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Abstract

The intent of this work is to improve the machining speed of an existing 3 axis CNC

wood working lathe. This lathe is unique in that it is a modified manual lathe that is

capable of machining complex sculptured surfaces. The current machining is too slow for

the lathe to be considered useful in an industrial setting. To improve the machining speed

of the lathe, several modifications are made to the mechanical, electrical and software

aspects of the system.

It was found that the x-axis of the system, the axis that controls the depth of cut of

the tool, is the limiting axis. A servo motor is used to replace the existing stepper motor,

providing the x-axis with more torque and faster response times, which should improve the

performance of the system. To control the servo motor, a 1st-order linear transfer function

model is selected and identified. Then, an adaptive sliding mode controller is applied to

make the x-axis a robust and accurate positioning system. A new trajectory generator is

implemented to create a smooth motion for all three axes of the lathe. This trajectory

uses a 5th-order polynomial to describe the position curve of the feed profile, giving the

system continuous jerk motion. This type of profile is much easier for motors to follow, as

discontinuous motion will always result in errors. These modifications to the lathe system

are then evaluated experimentally using a test case. Three test pieces are designed to

represent three of the common shapes that are typically machined on the wood turning

lathe. These test cases indicated a minimum reduction in machining time of 52.91% over

the previous lathe system.

An algorithm is also developed that attempts to sacrifice work piece model geometry

to achieve speed gains. The algorithm is used when a certain feedrate is desired for a

model, but machining at that speed will cause toolpath following errors, leaving surface

defects in the work piece. The algorithm will attempt to solve this problem by sacrificing

model geometry. A simulation tool is used to detect where surface defects will occur

during machining and a then the work piece model is modified in the corresponding area.

This will create a smoother part, which allows each axis of the system to follow the new

toolpath more easily, as the dynamic requirements are reduced. The potential of this

algorithm is demonstrated in an experimental test case. A test piece is created that has

features of varying difficulty to machine. When the algorithm is run, Matlab/Simulink is

used simulate the output of the lathe and locate the areas in the part geometry that will
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cause defects. Once located, the geometry features are smoothed in SolidWorks using the

fillet feature. The algorithm produces a work piece with smoothed geometry that can be

machined at a feedrate approximately 42.8% faster than before. Although it is only the

first implementation of the algorithm, the experimental results confirm the potential of the

method. Machining speed gains are successfully achieved through the sacrifice of model

geometry.
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Chapter 1

Introduction

1.1 Background

The lathe has been used in industrial applications for several centuries [27]. Within that

time frame there have been many improvements to the individual parts that make up a

lathe. These improvements range from the durability of materials to the rotation speeds

possible, as well as the ease of use of the system as a whole [15]. More recently, within

the last 50 years, computers have begun to play a larger role in the operation of a lathe in

the form of computer numerical control (CNC). Modern CNC lathe systems are capable of

following preprogrammed paths accurately and at high speeds. However, for the most part

these systems, like their modern manual lathe counterparts, are still only able to machine

work pieces that are axis-symmetrical. Although a great deal of research has gone into

improving the operation of the lathe, the basic product being machined has remained the

same over the years. Some CNC lathes are able to make non-symmetric parts through the

use of three controlled axes, which includes control of the axis of rotation and two degrees

of control for the tool. Although the degrees of freedom are present, the parts that are

machined with these systems are typically simple pieces that can have a high throughput

rate to justify the high cost of the machines. Although some research has been conducted

in the field of making non-symmetric shapes on lathes [11], the majority of these types of

shapes in industry are still made on 3- and 5- axis milling centres.
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1.2 Current Research

A great deal of research has been conducted over the last 8 years in the Surface Machining

group at the University of Waterloo in the area of complex sculptured surfaces. These

surfaces, which are defined in detail later in this work, are essentially complicated and

even artistic work pieces that have typically only been achievable through manual hand

carving up until the last few years. In particular, research has been conducted in creating

3D sculptured surfaces using wood turning lathes as the machining centre. Many different

lathe configurations and control strategies have been considered to best suit the machining

of a sculptured surface. There also exists a large disconnect with most CNC systems

between the development of a work piece model and creating the actual part. Quite often

in industry, uniquely skilled workers are required to design the part models, create the

necessary toolpaths and then program and run the machining system. These steps are

often assisted with CAD/CAM packages, but still require a large amount of time and

knowledge. A great deal of work has been done at the Surface Machining group to bridge

this disconnect. Primarily, several software packages have been created for the direct

conversion of a solid model into a toolpath that is usable by a machining centre. One goal

of these works has been to make the machining process simpler and more intuitive; not

just for industry, but also for the general consumer. The idea is to develop an affordable

wood turning lathe that can create complex sculptured surfaces, with intuitive software

that is run on a PC, from someone’s home.

1.3 Earlier Works

Prior to the research presented in this work, there were several iterations of CNC lathe

systems that were capable of machining complex sculptured surfaces. The first was created

by Manos [15]. He constructed a simple low cost lathe that would be suitable for a general

consumer. This work was used to demonstrate the ability of a lathe to machine a complex

sculptured surface and did so successfully. The system also performed machining by only

controlling a single axis with a computer and motor, while the other two axes were con-

trolled by human input. This setup was used to reduce the cost of the system, but created

drawbacks in the form of machining accuracy that compromised the surface finish of the

work pieces. This lathe system also implemented a software technique called ‘dropping the
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ball’, which is described in detail in section 6.1, that created toolpaths directly from work

piece models.

As an extension to this work, Poon [21] developed a CNC controller architecture that

condensed the multiple steps of regular CNC controllers into one design. This architecture

was tested on the same wood turning lathe developed by Manos [15]. Modifications were

made to the system that added a second motor to give computer control to two of the

systems axes, which improved the speed of the system along with the accuracy. The

results encouraged the further development of autonomous control algorithms for CNC

lathe systems.

1.4 Recent Work

Having successfully proven the concept of machining complex sculptured surfaces on a CNC

lathe, the research focus then shifted towards improving the quality and efficiency of the

machining process. A new lathe structure was prototyped using an existing manual lathe

design. Although larger and more expensive, the system was still significantly cheaper

than a typical CNC lathe system. The intent was to create a system that could machine

complex sculptured surfaces at a speeds faster than those achieved with the previous lathe

designs while also improving the surface quality of the part and keeping the cost of the

system low. This type of system would be ideal for small businesses, which would benefit

from a CNC machining system that used a simplified control architecture. The main test

pieces that were machined on this lathe were table legs. Table legs are one example of an

item that is machined commercially on lathes. However, most table legs consist of axis-

symmetric designs. Those that do not are typically hand carved. For this reason it was

thought that machining table legs consisting of complex sculptured surface designs would

be the perfect industrial application for demonstrating the abilities of the unique 3-axis

CNC lathe. Below in figure 1.1 are a few illustrations of the wide variety of table legs that

were machined with this CNC lathe system.
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Figure 1.1: Example Table Leg Designs
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1.5 Brief System Description

The original lathe used stepper motors on all three axes to provide complete computerized

control over the system. Figure 1.2 illustrates the motion capabilities of each axis. As can

be seen in the diagram, the work piece rotates on the rotational axis, labeled the c-axis.

The cutting tool is given two degrees of freedom. One degree comes from the translational,

or z-axis; which moves the tool along the length of the work piece. The second comes from

the radial, or x-axis; which controls the radial depth of cut of the tool into the work piece.

However, the use of stepper motors was found to limit the dynamic capabilities of the

system. The motors were not able to produce the necessary torques to follow the complex

sculptured surfaces at the desired speeds. This caused the motors to slip and create defects

in the surfaces of the work pieces. This problem was compounded by the method used for

creating trajectory profiles from the work piece toolpaths for the motors to follow. The

system employed a linear interpolation method between the toolpath points. This created

trajectories that were difficult for the motors to follow, as they called for discontinuous

velocity and acceleration movements, which are impossible for the motors to follow. This

inevitably led to the stepper motors missing more counts and creating more defects in the

surface finish of a work piece when machining at faster speeds.

Figure 1.2: Lathe Degrees of Motion
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1.6 Project Motivations

The limitations that were discovered in the most recent 3-axis CNC lathe design were

the main motivators for the work presented in this thesis. As mentioned, the intention

of the previous lathe design was to create a system that was able to machine complex

sculptured surfaces precisely and use a simplified control architecture. However, due to

the limitations in the system dynamics that were discussed, although capable of machining

complex sculptured surfaces, these pieces required a slow machining speed to produce

acceptable results. As was demonstrated by machining sculptured table legs, the finished

products were exquisite and quite unique by industry standards, but the time required

to machine these products was longer than acceptable. Because of the promise that was

shown with this technology, it was decided to try and further improve the performance of

this system.

1.7 Thesis Concept

This thesis attempts to improve the performance of the 3-axis CNC lathe system by in-

creasing its machining speed. This will be accomplished by first modifying the mechanical

and electrical structure of the lathe by replacing the stepper motor of the x-axis with a

servo motor because it was found to be the speed limiting axis of the system. A theo-

retical model will then be developed for the x-axis and a robust and accurate control law

will be implemented. The method of trajectory interpolation will be reviewed to find an

alternative method that will provide a smoother profile that is easier for the motors of the

system to follow. Finally, an algorithm will be explored that attempts to further improve

the machining speed of the lathe system by sacrificing model geometry.

1.8 Thesis Layout

The remainder of this thesis has the following layout: Chapter 2 reviews the relevant

literature for the application of using a 3-axis lathe for machining complex sculptured

surfaces and the modifications that will be applied to improve its performance. A detailed

description of how the lathe operates and of the physical modifications that were made to
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its structure is provided in Chapter 3. The development of the model and controller for

the new servo motor added to the lathe are presented in chapters 4 and 5 respectively.

The algorithms used to operate the CNC lathe, namely the trajectory algorithm and the

geometry sacrificing algorithm, are described in Chapter 6. Simulated and experimental

test results are then presented in Chapter 7, exploring what improvements have been

achieved in the machining speed of the system. The experimental results present two test

cases; one for evaluating the performance of the lathe machining some basic shapes and one

to evaluate the geometry sacrificing algorithm specifically. Finally, the concluding remarks

and future works are discussed in Chapter 8.
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Chapter 2

Literature Review

As just described in the previous section, the 3-axis lathe is presently able to machine

complex sculptured surfaces. However, due to several factors, namely the motor perfor-

mance and trajectory planning strategies, the machining time of these surfaces is quite

slow. For a complex surface, the rotational axis of the lathe only rotates at approximately

5 − 10rpm. For a full length table leg, this rotation speed translates into a machining

time of approximately 90 minutes. This section will discuss the areas being investigated

for improving the machining speed of the 3-axis lathe. The current and previous research

in this field will be outlined to provide context for the choices that have been made in this

work.

2.1 3-axis Lathe Technology

In industry, the CNC lathe is an integral and popular choice for machining many different

products. Although well accustomed to machining circular pieces, current CNC lathes are

also capable of machining noncircular pieces, usually by halting the turning process and

performing milling operations. This produces pieces that can be, for example, circular

with flat edges, or have multiple flat sections positioned symmetrically around a common

centre. Although these systems are capable of running at high speeds, the work in this

thesis is unable to base the speed improvements needed on their design. This is mainly due

to the differences in the shape of the work pieces being machined. Although current CNC
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lathes are capable of machining non circular parts, they are not completed using turning

operations and they are not complex sculptured surfaces.

When looking into the literature for other works that have machined noncircular profiles

using a CNC lathe, there are relatively few works to choose from. Frank et al. [8] in 1988

developed a 3-axis turning system that used a grinding wheel to create noncircular work

pieces. These parts were variations on common geometric shapes, most often ellipses.

This was accomplished by modifying and reprogramming a common cylindrical grinding

machine. The motion of the grinding axis was programmed by finding the intersection

between the circumference of the grinding wheel and the geometric body. This work

shares many aspects in common with the current design of the 3-axis lathe, but it is not

capable of creating a complex sculptured surface. Other works have looked at modifying a

traditional lathe to cut noncircular shapes. Hwang et al. [11] modified a traditional lathe

by attaching a linear motor to the radial x axis of the system. With this modification,

they were able to machine noncircular parts, usually of elliptical shape. This system was

designed with the purpose of machining automotive pieces, such as cam shafts and piston

heads. Although this work had similar ideas to those of the current lathe, they did not

attempt and were not able to machine complex sculptured surfaces. Other works [28]

have tried developing new software that can be used on a traditional CNC lathe to create

noncircular work pieces. They have been successful in creating some noncircular pieces

and can even approximate the contour of a square. Again, this work did not attempt to

machine any complex sculptured surfaces.

The only other works that seemed to be machining complex sculptured surfaces, and

therefore facing similar obstacles to this work, was past research conducted here in the

surface machining research group at the University of Waterloo. Manos [15] designed

and implemented a single controlled axis lathe that was able to machine relatively simple

complex surfaces, such as cylinders with helices on the surface or cylinders with wide, low

text on the surface. This was the first design attempt at a lathe capable of machining a

sculptured surface and consequently had several limitations. The system used a stepper

motor to control the depth of cut of the surface, but the other two axes were moved by

hand. This caused surface finish errors when the human operator did not maintain a

constant speed, which invariably occurred. The system was designed to be slow moving,

hence the human input for rotating the work piece, to allow the stepper motor enough

time to adjust the depth of cut of the router. This was necessary because there was no
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feedback in the system, which meant that there were no safeguards in place if the stepper

motor was to miss its programmed position.

The single controlled axis lathe was later updated by Poon [21]. He took the system

and added a second motor which drove both the rotational and translational axes though

a coupled pulley and timing belt system. The purpose of this work was to test a new archi-

tecture for CNC controllers that was modular in structure and could replace a CAD/CAM

package as a single interface. In so doing, they also showed the benefits of machining

with more controlled axes, as the test parts produced by the system had a much smoother

surface finish that was mostly error free than that of the single controlled axis lathe. This

system was also slow moving however, as there was still no encoder feedback for the either

of the stepper motors controlling the system. Also, the system was on a smaller scale than

the lathe being used in this work, with much smaller motors that limited the speed of the

system.

Though the technology of the current 3-axis lathe is based on the previous works in [15,

21], its operation and system mechanics differ greatly. The other works presented, although

using somewhat similar research platforms, are using them to accomplish different goals. To

improve the overall machining speed of the current 3-axis lathe, the individual components

of the system must be considered separately. By considering research in different areas

and applying it to the 3-axis lathe system, it should be possible to improve the machining

speed of the lathe. The research platform that is the 3-axis lathe and the research goal of

improving the machining speed of a complex sculptured surface on this platform is unique

enough that there is no certain answer for the best way of achieving this goal.

2.2 Motors

As described in Section 3.2.1, it has been found that the radial axis which controls the

depth of cut for the lathe system is the speed limiting axis of the system. The first step

towards improving the speed of the machining process was to look into different options

for motors to drive the radial axis. Currently a stepper motor is used to control the radial

axis of the system. This was a logical choice for the original design of the 3-axis lathes, as

stepper motors are commonly used as positioning devices. Stepper motors are well known

to provide accurate speed and position tracking with proper control, which is relatively
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easy to implement [19]. They can also be a low-cost option in comparison to other motor

types [17]. It has been found however, that stepper motors do not perform as well during

motions when there are large dynamic requirements [18], such as high accelerations. They

are also better suited for low torque applications when compared to DC servomotors [3].

This is believed to be one of the main problems with the 3-axis lathe design, as the radial

axis of the system must move approximately 13kg of material a short distance, in a short

time, which requires a large acceleration and induces a large torque. If the stepper motor

is unable to accurately follow a command that has too high an acceleration, the surface

finish will be gouged.

To improve the acceleration capabilities and overall machining speed of the CNC lathe

system, a servo motor was selected to replace the stepper motor of the radial axis. Used

in many applications, servo motors are able to provide superior torque outputs to stepper

motors, with similar if not better positioning performance [3].

2.3 Trajectory Interpolation

An important factor that contributes to the overall speed of the system is the method

of interpolating the trajectory profiles of each axis from the toolpath data. Even if a

position profile is continuous and smooth, if its derivatives (i.e., velocity and acceleration)

are not continuous, then the motor trying to follow the trajectory will have difficulties [25].

This issue arose during the operation of the original 3-axis lathe. The motor controller

used to drive the steppers motors of each axis used a linear interpolation technique to

create the trajectory profiles for each axis. This means that between each toolpath point a

discontinuity existed in the trajectory profile. This discontinuity is responsible for causing

instant changes in velocity and acceleration, demanding motions that are impossible for

the motors to replicate. Both of these situations caused the stepper motor attempting to

follow this profile to miss steps, sometimes causing gouging into the part surface.

A great deal of research has been done in the area of smooth trajectory generation.

The obvious benefits are to make the trajectories easier for motors to follow. When the

trajectory is smooth and the dynamic demands on motor are within its limits, control

signal saturation is avoided. This leads to better positioning control. Having a smooth

trajectory also allows the motor to reach higher average speeds. If a motor is being satu-
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rated and stalling frequently, its momentum is lost. When the transitions between position

locations and the speeds are smooth, the motor can maintain its speed better throughout

the motion. An additional benefit is to improve the life expectancy of a servo motor.

Avoiding saturation also prevents the motor from overheating during a stall period and

potentially damaging the inner windings. As mentioned, smooth trajectories help improve

positioning accuracy, this also lends to creating a smoother surface finish, as it helps to

avoid discontinuities and jittering effects.

To create a smooth trajectory, the most commonly used technique is the implementation

of splines of various forms. Koninckx et al. [13] has used cubic non-uniform rational B-

splines (NURBS) to create a trajectory profile that has continuous acceleration. The

algorithm developed is intended for real-time calculations of the trajectory, which can

be difficult to implement and processor resource intensive depending on the choice of

controller. A quintic spline curve, developed in [24], is used to create a smooth trajectory

between a given set of data points. This method is said to be an improvement to cubic

spline generation because during the chord length parameterization process, cubic splines

can cause feedrate fluctuations. This issue is resolved with the use of quintic splines.

However, the intended use for this method is high speed precision machining. At the

speeds intended in this thesis’ work, the magnitude of the feedrate fluctuations discussed

in the cubic spline trajectory is not an issue.

Alintas et al. [6] developed a method for feedrate optimization of a quintic spline

trajectory. Feedrate optimization in this case is defined as the trajectory profile having

continuous jerk motion. This last method is attractive for the 3-axis lathe system. The

use of cubic splines for interpolating the toolpath ensures a smooth surface finish. The

feedrate optimization technique allows the motors of each axis to push the limits of their

dynamics for a specified feedrate. This method of trajectory interpolation was adopted

into the operation of the 3-axis lathe system to replace the linear interpolation that was

previously being used. The relatively simple implementation and effective results were the

main reasons for this choice. A detailed description of this adopted method is contained

in section 6.2.
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2.4 Smoothing Algorithm

The last method considered for increasing the speed of the 3-axis lathe system is to modify

the work piece’s model geometry. An algorithm is developed in Section 6.3 that attempts

to find the minimum amount of geometry to sacrifice to improve the machining speed of

the system. By modifying geometry that causes position tracking errors in a specific way,

the errors can be reduced. This allows the system to machine at a faster feedrate without

causing gouging in the work piece.

Others have investigated the idea of modifying a model’s geometry to achieve specific

gains or to meet other criteria. Sun et al. [23] developed an algorithm for modifying

segments of a toolpath during the interpolation stage of the machining process. Using the

relationship between the geometric and kinematic properties of a curve, segments of the

toolpath were identified that would cause the motion planning algorithm to surpass the

limits imposed on the system’s acceleration and deceleration. The toolpath points of the

identified segments were then adjusted by blending linear line segments into the original

curve to ensure that the system limits were met.

Erkorkmaz et al. [7] modified geometry to improve the contouring performance around

corners for 2D work pieces. Corners of varying angles were smoothed using splines, while

ensuring that the features were still within specified dimensional tolerances. Using a vir-

tual CNC machine to simulate the system’s contouring performance around the corner,

the feedrate was iteratively determined so that the maximum dimensional tolerance was

reached, but not exceeded. By altering the geometry of the corner in this fashion, the

overall contouring performance was improved in terms of total contouring error. These

results were also experimentally verified.

Similarly to these works, this work presents an algorithm that will modify a model’s

geometry. The goal of this modification, however, is to automatically determine the mini-

mum amount of geometry needed to be sacrificed to machine a satisfactory work piece at a

desired feedrate. Contrary to the algorithm presented in [23], it is assumed that the system

is already capable of reaching the desired feedrate given the initial model geometry. The

problem addressed in this work, is that cutter overshoot in position will cause an unsatis-

factory surface finish, in the form of gouging. As shown in [7], the cutter position errors

can be reduced by smoothing areas of the model where the overshoot occurs. These areas,

which are typically corners, will be identified using a model of the system, inspired by the
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virtual CNC used in [7]. The desired feedrate can then be used for machining and achieve

the modified surface finish. This algorithm will also produce a preview of the model with

modified geometry. This preview will allow a system operator to visually determine if the

sacrifices in model geometry are acceptable, or if a slower target feedrate should be used

to avoid such heavy sacrifices.
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Chapter 3

System Description

The 3-axis CNC lathe that was developed and used as a test platform in this work was

created with the purpose of machining sculptured surfaces out of wood. Wood machining

was chosen because previous research ([15]) has shown that the cutting force exerted on the

tool is approximately 100 N for most types of wood, which is minimal. This small force

has little effect on the cutting tool in regards to deflection or restricting cutting speed.

This allowed for the design of the system to essentially neglect cutting force constraints

that are typically present when designing a system for machining metal. Not having to be

concerned with the cutting force exerted on the tool allowed this work to focus on increasing

the machining speed of the system and improving toolpath planning. In this work, a

sculptured surface is defined as geometric body that can contain large amounts of surface

detail that is typically only seen in hand carved designs. Some examples of a sculptured

surface would be a surface that contains any type of design, pattern or text. Figure

3.1 illustrates an example sculptured surface. This type of surface is an uncharacteristic

product for a manual lathe, as it is difficult to cut. All three axes of a lathe must move

together, following nonlinear profiles, to achieve a complex sculptured surface.

In a traditional manual lathe, the work piece rotates at a fixed rpm, frequently in the

tens of thousands, while the cutting tool is rigid, only free to move along the length or

into the work piece. This configuration essentially makes it impossible for an operator to

create a complex sculptured surface. Manual control of the cutter position only allows

for symmetric or circular patterns to be cut, such as those typically seen on table legs,

which are a common product machined out of wood. Generally, if a non-symmetric surface
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Figure 3.1: Sculptured Surface Example

was created on a manual lathe, it would not be repeatable. Traditional CNC lathes, are

typically setup to reproduce the same motions as a manual lathe, but in a more precise and

repeatable manner. These lathe systems are also unable to produce a complex sculptured

surface. They typically machine to quickly to achieve the required level of detail and do

not have the necessary degrees of freedom.

The 3-axis CNC lathe designed in this work is able to machine complex sculptured

surfaces by slowing down the rotation of the work piece and using a precision controlled

motor to control the depth of the cutting tool. A slower rotating part gives the cutting

tool the time it needs to move towards and away from the work piece to create the intricate

details that exist on a sculptured surface. To ensure that the work piece still receives a

clean cut when the work piece is rotating slower, the fixed cutting tool is replaced with

a rotating tool. For this purpose a ball nose tool is used with a router to perform the

necessary cutting. This setup essentially creates a mill that has the motion capabilities of

a lathe.

3.1 System Operation Overview

The following is a summarization of how the 3-axis CNC lathe system operates. Expanded

explanations on many of the operations of the lathe are presented in the following sections

of this chapter. As with all computer controlled systems, the operation of the 3-axis CNC

lathe in this work follows a specific, logical process from the inception of a work piece

design, to its creation. Figure 3.2 presents a logic flow diagram that outlines this process.

After the idea for a work piece has been conceived, the part must be modelled in software.

The system currently works only with the stereo lithography (STL) file format. Presently,
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models are created in SolidWorks and then converted into STL format; but any software

that can create an STL file is potentially capable of generating a proper model for the

system.

Figure 3.2: Lathe Operation Overiew

A custom toolpath generator, described in section 6.1, is used on the STL file to create

a helical toolpath that follows the body of the model, as described in section 3.2.4. The

software will generate multiple roughing passes, which remove up to 5mm of material at a

time, and a single finishing pass, which removes about 1 − 2mm of material. The helical

shape of the toolpath makes use of the degrees of freedom available to the lathe, as one

pass along the helix will allow the cutting tool to reach the entire surface area of the work

piece. Next, a custom trajectory interpolator is used to create a position, velocity and

acceleration profile for each axis of the lathe system. The algorithm, as described in detail

in section 6.2, generates intermediary position points between the toolpath points at an

interval that coincides with the sampling time of the control system, which is 1 kHz. The

interpolated toolpath points also ensure that the motion of each axis is smooth and does

not exceed any of the dynamic thresholds of the system. In other words, it ensures the

motion of the tooltip is smooth and therefore the surface finish of the work piece is smooth
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as well.

A regular PC is used for modelling the work piece and for the toolpath generation

algorithms. The interpolated toolpath information is sent to the control system for the

lathe, which runs on an Altera field programmable gate array (FPGA) board. This board,

which uses custom designed hardware and software, interfaces with the motor and encoder

of each axis to control the lathe. As will be described in section 3.2, two of the axes use

stepper motors for operation, while the third uses a servo motor. The axis controlled by the

servo motor uses a detailed system model and control algorithm, as described in chapters 4

and 5 respectively, to create an accurate and robust position control system for the lathe.

The FPGA board commands the three axes of the lathe using the interpolated toolpath

commands as a reference. This will produce the desired work piece model from wood stock

when machining.

Figure 3.3: 3-Axis CNC Lathe Model

3.2 Mechanical Description

The 3-axis CNC lathe design was created by building off of an existing manual lathe. The

decision to build the design up from a manual lathe was made because it would be cheaper

than purchasing an existing CNC lathe and it would allow for the flexibility in design that

was desired. Most CNC lathes are both expensive and incapable of cutting the intended

complex sculptured surfaces. Therefore it was necessary to design our own system, which
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was made easier by basing the design on an existing lathe structure. The design was based

on the wood turning lathes made by Oneway, who were also contracted to build the base

structure of the lathe. As can be seen in figure 3.4, the lathe is made from a steel base that

has been both welded and bolted together. The cylinder that makes up the main body

of the frame is hollow to help reduce the weight of the system, while its circular profile

provides strength. This frame supports the traditional manual lathe components of the

system, such as the head and tail stock, between which the work piece is turned. A pair

of slide rails that run parallel along the length of the lathe is supported by a number of

brackets that are welded to the main cylinder body. The router cutting tool for this system

is located on top of a steel box that is attached to the slide rails.

Figure 3.4: 3-Axis CNC Lathe

3.2.1 Axes of Motion

The three axes of the CNC lathe system consist of a translational, rotational and radial

axis. These axes, which allow for the same degrees of freedom as that of a manual lathe,

are controlled individually to achieve the machining of a sculptured surface. The following

section describes each axis in detail.
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Translational Axis

The translational axis is depicted in figure 3.5. The main body of this axis is composed of

a pair of parallel guide rails that run along the length of the lathe. These rails carry the

platform on which the radial axis system is mounted. This setup allows the cutting tool in

the router to move up and down the rails, moving along the length of the work piece. The

translational motion allows for the work pieces to be cut up to 1100mm in length, nearly

the entire length of the lathe.

Figure 3.5: Translational Axis Model

The translational axis is driven by a stepper motor and ball screw setup. The stepper

motor is an MDrive42, a product of Intelligent Motion Systems Inc., that operates on 120V

AC current and comes with a built-in motor controller. This provides an easy interface to

the motor, since it only needs digital signals to drive it. This motor is a micro-stepping

motor that is capable of turning 200 counts per revolution into 50000 micro-counts per

revolution. Selecting a motor with a high resolution for stepping provides greater control of

the tooltip motion. For this system a micro-stepping setting of 10000 counts per revolution

was chosen, which provides a resolution of 6.176 ∗ 10−4mm for the tooltip. This degree of

accuracy is appropriate for the aesthetic sculptured surfaces that are being machined on

the lathe.

The stepper motor is connected to the ball screw drive by a pair of pulleys and a

timing belt. The driving pulley, attached to the motor, has 21 teeth and the driven pulley,

attached to the ball screw, has 34 teeth. This provides a gear ratio of 1:0.6176, which is
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a reduction in speed for the ball screw and therefore the cutting tool. The speed of the

translational axis was reduced based on the intended toolpath design. A helical toolpath

implies that to achieve a smooth surface finish with no scallops, the pitch of the helix, or

side-step of the cutting tool, must be appropriately small so that the tooltip can remove

material from the entire surface of the work piece. A tool used for finishing is typically

in the range of 1/8 inch to 1/16 inch in diameter, which corresponds to a helix pitch of

approximately half that value. The small movement per one revolution of the work piece

suggests that the translational axis is moving much slower compared to the other two axes.

Gearing down the axis assists in achieving this motion.

The ball screw on the translational axis that is used to convert the rotational motion

of the stepper motor into translational motion of the cutting tool is nearly the same length

of the lathe, measuring 1510 mm. The pitch of the ball screw is 10mm per revolution.

Equation 3.1 combines the pitch of the ball screw, the driven and driver pulley ratio and the

number of revolutions of the stepper motor into one expression. This equation represents

the conversion from stepper motor revolutions into millimetres, which is a crucial ratio for

the control of the translational axis.

1 rev︸ ︷︷ ︸
MotorRevs

∗ 21

34︸︷︷︸
PulleyRatio

∗ 10 mm

1 rev︸ ︷︷ ︸
BallscrewPitch

= 6.176 mm︸ ︷︷ ︸
LinearTravel

. (3.1)

Rotational Axis

The rotational axis, depicted in figure 3.6, is contained within the head stock of the lathe.

This axis of motion is responsible for rotating the work piece. The work piece, which

typically has a round cross-section, is centred about the rotational axis during machin-

ing. Through the rotation of the work piece, the cutting tool is able to cover the full

circumference, or perimeter of the shape.

The rotational axis of the lathe is driven by a stepper motor, the same type of motor

as described in the translational axis section above. A stepper motor was selected for the

rotational axis because a motor was needed that could follow changing velocity commands.

This differs from a regular lathe, where a constant speed motor would suffice. The tra-

jectory interpolator used to construct the motion profiles for all three axes does not turn

the rotational axis at a constant speed, but instead slows down and speeds up the axis
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Figure 3.6: Rotational Axis Model
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to coincide with geometry complexity. By having a variable speed trajectory for the rota-

tional motion of the work piece, the radial axis is allotted more time to complete its rapid

movements. This allows for a smoother trajectory to be followed by all axes, achieving a

smooth surface finish and reduces the overall machining time.

The stepper motor drives the rotational axis through a set of four pulleys connected

with timing belts, as depicted in figure 3.7. The motor is housed inside the body of the

lathe headstock to keep it clean during operation. Due to space restrictions, the motor

does not drive the rotational axis shaft directly, but instead requires an additional set of

pulleys on the outside of the system to reach an intermediary shaft above the motor. The

pulley sizes create a ratio of 1:0.75. The intermediary shaft drives the rotational axis shaft

of the lathe through a second set of pulleys and timing belt. These pulleys create a gearing

ratio of 1:0.5909. This creates a combined gear ratio of 1:0.4432 for motor rotation to

axis rotation amount. As with the translational axis, the micro-stepping resolution of the

stepper motor for the rotational axis is set to 10000 counts per revolution. To convert the

rotations of the motor into degrees of rotation of the rotational axis, the motor information

must be coupled with the gearing ratio information of the timing pulleys. This relationship

is expressed in equation 3.2 below.

1 rev︸ ︷︷ ︸
MotorRevs

∗ 26

44
∗ 36

48︸ ︷︷ ︸
PulleyRatio

∗360 deg

1 rev
= 159.545 deg︸ ︷︷ ︸

RotationalTravel

. (3.2)

Radial Axis

The radial axis of the lathe system is depicted in figure 3.8. The structure for this axis of

motion is built atop the steel box shown in the figure and is attached to the guide rails

of the translational axis. As the translational axis moves, the entire radial axis is moved

with it. The radial axis consists of a steel plate that sits on two guide rails that run the

length of the box. A ball screw is used to drive the plate forwards and backwards. The

router, used for cutting the wood surface, is attached using a custom clamping system to

the steel plate. By moving the steel plate back and forth along the guide rails, the router

and therefore the cutting tool, is moved, controlling the radial depth of cut into the work

piece.

To drive the radial axis, a servo motor is attached to the ball screw system. The motor

is positioned underneath the radial axis inside the steel box shown in figure 3.8 and drives
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Figure 3.7: Rotational Axis Pulley System

Figure 3.8: Radial Axis Model
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the ball screw using a pulley and timing belt system. Originally in previous versions of the

lathe, a stepper motor was used to control the radial axis. However, the radial axis has been

determined to be the speed limiting axis of the system. This means that the radial axis

experiences higher accelerations and torques than the other two axes during machining.

When speeding up the combined feedrate of the three axes during machining, it is the

radial axis that prevents the system from going faster. Due to the complex sculptured

surfaces of most work pieces, the trajectory of the radial axis contains a large amount

of in and out oscillatory motion. When using a stepper motor for controlling the radial

axis, the nature of the motor prevents it from achieving the high accelerations in the short

time required to successfully follow the trajectories without slipping. The feedrate of the

machining process must be slowed to allow the motor to follow the trajectories correctly.

To improve the response times of the radial axis, a servo motor was selected to replace the

stepper motor. A servo motor is able to achieve higher accelerations in a shorter amount

of time than the stepper motor. This will increase the speed limit that exists on the radial

axis and allow the feedrate of the machining process to be increased. A model and control

algorithm is required to operate a servo motor and these will be presented in Chapters 4

and 5 respectively.

The servo motor that was selected was a Baldor BSM80C-275AF. This motor operates

on 220V AC and is capable of running at 4000 rpm and outputting 2.4 Nm of torque. It

requires an analog input of ±10 volts and has a built-in encoder with an output resolution

of 10000 counts per revolution. The pulley and timing belt system linking the motor to

the ball screw create a ratio of 36:28. This ratio was initially intended to be 1:1, but size

constraints on the pulley at the ball screw end of the connection prevented the pulleys

from being the same size. The pitch of the ball screw is 5 millimetres per revolution. By

combining this information, the conversion of one revolution of the servo motor into linear

motion of the tool tip can be calculated. This expression is summarized in equation 3.3.

1 rev︸ ︷︷ ︸
MotorRevs

∗ 36

28︸︷︷︸
PulleyRatio

∗ 5 mm

1 rev︸ ︷︷ ︸
BallscrewPitch

= 6.426 mm︸ ︷︷ ︸
RotationalTravel

. (3.3)

3.2.2 Coordinate System

Each axis of motion described in the above section is assigned a positive and negative

direction, along with an axis label. Figure 3.9 below depicts the coordinate system for the
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3-axis CNC lathe system. The point of origin for the coordinate system originates at the

head stock of the lathe, at the centre of the rotational axis where the work piece is fixed

prior to machining. The translational axis is denoted as the z-axis. The positive direction

is out from the origin towards the tail stock of the lathe, which is parallel to the ball screw

of the translational axis. The rotational axis is labeled the c-axis. This axis rotates in the

positive direction clockwise around the z-axis. The radial axis is classified as the x-axis.

The positive direction of this axis is moving from the physical cutter tool tip towards the

centre of rotation of the work piece.

Figure 3.9: Lathe Coordinate System Diagram

3.2.3 Cutting Tool

In a manual lathe, the cutting tool is typically a fixed blade that cuts when it is pushed

into the rotating work piece. The 3-axis CNC lathe however, uses a router and ball nose

tool to cut the work piece instead of a fixed tool. This modification was made because

manual lathes typically spin at fast rpms, often in the thousands, which allows a fixed

edge to cut the work piece. The 3-axis CNC lathe on the other hand rotates slowly by

comparison, typically around 10 rpm prior to this work’s modifications. When rotating

slowly, an immobile tool would be unable to cut the surface of the work piece without

tearing. A router, which rotates the tool, solves this problem. The slow speed of the

rotational axis is necessary because it must move slow enough to allow the radial x-axis

time to complete its fast in and out motions. As stated in section 3.2.1 above, the radial
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axis is the limiting axis of the system. The speeds of all other axes are dictated by the

speed of the radial axis.

3.2.4 Toolpath

Although the CNC lathe is able to move in a variety of directions, as described in Section

3.2.1, the toolpath that is machined on the system is a helical toolpath, similar to the path

followed by a manual lathe. This type of path is used because a custom toolpath generator

has been developed that can convert a SolidWorks model into a helical toolpath of points

[15]. This toolpath generator is necessary, as all of the software for the lathe is custom

made. To use standard CAD/CAM packages would require extra work to interface with

the CNC lathe system, as well as add to the cost of the system.

As seen in figure 3.10, the helical toolpath starts at the end of the work piece that

is closest to the head stock of the lathe. The helix then spirals around the work piece

towards the opposite end of the lathe. To accomplish this movement, the rotational axis

will spin the work piece and the translational axis will slowly move the steel box structure

supporting the cutting tool along the length of the work piece. This motion will trace

out a spiral of uniform radius. To achieve a sculptured surface, the radial axis will move

the cutting tool in and out to alter the depth of cut of the tool as the helix is traversed.

The toolpath generator described in section 6.1 produces multiple roughing passes and a

finishing pass. Typically a roughing pass will use a ball nose tool with a radius of 3.175mm

to remove material, approximately 5mm depth at a time. If a larger tool is used, machining

out details in the sculptured surface may be impossible. The side step of the helix for a

roughing pass is calculated to be equal to the radius of the tool, so that material from the

entire surface of the work piece is removed. The finishing passes use a smaller radius ball

nose tool, typically 1.5875mm. This allows the tool to machine a greater amount of detail

in the sculptured surface than during the roughing passes. The side step of the helical

toolpath during a finishing pass is calculated to be smaller than the radius of the tool.

A ball nose tool will typically leave behind a ridge of material, called a ‘scallop’, because

the tool is round and will only contact the surface of the work piece at a single point. By

making the side step of the helix less than the radius of the tool being used, these scallops

are machined off, leaving a relatively smooth surface.
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Figure 3.10: Helical Toolpath Example

3.3 Electrical Description

The electrical system of the 3-axis CNC lathe has been custom designed and integrated

with the mechanical system. This electrical system links a regular desktop PC, to a motor

control system, to the motors controlling each of the three axes. A return loop connects

the encoders attached to each motor and brings the data back to the motor control system.

The following describes the components that make up the electrical system of the 3-axis

CNC lathe.

3.3.1 Computer Interface

Currently, the interface with the CNC lathe uses a standard desktop personal computer

(PC). This computer is used for calculating and sending the necessary data required for

machining the work piece to the motor control board. Currently the PC runs a Microsoft

Visual Studios program to take an STL file and generate an appropriate toolpath for

the work piece, as described in section 6.1. A script in Matlab is run next to generate a

trajectory for each axis that follows the set toolpath at a specified feedrate. This trajectory

generating algorithm is described in detail in section 6.2. This trajectory data is then sent

to the motor control system using a serial port for communication.
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3.3.2 Motor Control System

The motor control system for the 3-axis CNC lathe actually consists of several components

that are used together to convert the mathematical data describing the work piece provided

by the PC, into electrical signals that drive the lathe’s motors to machine a work piece.

Figure 3.11 contains an overview of the motor control system. The main component of

the motor control system is the field programmable gate array (FPGA) board Stratix II.

This board is a product of the company Altera and is used as a prototyping board for

many different hardware applications. It supports both custom hardware and software

design, allowing a user to fully customize and test their design before manufacturing the

final custom PCB that has been tailored to their specific application.

Figure 3.11: Motor Control System Overview

In the previous design iteration of the CNC lathe, a pre-made motor controller card,

called a PMAC, was used to operate the lathe. However, this card had several disadvan-

tages that led to the switch to an FPGA board. The PMAC only accepted data points

with timing constraints and performed its own interpolation. Linear interpolation was

used, which caused problems for the motors at higher speeds due to the velocities and ac-

celerations not being continuous. As described in section 2.3, a new interpolation method

had been selected that creates smooth trajectories that can be more easily followed by the

motors and consequently improve the machining speed of the system. This interpolation

method could not be implemented on the PMAC. Also, a pre-made motor controller has a
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fixed amount of motor output channels. The PMAC had enough channels to control three

motors. However, as mentioned in Future Work in chapter 8, the next progression in this

research is to expand the 3-axis CNC lathe into a system that has four or even five axes.

Such a system would require a new pre-made motor controller capable of interfacing with

the necessary number of motors. An FPGA board however, has a customizable number of

inputs and outputs, allowing the control capabilities of the board to be expanded easily

through software settings. Finally, the PMAC is also expensive. Such a controller for three

or more motors costs thousands of dollars. If the 3-axis CNC lathe system is commer-

cialized, purchasing a pre-made controller board will add to the manufacturing cost of the

system. By prototyping with an FPGA board, when the design is complete, a PCB can

be manufactured at a much lower cost than that of purchasing an off-the-shelf product.

The FPGA board comes with a small processor that can be customized to work with

different hardware peripherals that are included in the prototyping board. The main

hardware components that are currently in use are the serial port for communication with

the PC, and a number of digital input/output (I/O) ports that are used to communicate

with the motors, encoders and limit switches attached to the lathe. This processor runs

custom C software and can interact with the configured hardware peripherals to control

the CNC lathe system. Currently, the FPGA board will wait for the trajectory data to be

loaded from the PC using the serial port. The data for the entire work piece is loaded into

the board all at once, limiting the size of the work piece by the onboard memory capacity of

the FPGA processor. As mentioned in section 8.2, this method will be modified to transfer

sections of the toolpath during machining, which will increase the potential length of the

work piece to the physical limits of the lathe system. Once the command for machining

to begin has been received, the FPGA board software will step through the trajectory

data incrementally, commanding the lathe using I/O ports and monitoring the feedback

from the motor encoders and limit switches. The control strategy developed in section 5 is

implemented in the software and applied to the trajectories during the machining process.

To connect the FPGA board with the motors, an additional PCB board is used to isolate

the FPGA. This board contains optocouplers that separate the digital signals between the

FPGA and motors by using light to relay the signal. This precaution was taken to protect

the FPGA from any current spikes that may come from the electric motors. The FPGA

is unable to sink a large amount of current and could easily be damaged if the motor it is

controlling produced a surge.
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The last component of the motor control system is a PCB with both an analogue-to-

digital converter (ADC) and a digital-to-analogue converter (DAC). This board is required

to control the servo motor that drives the radial axis of the lathe. The amplifier that

provides the current to the servo motor requires a voltage input signal of ±10 volts. The

FPGA output ports are low voltage, or digital outputs, and cannot source the necessary

voltage. The DAC is used to convert the digital signal into the appropriate voltage value.

This conversion was done using 10 digital channels, giving the output voltage a minimum

step size of 19 mV . The ADC was intended to be used to convert the output from an

accelerometer into a corresponding digital signal. However, this sensor was never installed

during the course of this research and is included in the future work in section 8.2.
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Chapter 4

Servo Motor Modelling

Having an accurate model describing a system provides many advantages and is, for all

intents and purposes, required for the development of more sophisticated control schemes.

In the previous version of the lathe system, the control method was tuned experimentally.

This was done largely by trial and error, and could be potentially time consuming without

any confirmation whether the final configuration was optimal. Using a model allows the

controller to be designed mathematically based on the parameters of the model, before

the controller is implemented experimentally. The theory behind most control methods is

heavily based on the parameters of the model; so the more accurate the model, the better

the performance from the controller. The biggest advantage of an accurate model however,

is the ability to simulate the output of a system. Once a model has been validated to show

that the simulated output matches the experimental output of the system to within a

desired tolerance, the development time of a controller is greatly reduced. A model allows

the controller to be tuned quickly and efficiently before being validated on the physical

system. Although simulation is important, the model, and therefore the simulation of the

system output, will invariably differ to some degree from the actual system. This makes

experimental validation necessary.

This chapter discusses the development of the system model used to describe the x-axis

of the 3-axis CNC lathe system, which is depicted in figure 3.9. Section 4.1 rationalizes

the selection of a linear 1st-order model for the x-axis. The dynamic equations used to

describe the x-axis as a contained input/output system and the simplifications made to

that model are in section 4.2. The parameters of the model are identified and a friction
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model is developed for the axis in sections 4.3 and 4.4 respectively. Finally, the axis model

is validated in section 4.5 and then summarized in 4.6.

4.1 Model Selection

The selection of the model structure is an important step. There are many common model

types being used today for system identification, with some being more suitable than others

depending on the goal of the model. All models fall into one of two main categories, either

parametric or non-parametric [26]. The non-parametric methods are usually used when

no prior information about the system is known. Experimental data, gathered from the

system and manipulated in specific ways, can be used to create a model. The resulting

model is a parametric model, but the structure is entirely dependent on the experimental

data. For the parametric methods, some information about the system is either known

or assumed. The structure of the model (i.e., the model type and order) is selected prior

to analysing the experimental data. The parameters for the selected model structure are

then estimated by analysing the experimental data.

As discussed in section 1.7, the model in this work is required for the x-axis of the

system, which consists of a table and ball screw mechanism, driven by a servo motor. The

servo motor has been the subject of modelling and control for many years. As a result,

there are numerous sources [12] documenting the successful modelling of different systems,

using many of the now common model types and structures. These previous works present

a good knowledge base for the decision making required in the identification of this work’s

system. This knowledge base allowed for a parametric model to be used.

The model selected for the lathe system’s x-axis was a linear first-order transfer function

model. Although servo motors are non-linear mechanical systems, they are often approx-

imated as linear systems [12, 10, 5]. Different nonlinear models do exist, but they can be

complicated and are frequently linearized about an operating point for simplification [16].

The control laws that have been developed for nonlinear systems are also complex. As it

is the goal of this work to develop a suitable controller and model for the servo motor axis,

the time requirement for an accurate nonlinear model and controller was not justifiable.

Therefore the simpler yet sufficiently accurate linear model was selected. The transfer

function structure that was selected for the model is probably the most common model
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structure in use. It is easy to switch to other useful forms, such as state space or discrete

time models, which are useful for controller design and computer implementation respec-

tively. The transfer function structure has other advantages. Several of the most common

identification techniques, such as least squares, work well with the transfer function form.

This form can also be derived directly from the dynamic equations that describe a system,

or used to describe specific aspects of the dynamics. This last property is the main reason

the transfer function structure was selected, as the knowledge base of servo motors and

ball screw drives available will be best utilized with the transfer function structure. The

model structure was selected to be first-order because, as will be shown, the basic dynamics

of the mechanical system of the ball screw can be described by using a first-order model.

As shown in [5], a first order model of a servo motor and ball screw drive is sufficient to

achieve reasonable position tracking, which is a goal of this work.

4.2 Model Development

The modelling techniques presented in the remainder of this chapter are derived from

[4, 5, 14, 26]. Figure 4.1 pictures the dynamic model that is used to describe the servo

motor and ball screw system. Table 4.1 lists the names and units of the corresponding

variables in the diagram. This dynamic model was adapted from the model provided in

[5], which was also for a servo motor and ball screw system, and therefore required little

modification.

Figure 4.1: Dynamic System Model

In accordance with the model type selected above, the amplifier and servo motor gains

are treated as linear constants, represented by the variables Ka and Kt respectively. The
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Variable Description

u Control Signal [V ]

Ka Amplifier Gain Constant [A/V ]

i Motor Current [A]

Kt Motor Gain Constant[Nm/A]

Tm Motor Torque [Nm]

Td Disturbance Torque [Nm]

J Rotational Inertia [ Nm
Rad/sec2

]

B Viscous Damping [ Nm
Rad/sec

]

ω Rotational Velocity [Rad/sec]

rg Gear/Ball Screw Ratio [ m
Rad

], [mm
Rad

]

v Linear Velocity [mm
sec

]

x Linear Position [mm]

Table 4.1: Dynamic System Model Variables

output from the servo motor is a motor torque (Tm), which is assumed to be affected by

an external disturbance torque (Td). The disturbance torque could be caused by factors

such as the systems inertia, noise, friction and gear backlash. This resultant torque is

then transferred to the ball screw, which is represented as a first-order dynamic system.

The assumption made is that the timing belt connecting the motor and ball screw form

a rigid body. This allows the motor to directly affect the rotating mass of the ball screw

and the translating load, which can be represented by a first-order transfer function [4, 5].

The rotational inertia (J) and viscous damping (B) parameters are used to described the

first-order system in the transfer function block pictured above. The rotational velocity

(ω) is the ball screw output and is converted into linear motion by using the linear constant

(rg), which represents the gear ratio between the motor and ball screw shaft, and the ball

screw pitch which moves the attached table. The linear velocity is converted into a linear

position (x) by an encoder that captures the output of the system.

The model is then simplified into a control signal equivalent form. This form, shown in

figure 4.2 below, reduces the complexity of the previous model, making controller develop-

ment simpler and leaving fewer parameters to model. Simple block diagram manipulations
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were used to reach this new form. Table 4.2 contains the new variable descriptions and

simplifications.

Figure 4.2: Simplified Dynamic System Model

Variable Simplificaiton Description

u - Control Signal [V ]

d Td

Ka·Kt
Control Signal Equivalent Disturbance [V ]

m J
Ka·Kt·rg Control Signal Equivalent Inertia [ V

mm/sec2
]

b B
Ka·Kt·rg Control Signal Equivalent Viscous Damping [ V

mm/sec
]

v - Linear Velocity [mm
sec

]

x - Linear Position [mm]

Table 4.2: Simplified Dynamic System Model Variables

The last step to prepare the model for identification is to transform the model into a

discrete-time equivalent form. Although the continuous form can be used for controller

development and simulation, it is best to use a discrete model when identifying the pa-

rameters, as the experimental data being used is discrete itself. To accomplish this, the

equation represented by the block diagram in 4.2, before integration occurs, was rewritten

as,

v(s) =
1
m

s+ b
m

· (u(s)− d(s)), (4.1)

where 1
m

can be represented by the gain Kv and b
m

can be represented by the pole Pv. A

z-transform can applied to equation 4.1, using a zero-order hold of the form 1−e−sTs

s
. This
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transformation produces the equation

v(z) =
Kv

Pv
· 1− e−PvTs

z − e−PvTs
· (u(z)− d(z)). (4.2)

For further simplification, a discrete-time gain and pole variable can be defined as,

Kvd =
Kv

Pv
· (1− e−PvTs)

and

Pvd = e−PvTs

respectively. The allows equation 4.2 to be rewritten as,

v(z) =
Kvd

z − Pvd
(u(z)− d(z)). (4.3)

The final simplified discrete-time model of the x axis, shown in (4.3) can be used for

identification of the continuous system parameters with discrete experimental data. The

continuous-time model parameters m and b can be equated to Kvd and Pvd directly through

back substitution.

4.3 System Identification

One of the most common methods used for system identification is least squares. In general,

least squares takes experimental data and creates a line of ‘best fit’ through the data, based

on a specified model structure and order. The method allows for many different model

structures and orders, but always arrives at the same general solution form [26]. Given

the discrete transfer function developed in (4.3) above, the difference equation model form

of least squares can be used and easily implemented. This form, as seen in [14], takes the

discrete experimental data of the system, and uses it to determine the value of the unknown

model parameters. The model in equation 4.3 must be rearranged into a difference equation

form to use the intended least squares variation. To achieve equation 4.4, the ‘z’ terms in

equation 4.3 are treated as shift operators, which offset a set of discrete data by one point

into the future when multiplied by the shift operator. The ‘k’ index represents as a single

discrete data point in a data set.

v(k + 1) = Pvd ∗ v(k) +Kvd ∗ u(k)−Kvd ∗ d(k) (4.4)
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The disturbance term d in equation 4.4 is assumed to be dominantly comprised of the

friction present in the system. Figure 4.3 shows the Stribeck friction curve [5], which de-

scribes the relationship of static, viscous and coulomb friction to velocity. The disturbance

in the model is approximated by a constant plus/minus value, representing the coulomb

friction portion of the Stribeck curve. Although the system parameters could be identi-

fied while ignoring the disturbance input, including an approximation for the disturbance

will improve the estimates of the system’s inertia and viscous damping parameters. Us-

ing coulomb friction as an approximation for the disturbance input is appropriate because

coulomb friction accounts for the largest part of the Stribeck friction curve. In this way,

a simple estimate for friction can be used to improve the parameter estimates of the sys-

tem model. A more rigorous friction model will be introduced afterwards in section 4.4

to improve the performance of the system model. Equations 4.5 to 4.8 below show the

Figure 4.3: Stribeck Friction Curve

switching function used for determining the constant value of coulomb friction, depending

on the direction and magnitude of the system’s velocity. As indicated in the equations, the

disturbance term will only have one value at a time, as the friction switches between the

lower value (d+
c ), zero and the upper value (d+

c ). When collecting the experimental data,
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the switching value of the PV (v) and NV (v) terms will be the known data.

σ(v) =


+1, if v > vmin

−1, if v < −vmin
0, otherwise

(4.5)

PV (v) =
1

2
σ(v)(1− σ(v)) (4.6)

NV (v) = −1

2
σ(v)(1− σ(v)) (4.7)

d = PV (v(k)) · dc+ +NV (v(k)) · dc− (4.8)

Equation 4.9 shows the modified difference equation with the coulomb friction estimate

used as the disturbance input. The Kvd · dc+ and Kvd · dc− terms are the additional

unknown parameters that must be identified.

v(k + 1) = Pvd · v(k) +Kvd · u(k)− PV (v(k)) ·Kvd · dc+ −NV (v(k)) ·Kvd · dc− (4.9)

The difference equation can now be expressed in matrix form, defined by the least squares

method, to represent all of the input and output data collected during an experimental

test. A general form of this matrix is shown in equation 4.10 below. The matrix form

is separated into inputs and outputs, and known and unknown parameters. By solving

this system of equations in matrix form, the unknown parameter vector θ, which contains

the unknown model parameters, can be solved. The solution to this matrix form can be

found using equation 4.11, known as the left pseudo-inverse equation. In this way, the

least squares method uses the trends of all of the input and output data of the system to

estimate the parameters defined by the dynamic model of the system.
v(2)

v(3)
...

v(N)


︸ ︷︷ ︸

Y

=


v(2) u(1) −PV (v(1)) −NV (v(1))

v(3) u(2) −PV (v(2)) −NV (v(2))
...

...
...

...

v(N) u(N − 1) −PV (v(N − 1)) −NV (v(N − 1))


︸ ︷︷ ︸

Φ


Pvd

Kvd

Kvd · dc+

Kvd · dc−


︸ ︷︷ ︸

θ

(4.10)

θ = (ΦTΦ)−1ΦTY (4.11)

Figure 4.4 shows the input signal that was used for the purpose of system identifica-

tion. This signal, an oscillating square-wave, has some unique characteristics that make
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it appropriate for system identification. The units of the input signal are voltage, which

is supplied to the motor amplifier. This input demands a constant torque output from

the motor. Constant torque, which is proportional to constant acceleration, will gener-

ate a continuously increasing velocity. By oscillating the input signal between voltages of

different magnitude and polarity at a fast interval of 0.1 seconds, the system will never

reach a constantly increasing velocity. This is important, as it is observing how the sys-

tem responds to changes (i.e. the system dynamics) which allows the identification to be

successful. If the system output did reach a constantly increasing velocity, that portion of

the data would be unusable for the least squares calculation. The amplitude of the square

wave was selected to ensure that the effects of static and coulomb friction were observed.

If the voltage input is too high, the system will generate an inertial force large enough that

the effects of friction are hidden. Figure 4.5 shows the experimental velocity output signal

produced by the described input. As can be seen, the velocity in the figure never reaches

a steady state of increase, as desired. The data can now be used to estimate the model

parameters with the least squares method.

Figure 4.4: Square Wave Input for System Identification

The data from the experimental trial is placed into the matrix form presented in equa-

tion 4.10. The solution is solved using equation 4.11 in Matlab. Now with the parameter

values of Pvd and Kvd identified, simple back substitution can be used to solve for the

continuous time parameters of inertia (m) and viscous damping (b). Table 4.3 below shows

the identified values of the inertia, viscous damping and coulomb friction.

Using the above identified parameters with the model presented in figure 4.6, the system

output is simulated to check the validity of the identified parameters. The only change to
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Figure 4.5: Velocity Output of System Identification Test

Parameter Value

Inertia (m) 0.009118

Viscous Damping (b) 0.002577

Pos. Coulomb Friction (dc+) 0.1273

Neg. Coulomb Friction (dc−) -0.09789

Table 4.3: Identified Model Parameters with Coulomb Friction
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this new system model from the model in figure 4.2 is the addition of the coulomb friction

estimate as the disturbance input. Figure 4.7 shows the results. As can be observed, the

simulated output matches closely to the experimental. Figure 4.8 highlights the differences

in the outputs by showing a zoomed-in portion of the data at lower velocities. Although the

simulation approximates the experimental data well, there is some bias at low velocities.

This is attributed to the simple coulomb friction model that is being used. The model

does not account for the static friction present at lower velocities. To improve the model

further, a new friction model will be developed that more closely matches the Stribeck

curve.

Figure 4.6: System Block Diagram with Coulomb Friction Model

4.4 Nonlinear Friction Modelling

The new friction model that will be developed to improve the system model’s accuracy is

a nonlinear friction model. This model, as seen in [5], produces a better representation of

the Stribeck curve by using equation 4.12. Table 4.4 describes the variables used in (4.12).

d =

{
d+
c + (d+

s − d+
c )e−

|v|/Ω

d−c + (d−s − d−c )e−
|v|/Ω

(4.12)

This equation uses estimated values of both static and coulomb friction, and takes into

account the viscous damping parameter from the model. To identify the parameters of
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Figure 4.7: Model Validation - Simulated vs. Experimental System Response

Figure 4.8: Model Validation - Simulated vs. Experimental System Response, Zoom

43



Variable Description

d+
c Pos. Coulomb Friction

d+
s Pos. Static Friction

d−c Neg. Coulomb Friction

d−s Neg. Static Friction

Ω Velocity Constant

Table 4.4: Nonlinear Friction Model Parameter Description

this friction model, a Kalman filter is used to estimate the disturbance observed during a

constant velocity test. The velocities must be constant so that any fluctuations away from

the desired velocity can be identified as a disturbance and not a dynamic response. By

estimating the disturbance at a number of different velocities, a ‘disturbance vs. velocity’

plot can be generated. As stated earlier, by assuming the disturbance observed in the

system is primarily attributed to friction, this plot will represent a friction versus velocity

profile. The unknown parameters can then be estimated based on this plot. By identifying

these friction parameters accurately, equation 4.12 should approximate the experimental

friction profile.

4.4.1 Kalman Filter

The Kalman filter developed for this identification process is based on the work in [5]. It

uses a discrete time state space form, with the states for the x-axis selected as position

and velocity, which are logical system outputs. The transfer function form of the system

model is re-written into continuous time state space form as[
ẋ

ẍ

]
=

[
0 1

0 −b
m

]
︸ ︷︷ ︸

Ac

[
x

ẋ

]
+

[
0
1
m

]
︸︷︷︸
Bc

u(t)

[y] =
[
1 0

]
︸ ︷︷ ︸

Cc

[
x

ẋ

]
+ [0]︸︷︷︸

Dc

u(t)

. (4.13)
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The above model can be transformed into the discrete time domain by using the transfor-

mation [9],

A = eAcTs . (4.14)

In this equation, Ts is the sampling time of the discrete system and Ac represents the

continuous state space matrix. A similar transformation to equation 4.14 can be applied

to each matrix in the continuous state space model to complete the transformation into a

discrete time model. This yields a discrete time model of the form,

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
. (4.15)

The Kalman filter creates estimates of the states based on the provided constant velocity

input and output data. To obtain an estimate of the disturbance observed during movement

of the x axis, a dynamic model for the disturbance must be added to the state space model

shown in equation 4.15 above. The disturbance is given the form

d(k + 1) = d(k) + ωd(k). (4.16)

This model assumes that the disturbance is a sequence of piece-wise constant signals. The

term ωd is a perturbation to the disturbance process. This perturbation is assumed to be a

normal distribution with a zero mean and a variance Rωd. The variance for the disturbance

model is a tuning parameter for the activeness of the Kalman filter. By increasing Rωd, the

performance of the Kalman filter should improve, as the Kalman filter will be expecting

a greater amount of disturbance. The disturbance estimate will become ‘jittery’ when the

value of Rωd is too high, however, which is an indication of a maximum value. The value

0.008 [mm2] was determined experimentally to be suitable for this system. Figure 4.9

shows the disturbance predicted by the Kalman filter with the chosen variance.

The output state equation must also be modified to account for the disturbance param-

eter added to the system’s state vector. The disturbance does not directly affect the output

however, so the output state equation will remain similar to equation 4.13, although the

matrix dimensions must be modified to account for the disturbance parameter in the state

vector. However, any noise that is observed in the output measurements can be added

to the state equation in the form of its variance. By accounting for some of the noise in

the data, the Kalman filter will not add it into the disturbance estimate, which will im-

prove the results. In this case, the quantization error caused by the encoder is considered
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Figure 4.9: Kalman Filter Disturbance Prediction - Variance = 0.008

and represented as Rv, with a zero-mean Gaussian distribution. Equation 4.17 shows the

modified discrete time state space model, which includes the disturbance dynamics.[
x(k + 1)

d(k + 1)

]
︸ ︷︷ ︸

ż

=

[
A −B
0 1

]
︸ ︷︷ ︸

AZ

[
x(k)

d(k)

]
︸ ︷︷ ︸

z

+

[
B

0

]
︸︷︷︸
Bz

[
u(k)

]
+

[
0

1

]
︸︷︷︸
W

[
ωd(k)

]
[
yz(k)

]
=

[
C 0

]
︸ ︷︷ ︸

Cz

[
x(k)

d(k)

]
︸ ︷︷ ︸

z

+Rv

(4.17)

The Kalman filter gain can then be determined using the combined model form of

(4.17) with the set of gain equations in 4.18 below.

P (k|k − 1) = A · P (k − 1|k − 1) · AT +W ·Rw ·W T (4.18a)

Kobs = P (k|k − 1) · CT [Rv + C · P (k|k − 1)CT ]−1 (4.18b)

P (k|k) = (I −KobsC) · P (k|k − 1) (4.18c)

These equations use the system state matrices and variances to estimate the error covari-

ance (P (k|k)) of the Kalman filter state estimate (equation 4.18a). Equation 4.18b uses
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the estimate of the error covariance to calculate the Kalman gain term (Kobs). The Kalman

gain is then used in equation 4.18c to improve the estimate of the error covariance. By

iteratively repeating this process, the Kalman gain will eventually converge to a final value,

determined by a convergence tolerance.

Finally, with the modified model form in equation 4.17 and the calculated Kalman gain,

the standard form of the Kalman filter can be used to estimate the state vector. Equation

4.19 contains the Kalman filter equation, using the model state space equations defined

above. The Kalman filter designed here will estimate the disturbances experienced by the

system during any motion. The benefit with this form of Kalman filter is that it can be

run offline. The input and output data of an experimental trial must only be recorded and

can then be analyzed later. This is an advantage when tuning the parameters or structure

of a model, as new experiments do not need to be run, which saves time.

ẑ(h) = (I −Kobs · Cz)Az · ẑ(k − 1) + (I −Kobs · Cz)Bz · u(k − 1) +Kobs · yz(k) (4.19)

4.4.2 Friction Model Identification

The Kalman filter described in section 4.4.1 must be used in conjunction with smooth

velocity tests. The main principle is that any fluctuations seen during a constant velocity

test will be attributed to disturbance. When the Kalman filter estimates the disturbance

profile during these tests, it is estimating the value of friction at different speeds. These

tests cannot be run in an open-loop configuration. To ensure that the desired velocity is

reached and maintained during the trials, a simple proportional-derivative (PD) controller

was developed. This controller was designed using the identified parameters for the system,

shown in table 4.3. The criteria selected for the controller was a rise time (tr) of 0.05 seconds

and a maximum overshoot (Mp) of 10 percent. Using the standard second order system

transfer function expression, equation 4.20 below, the gains for the PD controller were

calculated using standard methods [9] and are presented in table 4.5. A block diagram of

the system is presented in figure 4.10.

G(s) =
ω2
n

s2 + 2ζωn · s+ ω2
n

(4.20)

The PD controller achieves satisfactory position control. By inputting a linearly in-

creasing position command, the system is able to reach a constant velocity. This controller
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Gain Value

KP 1.1466

KD 0.0363

Table 4.5: PD Controller Parameters

Figure 4.10: System Block Diagram with PD Control

enables the velocity trials for friction parameter identification to be run, but it is not

the final controller used for machining. The controller used for machining is presented in

Section 5. Figure 4.11 presents a sample position command for the smooth velocity tests.

As can be seen in the figure, the constant slope of the position curve will achieve a

constant velocity. The command profile will move the system both forwards and backwards,

achieving the necessary positive and negative velocity measurements in one test. Generally,

the Kalman filter will produce a better disturbance estimate when more data is collected.

However, the distance the x-axis is able to travel in either direction is limited by the

length of the ball screw and the placement of the bearings on the slide rails. Starting at

the rear position of the ballscrew, the platform can move forward approximately 190mm.

Therefore, the distance of travel for each trial is kept at a conservative constant, while the

duration of each trial is reduced as faster velocities are tested. All of the velocities that

were tested are listed in table 4.6 below.

The Kalman filter presented in section 4.4.1 can now estimate the disturbances in the

system at different velocities by using the collected data. The two figures in 4.12 are

typical results, showing the estimated disturbance for two sample velocity trails. From
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Figure 4.11: Example Smooth Velocity Trial for ±10 [mm/s]

±0.1 ±0.25 ±0.50 ±0.75 ±1.0 ±2.0 ±3.0 ±4.0 ±5.0

±6.0 ±7.0 ±8.0 ±9.0 ±10.0 ±25.0 ±50.0 ±75.0 ±100.0

Table 4.6: Smooth Velocity Trial Values - In [mm/s]
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these disturbance estimates, an average disturbance value is calculated for each test. The

average disturbance value for the two sample trials are shown in the figures as the constant

straight lines running through the estimated disturbance data.

Figure 4.12: Example Disturbance Estimates for Two Test Velocities

By plotting the average disturbances against their respective constant velocities, the

disturbance plot can be generated. As can be seen in figure 4.13, each point in the plot

represents an average disturbance estimated by the Kalman filter at the corresponding

velocities. This disturbance profile looks similar to the Stribeck curve shown in figure

4.3. The profile shape further validates the earlier assumption to attribute the majority

of the observed disturbance to friction. As indicated in the Stribeck curve, a slope in the

disturbance values as the velocity increases in magnitude in either direction is attributed

to bias in the viscous damping parameter. By correcting the value of viscous damping, the

slope in the disturbance profile will appear more horizontal as it moves towards positive

and negative infinity, which removes the bias. To correct the viscous friction term, the

slope of the disturbance estimate in the positive and negative directions is averaged and

then added onto the viscous friction parameter. For the disturbance curve in figure 4.13,

the approximate average slope is found to be −0.000633 V/mm
sec

. This slope is added to the
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viscous friction parameter b, which are of the same units, and the disturbance estimate is

calculated again using the Kalman filter and the same experimental data, but now with

the new value of b = 0.001944. Figure 4.14 shows the second iteration of the disturbance

estimate profile. This profile exhibits a slope that is closer to zero as the curve moves

towards positive and negative infinity than the profile in figure 4.13. This indicates that

the tuned value of b has a smaller amount of bias than the previous value and is a more

accurate estimate for the system.

Figure 4.13: Estimated Disturbance Profile Using Kalman Filter

Figure 4.14: Tuned Disturbance Profile

The estimated disturbance profile can be used to determine the corresponding static and
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coulomb friction values that are required for equation 4.12. Using figure 4.14, the static

friction terms are identified based on the disturbance value estimated for the smallest

velocity magnitude for both the positive and negative directions. The coulomb friction

terms were estimated at where the disturbance values leveled off in the positive and negative

velocity directions, as seen in the Stribeck curve. To find an estimate for the velocity

constant Ω, a cost function,

∆ =
1

2
·
∑

δ2, (4.21)

was used, where δ is the difference between the disturbance given by the friction model and

disturbance estimate at a velocity point. Equation 4.21 penalizes the error between the

experimentally determined disturbance and the disturbance calculated using the model.

Values of Ω were substituted into the friction model from 0.1 to 10 at steps of 0.1. The

value of Ω that minimized the cost function was selected as the estimate for the model.

The friction model parameters are presented in table 4.7.

Parameter Value [V ]

(d+
s ) 0.109

(d−s ) -0.0496

(d+
c ) 0.2095

(d−c ) -0.1847

Table 4.7: Nonlinear Friction Model Parameters

To verify the identified nonlinear friction model parameters, the friction model was

plotted against the estimated disturbance profile that was found using the Kalman filter. As

can be seen in figure 4.15, the friction model predicts the higher velocity points accurately,

but does not match the lower velocity portion of the curve as nicely. This is due to the

exponential in the friction model, equation 4.12, causing a smooth curve up to a constant

value. The approximation is acceptable because the majority of the intended motion of the

x-axis is composed of velocity values in the higher region, where the curve is more accurate.

For any errors incurred by the disturbance function at lower velocities, the robustness of

the controller will be relied upon to compensate accordingly.
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Figure 4.15: Estimated Disturbance Profile vs. Friction Model

4.5 Model Validation

The nonlinear friction model developed in section 4.4 will replace the simple coulomb

friction model that was identified along with the inertia and viscous damping parameters

in section 4.3. To validate the friction model, the input signal shown in figure 4.4 is applied

to the new system model. Figure 4.16 shows the results. As can be seen in the results,

the system with the new friction model appears to closely follow the experimental output

data. To compare this result to that of the simpler coulomb friction model developed

earlier, an error plot was created based on the differences between the experimental and

simulated output for both friction models. Figure 4.17 illustrates this comparison. The

figure indicates that both friction models provide similar estimates for higher velocity

inputs. This is expected, as both models contain an estimate for coulomb friction, which is

the dominant friction term at higher velocities. However, during slower velocity motions,

the nonlinear friction model produces a significantly smaller amount of error than that of

the coulomb friction model. Again, this is expected because the nonlinear friction model

takes into account a static friction estimate, which is the dominant friction term during

slow velocity motion. For example, during the time interval from 0.8 to 0.9 seconds, which

is a higher velocity motion, the approximate error values are 3.42 and 2.96 mm/s for the

nonlinear and coulomb friction models respectively. This is a difference in error of about
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0.46 mm/s. During the time interval of 0.2 to 0.3 seconds, a slower velocity motion, the

approximate error values are 4.73 and 2.57 mm/s for the nonlinear and coulomb friction

models respectively. This is a difference in error of about 2.16 mm/s. These results indicate

that the nonlinear friction model, which takes into account both static and coulomb friction

terms, provides a more accurate model than the simpler coulomb friction model. With the

addition of this friction model, the model for the x-axis of the CNC lathe is now complete.

Figure 4.16: Nonlinear Friction Model Validation

Figure 4.17: Friction Model Error Comparison, Nonlinear vs. Coulomb
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4.6 Summary

The final model for the x-axis of the 3-axis lathe is presented in figure 4.18. This model

contains a first order transfer function that has been simplified into controller equivalent

signals and parameters. The parameters were identified using a variation of the least

squares parameter identification technique. A nonlinear friction model was developed using

a Kalman filter to estimate the disturbance injected into the system that considered both

static and coulomb friction. Developing the friction model also improved the estimate of

the model’s viscous damping parameter. By adding this friction model to the x-axis model,

the accuracy of the simulations of the system was improved. This model will be used to

develop and tune a control law for operating the lathe at faster speeds. Having an accurate

model will allow this process to be more effective and reliable.

Figure 4.18: System Block Diagram with Nonlinear Friction Model
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Chapter 5

Controller

5.1 Controller Selection

The controller selected for use with the 3-axis CNC lathe system was an adaptive sliding

mode controller (ASMC). The decision was made based on the expectation of the perfor-

mance of the controller on the mechanical system, and on the ease of its implementation.

The system is required to track position commands with an error of less than 0.5mm. This

error threshold comes from the fact that in a wood surface, errors greater than 0.5mm will

show-up visually. The ASMC method holds numerous attractive qualities that make it a

strong choice for a control law. Firstly, the performance of the ASMC has been shown to

be good in terms of tracking error and robustness in other applications, such as in electric

drives for machine tools, vehicle control and mobile robot control [3, 22]. This is due to

the controller having a high bandwidth and an inherent feedforward design, coupled with

disturbance rejection. In fact, the ASMC has been shown to be less sensitive to changes in

the mechanical system model than other conventional and complex control laws alike [2].

Second, the ASMC is also a relatively easy control law to design and tune. There are

only two main steps to the design of a sliding mode controller; the selection of a sliding

surface and a Lyapunov function. Normally, the ASMC is a non-linear control law that

is robust to uncertainties and time variation in the system plant or external forces [2].

However, if there is only one sliding surface parameter, disturbance rejection for example,

the control law works out to be linear, while still retaining its robust properties [4]. As
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the development of the ASMC in the following section will discuss, disturbance rejection

was selected as the sliding surface parameter for the control law.

Altintas et al. [2] performed a direct comparison between an ASMC and a pole place-

ment controller with feed forward action and a zero phase error tracking (ZPET) filter.

It was found that both controllers performed equally well in terms of tracking error for

specific machining profiles, but the ASMC required much less design and fewer computa-

tions. The ASMC used a simpler model and was able to reject disturbances better than

the ZPET controller. This is also true in the case of more conventional controllers, such as

PID controllers, where the system does not achieve high tracking accuracy at high speed

if there are too many external factors (like friction) that are either not modelled or not

compensated for appropriately.

One of the drawbacks with using a sliding mode controller is the choice of the sliding sur-

face and Lyapunov function must be made based on experience and intuition. This implies

that a solution to the control law may not be an optimal solution. Also, it has been shown

that the ASMC can produce overshoot and transient oscillations if the frequency content

of the commanded input contains values that are outside of the controller’s bandwidth.

Despite this small downside to the ASMC, it was selected as the control law to run the

3-axis CNC lathe system, based on its tracking performance and ease of implementation.

5.2 Control Law

The theory that follows for the ASMC control law was adapted from [4, 22]. The control

law for the ASMC is created based on the model presented by equation 4.1 in section 4.2.

This model was first rewritten in state space form to more easily create the ASMC design.

The state space model is presented as[
ẋ

ẍ

]
=

[
0 1

0 −b
m

][
x

ẋ

]
+

[
0
1
m

]
u(t)−

[
0
1
m

]
d(t). (5.1)

Next, a sliding surface must be selected. Due to the model being second order, the sliding

surface defines a line in the state space of the system, instead of an actual surface. The

ASMC will drive the state of the system to this line and once on the sliding surface, the

controller will keep the state there. For the system to be well behaved, the state must
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move towards an equilibrium point of zero, while remaining confined to the surface. This

equilibrium point is defined for x approaching xref , or when the error is zero. Hence, by

transforming the state of the system into the error of the state and moving that error

towards zero, position control is achieved. The sliding surface definition is

σ = S

([
xref

ẋref

]
−

[
x

ẋ

])
. (5.2)

The term S in equation 5.2 is a matrix that represents the constants in the sliding surface

equation that force the equation to zero when σ = 0. For simplicity, one of the constants

is set to one, while the other is represented by λ. This constant can be related to the

bandwidth of the controller and must be selected based on the capabilities of the physical

system and the intended input commands.

σ =
[
λ 1

]
︸ ︷︷ ︸

S


[
xref

ẋref

]
︸ ︷︷ ︸
xref

−

[
x

ẋ

]
︸︷︷︸
x

 (5.3)

To ensure that the state remains on σ, the time derivative of σ evaluated at the state

trajectories must be zero, or, σ̇ = 0. From equation 5.3 this becomes

σ̇ = S (ẋref − ẋ) . (5.4)

Using the system model, equation 5.1, the expression becomes

σ̇ = S (ẋref − Ax− d)− SBu(t). (5.5)

To make this equation zero and satisfy the stability and performance criteria, the control

law u can be set to

u = (SB)−1S(ẋref − Ax+Bd). (5.6)

The above control law will produce a system response that has the desired position tracking

performance. However, this is only true assuming all of the parameters in the model

presented in figure 4.18 are exact. To make the controller more robust, the control law can

be modified to account for a degree of uncertainty in some or all of the model parameters.

The parameters in question are the system’s mass m, viscous friction b, and disturbance
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d. The disturbance is considered as an uncertain parameter. This is an appropriate choice

because the disturbance, which has been treated wholly as friction, is difficult to model. It

is also possible that other unmodelled dynamic effects could be present in the disturbance

parameter. Also, any error that exists in the other estimated system parameters will be

represented to a certain extent in the disturbance.

First, equation 5.6 can be rewritten as a linear combination of r parameters P =[
p1 p2 · · · pr

]
and corresponding regressors Y (ẋref , x) =

[
y1 y2 · · · yr

]
, represented

as Y (ẋref , x)P . By expanding equation 5.6 and putting it into this form, we get

u =
[
ẍref + λ(ẋref − x) ẋ 1

]
︸ ︷︷ ︸

Y

mb
d


︸ ︷︷ ︸
P

. (5.7)

The uncertainty in the disturbance parameter is considered to be bound by d− ≤ d ≤ d+

and represented by the equation
˙̂
d = ρκy3σ, (5.8)

where
˙̂
d is equal to an estimate of the disturbance. The disturbance equation was con-

structed in the following manner. The term ρ represents the adaptation gain, which is the

sensitivity of the controller to change. The adaptation bound factor κ, controls when the

parameter needs to change. If the disturbance is outside its bounds, κ will be equal to one,

representing the need for the parameter to change, if the disturbance is within its bounds,

κ will be zero. The variable y3 controls how much to change each parameter by. From

equation 5.7, y3 = 1.

A control law that guarantees the stability of this new form is found using a Lyapunov

approach. A Lyapunov function V (x), for equilibrium point x = 0, must be found that

increases in value with the system states, or their error and satisfies the following criteria,

•V (x) > 0

• V̇ (x) ≤ 0, for system stability

• V̇ (x) < 0, for system asymptotic stability.

(5.9)

By constructing a control law that allows the Lyapunov equation to satisfy all of the

conditions above, the system will be asymptotically stable. This implies that not only will
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the states of the system be bounded, but that they will approach the equilibrium point of

the system in a finite amount of time. This will guarantee the robustness of the control law,

even when faced with uncertainties in the disturbance parameters. A Lyapunov function

that satisfies the stated criteria was found in [4] and is presented below:

V (x) =
1

2
[σT (SB)−1σ + (P − P̂ )TΓ(P − P̂ )]. (5.10)

In this general form of the Lyaponov function, the term P̂ is identical in structure to the

matrix P ; however all of the variables of the matrix are considered to be perturbed versions

of the parameters in P , within a known bound. As mentioned above, the control law is

being designed so that only the disturbance d is considered to have any perturbations. This

implies that m = m̂ and b = b̂. Similarly, the term Γ is a diagonal matrix that contains

the adaptive gains ρr. Only the gain for the disturbance parameter is a variable however,

represented as ρ3 in equation 5.8. The remaining gains are set to a value of 1, since the

mass (m) and viscous friction (b) parameters are not considered to be uncertain. The Lie

derivative of equation 5.10 can be simplified as

V̇ (x) = (P − P̂ )Y Tσ − (P − P̂ )TΓ
˙̂
P − σTu+ σTY P̂ . (5.11)

It has been proven that to ensure equations 5.10 and 5.11 satisfy conditions 5.9, a suitable

control law is

u = Ksσ + Y (ẋref , x)P̂ , (5.12)

where Ks is greater than zero.

Given this control law, we can now simplify it into a form that can be implemented on

the x-axis model of the system. Using equation 5.12 and determining the integral of the

uncertain disturbance parameter as

d̂ = ρ(xref − x) + ρλ

∫ t

0

(xref − x) dτ, (5.13)

the control law can be represented as

u = m̂ẍref + b̂ẋref + [Ksλ+ ρ︸ ︷︷ ︸
KP

]e+ [ ρλ︸︷︷︸
KI

]

∫ t

0

e dτ + [Ks + m̂λ− b̂︸ ︷︷ ︸
KD

]ė. (5.14)

This control law will guarantee the tracking performance of the x-axis, while also remain-

ing robust in the face of the uncertainties expected in the disturbance parameter. Once
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designed, this control law is relatively easy to implement, only requiring the tuning of three

parameters. As mentioned above, the tracking performance of the ASMC is comparable

to other known controllers. Figure 5.1 shows a block diagram of the ASMC controller.

Figure 5.1: Adaptive Sliding Mode Controller Block Diagram

5.3 Parameter Tuning

The parameters that require tuning are λ, the sliding surface parameter that forces the

systems states towards zero and represents the bandwidth of the system; ρ, the adaptation

gain, controlling the sensitivity of the controller to uncertainties; and Ks, the controller

law gain that is used to satisfy the Lyapunov function.

The parameter λ is selected by choosing a bandwidth for the controller. To ensure

that the bandwidth selected is not higher than that of the system’s, a frequency response

test was run on the system. A frequency response test is performed by inputting a series

of sine waves to the system and measuring the response to generate a bode plot of the

system. The bode plot, which contains a magnitude and frequency plot of the system’s

response, will indicate an experimental bandwidth drop-off point, which can be used as the

bandwidth limit of the system. The results from the frequency response test are shown in

figure 5.2.
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Figure 5.2: X-Axis Frequency Response

As can be seen in the figure, a small resonance peak occurs in both the magnitude and

phase plots at approximately 78Hz. Operating the system within the range of a resonance

peak can have negative effects, such as extreme vibrations, and should be avoided. Using

80Hz as an estimate of the system’s bandwidth, the controller bandwidth is selected to be

40Hz; well away from the bandwidth of the system. Selecting a lower bandwidth for the

controller should ensure that the system will not enter the resonance peak during operation

and should also avoid .

Once λ has been selected appropriately for the given system, the remaining two param-

eters ρ and Ks are selected through simulation. Using the system model and controller

the tracking error of the system is simulated for different values of ρ and Ks. A range of

ρ from 0 to 10 in steps of 1, and a range of Ks from 0.01 to 0.31 in steps of 0.01 is used.

By minimizing the sum of the square of the tracking error for the different trials, a ρ and

Ks can be selected for optimal tracking error performance. Table 5.1 below presents the

tuned parameters that were used with the adaptive sliding mode controller.

5.4 Validation

To validate the performance of the controller on the x-axis of the lathe system, the controller

was simulated on the model provided in equation 4.1. A smooth trajectory, shown in figure
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Table 5.1: Tuned ASMC Parameter Values

Variable Value

λ 40

ρ 0.04

Ks 10

5.3, was used as the test input. The travel distance of this trajectory is 150mm, which

is the maximum distance the x-axis system can move forward safely. The feedrate was

chosen to be 100mm/s, which should be an easily attainable speed for a smooth motion

profile. This trajectory, which is designed to be jerk continuous, will test the ability of

the controller to achieve a desired position tracking error performance. The results of the

simulation are shown in figure 5.4.

Figure 5.3: Smooth Trajectory Reference Input

As can be seen in the figure, the ASMC is able to achieve a maximum position tracking

error of 0.023mm. This value is well below the desired maximum of 0.5mm, which is

discussed in section 7. To further validate the performance of the sliding mode controller,

the control law is implemented on the physical system and the same input is used to

test the performance. Figure 5.5 shows a comparison between the results of the simulated
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Figure 5.4: Simulated ASMC Tracking Error

ASMC and experimental ASMC. The experimental results validate those of the simulation,

which follow the same trends and are within the same magnitude range. The experimental

error results match closely to the simulated during the constant velocity intervals, but

the results differ greatest during the velocity transitions. Somewhat uncommonly, the

simulated response contains the larger error during these transitions, reaching magnitudes

that are approximately twice as large as those seen in the experimental response. These

differences can be explained by errors in the identified model. The largest discrepancies

between the simulated and experimental results are likely due to the friction model that

is being used, since these differences occur during the velocity transitions. An accurate

friction model is difficult to create and can easily influence the behaviour of a system at

low velocities, where the friction terms have a greater effect. It is also known that the

friction model being used is in the system model is less accurate at lower velocities, due to

the approximations made during model development (Section 4.4). However, the results

of the simulated and experimental trials are similar enough for the purpose of this work.

More importantly, they validate the performance of the sliding mode controller.

To further demonstrate the ASMC’s ability to reach high levels of position tracking

performance, the experimental results of the controller are compared to the results of a

PD controller. The PD controller used for comparison is outlined in section 4.4.2 that was

used for controlling the motion of the x-axis during the friction identification experiments.
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Figure 5.5: Simulated vs. Experimental ASMC Tracking Error

Figure 5.6 shows the comparison between the experimental results for the two controllers.

Figure 5.6: PD vs. ASMC - Experimental Tracking Error

As the results in figure 5.6 clearly illustrate, the position tracking error generated by

the ASMC is much smaller than that of the PD controller for the same input signal. The

PD controller has a maximum error of approximately 0.69mm, which is approximately 30

times larger than the ASMC’s 0.023mm of tracking error.
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The control law presented in this section has been shown to provide acceptable position

tracking performance through experimental validation. The performance of the sliding

mode controller has been compared to that of a PD controller and has been shown to achieve

better tracking performance, reinforcing the decision to make the ASMC the controller for

the 3-axis CNC lathe system. The control law presented in this section also shows that

the ASMC is robust to an expected amount of uncertainty in the disturbance parameters

in the model. This allows the ASMC to reliably control the x axis of the system when

unexpected disturbances are introduced into the system. These disturbances could include

unmodelled friction effects, such as wood chips on the ball screw, or external resistance

forces generated from cutting the material.
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Chapter 6

Algorithms

The 3-axis CNC lathe system uses a number of unique software packages in its operation.

The system makes use of a custom toolpath planner that was specifically designed for the

lathe system. A trajectory generator takes the toolpath and creates a smooth trajectory

with feed profile that is jerk continuous. This trajectory is used to send commands to

the three motors of the system. An algorithm is also proposed that takes a toolpath

and smooths the geometry of sharp edges automatically. This algorithm can be used for

smoothing edges of a model by a minimum amount to achieve a desired speed.

6.1 Toolpath Planner

The toolpath planner used for the 3-axis CNC lathe system is based on the works of Manos

[15] and Patel [20]. The program requires a model in stereo lithography (STL) file format,

which is a file that describes a solid model using only triangles to approximate its surface.

The toolpath planner uses a method called the ‘ball drop’ approach. A sphere is used to

approximate the shape of a ball-nose end mill and is ‘dropped’ onto the triangulated model

surface. The first point of contact between the sphere and the model surface is taken as

the toolpath point.

To calculate this point, all of the triangles in the ‘shadow’ of the sphere are located.

The shadow of the sphere is considered to be a projected circle of the sphere onto the

model surface. The shadow would be the portion of the model that is removed if the ball-
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nosed cutter were to plunge straight into the surface. Next, considering only the triangles

that lie in the shadow of the sphere, a point of contact is determined. For each triangle

the algorithm checks for the point of contact between the sphere and the plane in which

the triangle lies, the line segments that form the triangle, and the vertices of the triangle.

From these points of contact, the point that is furthest from the axis of rotation of the

model is selected. In this way, the ball-nose end mill will move towards the model surface

and stop at the determined point of contact, ensuring the surface is free of gouging. The

toolpath is created by rotating the sphere around the model at regular predefined intervals

and performing the ‘ball drop’ calculation. This forms a helical toolpath around the model

that covers the entire surface, as described in section 3.

6.2 Trajectory Generator

The purpose of the trajectory generator is to take the toolpath points from the algorithm

described above and create a set of intermediary points for the motors to follow that will

provide a smooth motion for the tool. The term ‘smooth motion’ is being used to imply

finite velocity, acceleration and jerk values. The jerk profile of the tool motion will not only

be of finite value, but will also be continuous. The algorithm presented here was developed

in [4, 1] and only needed small modifications to be adopted to the toolpaths being used

in this work. The main modification was a change in how the algorithm interacted with

the data. Instead of calculating the entire trajectory at once, the toolpath needed to be

broken down into smaller sections. This was required because the toolpaths being dealt

with contained far too many points for the solution to be computed in the PC memory.

This was the case because the solution calls for the inversion of a square matrix, whose

sides are four times the number of data points. For several thousand toolpath points, the

amount of memory to hold the square matrix could reach the thousand’s of gigabytes.

Each small solution of the trajectory therefore had to be stitched back together to match

the full motion of the toolpath. This stitching did not appear to have an effect on the

smoothness of the trajectories.

This method uses a second-order curve to describe the jerk profile of the desired tool

motion and consequently develops into a fifth-order position profile for the position of

the intermediary toolpath points. The benefit of having a continuous jerk and therefore
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continuous position, velocity and acceleration profiles, is that the demands on the motors

propelling the system are reduced. Smooth trajectory profiles lead to better performance

from the motors, allowing them to go faster, as they are more easily able to meet the

dynamics that are being demanded. This creates less jitter in the motion of the tool,

creating a better surface finish and makes the system easier to control, improving the

accuracy. Along with this smooth trajectory profile, the algorithm uses a cubic spline to

approximate a smooth curve between the toolpath points that have already been provided.

The trajectory generating algorithm can be broken up into the following steps:

1. Solve the parameters for the cubic splines between each pair of toolpath points.

2. Calculate the total arc length of the splines.

3. Calculate the smooth feed profile of the motion.

4. Interpolate the smooth intermediary toolpath points.

Once the trajectory algorithm has completed, the resulting motion profiles for each

axis will be smooth and constructed to match the sampling frequency of the system. This

motion profile is what is passed to the controller of the 3-axis CNC lathe system during

machining.

6.2.1 Cubic Spline Parameters

A cubic spline is used to create a smooth curve between each toolpath point that describes

a solid model. In this way, the surface of the model is smoother than when approximating

the surface with straight lines between toolpath points. A unique spline must be solved for

each pair of toolpath points. To make sure the separate splines create a smooth curve, their

parameters must be solved together, using a set of continuity equations. First, the chord

length lk between each toolpath point Pk must be calculated. As depicted in figure 6.1,

the chord length is the distance between a set of two toolpath points and can be calculated

much like the magnitude of a vector.

lk =
√

(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2. (6.1)
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Figure 6.1: Chord Length Calculation

Using the chord length distances, a unique set of splines can be calculated for each axis

separately. The following equation is the general form used for the cubic spline.

x(u) = A · u3 +B · u2 + C · u+D (6.2a)

ẋ(u) =
dx

du
= 3A · u2 + 2B · u+ C (6.2b)

ẍ(u) =
d2x

du2
= 6A · u+ 2B, (6.2c)

where u represents a distance along the chord length between a pair of toolpath points.

The following contains one solution to the set of spline parameters {A,B,C,D}.

Position Boundary Condition

The first set of equations comes from the assumption that for any pair of toolpath points,

the first point coincides with the start of the spline and the second point coincides with

the end of the spline. This creates the two equations,

[x(0)]k = Dxk
= Xk

[x(lk)]k = Axk
· l3k +Bxk

· l2k + Cxk
· lk +Dxk

= Xk+1.
(6.3)
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The k’s in equation 6.3 represent which pair of toolpath points is being considered. By

putting (6.3) into matrix form,

[
0 0 0 1

l3k l2k l1k 1

]
︸ ︷︷ ︸

L0
k


Axk

Bxk

Cxk

Dxk


︸ ︷︷ ︸

Θxk

=

[
Xk

Xk+1

]
︸ ︷︷ ︸

ζxk

(6.4)

the position boundary conditions for all splines can be stacked, creating 2N equations,

with 4N unknowns, where N + 1 is the number of toolpath points.
L0

1 02×4 · · · 0

02×4 L0
2

...
. . .

0 L0
N


︸ ︷︷ ︸

L0


Θx1

Θx2

...

ΘxN


︸ ︷︷ ︸

Θx

=


ζx1

ζx2

...

ζxN


︸ ︷︷ ︸

ζ0
x

(6.5)

L0 ·Θx = ζ0
x (2N Eqns.) (6.6)

Velocity and Acceleration Boundary Condition

The next set of equations is generated from the assumption that the 1st and 2nd order

tangents at each toolpath point are the same for the two splines that intersect that point.

This implies that the velocity and acceleration are the same where two spline segments

meet. This forms a set of two equations and six unknowns.

[ẋ(lk)]k = [ẋ(0)]k+1 → 3Axk
· l2k + 2Bxk

· lk + Cxk
= Cxk+1

[ẍ(lk)]k = [ẍ(0)]k+1 → 6Axk
· lk + 2Bxk

= 2Bxk+1

(6.7)
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These two equations create the following matrix form that contains the parameters for two

splines.

3l2k 2lk 1 0
... 0 0 −1 0

6lk 2 0 0
... 0 −2 0 0


︸ ︷︷ ︸

L1
k,k+12



Axk

Bxk

Cxk

Dxk

Axk+1

Bxk+1

Cxk+1

Dxk+1


︸ ︷︷ ︸ Θxk

Θxk+1



=

[
0

0

]
︸︷︷︸
ζxk

(6.8)

Equation 6.8 can be stacked to form a set of 2N − 2 equations that represent all of the

spline equations.
L12

1,2(2×8)
0(2×4)

0(2×4) L12
2,3(2×8)

. . .

L12
N−1,N(2×8)


︸ ︷︷ ︸

L0


Θx1

Θx2

...

ΘxN


︸ ︷︷ ︸

Θx

=
[
02(N−1)×1

]
︸ ︷︷ ︸

ζ12
x

(6.9)

L12 ·Θx = ζ12
x (2N-2 Eqns.) (6.10)

Extra Boundary Condition

Considering the set of equations formed by equations 6.6 and 6.10, there are currently

4N − 2 sets of equations, with 4N unknowns. Two more equations must be found to

simultaneously solve the parameters for all of the unique cubic splines. These two equations

are created by specifying a constant value for the tangents, or velocities, at the start and

end point of the toolpath. This will fill in the equations that were omitted when forming

the velocity and acceleration boundary equations.

[ẋ(0)]1 = Ẋ1 → Cx1 = Ẋ1

[ẋ(lN)]N = ẊN+1 → 3AxN
· l2N + 2BxN

· lN + CxN
= ẊN+1

(6.11)
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Again, these equations can be put into matrix form and then stacked to create a set of

equations for all of the spline parameters.

[
0 0 1 0

]
︸ ︷︷ ︸

Linitial


Ax1

Bx1

Cx1

Dx1


︸ ︷︷ ︸

Θx1

=
[
Xu

1

]
︸ ︷︷ ︸
ζinitial

[
3l2N 2lN 1 0

]
︸ ︷︷ ︸

Lfinal


AxN

BxN

CxN

DxN


︸ ︷︷ ︸

ΘxN

=
[
Xu
N+1

]
︸ ︷︷ ︸
ζfinal

(6.12)

[
Linitial

01×4

... 02×4(N−2)
...

01×4

Lfinal

]
︸ ︷︷ ︸

LBC


Θx1

Θx2

...

ΘxN


︸ ︷︷ ︸

Θx

=

[
ζinitial

ζfinal

]
︸ ︷︷ ︸

ζBC
x

(6.13)

LBC ·Θx = ζBCx (2 Eqns.) (6.14)

Adding equation 6.14 to 6.6 and 6.10, the system of equations now contains 4N equa-

tions with 4N unknowns. By grouping these equations into one matrix, the set of spline

parameters can be solved with traditional matrix techniques. L0

L12

LBC

Θx =

 ζ0

ζ12

ζBC

 (6.15)

L ·Θx = ζx. (6.16)

6.2.2 Total Arc Length

Now that the parameters for the cubic splines have been solved for all three axes, the

total arc length of the toolpath can be calculated. Unlike the chord lengths, which are

linear distances between toolpath points, arc lengths are an approximation of the length

of the spline segment that connects two toolpath points. An arc length is calculated by

approximating a spline segment with a large number of linear segments. By combining

the arc length estimates for each axis, a three dimensional arc length for the spline that

follows the contour of the model can be calculated. This value is required for constructing

the smooth feed profile.
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For the arc length calculation between two toolpath points, the corresponding chord

length is divided into a discrete number of steps ∆u. At each step along the chord length,

the parameters of the corresponding spline are used to calculate a position value along the

spline, using equation 6.2a. Figure 6.2 illustrates this concept.

Figure 6.2: Arc Length Calculation

Linear distances are calculated between each of the position values found along the

spline using

∆sk,j =
√

(xk,j − xk,j−1)2 + (yk,j − yk,j−1)2 + (zk,j − zk,j−1)2. (6.17)

Here, the ‘k’ index represents the spline segment, while the ‘j’ index represents the number

of ∆u’s along the chord length. Summing the small linear distances, ∆s creates the ap-

proximation for the arc length S. All of the arc lengths for each segment can be summed

to create a total arc length for the entire toolpath.

6.2.3 Smooth Feed Profile

The total arc length of all the splines that pass through the toolpath points of the model

is used to generate the smooth feed profile for the system. This profile can then be used

to create a trajectory for all three of the motor axes. As mentioned, the profile is based on
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continuous jerk motion, making the position profile a fifth-order curve. Figure 6.3 shows the

shape the profile. The equations describing this profile were created based on the parabolic

equation used to describe the desired continuous jerk motion and were integrated to obtain

the position equations. This set of equations are listed in appendix A.

Figure 6.3: Smooth Feed Profile

The variables J , A, D and F used in the feed profile equations represent the jerk,

acceleration, deceleration and feedrate values respectively. The sampling time Ts is also

used in these calculations. These variables are selected prior to generating the smooth

trajectory and must be selected based on the capabilities of the machining system. To

ensure that the specified profile parameters will construct a proper profile, a number of

conditions must be met.

Jerk Condition

To ensure that the jerk parameter does not contradict the maximum acceleration specifi-

cation, the jerk J must adhere to,

J ≤ Jlimit =
Amax
Ts

(6.18)
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Otherwise the jerk will be set to J = Amax

Ts
.

Acceleration Condition

To ensure that the increasing and decreasing acceleration periods, in segments T1 and T3,

do not overlap, the following condition must be satisfied.

T2 =
F − fs
A

− T1 + T3

2
≤ 0 (6.19)

If the calculated time of T2 is negative, then T2 is set to zero and the acceleration must be

recalculated using equation 6.20 to correct the feed profile. This case usually occurs when

the acceleration is too low.

A =
√

2J1 | F − fs | /3 · sign(F − fs) (6.20)

Deceleration Condition

The same situation arises for deceleration in segments T5 to T7 as for acceleration. The

deceleration must satisfy

T6 =
fe − F
D

− T5 + T7

2
≤ 0 (6.21)

If it does not, T6 is set to zero and the deceleration term is recalculated according to

D =
√

2J5 | fe − F | /3 · sign(fe − F ). (6.22)

This condition usually fails when the deceleration is too low, causing the T6 segment of the

profile to be overlapped by the increasing/decreasing deceleration.

Travel Length Condition

Finally, the length of the constructed profile is checked using a combination of all of the

variables provided, as show in,

T4 =
1

F
[L− (αF 2 + βF + γ)] ≤ 0. (6.23)

where,

α = 1
2A
− 1

2D
, β = 3

4
( A
J1

+ D
J5

), γ = 3
4
(Afs

J1
+ Dfe

J5
)− f2

s

2A
+ f2

e

2D
. (6.24)
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If the constant velocity duration T4 is negative, then the motion is too short for the specified

feedrate. This must be recalculated to a lower feedrate using,

F =
−β +

√
β2 − 4α(γ − L)

2α
. (6.25)

Motion Quantization

Once all of the conditions have been satisfied, the time duration of the profile must be

checked to ensure that it is an integer multiple of the sampling period Ts. This will ensure

that when the profile is run in a discrete system, the profile will be reconstructed properly

and not approximated. This is ideal to maintain the carefully constructed smooth motions

of the feed profile. If the profile is found to not be an integer multiple of the sampling

period, an adjustment factor is calculated based on the total time T∑ and the adjusted

total time T ′∑ .

αT =
T ′∑
T∑ =

N∑Ts
T∑ , where N∑ = round

(
T∑
Ts

)
. (6.26)

The time segments of the feed profile are then adjusted based on the factor αT as follows,

T ′i = αT · Ti, for i = 1,...,7. (6.27)

Using the adjusted time segment values, a new feedrate must be solved that satisfies

equation 6.28. This was found using the Newton-Ralphson method.

α0 · F ′
3

+ α1 · F ′
2

+ α2 · F ′ + α3 = 0. (6.28)

The new feedrate and segment times can then be used to calculate new values for the jerk,

acceleration and deceleration parameters, using the following equations,

A′ = F ′−fs

T ′1+T ′2
J ′1 = 3(F ′−fs)

2T ′1(T ′1+T ′2)

D′ = fe−F ′
T ′5+T ′6

J ′5 = 3(fe−F ′)
2T ′5(T ′5+T ′6)

.

(6.29)

Once the feed profile has been adjusted to fit with the sampling time of the system, the

equations in appendix A can be used to produce the smooth profile.
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6.2.4 Interpolate Smooth Toolpath

The algorithm uses a 1st order Taylor Series based interpolation approach to generate the

intermediary points along the toolpath. Using the spline equations that have already been

solved and the feed profile that has been constructed, new toolpath points are solved that

will create the smooth, constant feed profile that follows the contours of the model surface.

This new toolpath is generated for each axis and the spacing of the points will coincide

with the sampling time of the system to create the desired smooth profile. The following

equation is used to calculate u, the variable step size along a chord length between each

new toolpath point.

ui = ui−1 +
ṡi · Ts√

Ẋ2(ui−1) + Ẏ 2(ui−1) + Ż2(ui−1)
, (6.30)

Equation 6.30 is developed using a 1st-order Taylor Series approximation. The ṡi term is

the feedrate constructed from the feed profile. The terms Xu, Yu and Zu are the velocity

terms calculated from equation 6.2b, using the previous value of u.

Once u has been calculated, the corresponding spline of the form of equation 6.2a is used

to calculate the new position points for each axis. This algorithm uses the interpolation

method of equation 6.30, the feed profile constructed using the equations in section 6.2.3

and the spline parameters identified for equations 6.2 to create a smooth trajectory profile.

When the individual trajectories of each axis are combined, the resultant trajectory will

follow the form of figure 6.3. The position contour will be smooth, the feed profile will

have little velocity fluctuations and the acceleration and jerk profiles will be continuous.

This new toolpath or trajectory, will allow the 3-axis CNC lathe to machine faster with

less feed rate fluctuations, while achieving a smooth surface finish.

6.3 Geometry Smoothing Algorithm

When cutting table legs on the 3-axis CNC lathe system, as described in chapter 3, the

custom features often range anywhere from 1mm to 5mm in height. Sudden changes in

height are difficult to cut, as the radial x-axis is required to move quickly to cover the

distance in a short amount of time. The radial axis must move faster for height changes

that are located on larger diameter cross-sections. This is because points farther away

78



from the centre of a rotating body spin faster. A typical table leg has a maximum radius

of 40mm. This makes the most difficult feature to machine a 5mm height change, from a

radius of 35 to 40mm.

When machining these features, the ASMC controller for the x-axis exhibits overshoot

in terms of following the toolpath points. This error is due to the sudden changes in the

surface of the table leg, requiring the controller and system to react quickly. The quick

response brings in large acceleration values, which lead to the errors in tool positioning.

The severity of the overshoot is proportionally related to speed and appears physically as

gouging in the wood surface finish. Visible defects in a table leg are unacceptable because

the aesthetic appeal of the final product is the primary reason for machining.

The algorithm proposed in this section attempts to reduce any errors in the surface

finish created during machining by altering the CAD model of the part before machining

occurs. This method will identify problem areas in a model’s geometry caused primarily

by sudden height changes, using simulations. The algorithm will change the position of

individual toolpath points on the model’s surface in these identified areas. This sacrifice in

geometry will effectively smooth the sharp transitions, allowing the toolpath to be followed

with less error.

By modifying a model’s geometry in this fashion, a toolpath can be run at a faster

feedrate without creating surface defects that make the finished work piece unusable. Once

the algorithm has modified the geometry, these modifications must be approved by the

operator before machining. Unlike defects, which mar the physical appearance of the

finished product, smoothed edges still look visually acceptable. If the original shape of

the model is altered beyond an acceptable amount, the operator will have to reduce the

desired feedrate and run the algorithm again. This algorithm also removes the need to

add smoothing to edges manually, which was a common practice when creating models for

the 3-axis CNC lathe system. The algorithm will be able to smooth a given model by the

minimum amount required to reach a desired feedrate. This will save time in both model

design and machining.

The flow chart depicted in figure 6.4 demonstrates the logic behind the geometry mod-

ifying algorithm. Given a model that conforms to the geometry restrictions imposed by

the 3-axis lathe system, the algorithm from section 6.2 is used to generate a trajectory at

a desired feedrate. Using the model of the 3-axis lathe system developed in chapter 4, a
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simulation of the output for the x-axis is generated. Only the x-axis needs to be simulated

because it controls the depth of cut of the tool and is the axis prone to overshooting posi-

tion. The simulated tracking error data can be analysed for problem geometry. Peaks can

be identified which represent errors in the cutting tool positioning that are greater than a

desired limit. These peaks, which directly correspond to specific toolpath points, can then

be moved, along with neighbouring points, by a small defined increment. This will create

the desired smoothing effect. Once a problem area has been smoothed, the algorithm must

repeat the above process for the next problem area. After each iteration, the error peaks

corresponding to the model regions being modified should become smaller and smaller. The

iteration process will stop once all of the error peaks are below the desired limit. Using

this method, each geometry region will be modified by the smallest increment to achieve

the desired position tracking error performance. This implies that the model geometry will

be modified only as much as necessary on a case by case basis for each identified problem

region. Once the algorithm has finished its modifications the final model can viewed. If

the sacrifices to geometry are acceptable, the model can be machined. This model will not

have any surface defects greater than the set tolerance and can be machined at the desired

feedrate.
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Figure 6.4: Algorithm Logic Diagram
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Chapter 7

Test Cases

Two test cases have been developed to demonstrate the capabilities of the 3-axis CNC lathe

and to evaluate the effectiveness of the changes to the system that have been described

in the previous sections. This chapter presents the two test cases in detail, along with

simulated and experimental results for machining these pieces. Each test model has its

dimensions designed to be within the constraints of a typical table leg. The cross-section

must be less than or equal to an 80mm diameter circle and the length of the part should be

no more than 813mm in length. The first case consists of three basic shapes which are used

to evaluate the speed and accuracy of the CNC lathe. The geometry presented attempts to

highlight the unique machining ability of the lathe, while also demonstrating the speed and

accuracy capabilities of the system in comparison to the original lathe design, as described

in section 1.4. The second model is a simpler piece when considering geometry detail, but

is difficult to machine nonetheless. This piece is used to demonstrate the concept of the

smoothing algorithm proposed in section 6.3. The design of the piece is simpler to fully

observe and evaluate the effects of the algorithm.

7.1 Test Case 1 - Speed Testing

7.1.1 Toolpath Feature Selection

The geometry of the three test pieces was selected to represent as many features from

different table leg designs as possible. This was done to make the results from the ma-
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chining experiments relevant for the intended physical application of the 3-axis CNC lathe.

Although relevant for intended products, creating a standard test piece also establishes a

basis for comparison. In the future, if a new toolpath method is developed or a new model

and controller are implemented, these test pieces can be used as a comparison tool. The

geometry used in this model will remain representative of the common features found in

table leg designs, allowing new methods to test how they handle the different geometric

features. Future modifications to the lathe system can use the results and observations

drawn from these experiments as a gauge for their success.

Essentially, the creation of a table leg design is limited only by the imagination of

the designer. This implies that the number of possible features that could be on a table

leg is limitless. Already, from an existing set of fifty table leg designs, there is a large

variety of features. Some of these features include; helices, letters, custom patterns and

complex images. All of these features can be either embossed or debossed. Figure 7.1

illustrates some examples of these features. The toolpath features selected for the test

case must capture elements from some, if not all, of the above mentioned features for the

experimental results to be considered broad enough to apply to any table leg that could

be machined.

(a) Pattern (b) Complex Shape (c) Letters

Figure 7.1: Table Leg Feature Examples

The first features to be selected are those for the shape of the bodies of the test pieces.

The body of a table leg is the surface onto which all other features are added. The geometry
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of a table leg body can be described as different polygons with a variable number of sides.

The minimum number of sides is three, creating a triangular shape, and the maximum

number of sides is infinity, representing a cylinder. The most common geometries in table

leg design are the 4-sided and cylindrical shapes. For this reason they were selected as

body shape features to be included in the test models. Including common body shapes

makes comparison of the test pieces to full table legs more relevant. The cylindrical profile

is the easiest table leg profile to machine. If only a cylinder was being machined, the tool

would simply remain at a constant radius and the lathe could cut the body shape as fast

as the rotary axis could turn. When adding additional features to the surface of this body

profile, the difficulty in machining comes from the feature geometry alone. With a four

sided polygon body profile, the machining is more difficult, in the sense that the tool axis

must now accelerate and decelerate to track around the 90o corners. When features are

added to the surface of this shape, the demands from the cutting axis are increased even

further. The more sides that are present in a table leg body, the easier it is to machine that

body shape. Although not as common, the 3-sided table leg body profile was also selected

for testing. The angles at which the corners of the polygon meet are 60o, presenting an even

greater challenge than that of the 4-sided body shape. The triangular body is considered to

be a ‘worst case scenario’ for a table leg body due to the extreme geometry, and is chosen

to see what adding additional features to the body shape will do to the performance of

the 3-axis CNC lathe system. Selecting table leg body geometries as toolpath features is

significant because, as mentioned, they are the base shape onto which all other features

are added. Adding features to the surface of the table leg slows down the machining time.

The results of this test case can hopefully be used as a base line for machining speeds of

different table leg designs on the new 3-axis CNC lathe system.

The second toolpath feature to be selected needs to be from the set of features that

encompasses all of the possible features that could be added to the surface of a table leg

body. To choose appropriately, a worst case scenario feature was selected based on the

constraints of the physical system. The maximum height of the feature was selected to be

5mm. This height was chosen to make a suitable comparison to the features that were

machined on the original lathe system. Typically, 5mm was the maximum height used for

features on the original lathe. Any feature designed using this height parameter for the test

case should be more difficult to machine than similar features with a lesser height. The tool

axis must cover a greater distance in the same amount of time for features of larger height,
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requiring greater speed and accuracy. Therefore, selecting a worst-case feature that uses

this maximum height for the test case model should effectively represent all other features.

Although the selected feature may be visually different from other features, if it is one of

the most difficult to machine, then the test case results of this feature should also apply

to other features.

The feature selected for the test case was letters. Letters are abrupt height changes

on the body of a table leg. In control theory terminology, they come close to representing

steps in height change, which are one of the most difficult features for a controller to

accurately track. The letter feature cannot be a true step in height however, as it would

be near impossible to machine without some error, which would cause gouging of the

wood surface. Therefore the letter features must have at least a small slope during the

height transition. Letters can easily be made to conform to the 5mm height restriction

and many letters consist of multiple steps. This allows the testing of not just one sharp

height change, but multiple repetitive height changes. The letter feature can also be made

as both embossed and debossed. Although other features may appear more complicated,

such as complex patterns or images, they are in fact composed of simpler features, such as

smooth changes in height. Letters contain the most difficult feature to machine and are

a suitable choice for representing all other features as a worst-case scenario. Observations

made while machining letters should be applicable to most other features. The limits in

terms of speed and accuracy observed while machining these test pieces should therefore

apply to regular table leg designs as well.

The three test pieces that were designed are displayed in figure 7.2 below. As can be

seen in the models, all of the features discussed above are present in the designs. There

are three test case segments with different body shape profiles, each 20mm thick. Letter

features have been placed on the surface of all three pieces. These features have been

embossed and conform to the 5mm height constraint. The letters chosen for the test

pieces are ‘U’ and ‘W’. These letters were selected as features because they have multiple

vertical line segments that make up their structure. This allows testing of multiple steps

up and down with one letter. Also, corners, like in the ‘W’, are difficult features to machine

due to the tight constraints on geometry. The letter ‘U’ also adds the variable of having a

curved edge. The size of the cross section of the test piece bodies and features are designed

to fit within the 80mm diameter restriction imposed on table leg designs.
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(a) Square Body (b) Circular Body

(c) Triangular Body

Figure 7.2: Test Case 1 Models
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7.1.2 Machining Results

The results of each test piece are analyzed separately. The trajectory for each segment

was tested prior to machining to determine the maximum feedrate that can be reached

while maintaining a position following error of 0.5mm on the model surface. This position

following error was chosen because it was found that this much error in a wood material does

not show up clearly in the finished surface. The intended table leg products have a large

aesthetic component, which makes having a surface finish that looks good an important

requirement. The results from the test models are also compared to the approximate results

from the previous 3-axis CNC lathe design. Unfortunately, the results of the different

machining tasks that the previous lathe design was used for were not recorded. Encoder

data and similar measurements were not stored, but only used as feedback during the

machining process. Also, the lathe was not used to machine any baseline models for setting

testing standards, but used to machine table legs. However, based on operator knowledge,

it has been established that for extreme surface geometry, similar to the geometry proposed

for the test models, the maximum speed achieved by the 3-axis lathe was between 5 to

10rpm, measured at the rotary axis. For the sake of comparison, it will be assumed that the

average machining speed of the rotating axis is 8rpm for the original lathe system. Speed

was measured at the rotary axis for the previous lathe system to make a comparison to

regular lathe machines, which typically measure machining speeds in rpm’s of the rotating

axis. The speed of the rotary axis was also how the trajectory generator was controlled for

the old system. If the speed of the rotary axis was increased or decreased, the speeds of

the other two axes were also altered by the same proportion. For this reason, the results

for the speed of the rotary axis for the current lathe design will be presented for each of

the test pieces to make a comparison with the previous lathe system.

For the four-sided polygon segment, the machining results are presented in figure 7.3.

This three dimensional figure shows a visualization of the machining process. The blue

lines represent the physical location of the tool as it followed the helical toolpath. This

figure shows that the experimental cutting results appear to follow the intended toolpath

accurately. Figures 7.4 to 7.6 show the experimental tracking error of each axis. As seen in

7.4, the error for the x-axis is below 0.5mm, as desired. The remaining two axes also have

low error results, with the rotational axis staying below 1o of error. This confirms that

the four sided polygon section is being machined within acceptable tolerances. Although
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difficult to make out due to the amount of data that is being shown, there is a great deal

of oscillation present in the figures. The peaks in the error that are the source of this

oscillating motion are caused by the letter features on the model. The feedrate at which

these results were achieved was approximately 83mm/s. This corresponds to an average

velocity of 18.16rpm at the rotary axis, as shown in figure 7.7. This corresponds to a

55.94% reduction in machining time compared to the previous 3-axis lathe system.

Figure 7.3: Rectangular Profile Experimental

Results - 3D Output

Figure 7.4: Rectangular Profile Experimental

Results - Rotational Axis Error

Figure 7.5: Rectangular Profile Experimental

Results - Radial Axis Error

Figure 7.6: Rectangular Profile Experimental

Results - Translational Axis Error
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Figure 7.7: Rectangular Profile Experimental Results - C Axis Velocity Profile

The circular body test piece produced similar results to the four sided polygon segment.

Figure 7.8 shows the three dimensional view of the results. Again, the system is able to

follow the toolpath accurately. Figures 7.9 to 7.11 show the error plots for each axis. These

plots are all within acceptable ranges, confirming that the model was machined accurately.

The feedrate at which the error threshold is reached for this test piece is approximately

79mm/s. This corresponds to an average speed of 16.99rpm at the rotary axis and a

52.91% machining time reduction over the former 3-axis lathe system. Although only

slightly slower than the feedrate obtained for the square profile test piece, the circular

profile is attributed to causing this difference. When machining a plain body, the cylinder

should be the fastest; however, the addition of features has a greater impact on it than for

other shapes. The change in height for each feature is presented as a nearly instantaneous

change for the tool axis, which is difficult to machine quickly. In the 4-sided test case,

the height changes of the features are not perpendicular to the tool axis. This gives the

features a less steep slope for the tool axis to follow, which should be easier to machine

and explain the difference in feedrates.
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Figure 7.8: Circular Profile Experimental Re-

sults - 3D Output

Figure 7.9: Circular Profile Experimental Re-

sults - Rotational Axis Error

Figure 7.10: Circular Profile Experimental

Results - Radial Axis Error

Figure 7.11: Circular Profile Experimental

Results - Translational Axis Error
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Figure 7.12: Circular Profile Experimental Results - C Axis Velocity Profile

Figure 7.13 displays the visual results of the three sided polygon body segment. Fol-

lowing the same trend as the other two segments, this segment appears to be machined

accurately. The error plots shown in figures 7.14 to 7.16 confirm that the machining toler-

ance of 0.5mm has been met. The feedrate that achieved these results was approximately

76mm/s. This corresponds to a speed of 19.08rpm at the rotary axis and an apparent

58.07% reduction in machining time compared to the speed of the previous 3-axis lathe

system. These results are slightly misleading, as the average feedrate of the triangular test

piece is the slowest of the three, but the speed of the rotational axis is the highest. These

results are explainable because when the tool is traversing around a corner of the work

piece, the rotational axis must turn the part quickly to maintain the desired feedrate, since

the slope of the work piece with respect to the tool becomes steep. As has been mentioned,

all of the axes of the lathe are programmed to work together during the machining. This

speed increase essentially raises the average speed of the rotational axis, while the overall

feedrate for the test case is still slowed due to the features and the fast changing slope of

the triangle.
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Figure 7.13: Triangular Profile Experimental

Results - 3D Output

Figure 7.14: Triangular Profile Experimental

Results - Rotational Axis Error

Figure 7.15: Triangular Profile Experimental

Results - Radial Axis Error

Figure 7.16: Triangular Profile Experimental

Results - Translational Axis Error
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Figure 7.17: Triangular Profile Experimental Results - C Axis Velocity Profile

The experimental results presented above indicate that the 3-axis lathe system is per-

forming well. The system is able to consistently achieve the desired tracking error perfor-

mance, which allows the test cases to meet aesthetic requirements by avoiding gouging.

The minimum machining feedrate of the test cases was 76mm/s. This was the speed of the

three-sided polygon segment. Although all three of the cases had similar features on the

surface, the shapes of the bodies also affected the difficulty of the machining. The triangu-

lar body shape presents features with fast changing slopes to the tool axis, which my have

affected the feedrate of the system. Higher acceleration requirements for the cutting axis

make it harder to control, and could explain why the speed for machining the three sided

polygon is lower than the other two segments while achieving the same accuracy. However

this feedrate is only 7mm/s slower than the fastest of the cases.

The minimum speed out of the test cases for the rotational axis was found to be approx-

imately 16.99rpm. This machining speed reduces the machining time by approximately

52.91% when compared to the an the average machining speed of 8rpm observed during

use of the original 3-axis CNC lathe system. This result highlights the effectiveness of

the improvements to the design of the 3-axis CNC lathe system. The test results show

that when machining the worst case scenario body profiles and worst-case-scenario tool-

path features, the lathe system is able to machine faster than the previous system. The

improvements made to the 3-axis CNC lathe system allow it to machine the most difficult

features at least two times faster than the previous system.

These improvements to machining feedrate were made possible by the implementation
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of all the theory described in chapters 4 to 6. Switching from a servo motor to a stepper

motor allowed for larger torque demands and faster response times. The development of

a model for the speed limiting x-axis allowed, among other things, the implementation of

a complicated yet rigorous control law to improve tracking error. Applying a trajectory

generator that not only created smooth trajectories for each axis, but also planned the

movements of each axis to work together improved the overall feedrate of the system.

These positive results indicate the improvements made to the 3-axis CNC lathe system

are a step in the right direction. They also imply that the results from this test model

can be used as a performance baseline. In the future, if further modifications are made to

the system, the accuracy and feedrate results presented above can be used as a baseline

to gauge the effectiveness of said modifications. Also, these results, as they are specific

to three common table leg body shapes and contain the worst case scenario features for

each body shape, can be used for selecting machining feedrates during production. Any

table leg that is similar to one of the three body profiles presented here will have a similar

maximum feedrate limit in order to achieve a surface finish accuracy of 0.5mm. If a table

leg does not have surface features with the same extremes as the ones in the test model,

the lathe system will most likely be able to machine it even faster. This will help with

selecting a feedrate for the trajectory generator that will achieve the desired results during

machining.

7.2 Test Case 2 - Smoothing Algorithm

The algorithm described in section 6.3 for smoothing the geometry of a work piece was

tested on a simple model. Shown in figure 7.18, the model consists of a cylindrical cross

section with a maximum diameter of 80mm and a constant thickness of 5mm. Around the

perimeter of the cross section are eight equally spaced height changes. The height changes

begin at 3mm and increase by 1mm increments up to 10mm. Steps of different height

were chosen as features for the test case of the algorithm because, as mentioned for the

previous test case, steps are one of the hardest features to machine quickly and accurately.

Smoothing steps in the cutting axis motion, which are viewed as edges on the actual work

piece, should effectively demonstrate any benefit being gained by the proposed algorithm.

Unlike in the previous test case, the maximum step height is 10mm, not 5mm. The 10mm
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step height was chosen to further illustrate the effects of the smoothing algorithm, as a

larger height change should generate a greater amount of smoothing.

Figure 7.18: Case 2 - Test Piece Before Modifications

To begin the test case, a maximum position tracking error of 0.5mm was selected.

This maximum was chosen because surface defects of this magnitude are not easily noticed

in wood machining. The maximum can be altered however for different applications and

preferences. Using the toolpath for the test piece and the x-axis model developed in chapter

4; Matlab/Simulink was used to simulate the system output until a maximum trajectory

feedrate was found that satisfied the minimum error criterion. This feedrate was 70mm/s.

The model was then machined on the physical 3-axis lathe system at a feedrate of 70mm/s

for experimental validation. The plot in figure 7.19 shows a portion of the tracking error

results for the x-axis for machining the test piece at the specified feedrate. The data

selected for display is the data for a single revolution of the test piece. After the first

revolution, the remaining revolutions should all be identical, as the step features do not

change. As seen in the figure, all of the tracking error is below 0.5mm. The boundary is

represented by the dashed black line located at ±0.5mm on figure 7.19. By comparing the

error plot to the toolpath, the peaks in the error plot are confirmed to be occurring at the

edges of the steps, with a number of smaller peaks present after the peak. The large peak
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is due mainly to overshoot in the controller of the x-axis and the smaller peaks are known

as the ‘ringing’ effect, which occurs after an overshoot [9].

Figure 7.19: Test Results for 70 [mm/sec] Feedrate - Original Geometry

A new feedrate of 100mm/s is selected as the increased target machining feedrate

for this test case. The work piece was machined again on the 3-axis lathe at the higher

feedrate to obtain the experimental results. Figure 7.20 shows a portion of the simulated

and experimental tracking error results for the x-axis at this increased speed. As before,

the figure shows the data for a single revolution of the rotary axis. As indicated in the

plot, there are error peaks in both the simulated and experimental data which exceed the

set limit of 0.5mm. Using the toolpath for comparison, each tracking error violation can

easily be identified and associated with a region of geometry on the model. The error peaks

identified at a 100mm/s feedrate are the same peaks as those identified at the 70mm/s

feedrate test. The peaks have grown larger however due to the increase in speed. The

overshoot caused by the controller gets worse when trying to navigate the sharp height

transitions at a faster feedrate.

Using the methodology for the proposed geometry smoothing algorithm outlined in

section 6.3, the fillet tool in SolidWorks is used as the smoothing mechanism for the proof-

of-concept of the algorithm. Fillets are first added with a radius of 0.5mm to each edge
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Figure 7.20: Test Results for 100 [mm/sec] Feedrate - Original Geometry

that has been identified to cause a tracking error in violation of the 0.5mm criterion. If

the tracking error is not satisfied in simulation after this modification, the fillet radius is

increased by 0.5mm for each edge that still fails. As indicated in the algorithm flow chart

on page 81, this iterative process continues until the tracking error requirement is met for

the entire model in simulation. The model with modified geometry was machined on the

3-axis lathe system to obtain experimental results. Figure 7.21 presents both the simulated

and experimental error tracking plots for the modified test model. This figure only displays

the x-axis data for the time required for the rotary axis to complete a single revolution.

Figure 7.22 shows the resulting CAD model with modified geometry.

The results presented in figure 7.21, show that the 3-axis CNC lathe system is able to

machine the test piece at the target feedrate of 100mm/s. It does so while meeting the

criterion of 0.5mm position tracking error for the x-axis. As can be observed in the model

in figure 7.22, each edge that caused a violation in error tracking has been smoothed, to

varying degrees depending on the severity of the violation. The rising and falling edges of

each step are not smoothed identically in each case however. The 10mm step highlights

this fact. Figure 7.22 shows that one of the bottom edges of the 10mm step has a radius

of 2.5mm, while the other bottom edge has a larger radius of 4.5mm. This effect is
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Figure 7.21: Test Results for 100 [mm/sec] Feedrate Modified Geometry

Figure 7.22: Case 2 - Test Piece After Modifications
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created because the tool axis can move with precision in one direction, but not the other.

This situation can arise due to inaccuracies in the system model, specifically the friction

model. This effect may also be attributed to unmodelled dynamics present in the motor

or ballscrew.

The system has experienced a 42.8% feedrate increase, while avoiding any unwanted

surface defects, such as gouging. This has been accomplished using the proposed algorithm

in section 6.3 for smoothing the geometry of the test model. As seen in figure 7.22, the

modified model is quite a bit smoother than the abrupt transitions of the original model.

The operator of the 3-axis lathe must qualitatively decide whether the sacrifices to geometry

are acceptable. If this algorithm were to be used on a table leg model, the smoothing of

some of the features on the leg could achieve a substantial reduction in machining time due

to the length of the toolpath. This method is more plausible for products such as table

legs, because they are primarily based on their aesthetic appearance and not dimensional

tolerances. These results demonstrate the merit of this approach for creating an automated

algorithm to accomplish the same purpose.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This work presented several modifications and additions to a 3-axis CNC lathe with the

intent to improve the overall machining speed of the system. A servo motor replaced a

stepper motor on the speed limiting axis of the system. The radial axis of the lathe was

found to be the limiting axis of the system because the dynamic demands on the axis were

much higher than those of any other. A 1st-order linear model was identified to describe

the modified axis and adaptive sliding mode theory was implemented for control. In initial

testing, the model appeared to describe the dynamics of the x-axis satisfactorily and the

controller was able to provide accurate positioning. The new trajectory generator that was

implemented was able to create a smooth trajectory for each axis of motion. By using a

5th-order polynomial to create a smooth feed profile with continuous jerk motion, each axis

had continuous acceleration and velocity profiles as well. Smooth profiles allow a motor to

more easily follow the desired commands.

From the discussions of the experimental test cases presented in Chapter 7, these mod-

ifications appear to be successful in improving the speed of the system. Three test pieces

were machined, each representing a basic body shape that is used in table leg designs.

These were circle, square and triangle cross-sections. The difficulty of machining these

basic shapes was increased by adding letters to the surfaces. The letters were used to

represent the many different types of features that can exist on a table leg surface. The
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results of these experiments showed a successful increase in the machining speed of the

CNC lathe compared to that of the original CNC lathe that was used before this work

began. Each test case showed improvements to the reported speed from the original CNC

lathe. The circular profile reduced machining time by approximately 52.91%, the square

profile by 55.94% and the triangular profile by 58.07%, when comparing speeds of the ro-

tational c-axis in rpm’s. These results successfully demonstrated that the modifications to

the 3-axis CNC lathe were able to increase the overall machining speed of the system while

maintaining its ability to accurately machine complex sculptured surfaces. The results will

also be of use as a new base line for speed testing if further modifications are made to the

lathe system.

This work also looked at increasing the machining speed of the lathe system by modi-

fying the geometry of a work piece. An algorithm was developed and presented in Section

6.3 which used the modelling knowledge of the system to simulate the machining output.

By modifying a work piece’s geometry, specifically by adding fillets to edges, the geometry

could be smoothed, which allowed the generation of faster, yet accurate, trajectories. The

effects of the geometry modifications could then be simulated to evaluate the improvements

to the machining process.

The geometry sacrificing algorithm was also tested experimentally. A test case was

created that consisted of several steps in height. By running the geometry smoothing

algorithm on this test case, the algorithm could be evaluated by how much geometry was

sacrificed to achieve a desired speed. The speed increase was found to be 42.8%, but the

amount of geometry sacrificed is more of a qualitative measurement. In the test case,

the smoothing did not appear to be overly excessive to achieve the desired feedrate of

100mm/s and still looked acceptable. The test case showed a positive result, indicating

that the sacrifice of geometry in a model is a viable way of achieving machining speed

gains.

Overall, the work presented in this thesis has been successful in improving the machining

speeds of the 3-axis CNC lathe. The modifications to the lathe architecture have allowed for

an approximate 52.91% reduction in machining time compared to that of the original CNC

lathe. The algorithm used for sacrificing model geometry has been shown to effectively

increase the speed of the system while maintaining a desired surface finish quality.
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8.2 Future Work

Although the machining speed of the 3-axis CNC lathe system has been successfully in-

creased, there are still many improvements that can be made to the system. For instance,

currently the data transfer of the toolpath information from the PC to the FPGA board

happens at one time. This takes a relatively long time, several minutes, to transfer this in-

formation and the amount of information that can be transferred is limited to the on-board

memory of the FPGA board. A limit on the size of the toolpath dictates how large of a

work piece can be machined. Currently, for a part with a maximum diameter of 80mm, it

can only be approximately 50mm in length. This drawback can be solved by implementing

a data transfer scheme that moves only a small portion of the entire toolpath over to the

FPGA board at one time. These small data transfers can continue while the work piece

is being machined, which will allow that part to be as large as the physical limits of the

system. Also, as mentioned in Section 6.2 the toolpath trajectory algorithm requires a

large amount of physical memory to run. If more efficient methods for solving splines are

investigated, the trajectory could be solved all at once, which would remove some of the

feedrate fluctuation problems that developed when solving the trajectory in small pieces.

The 3-axis lathe is still currently in a prototype state. Consequently there are still many

improvements that can be made to the user interface and mechanical system to polish the

design. Additionally, there is still discussion on expanding the physical capabilities of the

lathe by adding a 4th or even a 5th axis. The benefit of adding more sensors, such as

accelerometers for improved control, is also being considered.

The model used to describe the x-axis of the system could be improved. As can be

seen in the lathe simulation figures in section 7.2, the system output generated by the

model is larger than the experimental data by approximately 1/3. By either conducting

a re-identification of the current model or creating a new model that is perhaps more

complex, the performance of the system can be improved. The ASMC performance would

be improved by having more accurately identified plant parameters, allowing the system

to improve its position tracking performance at higher speeds. The geometry sacrificing

algorithm also uses the x-axis model in its calculations. A more accurate model could

improve the geometry to speed ratios that are determined by the algorithm.

There is also a great deal of work to be done with the geometry sacrificing algorithm

itself. Right now, the fillet feature in SolidWorks is used to create the geometry modifi-
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cations to the work piece model. However, other methods of smoothing model geometry

should be explored. A fillet uses a constant radius, whereas another type of curve, such

as a custom spline, could be created that smooths model geometry enough to allow the

machining speed of the system to increase, but does not remove as much material. Such a

smoothing method could also be applied to the toolpath points itself, which would avoid

the current step of modifying the model geometry in SolidWorks, which is time consuming.

It is also recommended that a relationship between model geometry and system dy-

namics be explored. Although this relationship would most likely be unique to a specific

system, it would improve the speed of the geometry sacrificing algorithm. If the relation-

ship between how specific geometry affected the velocity and accelerations of the system

was known, then geometry could be modified to avoid situations that caused violations in

the dynamic limits of the system; without the need for simulation of the model output.

This would remove a time consuming portion of the algorithm, where it currently must

use Matlab/Simulink to simulate the output of the x-axis. This relationship would allow

the algorithm to scan the model geometry and modify the toolpath, avoiding the need

to iteratively simulate the system output and regenerate the work piece toolpaths and

trajectories.
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Appendix A

Feed Profile

A.1 Feed Profile Equations

Position:

s(τ) =



−A
10T 3

1
+ A

4T 2
1
τ 4

1 + fsτ1 0 ≤ t < t1

s1e + A
2
τ 2

2 + f1eτ2, s1e = 3
20
AT 2

1 + fsT1, t1 ≤ t < t2

s2e + A
10T 3

3
τ 5

3 − A
4τ4

3
+

Aτ2
3

2
+ f2eτ3, s2e = s1e +

AT 2
2

2
+ f1eT2, t2 ≤ t < t3

s3e + f3eτ4, s3e = s2e +
7AT 2

3

20
+ f2eT3, t3 ≤ t < t4

s4e − D
10T 3

5
τ 5

5 + D
4T 2

5
τ 4

5 + f4eτ5, s4e = s3e + f3eT4, t4 ≤ t < t5

s5e +
Dτ2

6

2
+ f5eτ6, s5e = s4e +

3DT 2
5

20
+ f4eT5, t5 ≤ t < t6

s6e +
Dτ5

7

10T 3
7
− Dτ4

7

4T 2
7

+
Dτ2

7

2
+ f6eτ7, s6e = s5e +

DT 2
6

2
+ f5eT6, t6 ≤ t < t7

s7e = s6e +
7DT 2

7

20
+ f6eT7

(A.1)
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Velocity:

ṡ(τ) =


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Acceleration:

s̈(τ) =


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Jerk:

...
s (τ) =
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A.2 Feed Profile Figure
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