68 research outputs found

    Protecting web services with service oriented traceback architecture

    Full text link
    Service oriented architecture (SOA) is a way of reorganizing software infrastructure into a set of service abstracts. In the area of applying SOA to Web service security, there have been some well defined security dimensions. However, current Web security systems, like WS-Security are not efficient enough to handle distributed denial of service (DDoS) attacks. Our new approach, service oriented traceback architecture (SOTA), provides a framework to be able to identify the source of an attack. This is accomplished by deploying our defence system at distributed routers, in order to examine the incoming SOAP messages and place our own SOAP header. By this method, we can then use the new SOAP header information, to traceback through the network the source of the attack. According to our experimental performance evaluations, we find that SOTA is quite scaleable, simple and quite effective at identifying the source.<br /

    IP spoofing attack and its countermeasures

    Full text link
    IP spoofing is a technique used to gain unauthorized access to computers, whereby the intruder sends messages to a computer with an IP address indicating that the message is coming from a trusted host. It causes serious security problem in the cyber world, and is currently exploited widely in the information warfare. This paper at first introduces the IP spoofing attack through examples, technical issues and attacking types. Later its countermeasures are analysed in detail, which include authentication and encription, filtering and IP traceback. In particular, an IP traceback mechanism, Flexible Deterministic Packet Marking (FDPM) is presented. Since the IP spoofing problem can not be solved only by technology, but it also needs social regulation, the legal issues and economic impact are discussed in the later part.<br /

    IP TRACEBACK Scenarios

    Get PDF
    Internet Protocol (IP) trace back is the enabling technology to control Internet crime. In this paper, we present novel and practical IP traceback systems which provide a defense system with the ability to find out the real sources of attacking packets that traverse through the network. IP traceback is to find the origin of an IP packet on the Internet without relying on the source IP address field. Due to the trusting nature of the IP protocol, the source IP address of a packet is not authenticated. As a result, the source address in an IP packet can be falsified (IP address spoofing). Spoof IP packets can be used for different attacks. The problem of finding the source of a packet is called the IP traceback problem. IP Traceback is a critical ability for identifying sources of attacks and instituting protection measures for the Internet. Most existing approaches to this problem have been tailored toward DDoS attack detection

    Effectiveness of Advanced and Authenticated Packet Marking Scheme for Trace back of Denial of Service Attacks

    Get PDF
    Advanced and Authenticated Packet Marking (AAPM) scheme is one of the proposed packet marking schemes for the traceback of Denial of Service (DoS) attacks. AAPM uses hash functions to reduce the storage space requirement for encoding of router information in the IP header. In this paper we take the perspective of the attacker and analyze the effects of inserting fake edges against AAPM. Since the AAPM scheme is subject to spoofing of the marking field, by inserting fake edges (corrupting the marking field) in the packets the attacker can impede traceback. In this paper, we show that the attacker can increase this distance by inserting fake edges in packets. Therefore, the attacker can make it appear to the victim that the attack was launched from a node farther away than it actually was, thus maintaining his own anonymity

    On mitigating distributed denial of service attacks

    Get PDF
    Denial of service (DoS) attacks and distributed denial of service (DDoS) attacks are probably the most ferocious threats in the Internet, resulting in tremendous economic and social implications/impacts on our daily lives that are increasingly depending on the wellbeing of the Internet. How to mitigate these attacks effectively and efficiently has become an active research area. The critical issues here include 1) IP spoofing, i.e., forged source lIP addresses are routinely employed to conceal the identities of the attack sources and deter the efforts of detection, defense, and tracing; 2) the distributed nature, that is, hundreds or thousands of compromised hosts are orchestrated to attack the victim synchronously. Other related issues are scalability, lack of incentives to deploy a new scheme, and the effectiveness under partial deployment. This dissertation investigates and proposes effective schemes to mitigate DDoS attacks. It is comprised of three parts. The first part introduces the classification of DDoS attacks and the evaluation of previous schemes. The second part presents the proposed IP traceback scheme, namely, autonomous system-based edge marking (ASEM). ASEM enhances probabilistic packet marking (PPM) in several aspects: (1) ASEM is capable of addressing large-scale DDoS attacks efficiently; (2) ASEM is capable of handling spoofed marking from the attacker and spurious marking incurred by subverted routers, which is a unique and critical feature; (3) ASEM can significantly reduce the number of marked packets required for path reconstruction and suppress false positives as well. The third part presents the proposed DDoS defense mechanisms, including the four-color-theorem based path marking, and a comprehensive framework for DDoS defense. The salient features of the framework include (1) it is designed to tackle a wide spectrum of DDoS attacks rather than a specified one, and (2) it can differentiate malicious traffic from normal ones. The receiver-center design avoids several related issues such as scalability, and lack of incentives to deploy a new scheme. Finally, conclusions are drawn and future works are discussed

    Impact of denial of service solutions on network quality of service

    Get PDF
    The Internet has become a universal communication network tool. It has evolved from a platform that supports best-effort traffic to one that now carries different traffic types including those involving continuous media with quality of service (QoS) requirements. As more services are delivered over the Internet, we face increasing risk to their availability given that malicious attacks on those Internet services continue to increase. Several networks have witnessed denial of service (DoS) and distributed denial of service (DDoS) attacks over the past few years which have disrupted QoS of network services, thereby violating the Service Level Agreement (SLA) between the client and the Internet Service Provider (ISP). Hence DoS or DDoS attacks are major threats to network QoS. In this paper we survey techniques and solutions that have been deployed to thwart DoS and DDoS attacks and we evaluate them in terms of their impact on network QoS for Internet services. We also present vulnerabilities that can be exploited for QoS protocols and also affect QoS if exploited. In addition, we also highlight challenges that still need to be addressed to achieve end-to-end QoS with recently proposed DoS/DDoS solutions

    Topology dependence of PPM-based Internet Protocol traceback schemes

    Get PDF
    Multiple schemes that utilize probabilistic packet marking (PPM) have been proposed to deal with Distributed Denial of Service (DDoS) attacks by reconstructing their attack graphs and identifying the attack sources. In the first part of this dissertation, we present our contribution to the family of PPM-based schemes for Internet Protocol (IP) traceback. Our proposed approach, Prediction-Based Scheme (PBS), consists of marking and traceback algorithms that reduce scheme convergence times by dealing with the problems of data loss and incomplete attack graphs exhibited by previous PPM-based schemes. Compared to previous PPM-based schemes, the PBS marking algorithm ensures that traceback is possible with about 54% as many total network packets, while the traceback algorithm takes about 33% as many marked packets for complete attack path construction. In the second part of this dissertation, we tackle the problem of scheme evaluation and comparison across discrepant network topologies. Previous research in this area has overlooked the influence of network topology on scheme performance and often utilized disparate and simplistic network abstractions to evaluate and compare these schemes. Our approach to this problem involves the evaluation of selected PPM-based schemes across a set of 60 Internet-like topologies and the adaptation of the network motif approach to provide a common ground for comparing the schemes\u27 performances in different network topologies. This approach allows us to determine the level of structural similarity between network topologies and consequently enables the comparison of scheme performance even when the schemes are implemented on different topologies. Furthermore, we identify three network-dependent factors that affect different PPM-based schemes uniquely causing a variation in, and discrepancy between, scheme performance from one network to another. Results indicate that scheme performance is dependent on the network upon which it is implemented, i.e. the value of the PPM-based schemes\u27 convergence times and their rankings vary depending on the underlying network topology. We show how the identified network factors contribute, individually and collectively, to the scheme performance in large-scale networks. Additionally, we identify five superfamilies from the 60 considered networks and find that networks within a superfamily also exhibit similar PPM-based scheme performance. To complement our results, we present an analytical model showing a link between scheme performance in any superfamily, and the motifs exhibited by the networks in that superfamily. Our work highlights a need for multiple network evaluation of network protocols. To this end, we demonstrate a method of identifying structurally similar network topologies among which protocol performance is potentially comparable. Our work also presents an effective way of comparing general network protocol performance in which the protocol is evaluated on specific representative networks instead of an entire set of networks

    WON (Wireless Overlay Network) for Traceback of Distributed Denial of Service

    Full text link
    This article presents an incremental and scalable solution for tracing Denial of Service (DoS) and Distributed DoS (DDoS) attacks. Our approach allows the victim to identify the network paths traversed by attack traffic without requiring the support from ISP or knowledge of the network topology. In contrast to previous probabilistic packet marking work, our approach has no false positive and fixed computation overhead for the victim to reconstruct the attack paths. Furthermore, the volume of attack packets required to reconstruct the attack path is dramatically less
    corecore