1,147 research outputs found

    Distributed Detection and Estimation in Wireless Sensor Networks

    Full text link
    In this article we consider the problems of distributed detection and estimation in wireless sensor networks. In the first part, we provide a general framework aimed to show how an efficient design of a sensor network requires a joint organization of in-network processing and communication. Then, we recall the basic features of consensus algorithm, which is a basic tool to reach globally optimal decisions through a distributed approach. The main part of the paper starts addressing the distributed estimation problem. We show first an entirely decentralized approach, where observations and estimations are performed without the intervention of a fusion center. Then, we consider the case where the estimation is performed at a fusion center, showing how to allocate quantization bits and transmit powers in the links between the nodes and the fusion center, in order to accommodate the requirement on the maximum estimation variance, under a constraint on the global transmit power. We extend the approach to the detection problem. Also in this case, we consider the distributed approach, where every node can achieve a globally optimal decision, and the case where the decision is taken at a central node. In the latter case, we show how to allocate coding bits and transmit power in order to maximize the detection probability, under constraints on the false alarm rate and the global transmit power. Then, we generalize consensus algorithms illustrating a distributed procedure that converges to the projection of the observation vector onto a signal subspace. We then address the issue of energy consumption in sensor networks, thus showing how to optimize the network topology in order to minimize the energy necessary to achieve a global consensus. Finally, we address the problem of matching the topology of the network to the graph describing the statistical dependencies among the observed variables.Comment: 92 pages, 24 figures. To appear in E-Reference Signal Processing, R. Chellapa and S. Theodoridis, Eds., Elsevier, 201

    Hamiltonian System Approach to Distributed Spectral Decomposition in Networks

    Get PDF
    Because of the significant increase in size and complexity of the networks, the distributed computation of eigenvalues and eigenvectors of graph matrices has become very challenging and yet it remains as important as before. In this paper we develop efficient distributed algorithms to detect, with higher resolution, closely situated eigenvalues and corresponding eigenvectors of symmetric graph matrices. We model the system of graph spectral computation as physical systems with Lagrangian and Hamiltonian dynamics. The spectrum of Laplacian matrix, in particular, is framed as a classical spring-mass system with Lagrangian dynamics. The spectrum of any general symmetric graph matrix turns out to have a simple connection with quantum systems and it can be thus formulated as a solution to a Schr\"odinger-type differential equation. Taking into account the higher resolution requirement in the spectrum computation and the related stability issues in the numerical solution of the underlying differential equation, we propose the application of symplectic integrators to the calculation of eigenspectrum. The effectiveness of the proposed techniques is demonstrated with numerical simulations on real-world networks of different sizes and complexities

    Towards Optimal Distributed Node Scheduling in a Multihop Wireless Network through Local Voting

    Full text link
    In a multihop wireless network, it is crucial but challenging to schedule transmissions in an efficient and fair manner. In this paper, a novel distributed node scheduling algorithm, called Local Voting, is proposed. This algorithm tries to semi-equalize the load (defined as the ratio of the queue length over the number of allocated slots) through slot reallocation based on local information exchange. The algorithm stems from the finding that the shortest delivery time or delay is obtained when the load is semi-equalized throughout the network. In addition, we prove that, with Local Voting, the network system converges asymptotically towards the optimal scheduling. Moreover, through extensive simulations, the performance of Local Voting is further investigated in comparison with several representative scheduling algorithms from the literature. Simulation results show that the proposed algorithm achieves better performance than the other distributed algorithms in terms of average delay, maximum delay, and fairness. Despite being distributed, the performance of Local Voting is also found to be very close to a centralized algorithm that is deemed to have the optimal performance

    Distributed consensus algorithms for wireless sensor networks: convergence analysis and optimization

    Get PDF
    Wireless sensor networks are developed to monitor areas of interest with the purpose of estimating physical parameters or/and detecting emergency events in a variety of military and civil applications. A wireless sensor network can be seen as a distributed computer, where spatially deployed sensor nodes are in charge of gathering measurements from the environment to compute a given function. The research areas for wireless sensor networks extend from the design of small, reliable hardware to low-complexity algorithms and energy saving communication protocols. Distributed consensus algorithms are low-complexity iterative schemes that have received increased attention in different fields due to a wide range of applications, where neighboring nodes communicate locally to compute the average of an initial set of measurements. Energy is a scarce resource in wireless sensor networks and therefore, the convergence of consensus algorithms, characterized by the total number of iterations until reaching a steady-state value, is an important topic of study. This PhD thesis addresses the problem of convergence and optimization of distributed consensus algorithms for the estimation of parameters in wireless sensor networks. The impact of quantization noise in the convergence is studied in networks with fixed topologies and symmetric communication links. In particular, a new scheme including quantization is proposed, whose mean square error with respect to the average consensus converges. The limit of the mean square error admits a closed-form expression and an upper bound for this limit depending on general network parameters is also derived. The convergence of consensus algorithms in networks with random topology is studied focusing particularly on convergence in expectation, mean square convergence and almost sure convergence. Closed-form expressions useful to minimize the convergence time of the algorithm are derived from the analysis. Regarding random networks with asymmetric links, closed-form expressions are provided for the mean square error of the state assuming equally probable uniform link weights, and mean square convergence to the statistical mean of the initial measurements is shown. Moreover, an upper bound for the mean square error is derived for the case of different probabilities of connection for the links, and a practical scheme with randomized transmission power exhibiting an improved performance in terms of energy consumption with respect to a fixed network with the same consumption on average is proposed. The mean square error expressions derived provide a means to characterize the deviation of the state vector with respect to the initial average when the instantaneous links are asymmetric. A useful criterion to minimize the convergence time in random networks with spatially correlated links is considered, establishing a sufficient condition for almost sure convergence to the consensus space. This criterion, valid also for topologies with spatially independent links, is based on the spectral radius of a positive semidefinite matrix for which we derive closed-form expressions assuming uniform link weights. The minimization of this spectral radius is a convex optimization problem and therefore, the optimum link weights minimizing the convergence time can be computed efficiently. The expressions derived are general and apply not only to random networks with instantaneous directed topologies but also to random networks with instantaneous undirected topologies. Furthermore, the general expressions can be particularized to obtain known protocols found in literature, showing that they can be seen as particular cases of the expressions derived in this thesis.Las redes de sensores inalámbricos se utilizan para monitorizar zonas de interés con el propósito final de estimar parámetros físicos y/o detectar situaciones de emergencia en gran variedad de aplicaciones militares y civiles. Una red de sensores inalámbricos puede ser considerada como un método de computación distribuido, donde nodos provistos de sensores toman medidas del entorno para calcular una función que depende de éstas. Las áreas de investigación comprenden desde el diseño de dispositivos hardware pequeños y fiables hasta algoritmos de baja complejidad o protocolos de comunicación de bajo consumo energético. Los algoritmos de consenso distribuidos son esquemas iterativos de baja complejidad que han suscitado mucha atención en diferentes campos debido a su gran espectro de aplicaciones, en los que nodos vecinos se comunican para calcular el promedio de un conjunto de medidas iniciales de la red. Dado que la energía es un recurso escaso en redes de sensores inalámbricos, la convergencia de dichos algoritmos de consenso, caracterizada por el número total de iteraciones hasta alcanzar un valor estacionario, es un importante tema de estudio. Esta tesis doctoral aborda problemas de convergencia y optimización de algoritmos de consenso distribuidos para la estimación de parámetros en redes de sensores inalámbricos. El impacto del ruido de cuantización en la convergencia se estudia en redes con topología fija y enlaces de comunicación simétricos. En particular, se propone un nuevo esquema que incluye el proceso de cuantización y se demuestra que el error cuadrático medio respecto del promedio inicial converge. Igualmente, se obtiene una expresión cerrada del límite del error cuadrático medio, y una cota superior para este límite que depende únicamente de parámetros generales de la red. La convergencia de los algoritmos de consenso en redes con topología aleatoria se estudia prestando especial atención a la convergencia en valor esperado, la convergencia en media cuadrática y la convergencia casi segura, y a partir del análisis se derivan expresiones cerradas útiles para minimizar el tiempo de convergencia. Para redes aleatorias con enlaces asimétricos, se obtienen expresiones cerradas del error cuadrático medio del estado suponiendo enlaces con probabilidad idéntica y con pesos uniformes, y se demuestra la convergencia en media cuadrática al promedio estadístico de las medidas iniciales. Se deduce una cota superior para el error cuadrático medio para el caso de enlaces con probabilidades de conexión diferentes y se propone, además, un esquema práctico con potencias de transmisión aleatorias, que mejora el rendimiento en términos de consumo de energía con respecto a una red fija. Las expresiones para el error cuadrático medio proporcionan una forma de caracterizar la desviación del vector de estado con respecto del promedio inicial cuando los enlaces instantáneos son asimétricos. Con el fin de minimizar el tiempo de convergencia en redes aleatorias con enlaces correlados espacialmente, se considera un criterio que establece una condición suficiente que garantiza la convergencia casi segura al espacio de consenso. Este criterio, que también es válido para topologías con enlaces espacialmente independientes, utiliza el radio espectral de una matriz semidefinida positiva para la cual se obtienen expresiones cerradas suponiendo enlaces con pesos uniformes. La minimización de dicho radio espectral es un problema de optimización convexa y, por lo tanto, el valor de los pesos óptimos puede calcularse de forma eficiente. Las expresiones obtenidas son generales y aplican no sólo para redes aleatorias con topologías dirigidas, sino también para redes aleatorias con topologías no dirigidas. Además, las expresiones generales pueden ser particularizadas para obtener protocolos conocidos en la literatura, demostrando que éstos últimos pueden ser considerados como casos particulares de las expresiones proporcionadas en esta tesis
    corecore