84,492 research outputs found

    Cloud based testing of business applications and web services

    Get PDF
    This paper deals with testing of applications based on the principles of cloud computing. It is aimed to describe options of testing business software in clouds (cloud testing). It identifies the needs for cloud testing tools including multi-layer testing; service level agreement (SLA) based testing, large scale simulation, and on-demand test environment. In a cloud-based model, ICT services are distributed and accessed over networks such as intranet or internet, which offer large data centers deliver on demand, resources as a service, eliminating the need for investments in specific hardware, software, or on data center infrastructure. Businesses can apply those new technologies in the contest of intellectual capital management to lower the cost and increase competitiveness and also earnings. Based on comparison of the testing tools and techniques, the paper further investigates future trend of cloud based testing tools research and development. It is also important to say that this comparison and classification of testing tools describes a new area and it has not yet been done

    Comparative Study on Agile software development methodologies

    Get PDF
    Today-s business environment is very much dynamic, and organisations are constantly changing their software requirements to adjust with new environment. They also demand for fast delivery of software products as well as for accepting changing requirements. In this aspect, traditional plan-driven developments fail to meet up these requirements. Though traditional software development methodologies, such as life cycle-based structured and object oriented approaches, continue to dominate the systems development few decades and much research has done in traditional methodologies, Agile software development brings its own set of novel challenges that must be addressed to satisfy the customer through early and continuous delivery of the valuable software. It is a set of software development methods based on iterative and incremental development process, where requirements and development evolve through collaboration between self-organizing, cross-functional teams that allows rapid delivery of high quality software to meet customer needs and also accommodate changes in the requirements. In this paper, we significantly identify and describe the major factors, that Agile development approach improves software development process to meet the rapid changing business environments. We also provide a brief comparison of agile development methodologies with traditional systems development methodologies, and discuss current state of adopting agile methodologies. We speculate that from the need to satisfy the customer through early and continuous delivery of the valuable software, Agile software development is emerged as an alternative to traditional plan-based software development methods. The purpose of this paper, is to provide an in-depth understanding, the major benefits of agile development approach to software development industry, as well as provide a comparison study report of ASDM over TSDM.Comment: 25 pages, 25 images, 86 references used, with authors biographie

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    A Case Study for Business Integration as a Service

    No full text
    This paper presents Business Integration as a Service (BIaaS) to allow two services to work together in the Cloud to achieve a streamline process. We illustrate this integration using two services; Return on Investment (ROI) Measurement as a Service (RMaaS) and Risk Analysis as a Service (RAaaS) in the case study at the University of Southampton. The case study demonstrates the cost-savings and the risk analysis achieved, so two services can work as a single service. Advanced techniques are used to demonstrate statistical services and 3D Visualisation services under the remit of RMaaS and Monte Carlo Simulation as a Service behind the design of RAaaS. Computational results are presented with their implications discussed. Different types of risks associated with Cloud adoption can be calculated easily, rapidly and accurately with the use of BIaaS. This case study confirms the benefits of BIaaS adoption, including cost reduction and improvements in efficiency and risk analysis. Implementation of BIaaS in other organisations is also discussed. Important data arising from the integration of RMaaS and RAaaS are useful for management and stakeholders of University of Southampton

    The national cloud computing strategy

    Get PDF
    Executive summary On 5 October 2012 the Prime Minister announced that the Australian Government would develop a National Cloud Computing Strategy. This announcement recognised the synergies between the National Broadband Network (NBN) and cloud computing, but also the important role for government in providing the tools that small business, individuals and government agencies need to realise the promise of cloud computing. This strategy has been developed in a partnership between government, industry and consumer groups and outlines a vision for cloud computing in Australia: Australians will create and use world-class cloud services to boost innovation and productivity across the digital economy. When organisations adopt cloud services, they are generally more productive, innovate better and operate with greater agility. As a nation, Australia is well placed to take advantage of cloud computing for a range of reasonsā€”including a stable socio-economic system, a strong rule of law, and a highly diverse and skilled Information and Communications Technology (ICT) sector. At the individual level there are many organisations across the economy that have implemented innovative cloud computing services that have transformed the way they operate. However, as a group, Australian small business and not-for-profit organisations lag behind their counterparts in Organisation for Economic Co-operation and Development (OECD) countries in the use of online technology. This places these organisations at a competitive disadvantage, which could be overcome through the use of cloud computing services. One reason for this has been insufficient access to the necessary infrastructure to support sophisticated cloud servicesā€”the relatively slow download or upload speeds in many parts of Australia have limited the adoption of cloud services. The NBN is changing this and is a key enabler of the digital economy more broadly. There are other reasons that cloud computing has not been adopted more generally in Australia, including a lack of awareness of how to make best use of cloud computing and a lack of confidence that some organisations and individuals have in adopting cloud computing services. This strategy has identified three core goals and a set of actions to achieve the governmentā€™s vision. However, as the cloud services market continues to evolve, users and providers of cloud services must remain responsive to change. Likewise, the government will continue to adapt its strategy in response to market and technological changes

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    The Making of Cloud Applications An Empirical Study on Software Development for the Cloud

    Full text link
    Cloud computing is gaining more and more traction as a deployment and provisioning model for software. While a large body of research already covers how to optimally operate a cloud system, we still lack insights into how professional software engineers actually use clouds, and how the cloud impacts development practices. This paper reports on the first systematic study on how software developers build applications in the cloud. We conducted a mixed-method study, consisting of qualitative interviews of 25 professional developers and a quantitative survey with 294 responses. Our results show that adopting the cloud has a profound impact throughout the software development process, as well as on how developers utilize tools and data in their daily work. Among other things, we found that (1) developers need better means to anticipate runtime problems and rigorously define metrics for improved fault localization and (2) the cloud offers an abundance of operational data, however, developers still often rely on their experience and intuition rather than utilizing metrics. From our findings, we extracted a set of guidelines for cloud development and identified challenges for researchers and tool vendors
    • ā€¦
    corecore