
© 2013. A B M Moniruzzaman & Dr. Syed Akhter Hossain. This is a research/review paper, distributed under the terms of the Creative 
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. 

  
Global Journal of Computer Science and Technology 
Software & Data Engineering 
Volume 13 Issue 7 Version 1.0 Year 2013 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Comparative Study on Agile Software Development Method-
ologies 

          By A B M Moniruzzaman & Dr. Syed Akhter Hossain 
Daffodil International University, Bangladesh    

Abstract - Today‘s business environment is very much dynamic, and organizations are constantly changing 
their software requirements to adjust with new environment. They also demand for fast delivery of software 
products as well as for accepting changing requirements. In this aspect, traditional plan-driven developments 
fail to meet up these requirements. Though traditional software development methodologies, such as life 
cycle-based structured and object oriented approaches, continue to dominate the systems development few 
decades and much research has done in traditional methodologies, Agile software development brings its 
own set of novel challenges that must be addressed to satisfy the customer through early and continuous 
delivery of the valuable software. It‘s a set of software development methods based on iterative and 
incremental development process, where requirements and development evolve through collaboration 
between self-organizing, cross-functional teams that allows rapid delivery of high quality software to meet 
customer needs and also accommodate changes in the requirements. In this paper, we significantly indentify 
and describe the major factors, that Agile development approach improves software development process to 
meet the rapid changing business environments. We also provide a brief comparison of agile development 
methodologies with traditional systems development methodologies, and discuss current state of adopting 
agile methodologies.     

Keywords : agile, traditional methods, agile adoption, SCRUM, XP. 

GJCST-C Classification : D.2.9 

 

Comparative Study on Agile Software Development Methodologies  
 
 

Strictly as per the compliance and regulations of: 
 

 

 

 



 

Comparative Study on Agile Software 
Development Methodologies 

A B M Moniruzzaman α & Dr. Syed Akhter Hossain σ

Abstract - Today‘s business environment is very much 
dynamic, and organizations are constantly changing their 
software requirements to adjust with new environment. They 
also demand for fast delivery of software products as well as 
for accepting changing requirements. In this aspect, traditional 
plan-driven developments fail to meet up these requirements. 
Though traditional software development methodologies, such 
as life cycle-based structured and object oriented approaches, 
continue to dominate the systems development few decades 
and much research has done in traditional methodologies, 
Agile software development brings its own set of novel 
challenges that must be addressed to satisfy the customer 
through early and continuous delivery of the valuable software. 
It‘s a set of software development methods based on iterative 
and incremental development process, where requirements 
and development evolve through collaboration between self-
organizing, cross-functional teams that allows rapid delivery of 
high quality software to meet customer needs and also 
accommodate changes in the requirements. In this paper, we 
significantly indentify and describe the major factors, that Agile 
development approach improves software development 
process to meet the rapid changing business environments. 
We also provide a brief comparison of agile development 
methodologies with traditional systems development 
methodologies, and discuss current state of adopting agile 
methodologies. We speculate that from the need to satisfy the 
customer through early and continuous delivery of the valuable 
software, Agile software development is emerged as an 
alternative to traditional plan-based software development 
methods. The purpose of this paper, is to provide an in-depth 
understanding, the major benefits of agile development 
approach to software development industry, as well as provide 
a comparison study report of ASDM over TSDM.  
Keywords : agile, traditional methods, agile adoption, 
SCRUM, XP. 

I. Introduction 

lot of people have been asking the question "What 
is Agile Software Development?" and invariably 
they get a different definition depending on who 

they ask. Here's a definition that conforms to the values 
and principles of the Agile Manifesto[1]. An iterative and 
incremental (evolutionary) approach to software 
development which is performed in a highly 
collaborative manner by self-organizing teams within an 
effective governance framework with "just enough" 
ceremony that produces high quality solutions in a cost 
effective  and   timely manner which meets the changing  
 

 
 

needs of its stakeholders [6].Agile software 
development is actually a group of software 
development methods based on iterative and 
incremental development, where requirements and 
solutions evolve through collaboration between self-
organizing, cross-functional teams [4]. In 2001, the 
"agile manifesto” was written by the practitioners reveals 
which items are considered valuable by ASDMs [1]. As 
shown in Table 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1

 

: Agile Manifesto (Source: [1])

 
a)

 

Research Review 

 

Agile software development (ASD) is major 
paradigm, in field of software engineering which has 
been widely adopted by the industry, and much 
research, publications have conducted on agile 
development methodologies over the past decade. The 
traditional way to develop software methodologies follow 
the generic engineering paradigm of requirements, 
design, build, and maintain. These methodologies are 
also called waterfall–based taking from the classical 
software development paradigm. They are also known 
by many other names like plan–driven, (Boehm and 
Turner, 2004), [39]; documentation driven, heavyweight 
methodologies, and big design upfront, (Boehm, 2002), 
[16]. Boehm and Phillip [72] report that during their 
project development experience, requirements often 
changed by 25% or more. Due to constant changes in 
the technology and business environments, it is a 
challenge for TSDMs to create a complete set of 
requirements up front [26]. Williams and Cockburn, [18] 
also mentioned that one of problems of TSDMs is the 
inability to respond to change that often determines the 
success or failure of a software product.

 

A 

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

5

  
 

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

More Valuable Items

over

Less Valuable Items

Individuals and Interactions Processes and tools

Working software Comprehensive Documentation

Customer collaboration Contract negotiation

Responding to change Following a plan

The agile approach to software development is 
based on the understanding that software requirements 
are dynamic, where they are driven by market forces 

Authors α : mails : abm.mzkhan@gmail.com,
aktarhossain@daffodilvarsity.edu.bd

σ E-



 

(Fowler,

 

Title

 

2002; Cockburn & Highsmith, 2001); [16], 
[36]. Agile systems development methods emerged as 
a response to the inability of previous plan-driven 
approaches to handle rapidly changing environments 
(Highsmith 2002), [55]. Williams and Cockburn [18] 
state that agile development is "about feedback and 
change" , that agile methodologies are developed to 
"embrace, rather than reject, higher rates of change".

 

Agility is the ability to sense and response to 
business prospects in order to stay inventive and 
aggressive in an unstable and rapidly shifting business 
environment (Highsmith, 2002), [55]. The agile 
approach to development is about agility of the 
development process, development teams and their 
environment (Boehm & Turner, 2004), [39]. This 
approach incorporates shared ideals of various 
stakeholders, and a philosophy of regular providing the 
customers with product features in short time-frames 
(Southwell, 2002), [45]. This frequent and regular feature 
delivery is achieved by team based approach (Coram & 
Bohner, 2005), [47]. Agile teams consist of multi-skilled 
individuals (Fowler, 2002), [16]. The development teams 
also have on-site customers with substantial domain 
knowledge to help them better understand the 
requirements (Abrahamsson, Solo, Ronkainen, & 
Warsta, 2002), [37]. Multiple short development cycles 
also enable teams to accommodate request for change 
and provide the opportunity to discover emerging 
requirements (Highsmith, 2002), [55]. The agile 
approach promotes micro-project plans to help 
determine more accurate scheduling delivery 
commitments (Smits, 2006), [48]. 

 

M Lindvall, V Basili, B Boehm, P Costa, (2002), 
[17] summarize the working definition of agile 
methodologies as a group of software development 
processes that must be iterative (take several cycles to 

complete), incremental (not deliver the entire product at 
once), self-organizing (teams determine the best way to 
handle work), and emergent (processes, principles, and 
work structures are recognized during the project rather 
than predetermined). In the paper by (Abrahamsson, 
Warsta, Siponen & Ronkainen, 2003), in general, 
characterized agile software development by the 
following attributes: incremental, cooperative, 
straightforward, and adaptive [24]. Boehm, B., & Turner, 
R. (2005), generalize agile methods are lightweight 
processes that employ short iterative cycles, actively 
involve users

 

to establish, prioritize, and verify 
requirements, and rely on a team‘s tacit knowledge as 
opposed to documentation [30]. 

 II.

 

Agile Methods

 
For over a decade now, there has been an ever 

increasing variety of agile methods available includes a 
number of specific techniques and practices of software 
development. Agile methods are a subset of “iterative 
and evolutionary methods” [83, 84] and are

 

“based on 
iterative enhancement” [85] and “opportunistic 
development processes” [86]. Most of agile 
development methods promote development, 
teamwork, collaboration and process adaptability 
throughout the life-cycle of the project [4].

 
The major methods include eXtreme 

Programming (Beck, 1999), [82], Scrum (K. Schwaber & 
Beedle, 2002), [53], Dynamic Systems Development 
Method (Stapleton, 1997), Adaptive Software 
Development (Highsmith, 2000), Crystal (Cockburn, 
2002), and Feature-Driven Development (Palmer & 
Felsing, 2002). [58], [59], [60], [61]. Figure 1 shows an 
agile software development methodology process flow 
(Scrum).

 

 

Figure 1 : An example of agile software development methodology: Scrum (Source: [53]) 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

6

  
 

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C



 
The Agile Manifesto articulates the common 

principles and beliefs underlying these methods 
(Cockburn, 2002), [16]. Among the first and perhaps 
best known agile methods are Scrum and XP (Salo, & 
Abrahamsson, 2008), [49]. See Figure 2 shows the 
current rate of Agile methodologies used. Scrum is 
aimed at providing an agile approach for managing 
software projects while increasing the probability of 
successful development of software, whereas XP 
focuses more on the project level activities of 
implementing software. Both approaches, however, 
embody the central principles of agile software 
development [31]. 

Figure 2 : State of Agile Survey Results 2011 by Version 
One Inc. 

 
  

Source:
 

http://www.versionone.com [10]
 

Agile software development processes --
 
such 

as the Rational Unified Process (RUP), Extreme 
Programming (XP), Agile Unified Process (AUP), Scrum, 
Open Unified Process (OpenUP), and even Team 
Software Process (TSP) --

 
are all iterative and 

incremental (evolutionary) in nature [63]. Some these 
modern approaches, in particular XP and Scrum, are 
agile in nature. The agile methods are focused on 
different aspects of the software development life cycle. 
Some focus on the practices (extreme programming, 
pragmatic programming, agile modeling), while others 
focus on managing the software projects (the scrum 
approach) [12]. 

 

III.
 
Comparison Agile Software 

Development Methodologies
 

over  
Traditional SDMs

 

There are many different characteristics 
between ASDMs and TSDMs. Boehm [16], for example, 
reports nine agile and heavyweight discriminators. He 
believes the primary objective of ASDMs is on rapid 
value whereas the primary objective of TSDMs is on 
high assurance. 

 

Study performed S. Nerur, R. Mahapatra, G. 
Mangalaraj [22] state a comparison of traditional and 
agile development, they report seven issues to 

differentiate traditional and agile development. Their 
fundamental assumption of traditional development: 
“system are fully specifiable, predictable  and are built 
through meticulous and extensive planning”, whereas 
agile development: “high-quality adaptive software is 
developed by small teams using the principles of 
continuous design improvement and testing based on 
rapid feedback and change”.  

T. Dyba, & T. Dingsoyr, [74] summarize the 
differences between Agile development and traditional 
development basis on the of an unpredictable world, as 
well as emphasizing the value competent people and 
their relationships bring to software development. Agile 
methods address the challenge of an unpredictable 
world, emphasizing the value competent people and 
their relationships bring to software development [74]. 

Different researchers compare traditional and 
agile approaches, in their different perspectives, are 
summarized in Table 2 (All sources from additional 
information).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

7

  
 

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C



 

Table 2 : Traditional and agile perspectives on software development (Sources: from literature review) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

8

  
 

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C

Issues Traditional 
Approach 

Agile Approach

Development life cycle 

(Charvat, 2003); (Nerur, Mahapatra, &

Mangalaraj,2005),[34],[22]  

Linear; Life-cycle model 

(waterfall, spiral or some 

variation) 

Iterative; The evolutionary-

delivery model 

Style of development 

(Leffingwell, 2007), [50]
Anticipatory 

Adaptive 

Requirements (Boehm, 2002);

(Boehm and Turner, 2004), [16], [39]

Knowable early, largely 

stable; Clearly defined 

and documented

Emergent, rapid change, 

unknown  – Discovered 

during the project

Architecture 

(Boehm, 2002); (Wysocki, 2009, 2011) 

, [16], [56]

Heavyweight architecture 

for current and future 

requirements 

YAGNI precept (―You 

aren‘t going to need it‖) 

Management 

(Boehm, & Turner, 2005), (Vinekar, 

Slinkman,& Nerur, 2006),[30], [51]

Process-centric; 

Command and control 

People-centric; Leadership 

and collaboration 

Documentation 

(Boehm and Turner, 2005) ,[30]

Heavy / detailed 

Explicit knowledge 

Light (replaced by face to 

face communication) 

Tacit knowledge 

Goal 

(Dybå & Dingsøyr, 2009), [74]

Predictability and 

optimization 

Exploration or adaptation 

Change 

(Boehm and Turner, 2003), [19] Tend to be change averse 
Embrace change 

Team members 

(Boehm, 2002) , (Sherehiy, Karwowski, 

& Layer, 2007), [16], [41]

Distributed teams of 

specialists; Plan-oriented, 

adequate skills access to 

external knowledge 

Agile, knowledgeable, 

collocated and collaborative; 

Co-location of generalist 

senior technical staff;  

Team organization 

(Leffingwell, 2007), [52]
Pre-structured teams 

Self-organizing teams 

Client Involvement 

(Highsmith & Cockburn, 2001), [21]

Low involvement; 

Passive 

Client onsite and considered 

as a team member; 

Active/proactive 

Organization culture 

(Highsmith, 2002) , (Nerur, Mahapatra, 

Mangalaraj, 2005), [55], [22]

Command and Control 

Culture 

Leadership and 

Collaboration Culture 

Software development process (Salo, 

& Abrahamsson, 2007), [42]

Universal approach and  

solution to provide 

predictability and high 

assurance

Flexible approach adapted 

with collective 

understanding of contextual 

needs to provide faster 

development

Measure of success 

(Highsmith, 2010), [1]
Conformance to plan 

Business value delivered 

a) Major agile benefits in comparison to the traditional 
approach 

In this section, we presenting list and explain 
some of agile benefits in comparison to the traditional 
approach which significantly improves software 
development in many ways. We try to provide an in-
depth understanding (in some cases with figures), of 
these merit issues: 

i. Evolutionary Approach 
Agile software development is a highly 

collaborative and evolutionary approach [101]. Agile 
methods become more popular in the software 
development industry. In their different research papers, 
(Boehm, & Turner, 2005; Larman & Basili, 2003; Greer, 
& Ruhe, 2004; Dybå, & Dingsøyr, 2008; Paetsch, 
Eberlein, 2003; Abrahamsson, Warsta, 2003; Dagnino, 

2002), they believe, Agile methods are iterative, 
evolutionary, and incremental delivery model of 
software development [30], [79], [29], [20], [80], [24],
[81]. 

Entire application is distributed in incremental 
units called as iteration. Development time of each 
iteration is small (couple of weeks), fixed and strictly 
adhered to. Each iteration is a mini increment of the 
functionality and is build on top of previous iteration. 
Agile software development of short iterative cycles 
offers an opportunity for rapid, visible and motivating 
software process improvement [75]. Traditional 
approaches to the data-oriented aspects of software 
development; however, tend to be serial, not 
evolutionary and certainly not agile, in nature.



 
 

 

 
  

 

   
 

 

 

 

Figure 3

 

: Iterative and incremental agile development 
process (source: agile-development-tools.com)

 

ii.

 

Lightweight Methods

 

Boehm, B., & Turner, R. (2005), generalize agile 
methods are lightweight processes that employ short 
iterative cycles, actively involve users to establish, 
prioritize, and verify

 

requirements, and rely on a team‘s 
tacit knowledge as opposed to documentation [30]. G 
Perera, & MSD Fernando (2007), also describe Agile 
practice is a customer oriented, light-weight software 
development paradigm, best suited for small size 
development teams in projects under vague and 
changing requirements [65]. A number of agile software 
development methods such as extreme programming 
(XP), feature-driven development, crystal clear method, 
scrum, dynamic systems development, and adaptive 
software development, fall into this category [22]. 
Traditional Software

 

Development Methods (TSDMs) 
including waterfall and spiral models are often called 
heavyweight development methods [26]. These 
methods involves extensive planning, predefine process 
phases, heavy documentation and long term design 
process. Lightweight methodologies put extreme 
emphasis on delivering working code or product while 
downplayning the importance of formal process and 
comprehensive documentation [23]. 

 
  

lifecycle based software development delivers the 
software only after entire completion of development 
process and before that clients have no clear idea and 
view of software to be developed.

 

 

Figure 4

 

: Iterative process and incremental delivery 
software products (source: [4])

 

iv.

 

Highly tolerant of change requirements

 

The main difference between heavyweight and 
agile methodologies is the acceptance of change. It is 
the ability to respond to change that often determines 
the success or failure of a software project [18]. 
Heavyweight methods freeze product functionality and 
disallow change. Agile systems development methods 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

9

  
 

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

iii. Rapid delivery of software products 
Agile development methodologies emphasize 

rapid delivery of software products to the clients. 
According to (Boehm & Turner, 2005), Fast cycles, 
frequent delivery: Scheduling many releases with short 
time spans between them forces implementation of only 
the highest priority functions, delivers value to the 
customer quickly, and speeds requirements emergence 
[30]. ASD methods are iterative and incremental 
development [4], and each successful completion of 
development iteration, it delivers software product 
increment to client, thus Agile software development is 
satisfying the customer through early and continuous 
delivery of the valuable software [66]. Traditional, 

emerged as a response to the inability of previous plan-
driven approaches to handle rapidly changing 
environments (Highsmith, 2002). As second principle of 
Agile Manifesto [1] - ―welcome changing requirements, 
even late in development‖, all agile method(s) is well 
organized, accommodate to change requirements. 
According to B. Boehm, (2002), organizations ―are 
complex adaptive systems in which requirements are 
emergent rather than pre-specifiable‖ and agile 
approaches ―are most applicable to turbulent, high-
change environments‖ [16]. Agile software development 
promotes adaptive planning, evolutionary development 
and delivery, and encourages rapid and flexible 
response to change [4]. 

Figure 5 : Agile vs. traditional requirements change 
management (Source: www.versionone.com)



 

 

 

 
 

 

 

 

  
 

Agile development inherently welcomes 
requirement changes as well as inclusion or exclusion of 
features throughout the development lifecycle. It is 
possible to accept requirement changes while in 
development phases because of iterative developments 
involve with agile development approach. As a result of 
this iterative planning and feedback loop, teams are 
able to continuously align the delivered software with 
desired business needs, easily adapting to changing 
requirements throughout the process.

 

 

Figure 6

 

:

 

Agile vs. traditional requirements change 
management (source: [57])

 

In contrast, agile development framework allows 
both customers and developers to change the 
requirements throughout the project, but only the 
customers have the authority to approve, disapprove 
and prioritize the ever‐changing requirements (Koch, 
2005), [57]. In traditional SDMs it increases complexity 
for accepting changing requirements while developing, 
and also increases development and delivery time, as 
well as cost to deliver software product.

 

 

Figure 7

 

:

 

Cost of

 

change for agile and conventional 
development process

 

v.

 

Accept prioritizing requirements 

 

In agile software development, requirements 
always provided by client and these requirement 
features are prioritized by client itself. Agile methods 
break development tasks into small increments with 
minimal planning and do not directly involve long-term 
planning. Iterations are short time phases that typically 
last from one to four weeks. Thus, top prioritized 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

10

  
 

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C

features can be delivered each of development iteration. 
Agile requirements prioritization techniques to support 
and deal with frequent changes in priority lists which 
have been identified as success issue to accommodate 
over changes [73]. In traditional development, software 
product with all features will be delivered at a time only 
after completion of software project.

Figure 8 : Agile approach prioritized requirements 
(Source: www.agilemodeling.com [6])

vi. Active customer involvement & feedback 
Customers are actively involved, and get higher 

priority in agile approaches rather than any traditional 
approaches. There is face to face communication and 
continuous feedback from customer (product owner) 
always happen in agile approach.

Figure 9 : Active customer involvement in agile 
approach

Customers appreciate active participation in 
projects as it allows them to control the project and 
development process is more visible to them, as well as, 
they are kept up to date [73]. This customer involvement 



 

 

 

 
 

  

 

 

   
 

mitigates one of the most consistent problems on 
software projects:

 

“What they will accept at the end of 
the project differs from what they told us at the 
beginning”. This interaction helps the customer to form 
a better vision of the emerging product. Along with the 
ability to visualize the functionality that is coming based 
on having seen what was built so far, the customers 
develop a better understanding of their own needs and 
the vocabulary to express it to the developers [9]. Agile 
projects require a meaningful client involvement in every 
part of the project to provide constant feedback in an 
open and honest way (Wysocki, 2009), [57]. This 
feedback is a key element of agile methodologies, 
which is why the customer must be committed, 
knowledgeable, collaborative, representative, and 
empowered to avoid risk of failure (Boehm, 2002), [16]. 
People are the primary drivers of agile projects and agile 
teams work best when people are physically close and 
document preparation and dissemination are largely 
replaced by face-to-face communication and 
collaboration (Cockburn & Highsmith, 2001), [21]. 

 

vii.

 

Reduce cost and time

 

The study reports conducted by B. Bahli and 
ESA Zeid [77] that the development team found using 
the waterfall model to be an “unpleasant experience”, 
while XP (an agile method) was found to be “beneficial 
and a good move from management”. The XP project 
was delivered a bit less late (50% time-overrun, versus 
60% for the traditional), and at a significantly reduced 
cost overrun (25%, compared to

 

50% cost overrun for 
the traditional project). Agile development involves less 
cost of development as rework, management, 
documentation and other non-development work related 
cost is reduced.

 

 

Figure 10

 

: Cost for agile development process and 
conventional development

(Source: http://www.thoughtworks.com)

 

viii.

 

Short design phase involves early feedback from 
clients 

 

In traditional, lifecycle based developments 
usually follow Big Design Up Front and Big 
Requirements Up Front development techniques. With 
these approaches, comprehensive requirements 
document and design document are developed early in 
the project lifecycle which is used to guide the design 
and implementation efforts. It is typically months, if not 
years, before stakeholders are shown working software 
which implements their requirements and design. In 
terms of the traditional project phases (requirements, 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

11

  
 

(
DDDD DDDD

)
Y
e
a
r

01
3

2
Canalysis, architecture, design) these take sixty 

percentage development time of project and still then 
there is no working software is ready for the client 
feedback.

Figure 11 : Design phase composition between waterfall and agile development



 

 

 

   

According to (Boehm & Turner, 2005), agile 
approach design is simple which involves Designing for 
the battle, not the war. The motto is YAGNI (You Aren‘t 
Going to Need It). The antimotto is BDUF (Big Design 
Up Front). Strip designs

 

down to cover just what you‘re 
developing. Since change is inevitable, planning for 
future functions is a waste of effort [30]. Customer gets 
to know regular and frequent status of the application 
and delivery is defined by fixed timescale. So, customer 
is

 

assured of receiving some functionality by a fixed time 
period. Due to the short development life cycle through 
an iterative and incremental process, the agile methods 
have been used widely in business sectors where 
requirements are relatively unstable [26]. 

 

ix.

 

Self organized team 

 

Agile teams are self organizing and roles and 
relationships evolve as necessary to meet objectives 
(Leffingwell, 2007). Team composition in an agile project 
is usually cross-functional and self-organizing, without 
consideration for any existing corporate hierarchy or the 
corporate roles of team members [4]. Agile product 
development practices introduce changes in team 
culture in an attempt to bringing reciprocal effects of 
roalty and commitment to the team and projects 
(Sherehiy, Karwowski, & Layer, 2007). Team members 
normally take responsibility for tasks that deliver the 
functionality an iteration requires. They decide 
individually how to meet an iteration's requirements. 
Teams develop applications collaboratively and in 
cooperative environment. Agile alliance [5], claims that 
for a given problem size,

 

“fewer people are needed if a 
lighter methodology is used, and more people are 
needed if a heavier methodology is used,” and asserts 
that, “There is a limit to the size of problem that can be 
solved with a given number of people”

 

[44].

 

 

Figure 12

 

: Problem size; number of people needed 
(Source: Cockburn, 2007)

 

x.

 

Documentation 

 

Agile development improvement in productivity, 
reduction development cost and reduction in time-to-
market (Reifer, 2002), [40]. Agile approaches, emphasis 

more is on developing the application only, and not on 
documentation. According to Wysocki, non-value-added 
work involves the consumption of resources (usually 
people and time) on activities that do not add business 
value to the final product or process [56]. Simple and 
minimal documents are used to exchange the views. 
Reducing intermediate artifacts that do not add value to 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

12

  
 

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C

the final deliverable means more resources can be 
devoted to the development of the product itself and it 
can be completed sooner. 

Figure 13 : Agile vs. Traditional development 
documentation through the SDLC

(Source: www.agilemodeling.com [6])

xi. Design Simplicity 
According to (Boehm & Turner, 2005), agile 

approach design is simple which involves Designing for 
the battle, not the war. The motto is YAGNI (You Aren‘t 
Going to Need It). The anti-motto is BDUF (Big Design 
Up Front). Strip designs down to cover just what you‘re 
developing. Since change is inevitable, planning for 
future functions is a waste of effort [30]. In their research 
paper [46], (K Molokken & Ostvold, 2005), define agile 
method(s) as a flexible software development model(s), 
basis on evolutionary and incremental models; and also 
claim that, among the benefits of using these models 
are reduced software project overruns. 

xii. Improves Software Quality
Boehm, B., & Turner, R. (2004, May), Agile 

development methodologies (such as XP, Scrum, and 
ASD) promise higher customer satisfaction, lower defect 
rates, faster development times and a solution to rapidly 
changing requirements. Plan-driven approaches such 
as Cleanroom, the Personal Software Process, or 
methods based on the Capability Maturity Model 
promise predictability, stability, and high assurance [38].

The regular and continuous interaction between 
the customer and the developers have as their primary 
objective assuring that the product as built does what 
the customer needs for it to do and assures the usability 
of the product as well. The strong technical focus results 
in much better testing on an Agile project than in most 
other methods [9]. According to Charvat, (2003), agile 
practices: iterative and adaptive life cycles have the 



 

 

 

  

 

  

 

 
 

  

 

advantage of a continual testing throughout the project, 
which has a positive impact on quality [43]. 

 

 

Figure 14

 

:

 

Comparison of feedback cycles with 
traditional approaches

(Source: http://www.ambysoft.com) 

 

Agile developers take responsibility for the 
quality of the code they write. In addition to producing 
cleaner code, it means that if there are testing 
specialists on the project, they will start their testing with 
better software, which always results in more effective 
testing and a better resulting product. In addition to, 
developers value the technical focus on testing and 
refactoring of agile methods increasing their motivation. 
There is also a perception of increased quality in 
software products and higher productivity when using 
some agile teams use practices like coding standards, 
peer reviews, and pair programming to assure that the 
code they produce is technically solid [73]. 

 

xiii.

 

Increase business value, visibility, adaptability 
and reduce cost

 

Agile software development accelerates the 
delivery of initial business value, and through a process 
of continuous planning and feedback, ensures that 
value continues to be maximized throughout the 
development process. ASD provides customer 
satisfaction through collaboration and frequent delivery 
of implemented features. By delivering working, tested, 
deployable software on an incremental basis, agile

 

development delivers increased value, visibility and 
adaptability much earlier in the life cycle, significantly 
reducing project risk.

 

 

Figure 15

 

:

 

Agile development value proposition 
(Source: [10])

 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

13

  
 

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

xiv. Success Possibility Increased 
According to various studies, almost 70% of all 

software projects fail. Materially fail to meet their 
objectives, in terms of cost, time, features, or all of the 
above. Traditional methods of managing software 
delivery have failed to deliver the predictability they 
promise. Agile practices benefit in terms of increased 
project success rate and user acceptance, better risk 
management, delivery of quality content on time and 
most important adjust to changing requirements [66]. 

Figure 17 : Agile development degree of success

In a study by Boehm and Papaccio [72] 
discovered that a typical project experiences a 25% 
change in requirements, while yet another [Johnson] 
showed that 45% of features were never used. Agile 
approach aims to reduce waste and over-production by 
determining which parts are actually needed by the 
customer at each stage. In Agile approaches, delivering 
software on an incremental basis, customers give 
continuous feedback and agile team will always deliver 
products on time and on budget. As traditional project 
management isn‘t succeeding, more and more 
companies are turning to Agile development. According 
to the Standish Group's, [11] famous CHAOS Report of 
2000, 25% of all projects fail outright through eventual 
cancellation, with no useful software deployed. Sadly, 
this represents a big improvement over CHAOS reports 
from past years. Recently, they conduct a survey for 
Agile implementation success rate, see figure 19.



 
  

 

 

  

 

 
 
 

 

Figure 19

 

:

 

Agile implementation success rate by The 
Standish group

(Source: http://bolg.standishgroup.com/) [11]

 

Survey result shows: most of the clients are 
asking for Agile implementation due to unprecedented 
benefits of Agile, over the other methodology, such as 
time to market, quality, defect rate, customer 
satisfaction, continuous end user feedback. This 
requires vendors to quickly turnaround and respond, to 
market demands, which eventually forces the 
organization to reevaluate the present onshore-offshore 
model.

 

   

 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

14

  
 

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C

Figure 21 : Agile adoption rates
(Source: http://www.ambysoft.com/surveys) 

Salo, O., & Abrahamsson, P. (2008), argue that 
scientific publications and anecdotal evidence 
demonstrate that organizations worldwide are adopting 
agile software development methods at increasing 
speed [31]. In the study report, conducted by Forrester 
Research in 2011, agile development approaches 
adoption increases 35.4% to 38.6% whether as, 
traditional as well as, iterative approaches decreases. 
See figure 0.

Figure 22 : Forrester Research Agile Adoption rate rises 
(Source: http://www.forrester.com [13])

Another survey conducted by Scott Ambler has 
consistently (2008, 2010 & 2011) shown that Agile and 
Iterative Projects have been more successful. Apart from 
the fact that Agile has been consistently been more 
successful compared to traditional approach.

IV. Agile Adoption

Agile methods are highly being adopted 
because of expectations that these methods can bring 
development success (Esfahani, Yu, & Annosi, 2010). 
One of the main reasons for success with agile methods 
is that they are highly adaptive (Boehm & Turner, 2003), 
[38]. Figure 1 reveals the current levels of agile 
adoption. In this case, 71% of respondents indicated 
that they work in organizations that have succeeded at 
agile and an additional 15% work in organizations that 
have tried agile but have not yet succeed at it.

According to (West & Grant, 2010), "in the 
past few years, Agile processes have not only gained 
increasing adoption levels; they have also rapidly joined 
the mainstream of development approaches" [28]. Mary 
large companies including HP, IBM, Oracle, and 
Microsoft use Agile methodologies [76] — and more 
and more smaller organisations turn Agile each year. In 
their study (West & Grant, 2010), conducted by 
Forrester Research in 2009, agile software development 
processes were in use in 35% of organizations, and 
another 16% of organizations used an iterative 
development approach, while only 13% of organization 
use a Waterfall approach. However, nearly 31% did not 
use a formal development methodology [28].

Figure 20 : Agile projects success rate by Scott Ambler
(Source: www.ambysoft.com/surveys/)



 

 

  

 

 

 
 

 

 

 
 

 

 

 

 

Figure 23

 

: Agile adoption rates by Forrester Research in 2009 (Source: [28])

 

The main reasons behind for adopting Agile 
approaches rather than plan-driven approaches relate 
to: rapid changes; need for rapid results; emergent 
requirements (Boehm & Turner, 2003), [38]. According 
to Charvat, (2003), Leffingwell, (2007), & Perrin, (2008), 
Agile methodologies have numerous advantages 
including that they: adapt very well to change and 
dynamism; are people-oriented and value-driven, rather 
than process-oriented and plan-driven; mitigate risks by 
demonstrating values and functionalities up front in the 

development process; provide a faster time to market; 
improve productivity (by reducing the amount of 
documentation) and will fail early/quickly and painlessly, 
if a project is not doable [34], [33], [32]. 

 

A state of Agile survey 2011, conducted by 
versionone Inc. result shows: the top three reasons for 
adopting Agile to -

 

accelerate time to market, increase 
productivity, and to more easily manage changing

 

priorities.

 

 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

15

  
 

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Figure 24 : Reasons for adopting Agile from “A state of Agile survey 2011” (Source: www.versionone.com)

Prior to adoption, respondents said productivity 
and time to market ranked as their top reasons to adopt 
agile. But experienced agile users said actual benefits 
were primarily project visibility (77%) and the ability to 
manage changing priorities (84%). 5. Conclusion Agile 
software development methodologies are evolutionary 
and incremental models have become increasingly 

popular in software development industry. Through, in 
many organizations, agile system development methods 
at adoption stage, agile methods might start to become 
well-established processes of these small, mid-level, 
even large organizations. There is increasing need to 
have a deeper understanding of agile methods in use in 
software development industry; as well as, have a better 



 

 

   

understanding –

 

the benefits of agile approach as for 
accepting agile methods into their development style 
and for cope-up with their dynamic business needs. In 
this paper, we present main issues of agile numerous 
benefits in comparison to the traditional approach which 
significantly improves software development process in 
many ways. We also provide

 

with this paper, the current 
adoption state of Agile software development with 
different current survey results with graphs. The purpose 
of this paper is to provide an in-depth understanding-

 

the benefits of agile development approach into the 
software development industry, as well as provide a 
comparison study report of ASDM over TSDM.

 

References

 

Références Referencias

 

1.

 

http://agilemanifesto.org/

 

2.

 

http://agilemanifesto.org/principles.html

 

3.

 

http://www.agile-process.org/

 

4.

 

http://en.wikipedia.org/wiki/Agile_software_develop
ment

 

5.

 

http://www.agilealliance.org/the-alliance/what-is-
agile/

 

 
 

  
  
  
 

 
  
 

 
  
  
 

  

 
 

17.

 

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, 
K., Shull, F., ... & Zelkowitz, M. (2002). Empirical 
findings in agile methods. Extreme Programming 
and Agile Methods—XP/Agile Universe 2002, 81-92.

 
 

 
 

 

 
 

 
 

 
 

 

23.

 

Meso, P., & Jain, R. (2006). Agile software 
development: adaptive systems principles and best 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

16

  
 

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C

6. http://www.agilemodeling.com/essays/agileSoftware
Development.htm

7. http://agiledata.org/
8. http://www.indicthreads.com
9. www.globalknowledge.com
10. http://www.versionone.com/Agile101/Agile-Soft 

ware-Development-Benefits/
11. http://blog.standishgroup.com/
12. http://www.ambysoft.com/essays/agileLifecycle.htm

l#FigureDetailedLifecycle
13. http://www.forrester.com
14. www.ambysoft.com/surveys/
15. www.scrumalliance.com
16. Boehm, B. (2002). Get ready for agile methods, with 

care. Computer, 35(1), 64-69. 

practices. Information Systems Management, 23(3), 
19-30.

24. Abrahamsson, P., Warsta, J., Siponen, M. T., & 
Ronkainen, J. (2003, May). New directions on agile 
methods: a comparative analysis. In Software 
Engineering, 2003. Proceedings. 25th International 
Conference on (pp. 244-254). Ieee. 

25. Highsmith, J., & Cockburn, A. (2001). Agile software 
development: The business of innovation. 
Computer, 34(9), 120-127. 

26. Cho, J. (2008). Issues and Challenges of Agile 
Software Development with Scrum. Issues in 
Information Systems, 9(2), 188-195. 

27. Livermore, J. A. (2008). Factors that significantly 
impact the implementation of an agile software 
development methodology. Journal of Software, 
3(4), 31-36. 

28. West, D., Grant, T., Gerush, M., & D‘Silva, D. (2010). 
Agile development: Mainstream adoption has 
changed agility. Forrester Research. 

29. Greer, D., & Ruhe, G. (2004). Software release 
planning: an evolutionary and iterative approach. 
Information and Software Technology, 46(4), 243-
253. 

30. Boehm, B., & Turner, R. (2005). Management 
challenges to implementing agile processes in 
traditional development organizations. Software, 
IEEE, 22(5), 30-39. 

31. Salo, O., & Abrahamsson, P. (2008). Agile methods 
in European embedded software development 
organisations: a survey on the actual use and 
usefulness of Extreme Programming and Scrum. 
Software, IET, 2(1), 58-64. 

32. Lemétayer, J. (2010). identifying the critical factors 
in software development methodology FIT. 

33. Leffingwell, D. (2007). Agile software requirements:
Lean requirements practices for teams, programs, 
and the enterprise. Addison-Wesley Professional.

18. L. Williams and A. Cockburn, “Agile Software 
Development: It‘s about Feedback and Change,”
IEEE Computer, June 2003, pp. 39-43. 

19. Boehm, B., & Turner, R. (2003). Using risk to 
balance agile and plan-driven methods. Computer, 
36(6), 57-66. 

20. Dybå, T., & Dingsøyr, T. (2008). Empirical studies of 
agile software development: A systematic review. 
Information and software technology, 50(9), 833-
859. 

21. Cockburn, A., & Highsmith, J. (2001). Agile software 
development, the people factor. Computer, 34(11), 
131-133. 

22. Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). 
Challenges of migrating to agile methodologies. 
Communications of the ACM, 48(5), 72-78. 

34. Charvat, J. (2003). Project management 
methodologies. Selecting, implementig, and 
supporting.

35. Salo, O., & Abrahamsson, P. (2008). Agile methods 
in European embedded software development 
organisations: a survey on the actual use and 
usefulness of Extreme Programming and Scrum. 
Software, IET, 2(1), 58-64. 

36. Highsmith, J., & Cockburn, A. (2001). Agile software 
development: The business of innovation. 
Computer, 34(9), 120-127. 

37. Abrahamsson, P., Solo, O., Ronkainen, J., & Warsta, 
J. Agile Software Development Methods. 2002. VTT 
technical Research Centre of Finland. 

38. Boehm, B., & Turner, R. (2003). Using risk to 
balance agile and plan-driven methods. Computer, 
36(6), 57-66. 

http://agilemanifesto.org/�
http://agilemanifesto.org/principles.html�
http://www.agile-process.org/�
http://en.wikipedia.org/wiki/Agile_software_development�
http://en.wikipedia.org/wiki/Agile_software_development�
http://www.agilealliance.org/the-alliance/what-is-agile/�
http://www.agilealliance.org/the-alliance/what-is-agile/�
http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm�
http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm�
http://agiledata.org/�
http://www.indicthreads.com/�
http://www.globalknowledge.com/�
http://www.versionone.com/Agile101/Agile-Soft%20ware-Development-Benefits/�
http://www.versionone.com/Agile101/Agile-Soft%20ware-Development-Benefits/�
http://blog.standishgroup.com/�
http://www.ambysoft.com/essays/agileLifecycle.html#FigureDetailedLifecycle�
http://www.ambysoft.com/essays/agileLifecycle.html#FigureDetailedLifecycle�
http://www.forrester.com/�
http://www.ambysoft.com/surveys/�
http://www.scrumalliance.com/�


 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

 
 

 
 

  
 

 
 

 

39.

 

Boehm, B., & Turner, R. (2004, May). Balancing 
agility and discipline: Evaluating and integrating 
agile and plan-driven methods. In Software 
Engineering, 2004. ICSE 2004. Proceedings. 26th 
International Conference on

 

(pp. 718-719). IEEE.

 

40.

 

Reifer, D. J. (2002). How good are agile methods?. 
Software, IEEE, 19(4), 16-18. 

 

41.

 

Sherehiy, B., Karwowski, W., & Layer, J. K. (2007). A 
review of enterprise agility: Concepts, frameworks, 
and attributes. International Journal of Industrial 
Ergonomics, 37(5), 445-460.

 

42.

 

Salo, O., & Abrahamsson, P. (2007). An iterative 
improvement process for agile software 
development. Software Process: Improvement and 
Practice, 12(1), 81-100.

 

43.

 

Charvat, J. (2003). Project management 
methodologies. Selecting, implementig, and 
supporting. 

 

44.

 

A. Cockburn, “The Methodology Space‖, http://

 

alistair.cockburn.us/crystal/articles/ms/methodology
space.htm Accessed on 2/2/2005.

  

45.

 

Southwell, K. (2002). Agile process improvement. 
TickIT International Journal,

 

3-14. 

 

46.

 

Molokken-Ostvold, K., & Jorgensen, M. (2005). A 
comparison of software project overruns-flexible 
versus sequential development models. Software 
Engineering, IEEE Transactions on, 31(9), 754-766.

 

47.

 

Coram, M., & Bohner, S. (2005, April). The impact of 
agile methods on software project management. In 
Engineering of Computer-Based Systems, 2005. 
ECBS'05. 12th IEEE International Conference and 
Workshops on the (pp. 363-370). IEEE.

 

48.

 

Smits, H. (2006). Levels of Agile Planning: From 
Enterprise Product Vision to Team Stand-up. Rally 
Software Development Corporation Whitepaper.

 

49.

 

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, 
P., & Still, J. (2008). The impact of agile practices on 
communication in software development. Empirical 
Software Engineering, 13(3), 303-337.

 
 

 
 

  
 

 
 

  
 

 
 

 

56.

 

Wysocki, R. K. (2011). Effective project 
management: traditional, agile, extreme. Wiley.

 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

17

  
 

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

57. Koch, A. S. (2005). Agile software development: 
evaluating the methods for your organization. Artech 
house. 

58. Stapleton, J. (1997). DSDM, dynamic systems 
development method: the method in practice. 
Addison-Wesley Professional.

59. Highsmith, J. A. (2000). Adaptive software 
development. Dorset House. 

60. Cockburn, A. (2005). Crystal clear: a human-
powered methodology for small teams. Addison-
Wesley Professional. 

61. A Practical Guide to Feature Driven Development. 
2002 S Palmer, M Felsing - Prentice Hall

62. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, 
A., Cunningham, W., Fowler, M., ... & Thomas, D. 
(2001). Manifesto for agile software development.
The Agile Alliance, 2002-04. 

63. Turk, D., Robert, F., & Rumpe, B. (2005). 
Assumptions underlying agile software-development 
processes. Journal of Database Management 
(JDM), 16(4), 62-87. 

64. Beck, K., & Boehm, B. (2003). Agility through 
discipline: A debate. Computer, 36(6), 44-46. 

65. Perera, G. I. U. S., & Fernando, M. S. D. (2007, 
August). Enhanced agile software development—
hybrid paradigm with LEAN practice. In Industrial 
and Information Systems, 2007. ICIIS 2007.
International Conference on (pp. 239-244). IEEE.

66. Garg, A. (2009). Agile Software Development. 
67. Fowler, M., & Highsmith, J. (2001). Agile 

methodologists agree on something. Software 
Development, 9, 28-32. 

68. Highsmith, J., Traditional, A. V., Love, M., & War, N. 
(2001). The Great Methodologies Debate: Part 1. 
The Journal, 14(12). 

69. Highsmith, J., Traditional, A. V., Love, M., & War, N. 
(2001). The Great Methodologies Debate: Part 2. 
The Journal, 14(12).50. Leffingwell, D. (2007). Scaling software agility: best 

practices for large enterprises. Addison-Wesley 
Professional. 

51. Vinekar, V., Slinkman, C. W., & Nerur, S. (2006). Can 
agile and traditional systems development 
approaches coexist? An ambidextrous view. 
Information systems management, 23(3), 31-42.

52. Leffingwell, D. (2007). Scaling software agility: best 
practices for large enterprises. Addison-Wesley 
Professional. 

53. Schwaber, K., & Beedle, M. (2002). Agile software 
development with Scrum(Vol. 18). PTR Upper 
Saddle River^ eNJ NJ: Prentice Hall. 

54. Larman, C. (2004). Agile and iterative development: 
a manager's guide. Addison-Wesley Professional.

55. Highsmith, J. A. (2002). Agile software development 
ecosystems. Addison-Wesley Professional. 

70. L. Williams, A. Cockburn, Agile software 
development: it‘s about feedback and change, IEEE 
Computer 36 (6) (2003) 39–43.

71. Boehm, B., Port, D., & Brown, A. W. (2002). 
Balancing plan-driven and agile methods in 
software engineering project courses. Computer 
Science Education, 12(3), 187-195.

72. Boehm, B. W., & Papaccio, P. N. (1988). 
Understanding and controlling software costs. 
Software Engineering, IEEE Transactions on, 14(10), 
1462-1477.

73. Petersen, K., & Wohlin, C. (2009). A comparison of 
issues and advantages in agile and incremental 
development between state of the art and an 
industrial case. Journal of Systems and Software, 
82(9), 1479-1490. 



 
 

 
  

 
 

 
 

 
 

  
 

 
 

 

  
 

  
 

 
 

  
 

 
 

 

 
 

 
 

 
 

  
 

 
 

 

74.

 

Dyba, T., & Dingsoyr, T. (2009). What do we know 
about agile software development? Software, IEEE, 
26(5), 6-9. 

 

75.

 

Scanlon-Thomas, E. (2011). Breaking the Addiction 
to Process: An Introduction to Agile Project 
Management. Itgp. 

 

76.

 

Bahli, B., & Zeid, E. A. (2005, December). The role 
of knowledge creation in adopting extreme 
programming model: an empirical study. In 
Information and Communications Technology, 
2005. Enabling Technologies for the New 
Knowledge Society: ITI 3rd International Conference 
on (pp. 75-87). IEEE. 

 

77.

 

Glass, R., "Agile Versus Traditional: Make Love, Not 
War," Cutter IT Journal, pp. 12-18, Dec. 2001. 

 

78.

 

Larman, C., & Basili, V. R. (2003). Iterative and 
incremental developments. a brief history. 
Computer, 36(6), 47-56. 

 

79.

 

Paetsch, F., Eberlein, A., & Maurer, F. (2003, June). 
Requirements engineering and agile software 
development. In Enabling Technologies: 
Infrastructure for Collaborative Enterprises, 2003. 
WET ICE 2003. Proceedings. Twelfth IEEE 
International Workshops on (pp. 308-313). IEEE.

 

80.

 

Dagnino, A. (2002, December). An evolutionary 
lifecycle model with Agile practices for software 
development at ABB. In Engineering of Complex 
Computer Systems, 2002. Proceedings. Eighth IEEE 
International Conference on (pp. 215-223). IEEE.

 

81.

 

Beck, K. (1999). Embracing change with extreme 
programming. Computer,

 

32(10), 70-77. 

 

82.

 

C. Larman, Agile and Iterative Development: A 
Manager's Guide. Boston: Addison Wesley, 2004.

 

83.

 

C. Larman and V. Basili, “A History of Iterative and 
Incremental Development,”

 

IEEE Computer, vol. 36, 
no. 6, pp. 47-56, June 2003.

  

84.

 

V. R. Basili and A. J. Turner, “Iterative Enhancement: 
A Practical Technique for Software Development,”

 

IEEE Transactions on Software Engineering, vol. 1, 
no. 4, pp. 266 -

 

270, 1975. 

 

85.

 

B. Curtis, “Three Problems Overcome with 
Behavioral Models of the Software Development 
Process (Panel),”

 

International Conference on 
Software Engineering, Pittsburgh, PA, 1989, pp. 
398-399.

 

Comparative Study on Agile Software Development Methodologies

© 2013   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
II 

V
er
sio

n 
I 

  
  
 

  

18

  
 

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C


	Comparative Study on Agile Software Development Methodologies
	Author's
	Keywords
	I. Introduction
	a) Research Review

	II. Agile Met hods
	III. Comparison Agile Software Development Methodologies over Traditional SDMs
	a) Major agile benefits in comparison to the traditional approach
	i. Evolutionary Approach
	ii. Lightweight Methods
	iii. Rapid delivery of software products
	iv. Highly tolerant of change requirements
	v. Accept prioritizing requirements
	vi. Active customer involvement & feedback
	vii. Reduce cost and time
	viii. Short design phase involves early feedback fromclients
	ix. Self organized team
	x. Documentation
	xi. Design Simplicity
	xii. Improves Software Quality
	xiii. Increase business value, visibility, adaptabilityand reduce cost
	xiv. Success Possibility Increased


	IV. Agile Adoption
	ReferencesRéférences Referencias

