' 

B. FLAG=I? 

-

-

-

-

N 

N 

N 

Y 

N 

N 

N 

N 

15 Executetable in Fig 8-16 

2 Print for all v 
5 Over entire v-range 

7. Print for all I 

X 

X 
X 
X 

10 Over entire £-range 

16. Do nothing, continue 

11. Print error message 

X 

X 

X 

Figure 8-17. LEDT for the Card Cross-Reference Program, linking tables in Figures 
8-15 and 8-16 

respectively). If logical connectives are permissible, then a further 
reduction occurs in the number of decisions, as shown by the CRISP-like 
procedure, ACTION, as follows: 

Note: The flowchart (Figure 8-18) and CRISP-like 
procedure are not the program to be written. Rather, they 
only show the required response to control data input 
insofar as actions to be taken are concerned. 

PROCEDURE: ACTION <*DEFINITION OF CONTROL RESPONSE*>
 

<*CONDITIONS %V-LIST, %OOLON-1, %V-RANGE,
 

<*%SEMICOLON, %L-LIST, %COLON-2. AND %L-RANGE, ARE ASSUMED
 

<*TO BE SUPPLIED BY CALLING PROCEDURE*>&
 

DO VPRINT <*PRINT VARIABLE REFERENCES*>
 

IF (%SEMICOLON)
 

DO LPRINT <*PRINT LABEL REFERENCES *>
 

:> (ELSE) 

IF (%L-LIST OR %COLON-2 OR %L-RANGE)
 

CALL ERRMSG <*PRINT ERROR MESSAGE*>
 

.- >(ELSE) 

* - IF (FLAG=-1)
 

: DO PRTALL <*PRINT ALL REFERENCES*>
 

* : ENI'rF 

* .ENDIF 

- ENDIF 

ENDPROCEDURE
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PROCEDURE: VPRINT <*PRINT VARIABLE REFERENCES*>
 

FLAG=O
 

IF (%V-LIST)
 

IF (%COLON-1 AND %V-RANGE)
 

DO ACTS25 <*ACTIONS 2 AND 5*>
 

->(ELSE) 

IF (NOT %V-RANGE)
 

DO ACTS24 <*ACTIONS'2 AND 4*>
 

-	 *-> (ELSE) 

: 	 CALL ERRMSO <*PRINT ERROR MESSAGE*>
 

* : 	 ABORT
 

-	 :. ENDIF
 

- ENDIF
 

. -> (ELSE) 

IF (%COLON-1)
 

IF. (%V-RANGE)
 

* - : DO ACTSiS <*ACTIONS 1 AND 5$>
 

- ->(ELSE)
 

* 	 DO ACTS 14 <*ACTIONS I AND 4*>
 

* ENDIF
 

* -> (ELSE) 

IF (%V-RANGE)
 

CALL ERRMSG <*PRINT ERROR MESSAGE*>
 

ABORT
 

-* :->(ELSE) 

* 	 : DO ACTS36 <*ACTIONS 3 AND 6*> 

FLAG=1 

... ENDIF 

...ENDIF
 

:. ENDIF
 

ENDPROCEDURE
 

PROCEDURE. LPRINT <*PRINT LABEL REFERENCES*>
 

ENDPROCEDURE
 

The subprogram LPRINT (to print label references) is very similar to 
VPRINT, and so, for prevention of further ennui, it is omitted here. 
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ACTION 

VPRINT Figure 8-15 
n vb FLAG = if

rint variableF - any printing
references occurred 

Figure 8-16 rintrlbel 

rresegneER ERRMSG
 "n
Print erryesondrmessa RM7(
g"ese 


Print error gvn 
message 

PRTAL 
Print all 
references 

Figure 8-18. Flowchart for Example 8A4.4, Card Cross-Reference Program (decision 
logic follows table in Figure 8-17; this is a program definition flowchart, not a 

program design flowchart) 
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It is worth pointing out that the original table (Figure 8-14) and the 
simplified program are not strictly equivalent. The former would have 
dismissed the input (:) as an error; the latter treats it as being equivalent to 
(:;), printing all variable references throughout the program. Discrepancies 
of this type necessarily must be identified and shown not to be in conflct 
with the original problem statement. In this case, it is not, and in fact, leads 
to a more forgiving input specification (which still should, I would think, 
require approval by the proper authority, before continuing). 

At this point, the designer has a correct algorithm insofar as its response 
to input control data is concerned. However, he has not yet imbedded his 
algorithm into a program that will efficiently accumulate the input data 
upon which the algorithm is to operate, and that will efficiently print the 
specified results. How the input is to be accumulated into a form suitable 
for the algorithm to access and how the output printing is to be formatted 
was not given in the problem statement, but left as a design prerogative. 
Hence, the next design task is to define the needed data structures, 
accumulation algorithms, and printing formats, and then to refine the 
ACTION algorithm to interface these properly. 

Let me suppose that the designer elects, as in Figure 8-19, to input the 
control data by a module CONTROL, which then parses it and thereupon sets 
the flags needed by the ACTION algorithm or terminates abnormally in an 
error message. If no semicolon appears, conditions 4, 6, and 8 of Figure 
8-18 cannot be valid within the parsing algorithm, and may thus be omitted 
from ACTION. Moreover, items are to be accumulated, rather than printed, 
according, to the ACTION specification. The designer thus renames the 
module ACCUMULATE. The accumulation module (Figure 8-20) iteratively 
reads the input data cards, examines them for labels and variable names, 
and stores them selectively into sorted, linked lists in accordance with the 

ACTION algorithm. Printing takes place after all cards have been processed 
by the module REPORT. 
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CONTROL
 

Input control error 

data, set 

f lags I 
Items selected ACCUMULATE ERROR 
according to 
ACTION Form sorted, 	 Printerror 

mesgealgorithm 	 linked lists 

Print lists 

Figure 8-19. The entire REFERENCES program design 

The reader may note that ELSE-rule checking has been relegated to the 
CONTROL module. Also, the EXTRACT module has been charged with retrieval 
of the card number; in case the cards have sequence numbers punched, 
these are merely extracted and used. However, if not, it must supply them 
by some other algorithm. (Another design prerogative subject to approval, 
since it affects the output definition.) 

I. 

At this point, the designer feels lie has his level-i program designed, and 
he is reasonably sure it conforms to the problem statement. It is, in fact, 
somewhat better for two reasons: first, the design is more flexible with 
respect to control inputs, and second, this flexibility was achieved simply 
and efficiently. 

The regular hierarchic design methods carry on from here. 
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FLAG set by 
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Figure B-20. The ACCUMULATE module, a refinement of the ACTION algorithm 
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8.5 SUMMARY 
This chapter has shown how decision tables can be used to develop and 

document a computer program from the top down, in modular hierarchy. 
Some characteristics of decision table usage worth summarizing before 
leaving the subject are listed below [59]: 

* 	It forces a clear problem statement and shows where information is 
missing. 

* 	 It forces a complete logical description of the problem. 

" 	It completely defines, at the top hierarchic level, those decisions to 
be implemented. 

* 	 It permits functional definitions and descriptions that are distinct 
from procedural content. 

* 	 It aids in translating a program definition into a working computer 
program. 

* 	It permits development and orderly presentation of programs that 
are sometimes too complex for effective flowcharting. 

* 	It modularizes the program by forcing a segmentation of the overall 
system into logically manageable tables. 

* 	It is suitable for documentation, and for communication of the 
program operation between people. 

* 	It assists in implementing program changes, and tends to identify 
consequences of any one change, even in a complex program. 

* 	 It is useful for presenting and communicating the program design to 
management for evaluation. 

Standards for generating and using decision tables may be found in later 
chapters of this work. Format and documentation standards for decision 
tables are also discussed in Gray and Landon [20]. 
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Problems for Chapter 8 

8-1 Write a CRISP program to print the first N primes as illustrated in 
Figure 8-8. 

8-2 Make appropriate assumptions for the frequencies, decision costs, and 
decision times for the card cross-reference decision table shown in 
Figure 8-16, and find a "minimal cost" STP by an appropriate Pollack 
procedure. 

8-3 Make a decision table for the following simple elevator. The elevator 
goes between floors I and 2, the door can be open or closed, the button 
outside each door can initiate the "call" state, and the button inside only 
can activate (move) the elevator. The actions it can perform are: (1) 
close the door, (2) open the door, (3) go up, (4) go down, and (5) clear 
state of push buttons at current floor (inside and/or out). (Sets of actions, 
once started, go to completion before-new conditions are tested.) 

8-4 Design and flowchart a structured computer program to convert a 
given LEDT into a flowchart by the Pollack procedure with criterion C3 
given in Section 8.3.5. (Hint: use recursive calls to a procedure that 
performs C3 on subtables.) 

8-5 Design and flowchart a structured computer program to perform self
adaptive dynamic optimization of the sequential testing procedure for a 
limited-entry table-driven set of repetitive actions and decisions, as 
follows: Keep a running count of the rules executed; when a rule is 
satisfied, compare its count with that belonging to the rule (if any) on the 
left; and when it is less, switch the rules. Consider the feasibility of 

testing all conditions and setting flags before entering the STP, as 
opposed to testing each condition the first time it is required by the STP, 
and then only a flag each succeeding time. 

8-6 Discuss the feasibility of the following LEDT implementation into a 
computer program: Test each of n conditions c,, setting bit i of a 
computer word w equal to 1, if true, or to 0, if false. Then branch to the 
address contained in a 2n-th element transfer-vector V, as indexed by the 
integer held in w, to initiate the actions invoked by the rule in effect. 

8-7 Make an LEDT for the following problem. If a customer has placed an 
order that exceeds his credit limit, then send the order to the credit 
department. However, the order should always be accepted when it is 
one of our special customers; that is, one who does business with us 
regularly. Also, if the order is less than the minimum allowable shipping 
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quantity, it should be rejected and sent to the shipping department 
manager. However, the system should be capable of receiving exceptions 
to this rule, as there will be cases when a customer will insist that his 
order be shipped, even though it is too small. In such cases, a special 
approval from the shipping department overrides the minimum-drder 
requirement. 



IX. ASSESSMENT OF PROGRAM
 
CORRECTNESS
 

I have been harping about correctness of programs through eight 
chapters so far, without saying too much about exactly how that assessment 
is to be made. Since large programs cannot be fully demonstrated, either 
by rigorous, formal proofs or by exhaustive verification, these programs are 
almost certain to contain errors of one form or another. It is true that the 
modular, hierarchic decomposition of a program into functional subunits 
reduces complexity to a great extent, but probably not to the extent that 
concurrent, rigorous proofs of correctness are feasible. 

What, then can be done to increase probable program correctness, or 
the "index of reliability", or "confidence level", as I called it in Chapter 5P 
At this writing, not enough; programs still require repairs, no matter how 
carefully they have been prepared, documented, coded, and tested. But 
there are some things that help, and that is what this chapter is about. 

287
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9.1 FORMAL PROOFS 
The only known general method that can be applied to make a formal 

proof of correctness may now be stated as follows [711 

For each flowchart flowline, make asseitions which describe the 
current pertinent state of the program data space as the ptogtam 
traversesthatflowline. Fo; each process node, prove that if the incoming 
assertion is true, then the outgoing assertion is true; for each collecting 
node, prove that if any one of the incoming assertions is true, then the 
outgoing assertionis true; andfor each branchingnode, prove that if the 
incoming assertionis tiue, then all of the outgoing assertionsare true. 

Proofs of termination are usually handled separately, but can often be 
decided by making the assertions contain a parameter that indicates 
convergence of the algorithm. 

9.1.1 Proof of Program Behavior 

I claimed in Section 5.1.4 that formal, rigorous correctness proofs are 
impractical, in that they are at least as complicated as the program they 
assert to be correct, and in that they are probably just as susceptible to 
error [38, 39, 40]. Nevertheless, the use of proof techniques does contribute 
to program correctness by forcing programmers to express solutions to 
problems in two different ways: by an algorithm and by a proof of the 
algorithm. For this reason, I urge program designers to make such proofs to 
themselves or others-at least on an informal basis-as a reasonable 
assurance that the program will work before the design goes any further. 

As an example of this technique, the program shoxvn in Figure 9-1 (a 
modified version of that appearing in Knuth [71]) finds the greatest 
common divisor of two numbers N and M, input at a terminal, by Euclid's 
Algorithm. The needed assertions and a proof outline are given on the 
figure. 

It is theoretically possible, and I shall discuss this in more detail a little 
later, to generate the required logical assertions on each program flowline 
in a well-defined formal way, all the way to the end. The proof of program 
correctness then comes down to verifying that the derived "end assertion" 
agrees with the program specification. The trouble with this formalized 
method is that it produces a logical assertion equivalent to the program 
function, but no general method exists for proving that a derived logical 
assertion matches the desired program function. That is why it is so useful 
to make intermediate, humanly easier-to-verify assertions along the way. 
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7 EUCLID'sALGOR1THMJ 

INPUT _______ 

N , M>, 0 M Assertion 
1: 

S M and N are 
integers greater 

2 than zero 

A = 0, Al = 1 
B = 1, B1 = 0 
C=M, D = N 

Assertion 2: 
A = 81 =0, 

Al = B =1, 
3 C=M,D=N 

Q= IP(CID)
 
R=CMODD 

Assertion 3: 
LAM+B*N=D 

All * M+B1 *N=C 
1 < =Q*D+R 
10C<R < D, 

4 gcd (C,D) =gcd (MN) 

Assertion 5: 	 yes Assertion 4: 
Assertion 3 	 -- D = gcd (M, N) 
and R>0 	 =A*M+B*N
 

C D,D =R,
T--Aj,Al= A, 

A=T-QA,
 
T=lB1 = , 
B = T -Q*B, Proof ofAlgorithm: 

Assertion 6: a = IP (C/D), Prove Assertion 3 is true 
Same as assertion 3 R= C MOD D regardless of whether input 

to (4) comes from (3) or (5). 
I__ _ 	 Then 0 R < D at each iteration 

means R= 0 eventualty. When 
R = 0, C= D * Q so 
god (M, N) = gcd (D * 0, D) = D. 

STOP 

Figure 9-I. Proof of a program (Euclid's Algorithm) 



290 -Assessment of ProgramCorrectness [CHAP.9 

9.1.1.1 Program Assertions 

What kinds of assertions (also called predicates)are required for formal 
program verification? First and foremost, a program must have an end 
assertion.This is a statement (or set of statements) that defines what is 
meant by program (or subprogram) correctness. There may also be an 
entry assertion, which states initial conditions upon which the-program 
operates. Other assertions along the way are theoretically not necessary, 
but practically, are very useful. Of particular utility are the assertions 
immediately following each loop collecting node, these are often referred 
to as inductive assertions. Figure 9-2 illustrates the various assertions 
above. 

Entry 
Assertion 

End 
Assertion 

Figure 9-2, Assertions for formal program proofs 
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The inductive assertion of a loop, as well as all of the assertions supplied 
within that loop, must be invariant under the looping process. That is, each 
such assertion on a fiowline must be true each time the program traverses 
that annotated flowline. Moreover, all assertions within a program 
(excluding the entry condition) must derive from the entry assertion in 
concert with the program operations. 

In consideration of the method above, the "loop- condition" in Mills' 
Correctness Theorem can be relaxed as follows: the data space may be 
redefined dynamically so long as each of the assertions about the data 
space, on the loop-entry flowline and on the loop-iteration flowline, 
satisfy the inductive assertion on the flowlhne;exiting this loop collecting 
node 

The assertion at the entry to a proper program (perhaps the null 
statement) together with all the subsequent node operations define a set of 
formal assertions valid at all other points in the program. Such assertions 
are said to be derived assertions, as they result from purely formal logical 
manipulations; consequently, they reflect the exact behavior of the 
program at the given point. Other assertions may be attached to various 
points that specify the desired (correct) program behavior. These are called 
invented assertions-The correctness-proving problem comes down to the 
verification that the invented and derived assertions are compatible. The 
derived program function must encompass the desired function. 

As an example, suppose that the desired response of a program is to 
output sin x whenever arpositive value for x is input, x < 0 cannot occur, 
a physical constraint of the problem. A program whose derived response is 
sin X, valid for negative as well as positive x, is compatible. But in the 
reverse situation (viz., when there is a desired response of sin x valid for 
positive, zero, and negative x, but the derived program response shows 
correctness only for positive x), there is incompatibility. 

Figure 9-3 depicts a formal derivation of predicates (assertions) as a 
forward traversal of nodes. In part (a) of the figure, the program function F 
produces, in response to the assertion A1 , the compatible assertion A2 (=> 
in the figure stands for "implies"). In part (b) of the figure, assertions A9 
and A3 following the decision are compatible with the combined conditions 
stated in A, and those imposed by the outcomes of c. Finally in part (c) of 
the figure, the merging of two flowlines having assertions A, and A2 into a 
single flowline produces a single predicate A3 compatible with the two 
combined alternatives. 
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(a) F(A)-=--A 2 (b) (A,AND c)==> A2 (c) (A, ORA 2 )== A3 

(A, AND NOT) =' A3 

A, A 

A3 AAA2 A2 

Figure 9-3. Forward derivation of assertions 

9.1.1.2 Loop Correctness 

Making a correctness proof for a loop is contingent on the formulation of 

the inductive assertion (the assertion on the outgoing flowline of the loop
collecting node). This assertion must be a true statement at every iteration. 

If, as in Figure 9-4 below, A, is the assertion at the loop input, A2(nY)i§ 
the assertion on the returning fiowline (which may depend on the node

entry-number, n), then the outgoing inductive assertion A3(n) is the derived 
statement AI OR A2(n). Having recognized the possible dependence of the 

loop assertions on the number of iterations, I shall henceforth refer to A,(n) 
merely as A1, unless a specific value is given to n. 

One may start.with an assertion inside a loop and derive assertions all 

the way around, until the same point is reached again; the two predicates, 

initial and derived, must then be compatible. Any predicate within the 
loop can be chosen, but the simplest to illustrate is A 3. In the WHILE c 

DO F configuration (Figure 9-4a), one may write, for example, the derived 
expression 

A. OR F(A2 AND c)=> A, 

One may thus prove the correctness of a WHILE c DO F loop, for given 
A,, A5 , F, and c, by finding an invented A3 satisfying the two requirements: 

A, ORF(A3 AND v) > As 

AsAND NOT c A5 
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true F fn)A4 (n tr e 

i 

n 
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Figure 9-4. Loop structures and correctness assertions 

A similar technique applies to the DO F WHILE c loop in Figure 9-4b: 

Al OR (F(A,) AND c) => A, 

F(A,) AND NOT c => A., 

The reader may verify for himself that the given inductive assertions for 
Euclid's Algorithm (Figure.9-1) do indeed satisfy these conditions. 

A general method for proving that derived and invented forms of 
assertions are compatible is not presently known, although some work in 
this area has been reported [72]. At the present, proofs, if done at all, are 
done by humans, and these, as I have said, are just as susceptible to error as 
the program it "proves". However, the use of proof techniques will find 
many discrepancies in a design before the programming stage begins. 
Hence, while not perhaps producing a 100-percent error-free program, 
proofs (formal or informal) do increase the index of reliability measurably. 

The increase in reliability, of course, depends on the expertise of the 
assessor. Rigorous, formal-logic proofs are not generally going to be 
forthcoming from the average programmer. But less formalized assurances 
that an algorithm behaves according to assertions supplied at various points 
are generally within his capabilities. Moreover, they take less time, and 
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probal3ly will be more productive in terms of correce mddules delivered 
per day. 

What I want to present here, then, is a discipline that draws upon formal 
correctness procedures, tempers them with practicality, and provides 
useful documentation of the program functioning as a by-product, as well. 

9.1.1.3 Complexity of a Program 

One measure of the complexity of a program is the length of its 
correctness proof: the more complicated a program is, the longer will be 
the argument required to understand the program and to show that it 
operates correctly. Even if "proof of correctness" is weakened to 
"assessment of correctness", or to "understanding", these shorter, more 
practical measures of complexity are probably still directly proportional to 
the former. 

For a rigorous proof, a set of assertions, one per fBowline, plus arguments 
to relate derived assertions to invented assertions, is sufficient. Each of the 
assertions is equivalent to an announcement of the program state (or 
change of state) as that flowline is traversed during execution. Hence, at 
best, the complexity of a program must be at least linearly related to its 
length. 

If operations and program structure can be made simple enough that the 
logic and rationale for each program -step are clear, then the arguments to 
relate invented and derived assertions are very short. The more significant 
portions of understanding are then devoted to discovering what each 
constituent of a program does, rather than to argue that each such 
constituent should appear as it does. 

For structured programs, operations fall into a limited number of easily 
grasped program structure categories (sequence, IFTHENELSE, DO-
WHILE, etc.). The constituent parts of the structure IF c THEN f ELSE 
g, for example, are c, f, g and the control structure, IFTHENELSE. The 
argument to understand the entire structure consists of verifying that the 
condition c does convincingly seem to partition the problem as it should, 
and that f and g are the proper functions to have been executed in each 
case. 

Understanding the entire IF c THEN f ELSE .g structure is thus really 
equivalent to understanding the distinct roles of each of its three separate 
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components: 

a. Understand c. 

b. Understand f 

c. Understand g. 

since the IFTHENELSE structure is so simple as to be thoroughly 
understood already. That is, the complexity of this structure seems to be 
equal to the sam of the respective separate complexities of c, f, and g. 

By induction then, understanding eachcomponent is linearly related to 
understanding its nested subcomponents, and so on down the line. For this 
reason, hierarchic, modular, structured programming holds the potential 
for developing programs which achieve a linear relationship between 
complexity and program length. 

However, even a linear length-complexity relationship may be too much 
for programs or systems with tens or hundreds of thousands of instructions, 
unless the proportionality constant, can be reduced to an acceptible figure 
by reduction of what will be required during development in the way of 
correctness assessments. Such reductions are the subject of investigation in 
the next section. 

9.1.2 Proof of Control-Logic Correctness 

The number of combinations of possible data inputs, and hence the 
number of corresponding computer states, is generally so great that only a 
relatively small number of them can ever be demonstrated. However, it is 
possible to check the control logic of a program in a reasonable time, 
either by making a correctness proof or by running a series of tests on the 
emerging program. 

In connection with control logic analysis, the complexity of control may 
be defined as a measure of the length of the correctness assessment for the 
control logic of a program. Often such an assessment involves the 
calculation and measurement of the numbers of times each program 
flowline is traversed. Knuth [71] demonstrated that these numbers are 
governed by Kirchhoffs equations (for non-real-time proper programs, at 
least). There then always exists a set of flowlines which form a linear basis 
for the flowchart, in the sense that the number of times any other flowline 
is traversed during execution is a linear combination of the numbers for the 
basis set. 

Robert McEliece pointed out, in an internal JPL working paper, that the 
control complexity of a program is therefore probably at least as great as 
the amount of work required to solve Kirchhoffs equations and verify the 
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numbers in the program. For an arbitrary unstructured program, this effort 
can be as high as 0(n3), where n is the number of nodes on the program 
flowchart. McEliece then also pointed out that for structured programs the 
basis flowlines can be found by inspection and thus that the solutions for 
the other flowlines can be written down immediately in terms of this basis 
set. In other words, the control complexity of a structured program is 
probably again only linearly related to the program length, 0(n). 

In the remainder of this section, I present an analysis of what comprises 
a formal, mathematical proof of control-logic correctness. With this as a 
guide, I will then be able to define practical tests to be made in 
conjunction to the concurrent design and coding activities to lend 
reasonable assurance that program control-logic is valid. 

A formal proof of control logic is much the same as a formal proof of the 
entire module function, but easier, as it need only be concerned with paths 
through the module. 

Assertions (predicates) relative to logical control are merely statements 
defining the conditions that must be met for traversal along the 
corresponding flowlines. The proof of control-logical correctness of a top
down, structured, hierarchically-documented design thus consists of 
demonstrating that, for each module, 

a. 	Each path segment (flowline) has an assertion relative to module 
control parameters. 

b. 	Each assertion truly reflects the logical condition under which that 
path is traversed. 

c. 	 Each condition for traversal represents a circumstance that can occur 
(i.e., there are no untraversable flowlines). 

d. 	Each such condition is decidable from documentation of the current 
module and its ancestor modules. 

e. 	Once entered, module control eventually passes either to a normal or 
extra-normal termination. 

Figure 9-5 shows an example of a control-logic correctness assessment of 
the Euclid's-algorithm program given earlier as Figure 9-1, Although each 
flowline in the chart can be assigned an assertion relative to control 
parameters (conditions), many of these assertions would merely duplicate 
actions in the function boxes, so they have been omitted, as have those 
functions that do not affect module control. 

As the next step, the assertions have to be verified toshow that each is a 
true and sufficient condition for traversal of the flowline (condition 2). I will 
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ALGORITHM 

Input NM 

i(n = 1)
D, =N 

R, =MmodD 1 

0<R <D Rn"!'OR n Asserton : 
rt: 

0,= =RniD n 

O<B=C Rod0 

Proof: There exist M, N such 
that R1 0. In such eases, at 
each iteration we have 
0 R, forn> 1. Hence0< <R,_1 
Rn = 0 eventually, and the 
algorithm terminates 

Figure 9-5. Assessment of control-logic correctness of Euclid's Algorithm (see 
Figure 9-1) (only the operations and assertions necessary for proof have been 
retained; values of R and D have been tagged with an integer (n) value denoting 

the iteration index at Assertion 3) 

bypass the formal aspects of this issue,-and rely on the reader's reasoning 
for assurance that the assertions given are true (i.e., an informal 
assessment). 

Next must be found a set of conditions that together invoke every box on 
the chart (condition 3). In this case, it is clear that any given positive values 



298 Assessment of ProgramCorrectness 	 [CHAP. 9 

of M and N produce either B1 = 0 or I 1 > 0. All control is explicit and, 

therefore, decidable without outside reference (condition 4). Finally, the 
algorithm terminates (condition 5): if R1 = 0, it terminates immediately, if 

I > 0, the proof appearing in the figure may be applied. 

As a first requirement, then, the control logic of a module will have to be 
documented to such a degree that it is possible, at any phase of design, to 
assess which submodules of the current module will be executed in any 
given set of circumstances. 

9.2 	COMPUTER-AIDED ASSESSMENT OF PROGRAM 
CORRECTNESS 

Human fallibility and inability to cope with complexity in large 
programs, even with the benefits afforded by the top-down approach, 
dictate that there be some form of automatic checking of the design. 

After one has become proficient in using a programming language, he 
might expect that he would no longer make any syntactic errors in writing 
programs. Yet this has amply been shown not to be the case. People still 
make such errors; fortunately, they are mostly caught by the compiler (or 
assembler) immediately. Some modern compilers now have the capability 
to process many of the global characteristics of a program for context, 
thereby catching many other errors that would not be noticed previously 

until that code was executed, if indeed the error were catastrophic enough 
to be classified as a failure. 

The 	methods given so far have admonished the reader to take great care 
in each of the development activities, to be sure that what he is doing is 
correct before he proceeds. Unfortunately, just as compilers will always 
find syntax errors in freshly coded programs, there will always, with high 
probability, also be bugs in these programs, not locatable until actual 
execution of the code. At least, not until automatic program-provers come 
along. 

But just as mathematicians generally do not undertake to prove a 
mathematical theorem correct until they are reasonably sure it is correct, 
neither should one undertake to execute a program until he is reasonably 
confident that it is also correct. 

Checkout is the first step in program verification once coding has taken 
place. It is the validation of the program or a part of the program by the 
programmers themselves, It consists of compiling and assembling the code 
being checked until the listing contains no errors, and then running a series 
of tests to validate program integrity. 
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Debugging refers to fixing any uncovered errors or inconsistencies 

between the program specification and its actual operation. 

Even if debugging is uninteresting and deplorable from the viewpoint of 
computer science, it nevertheless is a practical necessity in program 
production. Production systems that do not have automatic aids to permit 

software engineers to execute programs, wholly or partly, in a controlled, 
interrogative way doom program reliability and/or personnel productivity 
to abysmally low levels. I shall not discuss the kinds of debugging aids one 

should find in a good production system until Chapter 17. Worth 
mentioning, however, are some techniques that do contribute to hastening 

program checkout and that tend to be independent of the particular set of 
aids available on a given system. 

9.2.1 Concurrent Design, Coding, and Checkout 

Designing a program from the top down offers a great potential toward 
generation of initially correct programs. Concurrent coding provides a way 

of checking how a program actually operates to see if it matches the 

designer's intent, level by level through the program development process. 

An unstriped submodule within a module can be coded as soon as the 

flowchart on which it appears (or its equivalent) is finished because 

unstriped modules represent specific, unambiguous functional statements 

concerning the action of that module. Moreover, the program can be run, 

provided each striped module is properly represented by a block of 

temporary code (dummy stub) that will act as though it were the actual 

code for the module, insofar as it produces a proper interface with the 

program at its current stage of completion. 

Once a design has reached the stage that the coding of a number of 

modules (the current design phase) can begin, the design of the tests and 
dummy stubs for that phase can also begin. (Different dummy stubs may 
sometimes be required for different input sets.) 

Of course, such stubs do not perform all that is necessary to make the 
program operate correctly for all possible inputs. Rather, stubs are 

intended to verify, by way of special test cases, that the operation is proper 

for the already coded part of the program. Recall that Mills' correctness 
theorem states that if the part already coded is absolutely correct, then it 
will still be absolutely)correct after the rest of the program is coded, and 

need not be checked again. 

In principle, the use of dummy stubs can reduce the amount of 

debugging and testing required .during development to gain a certain level 
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of 	confidence in the program. However, since absolute correctness is 
generally inaccessible, some rechecking may be necessary in practice. In 
addition, the amount of rework needed to correct an 	 error is greatly
reduced, because most errors are "nipped in the bud", caught before they 
are embedded in further levels. 

By writing the code that calls the program stubs before the stubs 
themselves are developed, the interfaces between the calling and the called 
programs are defined completely so that no interface problems should be 
encountered later. 

In a complete sense, "correct" means that the program takes the proper
action for all inputs that may occur. In a practical sense, however, tests 
must be limited to representative cases. Certainly, extreme values and 
some non-valid data should be included as development-test-cases to assure 
that the program responds in the intended way at every phase of the 
design. 

The test designer may elect, on occasion, to write test programs (test 
drivers)in which to imbed the current-phase design, or a part of it, or all 
of it plus some of the previously tested design. Such an extra effort is 
certainly in order when it is cumbersome, inefficient, or costly to compile,
load, and run parts of a program with which modules at the current phase 
do not interface. 

The principle of using the entire program as a test driver, however, has 
several advantages, among which are: 

a. 	It tends to minimize the coding of special test drivers to the 
maximum extent possible. 

b. 	It embeds modules in the same environment during testing that they
will have later during operation. I 

c. 	 It does not discard the driver-code after use (rather, it is the dummy 
stubs which are discarded after use). 

d. 	It allows tests (run at one phase of the development) to be rerun at 
any subsequent phase, with consistent results. 

I would like to emphasize again, that even though dummy stubs may
provide test data to a module and its hierarchic ancestors, this data is not 
the actual data the program will access in final operation. It is data 
supplied to verify logical control and data-space control functions only.
Therefore, testing a module having dummy stubs succeeds only in testing
the control aspects of that module relative to any data emanating from the 
stubs. The data design is not verified until the actual data structures are 
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accessed. Stub-tests may, however, by inference contribute to an 
assessment of the data structural and functional correctness of modules at 
the higher program tiers. 

9.2.2 Validation of Contral-Logic Correctness 

The five criteria for a formal demonstration of control-logic correctness 
given in Section 9.1.2 above serve as guidelines for computer-aided 
demonstration of control-logic validity. The demonstration consists of 
devising sets of test data for a module to exercise each of its "flowlines", 
then executing that module with the test data as input, and, finally, 
verifying that the conditions stated for traversal of a given "flowline" are 
actually in effect. Additionally, module control must terminate as 
advertised. 

Devising test data for a developing program is conceptually not difficult, 
and, in fact, can be computerized to some extent. The test designer merely 
identifies (perhaps with computer aid) each of the series of decisions along 
a path leading from the input test data to the "flowline" to be traversed, 
and then invents appropriate test data to invoke those decisions. 

As deeper and deeper levels of a program are designed and coded, the 
test data can become hierarchically more and more refined, so as to invoke 
each of the paths within each of the modules that have replaced dummy 
stubs. That is, if a given test input caused the execution of a dummy stub, 
that same input will cause the module replacing that dummy to execute 
one of its paths; modifications of the input cause all its flowlines to be 
traversed.
 

9.2.3. Auditing and Verifying Functional Correctness 

The second requirement needed to make a.reasonable assessment of 
program correctness (the first was control-logic documentation) is that 
documentation should be carried to the level that permits an audit of a 
module algorithm against its stated function at the previous tier of the 
design. The purpose of such an audit is to ensure that everything assumed 
by the parent-level design actually appears within the module and that 
everything actually appearing in the module design is traceable back to the 
stated module function. 

In designing and executing tests to validate control-logic correctness, one 
has simultaneously also designed the tests from which the functional audit 
can take place. The identification of a program path with a certain test 
input permits the assessor to tabulate what functions have been performed 
along that path. He can then assess whether their actions are being invoked 
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in their "proper" sequence, even though some of them, at this stage of 
development, are as yet, only implemented as dummy stubs. 

The job of tabulating the decisions necessary to cause the program to 
traverse a given path is algorithmic; in fact, programs such as FLOW, 
QUALIFIER, and PACE [73,74] generate optimal sets of test cases. The 
generation of data to invoke the test cases is likewise almost algorithmic, 
but generally requires human intervention to relate input processing to the 
predicates (program decisions) needed. The job of tabulating the functions 
performed along any path in response to test input can be purely 
automatic: counteis and/or print statements (probes) inserted in each 
flowline will suffice. Then, the assessor must establish the correspondence 
of each input to its required output stated in the Software Functional 
Specification (SFS) and to the tabulated steps in the actual output of the 
tested program. While this is not perhaps automatic, it is nevertheless still 
at the audit level of complexity. 

Human judgement and programming expertise, howeverwill generally 
be required to ascertain whether a given path tabulation is".consistent with 
the program definition-that is, whether the output sequence of invoked 
functions operating on the input data do, in fact, represent the correct 

.response of the program module at the current (incomplete) phase of 
development. 

9.2.4 Example: Testing Module Control Paths 

Problem: To generate sets of test data that will cause the shuttle
interchange sort program to traverse all program flowlines. Figure 9-6 
displays a flowchart of the program coded in Example 7.3.3.2 (of Chapter 
7). Some of the flowlines are explicitly numbered for reference in this 
example, others will be referenced by the numbers on the box they enter. 

Analysis: To design these tests, one may choose each flowline in turn and 
ask first, "What is a composite set of conditions which must be true in 
order for this flowline to be processed?" In the example, to traverse 
flowline 8 (entering box 8), the conditions are I I N-i, A, > A,+1, 
I > 1, A, 1 > A,+, (because A, and Ai+, were exchanged in box 3), and 
SORTED - false. 

The next question to be answered is, "What input data will cause this set 
of conditions?" In the example, the 3-element array A=(3,2,1) satisfies 
these criteria for I= 2. 

Usually, each data set tests a number of flowlines all at once. For 
example, the array A=(3,2,1) causes traversal of flowlines 1,2,3 (and 4), 16, 
and 18 for I -1; then flowlines 2, 3, (and 4), 5, 6 (and 7), 8 (and 9), 10, 14, 
and 18 for I = 2; and, finally, flowline 19 for I = 3. All that remains is to test 
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Figure 9-6. Flowchart of the Shuttle-interchange sort algorithm of Example 7.3.3.2 
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flowlines 11, 12, 13, 15, and 17. The array A=(1,5,4,3,2) fulfills this need. 
The composite array A=(3,2,1,7,6,5,4) causes traversal of the whole 
program. 

Although each flowline has now been tested, each path (i.e., valid 
combination of flowlines) through the program has not been tested. Hence, 
there may yet be errors in the program, but confidence that this is not the 
case is very high. Still, to be sure, it is wise to submit the program to the 
trivial (?) case A= (1), and to as large a sample of random data as may be 
expected to appear in operation. 

The simpler cases, such as A=(1) and A -(3,2,1,7,6,5,4), can be checked 
by hand (desk checking); however, to assure that the code matches the 
flowchart-or whatever medium served for desk checking-it is probably 
worthwhile also to submit the running program to the same examples used 
for desk checking. 

9.2.5 Other Checkout Techniques 
Another useful technique applies whenever the correctness of a module 

can be established based on an arbitrary value of a parameter, rather than 
the specific value it must have, as required by the overall program. For 
example, let me suppose that the overall program requires a buffer of, say, 
20,000 words of memory, but the subprograms that access this buffer are 
programmed parametrically to accommodate a buffer of arbitrary size, B. 
It might then prove very costly to require the allocation of 20,000 words 
just to check out the access modules, when a smaller size of, say, 50 would 
do. 

It was pointed out to me by B. Mulhall of the Jet Propulsion Laboratory 
that many numerical processes to be programmed are either inherently 
linear, or else have linear sub-parts (perhaps within some limited range of 
values). Conceptually then, each path through a program could be tagged 
as to whether it is supposed to produce a linear or nonlinear computation. 
Inspection of the specified algorithms would indicate the linearity of each 
such path (each path is a subfunction performed by the entire program). 

If the program is a linear process, then the principle of superposition 
holds: If X is an input set resulting in the output data set Y, and if U is an 
input set resulting in the output set V, then processing X-U should output 
Y-V. 
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Even though a few such checks do not prove a program is linear, 
nevertheless, such tests are relatively easy to perform, and simple to check. 
Moreover, they increase confidence in using the program, especially when 
hand-computation of a calibration output set Y is difficult, error-prone, or 
lengthy. 

Moreover, only one such calibration input/output pair is ever needed, 
say (X,Y). For any other input set U, one may define W = U + X; then if 
the output using U is V and using W is Z, the relationship V - Z = Y 
should hold. 

Code checkout may thus make use of simpler configurations or schemes 
to simulate facilities not yet available, as preliminary assurances of module 
integrity. Ultimately, however, the module must be tested in its actual 
environment. Programmers should thus be careful not to over-checkout 
their modules using oversimplified test cases. 

On occasion, a programmer checking a program discovers that his job 
would greatly be simplified if he only had a certain debugging aid. On 
further consideration, he may find that such an aid can be made a general
purpose tool, to aid in many future developments, as well. So he begins 
developing the tool as a subdevelopment project within his current project. 

The trouble with creating debugging tools is that it is the sort of thing a 
programmer can go wild over and lose his perspective, sometimes spending 
more time developing the tools than on developing the program. For this 
reason, it is probably best to develop such aids in small stages, with 
programmatic justification required for each enhancement. Otherwise, the 
effort can be very wasteful of project resources. 

9.2.6 Prognosis for Success 

In the design and coding of a program from the top down, the control 
logic has been made explicit, and it has been possible to test and verify that 
control logic with explicit, well-defined input data. On the other band, data 
structures (other than control flags) and the functions which, operate on 
them may have been verified more implicitly, since data may not actually 
get stored into these hierarchically defined structures until the very lowest 
operations in the hierarchy have been coded. There is, therefore, probably 
a larger chance for errors to occur in functions which operate on data 
hierarchies than there is in the functions which affect module control. 
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But even if data structures are perhaps more likely to be accessed 
incorrectly, or have the wrong information stored in them, nevertheless the 
module control-logic and functional intent will have been kept intact. 
What is most likely to go wrong, then, is that some of the data structures 
will be improperly interfaced, or some of the module correctness 
assessments based on assumptions not later fulfilled. 

The first type of problem usually gets cleared up after a few tests are run 
and a consistent interface defined (and adhered to). A module whose 
function is correct but whose data accesses are found to be in error can be 
corrected at the detected level or modified at the later, exploded levels of 
that module as required, without upward side effects. With high likelihood, 
if such errors have not been permitted to remain unmended as the program 
develops, the program will be correct. 

9.3 ASSESSING REAL-TIME PROGRAM CORRECTNESS 
The structures introduced for real-time, concurrent programming 

(Chapter 6) and the concept of program consistency imposed as disciplines 
on program development separate the procedural correctness from proofs 
of timing correctness. Procedural correctness assessment of a real-time 
program is compatible with the formal and machine-aided assessments of 
correctness of non-real-time programs discussed previously. But formal 
proofs may be discounted from practicality for all but a select few, small 
programs. 

The central problem then lies in selecting tests that infer probable 
correctness. Structured, consistent programming permits verification tests 
during development on a systematic basis. The principal difficulties in 
testing a multiprogram (presuming that the operating system makes 
consistency possible) will be in defining test data sets that cause all 
flowlines to be traversed, and then interpreting the "trace" of that program 
activity with respect to program-defined requirements. 

Because concurrent processes can communicate data among themselves, 
the problem of defining input data sets to traverse each path segment at 
least once becomes more difficult. That is, each process not only depends 
on its owned input, but also on that shared with other processes; moreover, 
the data communicated between processes may be time-dependent, thus, 
harder to control. 

Brinch Hansen [751 describes the testing methods used to validate the RC 
4000 Monitor, which forms the nucleus of its multiprogramming system, 
multiplexing a single CPU among concurrent process and implementing 
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the procedures that these processes may use to create other processes and 
send messages to them. In that case, the test stubs consisted of a hierarchy 
of simulated user processes selected to exercise a minimal set of Monitor 
functions that would give significant information about its handling of 
concurrent events. First, tests verified the multiplexer mechanism; then, 
the process communication procedures within multiplexed programs; next, 
all possible interactions between processes and peripheral devices of 
various types; and finally, the file system. As a result, the Monitor was 
virtually error-free within a few weeks. 

One significant aspect of the Monitor program was that it was written 
after the testing philosophy had been specified. That is, the Monitor was 
designed with testability assigned a role of pdramount importance. The 
ways that its processes could interact were designed in terms of the tests 
that could be performed to validate that interaction. 

McCornock [76], for example, describes the development of a "synthetic 
environment" (which models the host computer, its operating system, and 
peripherals) to test real-time programs. Real-time process-control programs 
can be imbedded in this model and executed interpretively in parametric 
time (simulated real time) during the program development phase. This 
procedure separates out all the non-timing problems, and is capable of 
detecting many of the timing errors, as well. It further permits the majority 
of the program production to be accomplished using a computer with 
perhaps less than the full complement of peripherals or capabilities than 
the one in which the program will later be required to operate. 

From the viewpoint of the software being executed, McCornock's 
synthetic environment is real. Devices are simulated, but the actual 
program code is executed, albeit in a controlled way. The program in its 
synthetic environment can even be run as a batch job, if desired. The 
testing speed of the program can thus be very high, because the rate of 
execution is not geared to peripheral speed, but to execution speed of the 
model environment. Control of the model resides in a set of data images 
stored on magnetic tape or punched cards. Changing operating modes, 
hardware characteristics, or ''timing" of events is simple; evaluating their 
effect is made possible by the repeatability of the results. 

But, in the end, the synthetic environment is still synthetic, and only a 
model of reality. The extent to which the model has validly simulated 
actuality has permitted program development to succeed to that extent. 
The final confirmation of correctness must come from the program 
operating in its true environment. 
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9.4 CONFIDENCE. LIMITS FOR VERIFICATION TESTING 
Correctness and reliability of software are crucial as practical matters for 

nearly all large programs and programming systems that are used on a 
continuing operational basis. Such programs are constantly being tested, as 
a part of normal operational usage, and errors continue to be uncovered 
long after the program has become operational, despite all precautions 
taken and all disciplines used during the development phase. Many 
postulate that no large system can ever be completely error-free. 

Given a large program, its correctness is a matter of fact and not a 
matter of probability; the number of errors that a program contains is a 
fixed, although usually unknown, quantity. 

However, the number of errors that can be found by testing tends to be 
a random variable, since it is very rare that all the possible responses of a. 
program can ever be completely verified. Since any set of responses tested 
is in some sense a random sample of the entire set of all responses, the 
number of errors discovered during a test reflects on both the reliability of 
the program and the adequacy of testing. 

Of course, if one sticks to exercising only the tried-and-proved cases, 
then one can be 100% sure that the program operates as it should (unless 
something has been tampered with in the meantime). But what of the 
untested cases? Is there any way to estimate the likelihood that a randomly 
chosen, untried case will perform correctly? 

The answer is yes, although the reader may well appreciate that the 
accuracy in estimating or predicting a program's reliability from analyzing 
experience data is significantly influenced by how well the statistical model 
fits actuality, that is, how well the assumed error-effect and error-probing 
mechanisms mirror the actual errors and the way these are encountered by 
tests. The use of statistical inference techniques can, nevertheless, provide 
a worthwhile gauge of program correctness, and can help to define testing 
methods, test criteria and test procedures to demonstrate a program's 
reliability within a given confidence level. 

The remainder of this section is devoted to one such technique that 
permits end-to-end verification that a program contains no more than a 
prescribed number of errors, subject to a quantifiable confidence factor. 

9.4.1 Calibration of Testing Adequacy 

Mills [77] transcribed Feller's theory of "Estimation of the Size of 
Animal Population by Recapture Data" [78] into software terms, and built 
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upon it a simple, useful concept for designing and conducting tests, and 
inferring program reliability from the test results: 

The model assumed by Mills is the following. The program to be tested 
is presumed to contain an unknown number of "indigenous" errors, which 
are the subject of investigation. Finding these, or at least estimating their 
number, is the object of "testing". 

The method for estimating the number of indigenous errors consists of 
inserting a number of "calibration" errors covertly into the program before 
submitting the program to testing. Testing then reveals and locates a 
certain number of the errors, some of which are calibration errors 
(unknown to the testers at the time), and the remainder are indigenous. 
The calibration errors are then revealed. 

If the insertion and testing are presumed to be unbiased (that is, so that 
errors of either kind are' found without bias), then the theory states that the 
maximum likelihood estimator for the total number of errors in the 
program is given by the formula 

io
 

in which the symbols represent: 

o = the estimated number of indigenous errors 

c = the number of calibration errors inserted 

i = the number of indigenous.errors found by the test 

k = the number of calibration errors found by the test. 

When k = c (all calibration errors are found by testing), then i (the 
number of indigenous errors found by testing) is the maximum likelihood 
estimate of how many there actually are. However, the estimate b is 
merely the most likely value for the total number of errors, based on the 
data; it does not reveal tow confidently one can rely on that estimate. 
There is the possibility, since the actual number of errors in the program is 
still unknown, that errois, other than the ones that were found, are still 
lurking about, ready to pounce on an unsuspecting user. 
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Fortunately, Mills also gives a method for estimating the confidence that 
one can have in stating, "There are no more than E errors in the program", 
and, thereby, for specifying test criteria to validate such a statement, to 
within a given confidence level. The method forces testing to continue until 
a prescribed number, k, of the calibration errors are found, and then stops 
to examine the indigenous errors. 

Let it be supposed that there are actually e errors in the program (but e 
is unknown). Confidence in the statement "no more than E errors exist" 
can be gauged as follows: If i > E, then, obviously, the hypothesis is false 
and would be rejected immediately; it warrants no confidence at all. But if 
i _<E, then it is of concern whether other similar (random) tests would 
have produced i > E (proving again that the hypothesis is false). 

Thus, if e > E, then with calculable probability, the hypothesis, "no 
more than E errors exist", will be proved a lie by testing; no such 
statement would thus be made. The confidence one may take when such a 
statement can be made, therefore, is equal to this probability, that testing a 
program with any e > E would find i > E, and prevent the lie from being 
told. Hence, the (pre-test) confidence factor is 

cof ("nto more than E errors") = mi Prob fi > E} 

Hereafter, I will refer to the left-hand side merely as "conf( < E)", the 
minimum value is necessary (as a worst-case) because the actual value of e 
is unknown a priori. The numerical value for the confidence level when i 
errors are detected is given by 

0 fori> E 

conf( E)= k I) 

E + I + fori<E 

When testing continues until all of the calibration errors have been 
found (i.e., k = c), the formula reduces to 

O fi>E0 

i 

= 
conf (<E) 

+1 fi<E 
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Figure 9-7 illustrates this confidence factor for c = k = 9, 19, and 99. As is 
shown, the confidence in a test with c = 9 that claims a program contains 
no errors is 90%; for the same test to validate that there are under 2 errors, 
the confidence drops to 75%. 

Confidence in stating "< E" drops as E increases and as fewer 
calibration errors are used. These characteristics fit with intuitioni The 
more calibration errors used and then found, the more thorough must be 
the testing to find them (and any indigenous errors, as well). The more 
indigenous errors a program is assumed to have, the less certain are tests to 
locate them all. 
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Figure 9-7. Pre-test confidence factor for cases in which all calibration errors are 
located by testing (c = k), as a function of presumed upper bound on number of 

errors 

9.4.2 Test Monitoring 

Testing by the method described above requires a test monitor and a test 
conductor. The monitor knows where the calibration errors are located and 
what they are. The test conductor knows neither of these things, although 
he may know the number that have been inserted. 

As errors are located by the testing, they are presented to the monitor, 
who then reveals their type, calibration or indigenous, one by one. Testing 
ceases when either all calibration errors are found before E + I indigenous 
errors appear (a successful demonstration), or else when E + 1 indigenous 
errors are located before all e of the calibration errors appear (the 
demonstration fails), 
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Figures 9-8 and 9-9 illustrate two examples of a "test progress" chart, 
one of the programs passed its test, the other failed. Both programs were 
tested to demonstrate fewer than 7 errors, with 75% confidence (e = 21). 
Both figures also show maximum likelihood estimates for the total number 
of errors, calculated as each error was detected. As may be seen, the error 
estimator is subject to wide variations, especially during the early testing. 

Although verifying, at a given confidence level, that a program is error
free is no Tess rigorous than demonstrating that a program has no more than 
an arbitrary higher number of errors, the amount of administrative work in 
preparing and monitoring the tests can be significantly less in the zero
error case. The number of calibration errors to be generated is less; the 
work of locating, cataloging, and, perhaps, repairing errors, is less 
(remember, most of the errors in the program during the test are 
calibration errors); and, if calibration errors are repaired as they are 
discovered, the costs in reassemblies or recompilations may become a 
significant cost factor. If not repaired, they may seriously hamper finding 
the others. 
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Figure 9-5. Test Progress Chart for a program to verify that it has fewer than 7 
errors with 75% confidence level 
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Figure 9-9. Test Progress Chart for a program that failed to show that it had no 
more than 7 errors (test designed for 75% confidence level) 

9.4.3 Creating Effective Calibration Errors 

The confidence-testing theory, which is being discussed here, depends on 
generating and insertng errors similar in nature to the errors (if any) that 
exist already in the program. Without knowing (or suspecting) what type of 
errors these may be, probably the best way is to insert errors at random. 

There are many types of errors that this method does not apply to, 
because there are many ways to fix a program with errors (including 
rewriting the entire program so that it no longer resembles the original). 
However, for programs already highly reliable, one normally thinks of 
correcting errors by changing or adding a statement or a few statements. 
This, too, suggests that the idea of inserting errors randomly through the 
program will provide a useful model for testing. A procedure for doing this 
insertion is as follows: 

If there are c errors to be inserted, generate c random 
numbers and multiply each of these by the number of lines 
of code in the program. Then go into the program at these 
line numbers and alter the code (leave Out the line, add a 
new line (or lines), misreference a variable, change a 
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constant, branch to the wrong label, make an array smaller 
or larger than it should be, clear a data cell, etc.) choosing 
the error type at random, as well. 

It is not difficult to conceive of automatic algorithms for various 
programming languages to randomly introduce such errors but maintain 
correct syntax, for recompiling and testing. The error frequencies could be 
set to reflect actual experience in the given language at a given stage of 
development. 

The highest confidence factor is achieved when testing continues until all 
c of the calibration errors are found. Testing to verify an assumed upper 
limit of errors, within a given level of confidence, can therefore be 
achieved by inserting and finding c calibration errors, where 

(E + 1) conf ( E)- 1- conf( E) 

For example, to demonstrate with 90% confidence that there are no 
errors, only 9 calibration errors are required; to demonstrate with 99% 
confidence that there are no errors, 99 calibration errors are needed; to 
demonstrate with 75% confidence that there are no more than 200 errors, 
603 calibration errors must be inserted. 

The reader may well note that the number of calibration errors for 
insertion grows sharply as higher 'confidence levels are required and 
proportionately as a greater number of errors are supposed to exist. To 
verify with 90% confidence that a program is error-free only takes 9 
calibration errors; to demonstrate with 75% confidence that a program 
contains no more than 5 errors, 18 calibration errors are required. 

This does not mean, however, that it is easier to verify zero-error 
programs at 90% confidence than 18-error ones at 75% confidence. Quite 
the contrary. If a program has only 5 errors, it passes the latter test 100% 
of the time; it passes the formet test less than 10% of the time. 

Thus, to raise test confidence when only a fraction of the calibration 
errors are sought, it is necessary to raise the number of calibration errors 
inserted, and to find the appropriate percentage of these. There just isn't 
any way around thorough testing when a high confidence factor is at stake! 

9.4.4 Post-Test Confidence Factors 
Let me again assume that testing proceeds until the kth calibration error 

is d6tected, whereupon testing ceases, having uncovered i=I indigenous 
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errors. Knowing that there are at least I errors is more than was known 
before the test was run. This extra information can be used to refine the 
confidence estimate. 

The post-test confidence factor for the statement, "there are no more 
than E errors if I-errors are found", is 

conf ( <EI) = min Prob (i > Ie) 

and the formula for it is 

i 1)(k--iZ c-k+1)
conf (1E,)+ E+c+ 2-i-k 

(i+~+k-l1) 

As may be noted, the pre-test conf( E) value is the same as the post-test 
conf( E 1 E). For the case k = c, there is a recursion formula to facilitate 
calculating the post-test confidence factor, 

conf (<E + 11) = conf(EII)+(E I EII)]+c conf ( 

Figure 9-10 illustrates the shape of the post-test confidence factor curves 
for the case k=c=9 as a function of E for various values of I. As shown in 
the figure, if 2 indigenous errors are found by testing (I= 2), then there is at 
least 75% confidence that no more exist; there is 92% confidence that there 
are fewer than 4 errors, 97% confidence that there are fewer than 5 errors, 
etc. A test that finds no errors shows 90% confidence that there are no 
more; there is 98% confidence that there are fewer than 2 errors, 99% 
confidence that there are fewer than 3 errors, etc. 

When testing fails to reveal all c of the calibration errors, stopping after 
the klh is found, then the effectiveness of the test is reduced, as is the 
confidence in the indigenous error bounds. The zero-error case takes a 
particularly simple form that illustrates the degradation very well: 

k
-- k

conf (no errors) + I 
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Figure 9-10. Post-test confidence factor for stating that a program has no more 
than E errors when I-values have been located by testing, for the case a = k= 9 

Thus, if no errors have been detected when testing stops after finding 8 
calibration errors of the 9 inserted, then the test confidence drops from the 

,90% expected; should testing have continued successfully to the detection 
of the 9th calibration error, to only 80%. 

9.5 SUMMARY 
The methods I have put forth in earlier chapters toward increasing 

program reliability are ones that encourage proper attention to detail in 
design by forcing a certain level of documentation and informal assurance 
of correctness along with the design before coding begins. Then coding has 
the opportunity to check the design as the program evolves, to the extent 
that, when the program is completed, every statement of code will have 
been executed at least once. (More than this, each flowline will have been 
traversed.) I have also mentioned a method for demonstrating program 
reliability based on confidence levels. 
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I realize that conditions and systems will vary from organization to 
organization and from project to project, making it perhaps impossible to 
establish a detailed standard correctness philosophy that will apply equally 
to every condition Nevertheless, an overall methodology is not impossible, 
to identify and define candidate disciplines for software reliability 
calibration. There is a direct application of such methods in all software 
development projects, large and small-only the scopes and magnitudes of 
the efforts will change. 
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Problems for Chapter 9 

9-1 Make a list, and discuss each item in the list, of techniques that can be 
used for debugging programs, but do not particularly depend on the set 
of aids available on a particular system. Discuss the aids you think should 
be available for debugging in a "standard software production system". 

9-2 Draw a flowchart for the sieve of Eratosthenes (see Figure 8-8) and 
annotate it with assertions on each Bowline. Prove each inductive 
assertion and then prove the end assertion in a rigorous, formal, 
mathematical way. 

9-3 Write a set of dummy stubs for the CONTROL, REPORT, ERROR, CARDIN, 
EXTRACT, VSTORE, LSTORE, and ALLSTORE modules of the REFERENCES 
program shown in Figures 8-19 and 8-20. Design these to validate all 
control paths of the program by traversing every ftowline at least once. 
Each module should print the module name and the value of control 
elements for that path. Then play the part of the computer and execute 
the program. From the output, assess whether the program is correct at 
this level of design by comparing the required behavior with the 
sequence of actions taken. 

9-4 The subroutine SORT shown below computes the square root of the 
incoming argument X and exits with X1,2 in the AO register. Attach 
control-logic assertions to each flowline that satisfy the criteria in 
Section 9.1.2. Prove rigorously that the algorithm terminates and that, on 
normal termination, AO contains X1/2. 
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Yes 

SQRT 

X a? n0 

Enters with
X as argument 

RETURN 

Exits with 
register A0 

9-5 Design and flowchart (or code in CRISP) a program that will scan a 
CRISP source listing and then print the conditions for traversing each 
flowline. Comment on the utility of such a program for designing test 
data to validate other programs. 

9-6 Devise tests that will validate the "Readers and Writers'" program 
given in Example 7.3.3.4 (of Chapter 7). 
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9-7 The sequence of bits generated by the formula a,+k = am+k E ak is 
known to exhibit excellent random properties when n and m are 
properly chosen [791, n is the word size and "ED" is modulo 2 (exclusive 
or) addition. Starting with a word w = (a..l,a,_..2,.. ,a), the following 
procedure produces random words: 

procedure. Random word w
 

.A let register R=w <*the word from last time*>
 

.2 right-shift R by m bits, zero fill on left
 

.3 exclusive-or this R with w
 

.4 store result back in w
 

.5 left-shift R by n-m bits, zero fill on right 

.6 exclusive-or this R with w
 

.7 store result back in w <*save for next time*>
 

end procedure.
 

Now the problem: prove that this algorithm produces as its next word 
the value w = (a.a_l,a2rn_2 .... ,a,) and thus, by induction, that each call 
of the procedure generates the next n bits in sequence. 

9-8 Devise a test tree or set of test trees that cause every flowline of the 
CRISP-PDL post-order traverse program in Section 7.3.2 of Chapter 7 to 
be exercised. Then "run" the procedure on this test data with an 
appropriate dummy stub for "process this node". Be sure to include the 
PDL for the stub. 

9-9 Rewrite the post-order traverse program to perform a pre-order walk. 
Test it and use the same PDL style as in Problem 9-8. 

9-10 Compute the number of calibration errors needed in the post-order 
walk problem to build a 66.7% confidence level in the program. Insert 
this number of errors, of a subtle, minor nature, into the program and 
resubmit to the previous (all flowline) test. Did the test find all the 
calibration errors? If not, then how many? 



X. PROJECT ORGANIZATION AND
 
MANAGEMENT
 

For small, or perhaps even intermediate-sized programs, one person may 
be able to do all the design, coding, testing, and program maintenance tasks 
himself. But for larger programs he needs help. This chapter provides some 
guidelines toward the composition of a software development team, the 
roles of its members, their responsibilities, and the procedures they are to 
follow when developing a medium-to-large scale piece of software. 

The approach parallels much of IBM's "Chief Programmer Team" or 
"CPT" concept [80], but is more flexible and tailored to the development 
procedures I have discussed up to this point. As in the Chief Programmer 
Team, the project organization I will describe separates the work of 
program development into specialized jobs, defines the relationships among 
specialists, and devises tools to permit these specialists to interface 
effectively. The project personnel work as members of a team rather than 
as individuals. 

A definitive analysis of what constitutes good project organization and 
management practices is beyond the scope of this chapter. All I can hope 

to give are highlights, guidelines and examples of the kinds of things that 
need to be considered in developing top-down software effectively. I 
recommend to the reader interested in a more comprehensive treatment 
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the work of TRW [811 contained in their Software Development and 
Configuratiorr Management Manual. 

10.1 SOFTWARE TEAM PRODUCTIVITY 
An intelligent, hardworking programmer working by himself may be 

able to write a program of many thousands of lines of code in a relatively 
short time. Typically, such a person puts in many long hours, talks to very 
few of his co-workers, keeps very sketchy notes of his programs, but is very 
productive in actually producing lines of code. But as the size of a program 
grows, it becomes necessary at some point to add members to the 
development effort. Two equally capable programmers are usually not able 
to produce twice as much work as a single programmer. If a third 
programmer is added, he usually adds less to the overall output than was 
added by the second As a result, a programmer working as a part of a 
team is less productive than if he were working by himself. 

In the remainder of this section, I want to discuss this phenomena and 
propose organizational and programming guidelines to combat decreasing 
incremental productivity. 

10.1.1 A Simple Model 
The key to the insights I want to develop can be correlated with the 

following tremendously oversimplified analysis of a software team's 
productivity. Let me define index of productivityby the formula 

AL 
WT 

in which L represents the total number of lines of source code (excluding 
comment lines) delivered (i.e., errorfree) at the end of the project, W is 
the number of workers, contributing to the product, and T is the average 
time each worker spent developing the software. The unit of this 
productivity index is lines/day. 

For example, if 83,000 lines of source code were delivered in 22 months 
(477 working days) by an 11-man year effort (an average of 6 team 
members), then their team productivity was P = 29 lines/day. This is the 
figure published for IBM's New York Times project [82], the first to use the 
Chief-Programmer Team concept. 

Let me apologize for the oversimplified measure of productivity by 
saying that I will use the measure only to provide some broad insights into 
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why there are apt to be inherent difficulties with large projects, if 
improperly organized. -It may be possible.to refine the productivity model 
to account for such things as different levels of expertise, variation in 
salaries, etc., but I think the insights remain the same. 

In the development effort, there are a number of software tasks to be 
performed, among which are: 

a. Design. 

b. Coding. 

c. Checkout. 

d. Documentation. 

e. Supervision. 

f. Acceptance testing. 

g. Quality Assurance. 

There may be others, but these suffice for the argument to follow. 

10.1.2 Task Separation 

Let me first suppose (not seriously, however) that each of the seven 
software tasks above is undertaken by a single individual. There is then a 
complete separation of task areas within the project. This assignment 
means that the designer must design the equivalent of WP lines per day, 
the coder must code this many per day, the persons doing checkout and 
testing must test this many, the documentor must document all the design, 
coding, testing, etc., of WP lines per day, and the supervisor must oversee 
the activity of his team operating at this pace. 

To match the New York Times Project's 29 lines per day, each of the 
seven members of the project I am describing must produce the equivalent 
of 7 2 =29 203 coirect lines per day. 

But there is more to the story. In order for the project to run smoothly, 
it is necessary that each individual spend part of his time communicating 
with each of the other team members. For example, the designer must 
confer with the coder to resolve any questions the coder may have about 
the design; both of these must talk to the individual testing the code to 
give him the benefit of their experience with the program; each of these 
must talk to the documentor to assure that the documentation is proper 
and complete; and so on. 

Thus each member may devote only a certain fraction of time to active 
production. The rest of the time is spent in necessary conference with 

http:possible.to
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teammates. Let me oversimplify again and suppose that the average time 
splits into 

T = TP + (W -I ) Tp 

where T. represents the average "productive" time, and Tnp represents the 
average "non-productive" time each worker spends interfacing with each 
of the other team members. "Non-productive" time here does not mean 
non-useful or unnecessary-it means only that the individual is engaged in 
an activity other than active production in his task area. 

The rate, or individual productivity level P that each team .member 

must sustain during his "productive" periods so that the team have overall 
productivity P,is given by 

L WP
 
T- - 1 - (W - 1) (T,/T)
 

Obviously, as depicted in Figure 10-1, too many workers can spoil things! If 
the average time spent communicating ever reached the fraction, 

T,, _ I 

T W- -1 

then the project is doomed! In order for these seven workers to output 29 
lines per day, spending 5% of their time, communicating with each other 
project member, each member must work at the rate of 290 lines of code 
per day! 

10.1.3 Job Integration 

Now let me suppose that one individual were to undertake the entire 
project and was capable of doing each of the seven tasks himself. The time 
spent in inter-task communication is then zero, all the material to be 
communicated is already in mind. This one individual, therefore, must 
design the equivalent of only P correct lines per day, code P lines per day, 
check out P lines per day, and so forth. All his time is productive. 
Intuitively, then, it might seem much more plausible to have one capable 
person do all seven tasks on 29 lines of code per day, rather than having 
seven people doing individual tasks at the rate of 290 lines per day each. 

This is probably true if one person could undertake an entire large 
program and cope with its complexity; it would, however, take such a 

person about five times as long to complete the project as the seven
member team above (at a 5% non-productive index). Hence, let us try 
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Figure 10-1. Individual productivity required to support an overall project 
productivity of P = 1 line/day, for non-productive time ratios of 5% and 10% 

splitting the project among a number of such individuals to hasten things 
along. 

Suppose that the program were to be segmented into W equally-sized 
modules, each within the human capability to cope with complexity, and 
let W workers be assigned, one per module, to perform all the needed 
tasks (design, coding, documentation, etc.). Each produces P lines per day, 
finished, correct code. As before, let L be the total number of lines of 
delivered code, and T be the average time each man spent in the project. 

If each of the modules were to require the expenditure of non
productive interfacing time TnP then the amount of code completed each 
day by the project is, on the average 

L 
(W - 1) (T,/T)]T = PIW IIl-



326 ProjectOrganizationand Management [CHAP. 10 

The figure in braces represents the loss in personnel efficiency due to non
productive interfacing time. 

The amount of code that this project can produce per day has a 
maximum value, found to be (Figure 10-2) 

(L = , (1 + (T~p/T))[I + (T,/T)] 

The figure in braces again represents the loss in personnel efficiency. This 
maximum production rate is achieved when the team size is 

1 + (T.p/T) 
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Figure 10-2. Normalized team production rate (RL/TPI)as a function of team 
size and non-productive time index 
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Notice that the efficiency of this team is never much better than 50% 
when producing at its maximum rate For example, at a 5% non-productive 
index, the personnel efficiency is cut to 52.5%, and 10.5 people produce 
only 5.5 times as much code as one (ideal) individual. At a 10% non
productive index and 5.5 workers, the maximum rate is only 3 times as 
great as one individual. 

If the New York Times team was of optimum size (W = 6), then the 
83,000 lines of code delivered in 22 months would have required an 
individual productivity index of P1 = 53 lines/day and would have had a 
non-productive time index of 9.1%. 

Such a project hoping to deliver L lines within time T using W workers 
having individual integrated-task productivities PI must keep their non
productive index within the bound 

T.,< 1 - (L/WTP) 
T W-1 

if there is to be success. 

A six-member team attempting to deliver 83,000 lines of code in 22 
months using workers skilled to the 35 lines/day level must find some way 
of limiting their inter-task non-productive-time index to 3.4%-less than 17 
minutes a day per interface! 

10.1.4 More on Modularity 

To maximize productivity, one must reduce to the fullest possible extent 
all factors causing non-productive time. I used the illustration of seven 
people doing seven separate, strongly correlated tasks to show how non
productivity can escalate as a project grows in size, if organized along lines 
requiring human interfaces. The example in which team members 
performed integrated tasks, but spent non-productive time interfacing the 
modules, shows that their performance was no better. 

In previous chapters, I propounded modularity as a means to combat 
complexity: modularization by. functional segmentation into hierarchic 
levels having minimized -program connections (in data, control, and 
services). I now add another dimension to modularity: modularization by 
organization of the program into hierarchic segments that minimize the 
interfaces required between project personnel. I -can also quickly append 
another dimension: modularization into areas of personnel expertise. 
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Operating directly on these premises is the Chief Programmer Team 

concept, developed by IBM as a method to increase productivity in 

production programs; that is, those programs where "off-the-shelf" 

algorithms apply. Why it works can be argued on the basis that 

supervision, design, coding, and documentation are largely carried out by 

the Chief Programmer himself. Design is done mostly in code using "self

documenting" techniques (this merges much of the design, coding, and 

documentation processes into one activity, decreasing W). Interfaces with 

other programmers are directly defined in code as arguments passed to 

their module stubs. Complexity is controlled via structured programming 

and top-down development. 

There are projects, however, that require more definite forms of 

documentation than descriptive variable names and fixed stub interfaces. 

Sometimes projects are too large for one person to manage effectively and 

still handle the Chief Programmer's role. There are company organizations 
where software management and design are performed in-house, while 

coding is done on contract (or vice-versa). To the extent that the concepts 

that pervade the Chief Programmer team are valid, they may be fitted to 

other organizational disciplines beneficially. 

At some point as programs grow large, complexity exceeds the human 
ability to cope with it; when this happens, individuals spend more time 

floundering around than they do producing code or beneficially supporting 
its development. Assigning separate tasks to separate individuals invites, 
and, indeed, necessitates some non-productive time in the form of inter
task communication. Assigning too large a program segment to one person 
decreases productivity by fostering non-productive time of a different sort, 
namely, that needed to cope with program complexity. 

10.1.5 Personnel Tradeoffs 

The simplified models above leave many factors unaccounted for, and I 

caution the reader not to stretch their lessons too far. Individual 

capabilities, unequal salaries, and a host of other factors, [83], many very 

subjective, must be correctly modeled before an optimized approach to 

software development can be found. 

Several factors are amenable to economic and engineering tradeoff 

studies, such as the cost benefits of assigning junior people, at lower salaries 
and skills, to tasks that necessarily raise Tnp/T. Even though a decrease 

might occur in team productivity, there may nevertheless be a substantial 
cost savings in doing so. junior personnel thus also become trained, 
increasing their company potential. 
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10.2 THE SOFTWARE DEVELOPMENT TEAM 
The organization of the software development team I shall describe here 

owes its structure both to the top-down, concurrent design, documentation, 
coding, and testing concept and to the recognition that high capability for 
program development is a scarce commodity. Accordingly, the team 
organizes the work- around senior-level professional specialists, in a 
disciplined, structured team environment. 

A division of labor is not always necessary; when programs are small 
enough to be bandied by one individual in a timely mannei, then that 
should be the case. But when it is necessary to assign more personnel, their 
assignment should be into areas that take maximum advantage of their 
skills and minimize their non-productive time. 

The CPT concept has hit on one way this can be done effectively: toi
down, hierarchic, modular structured development. The Chief Programmer 
performs his activity top-down to a set stubs for completion by specialists. 
The function and interface for each stub is defined by the Chief 
Programmer directly in code, to minimize confusion and prevent others 
from programming to hypothetical interfaces. 

A more generalized view of this concept is the division of team members 
into areas where necessary project documentation forms the personnel 
interface. I shall describe an example wherein the divisions fall between 
design, coding, and testing. Since each of these activities must produce 
documentation as a necessary part of its effort anyway, division into the 
three prescribed activities provides an opportunity to verify the adequacy 
of such documentation. 

10.2.1 The Team Nucleus 

The nucleus of the software development team consists of the Software 
Project Manager, a Chief Program Designer, a Lead Programmer, a 
Software Test Engineer, and the Interface Control Engineer. Other 
specialists may be assigned to this nucleus to aid in designing, coding, or 
testing modules, as directed by the Software Project Manager. The 
organization is charted as Figure 10-3. 

The separate parts of the team (design, coding, testing) have somewhat 
different goals, and different requisite skills, as well. These parts interact in 
a closely-coordinated, interactive way, with checks and balances not only to 
increase overall productivity, but also to assure product reliability. I wilt 
describe this interaction in some detail later in the chapter. 
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Figure 10-3. Software Development Project Organization 

The project is also organized so that any or all of the major comprising 
efforts can be performed by contract personnel in the event that 
manpower or expertise in a given area is unavailable directly within the 
project-imbedded organization. The principal interfaces are indicated in 
Figure 10-4. 

10.2.2 Team Qualifications 

Software engineering, much like any other branch of engineering, 
requires specialized, well-trained, disciplined personnel-people skilled in 
the management, design, production, and quality assurance aspects of their 

trade. The organization I have described above defines a certain set of 
career specialties and a structure in which these specialties are 
interdependent, but not subordinate, one to the other. 

The quality of the software produced is largely a function of the aptitude 
of the team nucleus. That's the way it should be in a project in which 
everything proceeds from the top downward. The best people must be 
placed at the top; competency at the bottom of an organization can't bail 
out incompetent people at the top because development will generally 
have been carried too far by the time the lower echelons get into the act. 

10.2.3 The Software Project Manager 

The Software Project Manager's role in the team is primarily one of 

technical management. He is there to define project priorities and 
milestones; to oversee and coordinate the activity of the design, coding, 
testing, and documentation efforts as the program evolves, to define design, 
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coding, and testing phases; to allocate resources in the form of schedule, 
manpower, and computational facilities within his jurisdiction (or to obtain 
these from higher management should they fall outside his purview); to 
supervise development, including any rediretions that may occur within 
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the project lifetime,.such as may occur due to a change in scope or due to 
some error in the design; to monitor the progress and productivity of the 
design team members; to review and approve the design, coding, and 
testing documentation; and to ensure that the program satisfies all 
requirements for delivery. 

However, the Software Project Manager also takes an active part in the 
software development, technically. He does this, first of all, by supplying 
the preliminary design concepts to the team, and then by talking to the 
team members, giving them insights, solutions to problems, cautions to 
potential problems, and the like. He may also elect, in certain 
circumstances, to perform some of the technical tasks himself, such as 
devising program and module tests, or setting coding conventions, or 
designing some of the early-level modules. He is called on, finally, to assess 
and judge whether the performance of this team is technically correct and 
whether their output represents a feasible, efficient, and acceptable 
embodiment of the project technical goals. 

To fulfill these functions, the Software Project Manager must be a highly 
competent individual, technically in the areas of software design, coding, 
and testing, as well as verbally for lucid and precise documentation, and 
administratively to motivate and lead the development team to a successful 
product. If he is not technically capable, he loses control over his team's 
productivity; if he does not express himself well, he may not be able to 
deliver clear enough instructions to get the job done in the most productive 
way; and if he is administratively ineffective, the project soon bogs down. 

Every profession is characterized by highly creative individuals being 
involved directly in the first-line management functions of that profession. 
The job of Software Project Manager calls for such an individual. His 
managerial duties are set according to the structure and needs of the team, 
t6 maintain organizational discipline and high productivity. 

10.2.4 The Chief Program Design Engineer 

The principal job of the Chief Program Design Engineer is to design and 
document the program to be coded, in compliance with management and 
technical standards, and to enforce these standards within his design group. 
He also serves as the Project Manager's top consultant during the detailed 
functional specification and preliminary, conceptual design phases of the 
development. 

He should be characterized as a highly creative individual, skilled-both as 
a technical writer (for the documentation) as well as one extremely 
competent and productive in the area of program design. In practice, the 
Chief Program Designer designs and documents the earlier tiers, as well as 
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other selected, critical phases of the program himself. He then defines 
program design-stub interfaces for others under his supervision to 
complete, and be reviews and incorporates the entire work of the design 
group into one unit. 

10.2.5 Lead Programmer 

The Lead Programmer's task is to translate the design from documenta
tion into efficient code, to document that code in such a way that it can be 
audited for conformance to, and cross-referenced with, the design and 
project standards, and to enforce standhlrds within his programming 
activity. 

The lead programmer works very closely with the software design and 
testing activities; however, he reports directly to the Project Manager. The 
lead programmer should be very well versed in the system and 
environmental aspects of the host computer and thus provide the designers 
and testers with consultive feedback relative to design efficiencies and 
testing strategies. 

The lead programmer and other members of his team supply dummy 
stubs as specified in the Software Test Plan, to be used for phase-testing 
the emerging program. The programmers are not responsible for the 
design of the stubs, but they are responsible for checking their code before 
it is delivered into the Software Development Library. Delivery into the 
library attests that, to the best of their knowledge, the code matches the 
design, adheres to coding standards, and operates within the test plan 
specifications. 

If checkout uncovers any evidence that there is a program design error, 
then the program designer is notified; if there is any evidence of a test plan 
error, then the test engineer. In all cases the notification is written and 
logged into the project notebook. If checkout uncovers an error in a 
module belonging to a previous development phase, then a project 
descrepancy report is filed with the Project Manager for action. 

10.2.6 Software Test Engineer 

The software test activity has more project interfaces than any of the 
other activities, except project management. It is this activity that attests 
to program correctness. The activity is guided by the Software Test 
Engineer, who is responsible for the generation of the Software Test Plan, 
for the preparation of validation data by which the program will be 
verified, for the scheduling and supervision of acceptance tests, for the 
audit of all documentation and listings prior to delivery for correctness and 
conformity with standards, and for verifying that all the requirements for 
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delivery of the program have been met. He reports all discrepancies noted 
during testing and auditing to the Project Manager for appropriate action. 
He impounds the results of all test runs in the project archives and 
maintains these archives in a form visible to other members of the team. 

The test designer designs input to test all flowlines in modules of the 
phase currently to be tested and specifies what response all dummy stubs 
required must have. The test designer may do look-ahead test design, just 
as the program designer may do look-ahead module design. 

In testing the program at the current phase, it is the job of the tester to 
validate the software, not to debug it. All failures are recorded in the test 
report and diagnostic material is given to the appropriate team member. 

The Software Test Engineer is also the Project Manager's chief 
consultant during program definition, with regard to setting goals for 
testing and for designing testability into the software. The job calls for an 
individual capable of unwavering attention to meticulous detail. He also 
needs to have a background of working experience in software definition, 
design, and coding. 

10.2.7 The Project Interface Control Engineer 

The principal task of the Interface Control Engineer is to maintain the 
project personnel and program interfaces in a highly visible and controlled 
form. These interfaces are the various forms of documentation generated 
by the three project activities: the SDD, the SSD (which includes the 
Software Test Plan), code listings, etc. The Interface Control Engineer acts 
as custodian over all elements accepted into project control, whether it be 
documentation, coded program modules, dummy stubs, or test data. He 
alone is permitted to update or append approved elements to the Project 
Software Development Library (SDL) files and project-controlled 
documentation. All project documentation and elements of the SDL files 
are available to any requesting team member through the Interface 
Control Engineer. I shall discuss the SDL in greater detail a little later on. 

The Interface Control Engineer also acts as the Project Manager's aide, 
taking charge of the project notebook, in which are recorded minutes of 
meetings, a log of detected discrepancies and their current disposition, a 
log of standards waivers and reasons for these, the current project schedule 
and all previous outdated project schedules, an up-to-date tier diagram (see 
Section 10.5.6), a log of factors causing schedule slippages, a log of changes 
made (and why) to elements after accepted into project control. A 
suggested outline for a project notebook appears in Appendix H. 

The interface control task requires an individual with some software 
technical skill, but the main thrust of his background needs to be 
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administrative. It is his ability to organize the custodianship of interfaces 
and to provide the Project Manager visibility into the current status of 
development that is his most important role in its effect on the team's 
performance and on the qifality of the software produced. 

10.2.8 The Customer/User Representative 

For some reason, what a software design is supposed to do is subject to 
wide interpretation, even after previous agreement. It is important, 
therefore, to involve the customer or user organization in a formal way, so 
that it has had the opportunity to concur at earlier points than before final 
delivery. To give the development team free rein between requirements 
definition and operation is inviting trouble. 

For this reason I have shown a customer/user representative as part of 
the development team. His involvement is meant to be real, in depth, and 
continuing throughout the project. He is there to aid in the generation of 
the functional definition (SFS), to participate in all reviews, and to observe 
and concur in the acceptance tests. He serves as the applications expert, to 
analyze the evolving program response to assure that it fulfills the technical 
objectives required for his application. 

10.3 CONDUCT OF THE PROJECT 
Now let me address the procedures and interactions among team 

members during program evolution. I will assume that the Project Manager 
has just defined a project phase as a certain portion of the program to be 
defined, designed, coded, tested, and documented as a project milestone 
before proceeding to the next phase. The scope of work in each area need 

not be uniform, but sized in the most meaningful way. For example, Phase 
1 of the software definition activity may be very detailed, whereas Phase I 
of design, coding, and testing may only encompass the first few hierarchic 
tiers of the program. Portions of a given phase to be undertaken by 
separate individuals should probably be roughly the same complexity, 
however. 

10.3.1 Work Breakdown Structures 

Project phase-planning can be used as a viable method of allocating work 
keyed on priority of requirements. Such phases provide a medium for 
cross-referencing and auditing the design and implementation against 
program requirements and, thereby, also provide the tool for estimating" 
schedules and costs for given,'added, or deleted requirements. Monitoring 
phase status identifies the state of requirement fulfillment relative to the 
set of project priorities. 
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The project procedural discipline is shown in Figure 10-5. The diagram 
shows that definition must precede design, design precedes coding, coding 
takes place concurrently with test design. Design is based on definition, 
coding is based on design and definition, and so 6n. All design and coding of 
striped modules takes place in top-down hierarchic order within the scope 
of the defined phase. Coding begins only when the design has become well 
established and stable, developmental testing then can take place with the 
view of establishing correctness, not debugging the design. 

Figure 10-5 does not show look-ahead efforts, nor does it apply to the 
earlier architectural design phase. Both are used to identify the key details 
and likely problems of the development and also to size the effort and 
permit the work breakdown structure to be formulated. 

10.3.2 Joint Programmer-Reader Collaboration 

A requirement levied in Chapter 9 to aid in assessment of program 
correctness was that documentation be carried to that detail which permits 
an audit of a module algorithm against its stated function at the previous 
level of the design. The purpose of such an audit is to ensure that 
everything assumed by the parent-level design actually appears within the 
module, that everything actually appearing in the module design is 
traceable back to the stated module function, and that design standards 
have been adhered to. Such an audit will decrease the possibility of 
oversight, prevent the augmentation or alteration of the design unilaterally 
at the later design stages without proper approval or integration of that 
augmentation in the design, and maintain a uniform, standardized design. 

Notice that I have made no statement concerning the process of 
validating the module algorithm as part of the design audit. Rather, the 
auditing process is purely a "bookkeeping" job, something which keeps the 
design "honest". It can, and preferably should, be done by someone other 
than the designer himself, say a Quality Assurance representative. In a later 
chapter, I address the possibility of automated design auditing. 

However, as in all good engineering practices, the design itself should be 
verified.Design verification, as it is meant here, is a careful examination of 
the design by someone skilled in design. Perhaps the best choice for this 
job is the designer's supervisor; at the least, it should be a peer or senior 
colleague. The purpose is to get corroborative concurrence that the design 
at the current level is correct (i.e., that it will do what it is supposed to do) 
and is "good" by whatever criteria have been established for the project. 

The verification can take the form of a "structured walk-through", if 
desired. A structuredwalk-through is a generic name given to review or 
4"paper tests" conducted with peers, supervisors, etc., to analyze the 
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functional design, detect logic errors, develop test strategy, cross-educate 
team members, and motivate full team cooperation. The verification is 
meant to be a non-malicious collaborative procedure for probing and 
problem detection. Errors found at this level can easily be an order of 
magnitude cheaper to fix than at later times in the development. 

The code should also be audited by someone other than the coder 
himself, say by his supervisor, or a Quality Assurance .representative. The 
purpose of this audit is to assure that the code is, in fact, a direct 
translation of the design, that it is properly anotated, organized, etc., and 
that it is written in accordance with accepted standards pertaining to 
format, coding conventions, etc. National Information Systems, Inc. uses 
the procedure shown in Figure 10-6 to code the program from procedural 
specifications. 

As with the other activities, verification of the test procedure, too, is in 
order: a non-malicious, but collaborative critical examination by a person 
or persons other than the test designer. Depending on circumstances, such 
an examination might will be performed by his supervisor, the Project 
Manager, the program designer, the coder, an intended user of the 
program, or a combination of these. 

10.3.3 Concurrent Coding and Development Testing 
Human fallibility and inability to cope with complexity in large 

programs, even with the benefits afforded by the top-down approach, 
dictate that there be some form of automatic checking of the design. The 
concurrent coding concept provides just what is needed for doing this task. 
It provides a way of checking how a program actually operates, to see if it 
matches the designer's intent, level by level through the program 
development process. 

Once modules at a given phase have been successfully verified 
(corroborated and audited), the design documentation is inserted into the 
Software Specification Document, the code integrated into the previously 
verified program, the tests retained in the project test archives, and the 
results documented in The Software Test Report (STE). 

But suppose a test fails. What then? There is an error somewhere-in the 
design, in the coding, in the dummy stubs, in the test data, or in the test 
procedure itself-and it must be fixed. This fix does not mean that those 
concerned put their heads together and patch the code until it seems -to 
work. What happens is that, first, the cause of the failure is located. Then, 
if the error is one in coding, it is corrected and the tests rerun. Similarly, if 
the error is in the test, it is fixed, the test procedure reverified, and the test 
rerun. However, if the error is in the design, the designer must reconsider 
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his design and make whatever changes are required. If the changes he 
makes involve alterations at a previous phase, an appropriate return to that 
phase for coding and testing is in order. 

10.3.4 Task Interfacing 

I have defined project tasks that allow personnel to communicate with 

each other through needed documentation in a formal way. However, the 
documentation during this production need not be of publication quality. 
Eormal, high-quality documentation is very costly and time-consuming to 
produce, and thereby gathers a lot of inertia. For this reason, designers and 
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implementors loathe to make any but the easiest or, least drastic changes; 
hence, premature formalized documentation has a tendency to "set things 
in concrete" before they really should be. 

The Software Development Library, to be discussed in the next section, 
makes use of flexible, easily modifiable automatic documentation media to 
the maximum feasible extent to avoid the costs and inertia of hand 
maintenance. In many cases, however, hand-produced documentation is 
necessary and desirable. Many designers prefer to sketch their ideas in the 
form of flow charts and to use these as interfacing documentation to 
coders. They have a tendency to work on an entire phase in one chunk, and 
then, when they feel it is appropriate, to release a whole sheaf of program 
modules all at once. If these have to be redrawn before a verifier or coder 
gets to them, then there is an unnecessary delay while the documentation 
is being brought up to quality. Several iterations of this process may be 
required to remove typographical errors and the like. 

Therefore, while I have placed documentation in series between tasks, I 
by no means wish to have the redocumentation personel (typists, 
draftsmen, etc.) appear in series between tasks. In many casei, design 
sketches and handwritten notes can be given simultaneously to verifiers, 
coders, and redocumentors to avoid delays. 

One such scheme, used by National Information Systems, Inc. on several 
of its projects, where required documentation consisted of template drawn, 
typed flow charts and typed narrative, is illustrated in Figure 10-7; the 
procedural discipline displayed is almost identical to that shown in Figures 
10-5 and 10-4. The key feature of the procedure stressed by the figure is 
that designers and coders work generally fron red-lined photostatic copies 
while any changes are being retyped. Another key feature of this 
procedure is that it keeps the documentation concurrent and accurate. 

10.4 SOFTWARE PRODUCTION MANAGEMENT AND 
CONTROL
 

Inherent to efficient and successful program development is proper 
production management and control. The ability to maintain current status 
and configuration control of project documentation is a vital necessity for 
program management visibility. 

10.4.1 The Software Development Library 

The Software Development Library (SDL), Figure 10-8, is modeled after 
the chief programmer team Programming Support Library [84], and exists 
for the same purpose: to maintain the current status of the program and 
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Figure 10-8. The Software Development Library 

associated test stubs and test data in a public form, so that project 
personnel can work more effectively and with fewer errors, in a disciplined 
manner that encourages good engineering practices. It is responsible for 
the control, retention, storage, and distribution of project documentation 
and programs. 

The SDL supports project management by providing visibility into the 
development process, and it supports the software development team by 
providing special services and configuration management. The SDL also 
serves an archiving function, keeping a record of the project history. The 
team members communicate through this visible medium rather than less 
tangible interfaces, and thereby have the potential to raise productivity. 
The SDL also provides a medium for enforcement of standards in all visible 
forms of the evolving product. 

There are three parts of the SDL. The first is composed of the 
requirements, design definition, design, and test documentation (SlED, SDD, 
SSD, STR) accepted into the project under change control. Such 
documentation may not be altered without approval of the Project 
Manager (or Iis designate). 
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The second part of the SDL is composed of the actual developing 
program modules, test stubs, and test data. Programs are always kept at 
least in their symbolic (human readable) form, and possibly also in a 
compiled, executable form, as well. Modules accepted into project control 
may not be changed without approval of the Project Manager. 

The third part of the library is a set of office and machine procedures 
and computer programs for filing, updating, and listing the program 
modules, dummy stubs, and test data during development There may also 
be other special service programs and procedures, such as for running the 
program or parts of the program in a controlled environment during 
checkout, for generating and maintaining status reports, schedules, tier 
charts, or other management information, for documenting the program or 
tests, for accumulating development statistics, for automatic auditing of all 
documentation against format standards, and for automatic cross
referencing of definition requirements, design specifications and code 
listings. 

Insofar as is practical, all elements of the SDL will be maintained in a 
machine readable form. Regardless of form, however, only the Interface 
Control Engineer is permitted to make any changes in the library elements, 
and if such changes pertain to elements under project configuration control, 
then, only under direction from the Project Manager. In larger projects the 
Interface Control Engineer may be assisted by a librarian with some 
secretarial skills, or by other personnel to aid in effecting the "public 
programming" practices. 

Submissions to the SDL are made to the Interface Control Engineer in 
one of several ways: as "signed-off", completed new modules; as 
incremental, approved changes to existing modules, or reapproved versions 
of modules already extant in the SDL; or as "working level" elements, such 
as "look ahead" module designs, stubs, decision tables, etc. 

The Interface Control Engineer also has the responsibility of all program 
"builds"; that is, the linking together of program elements (modules and 
dummy stubs) in preparation for testing, as requested by the Software Test 
Engineer, and as defined in the Software Test plan. 

A full set of typical requirements for the SDL may be found in [84. 

10.4.2 Software Configuration Management 

The key to the success of the SDL is bound to its effectiveness as a 
design-control facility. The techniques for accepting and revising elements 
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in the SDL should recognize that changes are of varying depth, such as: 

* 	Changes that can be made (temporarily) on existing documentation 
without making it illegible or unintelligible. 

* 	Additions that amplify, clarify, or augment existing documentation 
without making obsolete the present contents. 

* 	Changes that are a whole or partial replacement for existing 
elements in the library. 

Once placed under formal project configuration control, SDL elements 
will not be altered or modified in any way without proper documentation 
and approval (Figure 10-9). 

During development it may not be necessary to have a rigidly 
documented request-analysis-response cycle for changes, unless those 
changes occur across program development phases (see Figure 10-5). When 
this is the case, it is probably important to document the change-control 
cycle rather carefully. Once the program or one of its documents is 
complete, and has been accepted into configurafion control, certainly no 
change should be contemplated without the cycle. 

Problem/ 
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The requirement for a formal change may be established by one of the 
following [851: 

* An open discrepancy or problem report. 

* A request from the designer of an interfacing module. 

* A change requested by the customer or design review board. 

* A problem developed by changing an interfacing program module. 

* A valid improvement in the functioning of a program module. 

All changes during development must be authorized by,and then approved 
by the Project Manager. 

Let me assume, for illustrative purposes, that the SSD will be 
typewritten documents with human-drafted graphics and flowcharts, and 
that the coding for program modules and dummy stubs lie in SDL 
computer files. 

All original typewritten and drafted pages of documents accepted will be 
dated. Every striped module design will contain, probably on its flowchart, 
a signature block, such as: 

Designed by 

Verified by 

Audited by 

Accepted by
 

in which are entered corroborative testaments that the design is correct 
and adheres to design and documentation standards (or to specific waivers 
of these standards). Other document items, such as I/O formats, complex 
data structures, decision tables, core maps, etc., may exhibit similar sign
offs. 

When all signatures have been affixed, the Interface Control Engineer 
enters the module design documentation into the SSD and logs that event 
into the project notebook. He also marks this event and enters any striped 
submodules of that module on the tier diagram (see Section 5.1.4). 

Any changes to the SSD thereafter must be submitted in writing to the 
Project Manager as "red-lined" corrections or complete new modules, to 
which are attached the requirements and analysis of the change. Changes 
in the narrative of a clarifying or amplifying nature, when approved, cause 
redating of the affected pages, changes affecting the module more 
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drastically require the reinitiation of the signature block procedure. The 
outdated items along with any attachments are retained in the project 
change-control archives. 

Additions or changes in other project-controlled documents and in the 
code follow similar procedures. 

The SDL should also possess copies of all "working level" program 
modules and documentation produced as a part of "look-ahead" efforts. 

These may be distributed by the Interface Control Engineer, but for 
information only. Other team members, therefore, must make no 
assumptions concerning the state of completion of working-level interfaces 
until they have been accepted into formal project configuration 
management control. Changes in working elements may be made at the 
discretion of the originating individual, but the Interface Control Engineer 
must be notified. 

It is literally imperative, in the interests of maintaining management 
visibility into team activity and progress, to have regular submissions and 
updates of all "look-ahead" or other working-level material into the SDL. 
This fact has been recognized for some time by the CPT adherents [801, 
who observe and enforce its directive as a means to turn "private art into 
public practice". The surveillance of a constantly changing, evolving 
program is apt to be difficult without keeping all such data bases in 
computer files, to be accessed and updated in a controlled way. I shall 
discuss this automation in Chapter 17, A Standard Software Production 
System. 

10.5 MANAGING THE SOFTWARE DEVELOPMENT 
Managing a software development is largely keyed to defining major 

project milestones, planning work and allocating resources to achieve them 
in a timely manner, supervision of the team, monitoring its progress, and 
enforcing standards. Much of the Project Manager's ability to function 
effectively stems from his having visibility into the project, its capabilities 
and its working environment, as well as into the developing software, its 
problem areas, its state of completion, and its rate of progress. On this 
visibility is based any needed adjustments to the manpower plan, the 

financial plan, and the project schedule. 

10.5.1 Planning 

There is a definite distinction between planning activities and doing 
activities. Specifically, planning is a study-type function. It implies 
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gathering information and identifying decision-alternatives at a level that 
does not impact current status, but may impact future doing and planning 
activities. The magnitude of a planning activity should probably be roughly 
proportioned to the risk or exposure associated with the individual project 
[22]. The larger the risk, the greater the time, investment, and detail that 
should be devoted to planning. But even this is not an iron-clad rule 

The scope of planning should include such things as work flow, project 
organization, projeit priorities, responsibility flow, resource management, 
configuration management, quality assurance, and the mechanics of 
program development, especially the mechanical aspects of installing, 
integrating, and testing the software. Good contingency planning can avert 
many work stoppages due to unforeseen circumstances. 

Some of the planning will be design-dependent. In these cases, a portion 
of the design must be done to assign, programming responsibilities or to 
determine the resource requirements. 

The documentation of planning information will probably be scrutinized 
by upper management and criticized by subordinates more than any other 
documentation in the project. It is sometimes, thus, very advantageous to 
have the implementation planning documentation include excerptable 
material directly suitable for summary presentation to management (for 
example, in the form of overhead projector slides). In this way, separate 
material for the plan and for management review need not be generated. 

10.5.2 Resources 
The development resources include manpower, budget, hardware 

environment, software environment, system loading and schedule, and the 
program deadline. Doing the management of these resources is different 
than planning for their management. Doing requires being able to come 
up with dollar-amounts and man-months of effort. It requires the 
preparation of reports and documents as spelled out in the plan, and the 
phased allocation of resources among the team and within the development 
environment. 

Hopefully, resource management proceeds according to the plan. Work
arounds (exceptions to the established plan) should be discouraged; rather, 
any unplanned arrangements should be incorporated into the plan, so that, 
in the end, the final plan agrees with the final methods actually used. In 
future projects, similar plans are apt to be developed from policies 
gathered across many projects. As long as work-arounds are permitted 
without eventually producing a corresponding change in policy, there will 
be little improvement in the development policies, and no way of assessing 
whether the established policies will actually work or will always require 
ad hoc exceptions to bail a project out of difficulties. 
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10.5.3 Scheduling and Cost-Estimation 

Developing an accurate initial schedule or cost estimate in the early 
stages of a project is very difficult. It requires an a prioriknowledge of the 
size of the task, the productivity df the team, the phasing of activities in 
interfacing projects, and a myriad of intangible other premature 
estimations. Probably software tasks are intrinsically no harder to schedule 
or cost out than hardware tasks are, when approached using the top-down 
discipline. Perhaps the greatest unknown in accurate planning is the 
amount of rework that will be attributable to human inability to cope with 
program complexity or mid-stream redirections of effort. But a history of 
such development factors and statistics should be recorded, maintained, and 
summarized for each project to promote accuracy in future project 
estimates. 

Optimization of a team's productivity, the ability to produce software 
according to a given schedule, and the accuracy of a pre-estimated budget 
can only come about when all the contributory factors are modelled with 
sufficient, fidelity to permit mathematical methods to produce them. Until 
such models can be developed, we are stuck with more subjective, less
accurate estimating techniques. 

One method with some merit is performing a preliminary design study 
prior to beginning the formal top-down, concurrently documented and 
coded program development discussed earlier. This study consists of a look
ahead, say as hand-drawn flowcharts and tables (with little, if any 
supporting narrative), through the complete design. The purpose of this 
preliminary architectural design is to size the entire comirg effort and to 
identify work tasks in order that a work breakdown structure, schedule, and 
cost estimate can be generated. 

The preliminary design need not be detailed nor reflect a microscopi
cally correct program, as long as the architecture is sound and as long as it 
sizes the program to be written within, say, an accuracy goal of 10%. The 
work breakdown structure should typically be detailed to tasks no longer 
than 2-3 manweeks each. 

Figure 10-10 shows the skeleton of a software development schedule. 
The inverted deltas indicate milestones to be estimated, they also are 
probably the dates of reviews. The figure shows that work on the 
architectural design does not begin until the program justification (in the 
SRD) is complete and has been approved. The detailed functional 
requirements (FRD) and the program specification effort (incorporated'iin 
the SSD) have been shown to begin a little later, with the view that work 
can begin on top-level functional definitions, data-flow diagrams, 
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Figure 10-10. Project schedule showing phased concurrency in developmen t nctiuitIsq 
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flowcharts, and data structures before the full functional detail is put into 
the SFS. Coding, testing, and so forth, follow as I have previously 
described. 

I have indicated in the schedule that software development begins when 
the Software justification Report has been approved. That need not 
necessarily be the case, I am assuming here that the approving authority 
for committing manpower, funding, and other development resources does 
not need as rigorous a set of technical requirements to allocate resources as 
the oncoming development activity does- The SRD activity may thus 
extend beyond the first approval stage, may perhaps be written in concert 
with development personnel and during other developmental activities, 
and may result in a detailed set of functional requirements, analyses, 
tradeoffs, and plans. 

The development of a maintenance plan and documentation for 
maintenance is shown on the schedule, and may be part of the 
development project. Its presence on the schedule signifies that there will 
probably be activity in the operations area concurrent with the final phases 
of the software development. 

In scheduling a project it is useful to remember that more software 
projects have gone awry for lack of calendar time than for all other causes 
combined [86]. The reasons for this effect are primarily related to our 
poorly developed techniques for estimating; all programmers seem to be 
optimists and estimate on the unvoiced assumption that "all will go well." 
The truth is that, whatever can go wrong, will, unless serious precautions 
are taken. 

Furthermore, most estimating practices confuse effort with progress, 
tacitly assuming that men and months are interchangeable; whereas I 
showed in Section 10.1 that this interchangeability is clearly not the case. 
Intercommunication among individuals and other non-production activities 
must be inserted into the equation. 

Because large projects extend sometimes over a few (or many) years, one 
must anticipate and account for manpower turnover, and a corresponding 
lengthening of development time for training of new personnel and 
integrating them into the team structure. 

Estimating later milestones during the SRD preparation period may thus 
require a lot of insight and padded judgement. Once the project proper has 
begun, however, incremental schedules and costs are more easily estimated. 
Once the architecture and work breakdown structure are established, each 
development phase consists of a precise, known number of modules and 
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dummy stubs to be designed, coded, tested, and documented. The program 
tier diagram (the module hierarchy tree) is a very useful aid in defining, 
scheduling, and monitoring the project phases. Section 10.5.6 gives more 
details on the use of the program tier chart as a progress management tool. 

Some standard techniques are also available for more detailed schedule 
planning, such as critical-path-methods, PERT, PERT/time, PERT/cost, 
and machine-processed scheduling programs. I refer the reader interested 
in such topics to the DOD/NASA guide [87] for further details. 

10.5.4 Reporting System 

Regular reporting in the form of activity and progress reports has long 
been the practice of a good engineering discipline. Good software 
engineering is no different in this respect. Channels must be available for 
problem and discrepancy reporting, engineering change requests, 
engineering change authorization, test reports, progress and status reports, 
new technology reports, management reports, and so on. 

During development, reporting is primarily oriented toward providing 
accurate and worthwhile media for developing effective management 
visibility, for communicating the results of technical decisions, for 
recording the development history, and for displaying the current level of 
program completion. 

10.5.5 Documentation 

Job specialization, increasing hardware complexity, the proliferation of 
programming languages, and the wider range of programming applications 
has created a crucial communication problem; a greater volume of 
information of higher complexity passes among growing numbers of people 
of dissimilar backgrounds. In such an environment, some attempt must be 
made to rationalize the information flow in the form of documentation. A 
state of anarchy (or near anarchy) would result if each individual were 
allowed to decide what, if anything, would be recorded, and when. 
Standardized documentation, in conjunction with an established system of 
checkpoints, is a major aid to project control. Standards for documentation 
must include provisions for workability, accuracy, legibility, and 
completeness. Work should not be allowed to proceed to subsequent tasks 
until a review of the documentation is satisfactory. 

If documentation is in serious default, my recommendation is simple: 
stop all activities not related to documentation, and bring documentation 
up to acceptable standards. Management of software is virtually impossible 
without quality documentation. 
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Even if standards have been set, a big question is "What documents are 
to be produced, and what is the level of detail in each?" I have principally 
addressed in this work only that documentation actually needed to develop 
a program. But other documents in a project are obviously required, such 
as a management plan, operations manuals, standards manuals, test 
procedures, user guides, SDL procedures, etc. 

The only guideline I can give is simply to eliminate repetitive, high-cost, 
low-use program documentation. In the development process, this strategy 
provides, as final program documentation, only the Software Functional 
Specification (SFS), the Programming Specification (PS), and program 
listings. For the strategy to work, these must constantly be kept current 
through change control. As for the other forms of .documentation in 
support of this minimum and for the users of the programs, I leave such 
decisions as prerogatives of the individual organization, project, or 
customer requirements. 

One reason I have stressed documentation requirements for program 
development is that I believe such documentation provides the primary 
means for cost-effective program maintenance. I vigorously oppose the 
practice wherein software is maintained only at the code and operator 
manual level, without keeping the supporting design-level documents up
to-date. Such practices trace their origins to earlier days of preparing 
research programs for testing purposes. It is not acceptable today in the 
development of operational programs having reasonable lifetimes of more 
than a few months. Continuing the practice of maintaining code and 
operating manuals only will result in continuing high costs for both 
development and maintenance [88]. 

Insofar as is practical, all documentation and data bases used for report 
generation and subject to change control or frequent modification should 
be kept in computer files. Correlated data bases should be cross referenced 
so that all side effects are visible and can be checked out at each update. 

The appendices provide suggested topical outlines for many documents 
possibly produced during the development process. Other guidelines for 
format and preparation of the material to be included appear in 
subsequent chapters of this monograph. 

10.5.6 Monitoring Progress 

Monitoring a development team's progress is based on visibility; 
visibility is keyed to reporting, documentation, design review, and 
supervision. Competent monitoring of the technical aspects of a 
development is an absolute necessity. When not monitored, a team may 
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produce inefficient code or program parts that interface improperly or 
inefficiently with each other. Fortunately, the top-down, hierarchic, 
modular approach puts technical visibility within the grasp of the Project 
Manager, as well as each of the other members of the team. 

I gave certain technical monitoring procedures earlier in this chapter as 

a means for promoting program correctness. These had to do with 
concurring opinions and audits of the design, coding, and testing activities. 
Another means of technical monitoring is provided by regular development 
reviews. I will give guidelines for such reviews in a later section of this 

chapter. 

In Section 5.1.4, 1 have referred to the use of tier charts as a 
management tool for monitoring team progress. Figure 10-11 shows a 
typical partial tier chart for a program, in this case, the MBASIC language 
processor. the chart lists the various modules, the tier to which they 
belong, and their state of completion; "S" stands for "stub", "Y" for 
"preliminary", and "'. stands for "completed". An asterisk in the "Page of 
Next Tier" column indicates that there is no further expansion of that 
module. Eventually, all entries in the final column contain either a page 
link or asterisk-no blanks. 

A "P" in the "Design" column indicates that a preliminary version was 

submitted into the project; the asterisk was added later when the design 

was completed. An "S" in this column indicates that a formal dummy stub 
was designed to test the module it plugs into, an "S" in the "code" column 
indicates the stub was actually coded, An "S" in the "Test" column shows 
that the module was tested using dummy stubs at the next tier, and a "'. in 
this column shows that the tests were completed using the actual 
completed code at the next tier. 

Other designators may also be useful in these columns to monitor 
progress. For example, "'L" for "look-ahead", "A" for "audited", "C" for 
"concurred", and "11" for "returned for rework". 

The "Phase" column is useful in identifying which modules belong to 
which scheduled milestones. In the example shown, all of tiers 1 and 2 
comprised the first project phase, and all of tier 3, the next phase. The 
chart shows that design and coding of Phase 1 is complete, but Phase I 
testing awaits the delivery of dummy stubs at tier 3. The main program has 
been tested using the actual code at tier 2 and dummy stubs at tier 3 

The tier chart helps to identify future phases of development, and relates 
,the state of completion of current phases. It can be used to allocate work
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Page 1 of 22 

MBASIC/1 

TIER CHART 

Page ofTier Module Number Module Name Phase Design Code Test Next Tfer 

1 1. MBASIC 1 P4 1 

2 2. SYSUP 1 P. S I 
U1 USWAP 1 P. 1 
3. SYSIZL 1 P * 1 
4. PARSE 1 P* * 2 

5 RUNIZL 1 P4 * 2 

6 RUN 1 P* * 3 

7 BATCHC 1 P. 3 

8 BATCHR 1 P. 3 

9 EXIT 1 P. 3 

2 U2 IZCORE 2 P. S 4 
U3 IPSWRD 2 P. S 4 
2.5 NOPWD 2 P. S. * 

U4. FLLDIR 2 SP* S 

28 BADPWD 2 P* S4 

El. SWAP SYSTEM 2 P. S 

U1 7 SAVE RUN 2 P* S 
Ul 8 SET PARSE 2 P. S 
U1.9. SET RUNIZL 2 P. S 

U1110. SET RUN 2 P. S 
U5. ADJSEG 2 P S 
U6. IZIO 2 P S 

33 NTINIT 2 P S 
34. 1ZTBL 2 P S 

Figure 10-11. A tier chart for the MBASIC Program 

and it can serve as an aid in estimating schedules and production costs. If 
errors are found in modules at a given tier, the extent of rework can often 
be sized by looking at the chart. 

The figure shows the chart as if it were a page of documentation; in 
actuality the tiered data base best resides within the computer, which then 
accesses the information at regular intervals for update and status 
reporting. 
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10.5.7 Project Supervision 

The methodology described in preceding pages of this monograph 
provides a basic level of technical control over software development and 
testing. The Project Manager has visibility into current status by way of the 
project notebook and the Software Development Library, and thereby, has 
efficient tools to balance resources and schedule throughout the project. 

My first rule for supervising a software development is ruthless 
enforcement of project standards, especially those relating to documenta
tion requirements. Deviations from standards should be permitted on a 
case-by-case basis only, and written waivers should be entered into the 
project notebook or other suitable archive. 

My second rule for software development supervision is close technical 
leadership in the program development Proper project supervision lies in 
technical and managerial proficiency, as well as the tools, methods, and 
development environment provided for the team. There is no substitute for 
competent leadership, sound judgement, and decisive action. 

There may be vagueness in a software development plan for example, 
concerning how conflicting requirements are to be resolved when they are 
not specifically spelled out in a list of competing chatacteristics. There also 
may be no statement defining what freedom the development team has in 
interpreting requirements. It is the prerogative, then, of supervision either 
to solicit such judgements from proper authority, or to analyze and decide 
on the basis of its own sound technical judgement, the proper course of 
action. 

As I indicated earlier in this chapter, the place for the highest levels of 
skills is at the top. A supervisor with less technical skill than his 
subordinates not only fails to give responsible leadership, but risks the 
quality of the software by making incompetent decisions. Subordinates 
soon tend to become demoralized and non-productive. 

Fortunately, supervisorial skills can be taught to technically adept 
personnel, perhaps more readily than supervisors seem to find time to learn 
new technical skills. In either case, it seems to me that organizations need 
to pursue training programs and encourage continued education for 
persons in supervisory roles, as well as in the more junior positions. 

10.6 DESIGN AND PROGRESS REVIEWS 
A series of reviews and audits must be scheduled at meaningful points 

during the development of a piece of software to permit assessment and 
concurrence with its progress and status. Adequate evaluation of the 
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development process generally takes place if these reviews focus on 
functional requirements and design during early development, and on 
performance and configuration verification during later development. 

Informal reviews may'be held on an ad hoc basis as an effective method 
for monitoring progress and supervising development. Formal reviews are 
principally system, configuration, and management oriented, although some 
level of technical detail needs to be present. Each such review should not 
be considered complete until all action items assigned by the reviewing 
board have been closed. It may be proper to suspend certain future phases 
of activity until all review criteria can be met. 

I must assume that some authority empanels the formal review board, 
appoints its chairman, and dictates to what level their recommendations 
and action items are obligatory. The review board chairman then is 
responsible for scheduling the reviews, notifying attendees, and for the 
generation and distribution of the review minutes. The chairman reports to 
the convening authority the review board findings and notifies him when all 
assigned action items have been cleared. If certain phases of the project 
had been suspended, the convening authority may then direct their 
reactivation. 

In what follows, I shall address the conduct and content of the four 
reviews shown in Figure 10-10. The discussion of each contains a set of 
criteria to be met by the presentors, the action solicited from the board, 
and the procedures to follow. I presume, in all eases, that the board has 
areas of competence matching the presentation review criteria. 

10.6.1 The Requirements Review 

The first review I have shown is that acting on the software justification. 
In Chapter 3, I defined the software justification as that collection of 
information created to obtain management approval to proceed with the 
software development. An embryo Software Requirements Document 
(SlID) containing this justification should be prepared and available to the 
review panel; it should fulfill the criteria given in Section 3.3. 

The presentors are asked to perform the following: 

a. 	Establish the need or "'market potential" for the program and 
identify the objectives of the program, its user and system 
environment, the configuration needed for its operation, the 
resources required for its support, and the advantages and 
disadvantages in the service it provides. 
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b. 	Demonstrate that the remaining developmental activities may 
proceed under a reasonable assurance that major revision of technical 
and management objectives will not be necessary. 

c. 	 Present evidence that the program and its use are feasible with 
respect to technical considerations, manpower, schedule, and 
developmental costs. 

d. 	 Provide variance estimates or bounds for all planned resources to be 
expended.
 

e. 	Demonstrate that the SRD has been documented in accordance with 
the content adequacy criteria given in Section 3.3 (and Chapter 11). 

The review board action solicited by the presentation is authorization to 
proceed with the software development plan and with the software 
functional definition and design definition activities. If these activities are 
to be accomplished in-house, formal work directives will need to be issued 
and project teams established. If these activities are to be accommodated 
via an external contract, then procurement procedures will need to be 
initiated. 

10.6.2 Architectural Design Review 

The second review shown is the Architectural Design Review, and 
occurs after the architectural design, but before the completion of the 
detailed software functional specification, although some projects may well 
elect not to begin program design until the complete detail of the program 
technical functional definition has also been reviewed and approved. 

The architectural review can take place at the completion of the 
complete look-ahead design and the detailed work breakdown structure 
(see Section 10.5.3). The review thus scrutinizes the embryonic program 
Software Design Definition and Functional Specification Documents at a 
point where they vividly describe the basic structure of the software and 
the framework for the remaining software implementation. This review 
also probes the reasoning that went into that material. 

The presentors are asked to perform the following tasks: 

a. 	Present the software development plan, which contains updated and 
detailed project manpower, schedule, and development cost 
estimates, along with refined variance estimates for these quantities 
(10% goal). Include an implementation plan, which indicates work 
priorities and how the implementation process accommodates this 
priority ranking, including time phasing, if appropriate. Demonstrate 
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that the work breakdown has tasks small enough to facilitate 
supervision and review by management to determine progress 
relative to the plan. 

b. 	Present a summary of project standards. 

c. 	 Present the program hierarchic functional definition and design 
architecture, using data-flow diagrams, flowcharts, and explanatory 
narrative. Show that the program definition and design architecture 
are technically feasible and compatible and responsive to the 
software functional requirements. Provide sufficient information so 
that the end user may assess the appropriateness of user interactions 
and I/O formats. Identify all amendments to the original SRD, and 
summarize their impact on the development. 

d. 	Identify satisfactory progress status monitors to be in effect during 
the final detailed design phase. 

e. 	Provide evidence that the architectural design and documentation are 
adequate for the later detailed design and implementation, without 
significant conflicts being likely. 

f. 	Provide the Software Design Definition (SDD) and perhaps the 
preliminary current version of the embryonic Software Specification 
Document (SSD) to the review board, and show that these adhere to 
project standards and are adequate by the criteria given in Sections 
3.4 and 4.2.3. 

g. 	Present implementation testing criteria, plans, and procedures, and 
show that these will fulfill requirements to establish program 
correctness. 

h. 	Present the preliminary software integration plan if the software is 
being developed in an environment other than that to be used in 
operations. 

i. 	 Identify required software support and external program interfaces, 
and evaluate their impact on software delivery. 

j. 	Identify the degree to which the architectural design activity 
necessitated backup coding and checkout. If minimum levels had 
been established, state whether this minimum level was exceeded. 

The actions sought from the review board are concurrence in the 
adequacy of the software development in principle and authorization to 
pursue the development according to the costs and resources and schedule 
presented. Acceptance by the board signals the initiation of installation and 
acceptance planning, and authorizes the continuation of definition, design, 
coding, and checkout under the standards presented. 
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10.6.3 Critical or "As-Built Design" Software Review 

The Critical Review concludes the specification phase of the software 
development. Obviously, the entire set of detailed flowcharts, or their 
equivalent, cannot be reviewed in a formal way by the board in any 
reasonable time. Besides, concurring opinions and audits have taken place 
for each module, so this level of technical detail is not warranted in the 
review. Instead, the presentors are asked to provide to the review board 
the following: 

a. 	Evidence that the design is complete. All internal modules are 
present. All external modules that currently exist satisfy stub 
interfaces. All external modules yet to be developed have specific and 
definitive interfaces. IAn audit, plus a randomly chosen sample walk

through of the tier chart and sample examinations of final stubs of the 
three above type should suffice.) 

b. 	Evidence that all technical requirements have been satisfied. Identify 
all exceptions or remaining problems, and the disposition of such 
items relative to liens on delivery. 

c. 	 A management report that portrays the team performance in relation 
to the software development plan. All deviations from the previously 
presented plan and updated costs, schedules, and manpower should 
be compared with the initial plan. The software development plan 
for remaining tasks should also be presented. 

d. 	A summary of all waivers from project standards and any new 
standards adopted, or old ones amended or deleted, since the last 
review. 

e. 	A status report on the concurrent coding and checkout efforts, along 
with a report on the extent to which the design has been verified. 
Preliminary performance measures and projections for the completed 
program are in order. 

f. 	The completed SSD, with a QA audit that attests to its completeness 
and adherence to standards. The presentors should then redemon
strate that these documents conform to the criteria given in Sections 
3.4 and 4.2.3. 

g. Status reports on integration, acceptance testing, and QA activities. 

The action solicited from the board is concurrence that the design meets 
project objectives and fulfills the SlD, that the develqpment plan is 
adequate for the tasks remaining, and that exceptions..and liens are either 
acceptable as presented or will be disposed of before delivery. Acceptance 
by the board constitutes an approval to continue the project in the way 
presented.
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10.6.4 Acceptance Review 

The final review shown in Figure 10-10 is the Acceptance Review, which 
normally signals the end of the development project. This review is 
primarily held to certify that the program performs within acceptable 
limits-of specified behavior. 

The presentors are asked to provide the following for review-board 
approval: 

a. 	An analysis of the program performance requirements, a set of 
acceptance criteria relative to these requirements, and the means 
used to validate the measured performance relative to the given 
acceptance criteria (the Acceptance Test Plan). 

b. 	Evidence that measured performance satisfies acceptance criteria 
(the Software Test Report). 

c. 	 Final SSD, Software Test Report, and annotated code listings, all 
approved by a QA audit for completeness and conformity with 
project standards. 

d. 	 A final project management report, delineating total manpower, 
schedule, and development cost figures. These should be broken 
down into detailed resources expended in definition, design, coding, 
checkout, testing, integration, and documentation areas. 

Approval by theboard is the authority to initiate delivery procedures by 
which the program will be put into operation. 

10.7 	EVALUATION OF THE SOFTWARE AND 
DEVELOPMENT TEAM 

The review boards and upper management are charged with responsible 
evaluations of tangible quantities having sometimes intangible measures of 
quality. For example, a working program, even if it meets its acceptance 
criteria, may perhaps not be judged a "good" design. Whether the design is 
"good" or "bad" is rather subjective, sometimes only a matter of broad 
personal judgement on the part of a reviewer. The top-down, structured, 
modular, hierarchic approach has provided the reviewer with some 
visibility into the product allowing him to make a more conscientious 
judgement. But still, in the end, the judgement may not be rigorously 
defensible, only a matter of professional, hopefully expert, opinion. 

To make a responsible evaluation, the reviewers need to agree on a set 
of criteria for judging program quality and for evaluating the performance 
of its developers.iThen they may rate the software and the development 
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team against these, based on evidence supplied at the review. The 
reviewers also need to agree on how their individual scores are to be 
combined into final scores and the significance attached to such scores. 

To be fair to the developers, these criteria should stem from, or be 
stated in, the SRD, or established at the outset of the project, or reflect an 
accepted organizational or professional standard. That way, the developers 
and the prograi are being graded relative to stated objectives, rather than 
on ex post facto judgements: "the way things should have been done". 

I spoke in Chapter 4 to the subject of defining, and then ranking 
competing characteristics in a program development in order of first- and 
second-order dominances The same technique can. be used to aid in 
defining and ranking criteria- for the development team effort. These 
rankings can lead to weights for combining scores relative to each of the 
written-down criteria linearly into overall grades. An interactive 
dominance-ranking program and a project- grading program to aid in 
making these processes more automatic and more standardized appears in 
[89]. 

10.8 SUMMARY 
Software development team productivity depends on many intangible 

aspects of the programming art. A survey [83] made among "programming 
managers and experts in programming management" indicated, in the 
consensus of its participants, that the greatest positive correlative effect on 
productivity was quality external documentation (documentation generated 
prior to programmer task assignment), the availability of programmer tools, 
and programmer experience. The use of structured programming and the 
complexity of application were judged not to affect productivity very 
much at all. Whether or not program size affects productivity was shown 
to be a very controversial issue, and no consensus appeared at all relative 
to programming management experience on the part of a Project Manager. 

Why, then, has the present chapter been so concerned with 
organizational and managerial procedures, and why has the whole work 
pushed structured methodology so hard? Because I believe that, while 
treated as individual factors, the organizational, managerial, and technical 
disciplines may not contribute to productivity as significantly as do some 
other single factors, nevertheless, when these are merged into a solid, 
unified discipline, the potential contribution is as great as any of the 
variables surveyed. 
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The organizational approach I have discussed places interfaces along 
lines of required project documentation and expounds the use of 
corroborative collaboration among team members as a method to find 
errors, improve program quality, train junior team members, and test the 
adequacy of the documentation produced. I have given outlines for 
material to be presented in reviews to further these goals. 

The remainder of this monograph consists of material that details the 
methods presented (or indicated) in these first ten chapters as "rules", or 
standards to be applied during a software development. 

Good programming does not result from preaching generalities, as I have 
been doing up to this point. Good programming comes from seeing, over 
and over, how real programs can be improved by the application of sound 
principles of good practice and a little common sense. 
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Problems for Chapter 10 

10-1 Replot Figure 10-1 to depict team production rate R as a function of 
the number of workers. Compare with Figure 10-2, and discuss the 
differences.
 

10-2 Develop a formula for team productivity in terms of lines delivered 
per dollar (wages and salary only) for the software development team in 
Section 10.2. Use individual salaries and productivity indices, and 
determine a way to find the highest team productivity. 

10-3 Assume that a coder coding a correct design from a specification 
produces L lines of code, in which a certain fraction, f, are faulty. Some 
of these, a factor of q of the faulty lines, are caught by a peer checking 
the code. These Lfq lines are returned to the coder for recoding, 
whereupon the cycle repeats. Assume errors uncaught in one cycle will 
not be caught in the next cycle. Prove that the total number of lines 
generated code is 

L 
Ltota- 1 -- fq 

L 
ifq--l
1L--f 

(only L of which are retained). Prove the number of remaining errors in 
the code is 

q)Lf( 
# errors 

I1_fq
 

Next, suppose that the program is run, and tests find a fraction Q of 
these errors. These lines are returned to the coder for correction, 
whereupon the coding cycle starts all over. Show that the grand total 
number of lines coded and the number of remaining undetected errors 
are
 

Lgr tot I - fq - LQf(1 - q) 

L' 
 ifq -.1 

L(1-- q)(1- Q) 
#errors- - fq - Qf(1 - q) 

q)(I-
Lf(I1-- Q)l
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10-4 Design and flowchart a structured program to maintain the tier chart 
of a program as outlined in Section 10.5.6. Include the capability to 
update and query the data base for number of modules identified, 
designed, coded, tested, completed, by phase, etc. 
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