21 research outputs found

    Machining Speed Gains in a 3-Axis CNC Lathe Mill

    Get PDF
    The intent of this work is to improve the machining speed of an existing 3 axis CNC wood working lathe. This lathe is unique in that it is a modi ed manual lathe that is capable of machining complex sculptured surfaces. The current machining is too slow for the lathe to be considered useful in an industrial setting. To improve the machining speed of the lathe, several modi cations are made to the mechanical, electrical and software aspects of the system. It was found that the x-axis of the system, the axis that controls the depth of cut of the tool, is the limiting axis. A servo motor is used to replace the existing stepper motor, providing the x-axis with more torque and faster response times, which should improve the performance of the system. To control the servo motor, a 1st-order linear transfer function model is selected and identi ed. Then, an adaptive sliding mode controller is applied to make the x-axis a robust and accurate positioning system. A new trajectory generator is implemented to create a smooth motion for all three axes of the lathe. This trajectory uses a 5th-order polynomial to describe the position curve of the feed pro le, giving the system continuous jerk motion. This type of pro le is much easier for motors to follow, as discontinuous motion will always result in errors. These modi cations to the lathe system are then evaluated experimentally using a test case. Three test pieces are designed to represent three of the common shapes that are typically machined on the wood turning lathe. These test cases indicated a minimum reduction in machining time of 52:91% over the previous lathe system. An algorithm is also developed that attempts to sacri ce work piece model geometry to achieve speed gains. The algorithm is used when a certain feedrate is desired for a model, but machining at that speed will cause toolpath following errors, leaving surface defects in the work piece. The algorithm will attempt to solve this problem by sacri cing model geometry. A simulation tool is used to detect where surface defects will occur during machining and a then the work piece model is modi ed in the corresponding area. This will create a smoother part, which allows each axis of the system to follow the new toolpath more easily, as the dynamic requirements are reduced. The potential of this algorithm is demonstrated in an experimental test case. A test piece is created that has features of varying di culty to machine. When the algorithm is run, Matlab/Simulink is used simulate the output of the lathe and locate the areas in the part geometry that will cause defects. Once located, the geometry features are smoothed in SolidWorks using the fi llet feature. The algorithm produces a work piece with smoothed geometry that can be machined at a feedrate approximately 42:8% faster than before. Although it is only the first implementation of the algorithm, the experimental results con rm the potential of the method. Machining speed gains are successfully achieved through the sacrifice of model geometry

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Precision engineering center. 1988 Annual report, Volume VI

    Full text link

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Energy efficiency during the outside turning of Ti6Al4V

    Get PDF
    Abstract: Machining is one of the principal activities responsible for a significant portion of energy used in the manufacturing industries. Performing machining processes energy efficiently therefore leads to significant reduction in the total energy consumed by the sector. Titanium alloys, particularly Ti6Al4V (Grade 5 Ti-alloy), exhibit a unique combination of mechanical and physical properties. It possesses excellent corrosion resistance properties to a wide range of chemicals as well as heat resistance. Furthermore, titanium alloy displays outstanding properties such as high strength-to-weight ratio which can be maintained at elevated temperatures. Ti6Al4V is a high strength lightweight alloy which is used for critically demanding high-performance engineering applications such as aircraft engine and airframe components. Ti6Al4V is also desirable for the chemical, military weaponry and energy service industrial sectors. As a result titanium and its alloys is considered as material of strategic importance. However, titanium alloys are also classified as difficult-to-machine materials due to its rapidly transformative thermo-mechanical and metallurgical properties when exposed to the high machining temperatures. The good strength properties also render the material difficult to machine. This tends to increase the burden on energy demand of the machining process...D.Ing. (Mechanical Engineering

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    A methodology for the design and evaluation of minerals extraction processes

    Get PDF
    Imperial Users onl

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”
    corecore