5 research outputs found

    Generalized Fractals for Computer Generated Art: Preliminary Results

    Get PDF
    This paper explores new types of fractals created by iteration of the functions xn+1 = f1(xn, yn) and yn+1 = f2(xn, yn) in a general plane, rather than in the complex plane. Iteration of such functions generates orbits with novel fractal patterns. Especially interesting are N-th order polynomials, raised to a positive or negative integer power, p. Such functions create novel fractal patterns, including budding, spiked, striped, dragon head, and bat-like forms. The present faculty working paper shows how to create a rich variety of complex and fascinating fractals using this generalized approach, which is accessible to students with high school level skills in mathematics and coding

    Control and synchronization of Julia sets of the complex dissipative standard system

    Get PDF
    The fractal behaviors of the complex dissipative standard system are discussed in this paper. By using the boundedness of the forward and backward orbits, Julia set of the system is introduced and visualization of Julia set is also given. Then a controller is designed to achieve Julia set shrinking or expanding with the changing of the control parameter. And synchronization of two different Julia sets is discussed by adding a coupling item, which makes one Julia set change to be the other. The simulations illustrate the efficacy of these methods

    Research on characteristics of noise-perturbed M–J sets based on equipotential point algorithm

    Get PDF
    AbstractAs the classical ones among the fractal sets, Julia set (abbreviated as J set) and Mandelbrot set (abbreviated as M set) have been explored widely in recent years. In this study, J set and M set under additive noise perturbation and multiplicative noise perturbation are created by equipotential point algorithm. Changes of the J set and M set under random noise perturbation as well as the close correlation between them are studied. Experimental results show that either additive noise perturbation or multiplicative noise perturbation may cause dramatic changes on J set. On the other hand, when the M set is perturbed by additive noise, it almost changes nothing but its position; when the M set is perturbed by multiplicative noise, its inner structures change with the stabilized areas shrinking, but it keeps the symmetry with respect to X axis. In addition, the J set and the M set still share the same stabilized periodic point in spite of noise perturbation

    General Noise-Perturbed Superior Julia Sets

    Get PDF
    The aim of this paper is to offer an integrated approach to study the additive and multiplicative noises with respect to perturbations in superior Julia sets. External and internal perturbations in superior Julia sets are analyzed under the mixed effect of additive and multiplicative noises

    Control of the Thermal Fractal Diffusion of Tightly Compressed Heterogeneous Layers of Thin Plates

    Get PDF
    As the thermal conductivity of thin plates composed of tightly compressed heterogeneous layers varies continuously in the form of an exponential function, we present a nonlinear dynamical model of the fractal growth of thermal diffusion. We also analyze the quantitative relationship between the probability of growth and the disturbance term, predict the control action of the environmental disturbance term on fractal growth, and use Matlab simulation to verify the control effectiveness of thermal fractal diffusion. The results facilitate the selection of appropriate control areas and control parameters for the thermal diffusion variable coefficients. In addition, variation in the fractal dimension reflects the influence of environmental disturbance on the complex process of thermal fractal diffusion
    corecore