
Purdue University
Purdue e-Pubs
Weldon School of Biomedical Engineering Faculty
Working Papers Weldon School of Biomedical Engineering

9-14-2017

Generalized Fractals for Computer Generated Art:
Preliminary Results
Charles F. Babbs
Purdue University, babbs@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/bmewp

Part of the Biomedical Engineering and Bioengineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Babbs, Charles F., "Generalized Fractals for Computer Generated Art: Preliminary Results" (2017). Weldon School of Biomedical
Engineering Faculty Working Papers. Paper 15.
http://docs.lib.purdue.edu/bmewp/15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/127582612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fbmewp%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/bmewp?utm_source=docs.lib.purdue.edu%2Fbmewp%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/bmewp?utm_source=docs.lib.purdue.edu%2Fbmewp%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/bme?utm_source=docs.lib.purdue.edu%2Fbmewp%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/bmewp?utm_source=docs.lib.purdue.edu%2Fbmewp%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=docs.lib.purdue.edu%2Fbmewp%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages

1

GENERALIZED FRACTALS FOR COMPUTER

GENERATED ART: PRELIMINARY RESULTS

Charles F. Babbs, MD, PhD*

*Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA

Abstract. This paper explores new types of fractals created by iteration of the functions xn+1 =

f1(xn, yn) and yn+1 = f2(xn, yn) in a general plane, rather than in the complex plane. Iteration of

such functions generates orbits with novel fractal patterns. Especially interesting are N-th order

polynomials, raised to a positive or negative integer power, p,

p

N

0i

N

0j

i

n

j

njinn1 yxa)y,x(f 







 

 

 and

p
N

0i

N

0j

i

n

j

njinn2 yxb)y,x(f 







 

 

.

Such functions create novel fractal patterns, including budding, spiked, striped, dragon head, and

bat-like forms. The present faculty working paper shows how to create a rich variety of complex

and fascinating fractals using this generalized approach, which is accessible to students with high

school level skills in mathematics and coding.

Keywords. Algorithmic art, Chaos, Complex plane, Dynamics, Escape set, Fractals, Graphics,

Iteration, Julia set, Mandelbrot set, Prisoner set.

Background

The fractal patterns in algorithmic or computer generated art are based on the concept of

iteration. This concept can be demonstrated easily in just one dimension. Let f(x) be a function

of real variable, x, and consider the sequence of computations x0, x1 = f(x0), x2 = f(x1), x3 = f(x2),

and so on, such that the input or argument of f(x) in step n + 1 equals the output or value of f(x)

in step n. This process in which xn+1 = f(xn) is called iteration or recursion.

2

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7

x n

Iteration number

x0 = 1.08

x0 = 1.06

x0 = 1.04

x0 = 1.02

x0 = 1

x0 = 0.98

x0 = 0.96

x0 = 0.94

x0 = 0.92

Figure 1. Example of iteration, a prisoner set, an escape set, and a Julia set in one dimension, x,

which is represented on the vertical axis. Note log scale. Here
2

n1n xx  . Iterations with seed

values x0 < 1 rapidly dive toward zero. These seed values constitute the prisoner set. Iterations

with seed values x0 > 1 rapidly climb toward infinity. These seed values constitute the escape

set. The boundary at point x0 = 1 is the Julia set.

Consider the following one-dimensional example. Suppose f(x) = x
2
, and x0 = 2. Then, as n 

 , xn  . However, if x0 = ½, then as n   , xn  0. The set of all seed values, x0 , for

which for which the iterated values xn   is called the escape set. The set of all seed values of

x0 for which iterated values, xn , remain finite is called the prisoner set. As shown in Figure 1 for

this one-dimensional example, the escape set includes all x0 > 1, and the prisoner set includes all

x0 < 1. The boundary between the escape set and the prisoner set is called the Julia set. Here the

Julia set is{1}. In general, the prisoner set is the set of seed values, x0, for which the iterated

values, xn, remain bounded as n approaches infinity. The escape set is the set of seed values, x0,

for which the iterated values, xn, are unbounded as n approaches infinity. The Julia set includes

any points at the border between the prisoner set and the escape set.

3

When this process is extended to two dimensions the Julia sets in some cases become extremely

intricate and infinitely long curves in the plane showing increasingly finer, but self-similar detail,

no matter how much that a region of the plane is magnified. Such an infinitely long pattern in

two dimensions is called a fractal. Many beautiful fractal-like patterns can be found in nature,

including trees, mountains, and coastlines.

Classically, fractals are generated mathematically in two dimensions by the iteration of functions

of complex numbers, z = x + iy, for ordinary, real numbers x and y and 1i  . Complex

numbers can be represented in the complex plane with x-values on the horizontal axis and y-

values on the vertical axis. In the present paper, instead of working exclusively in the complex

plane, which has restrictive and particular rules, we explore new types of fractals generated by

iteration of the arbitrary functions, f1 and f2 in two dimensions, namely

)y,x(fx nn11n  (1a)

)y,x(fy nn21n  . (1b)

This concept of translating the complex plane into a more general two dimensional discrete map

was described previously by Wang, Chang, and Gu (2007) and also by Sprott and Pickover

(1995). It provides a general and mathematically accessible framework for creation of artistic

patterns for algorithmic art, many of which are fractal in nature. For any given pair of functions,

f1 and f2, a computer program can test all possible values of seed values, x0, y0 , to check for

escape behavior. Then, all points x0, y0 in a selected region of the plane can be color coded by

escape speed, as follows. Define a grid-like two-dimensional array of discrete points, x0, y0, in

the plane, usually near the origin, with each point representing a picture element (pixel) in the

final digital image. For each particular x0, y0, begin the iteration process)y,x(fx nn11n  and

)y,x(fy nn21n  for iterations n = 0, 1, 2, 3, ..., nmax. Continue iteration until either the distance

of point xn, yn from the origin exceeds a certain preset limit, R, or until the number of iterations

equals the maximum allowable number of iterations, nmax. If
22

n

2

n Ryx  for the “practical

escape radius”, R, then stop iteration and assign point (x0, y0) to the escape set. Otherwise, if n

= nmax and
22

n

2

n Ryx  , then assign point (x0, y0) to the prisoner set. Furthermore, for points

x0, y0 in the escape set use the last tested value of n (call this value n*) as a measure of the

escape speed. Smaller values of n* indicate faster escape.

Using n* in this way, the two dimensional map can be color coded by escape speed for artistic

effect. If n* = nmax , then the pixel centered at x0, y0 is colored to represent the prisoner set. If

n* < nmax, then the pixel centered at x0, y0 is colored differently as a function of n*. In this way

the colors of points outside the prisoner set are assigned according to escape speed in a way that

highlights the boundary of the prisoner set.

4

A general algorithm for making such escape speed images is listed in Box 1.

Box 1. General computational algorithm for fractal image generation

set escape radius, R, and maximum number of iterations, nmax

read image dimensions, image resolution, parameters for functions f1 and f2,

and color parameters

open image file, write image name and format specifications

for each pixel

 determine coordinates x0, y0

 for n = 0 to nmax  1

 compute xn+1 and yn+1 using specified functions f1 and f2

 if
22

1n

2

1n Ryx   , then exit this for loop

 next n

 assign desired red, green, and blue (RGB) color levels (0 to 255)

 to the selected pixel as specified functions, fR(n), fG(n), fB(n)

write RGB coded image data in a convenient format

next pixel

close image file

Figure 2 shows a set of escape speed images for iteration of the functions

cyxx 2

n

2

n1n  (2a)

nn1n yx2y  (2b)

with tunable parameter, c . The images are reminiscent of the famous Mandelbrot set.

5

(a) (b)

(c) (d)

Figure 2. Escape-time fractal for iteration of Equations 2(a) and 2(b). Practical escape radius, R

= 8.4. The number of the last completed iteration, n*, is the iteration number when escape

distance from the origin becomes > R, or if there is no escape in nmax iterations, then n* = nmax.

Prisoner set is black (n* = 20); near field escape set is pink 5  n* < 20; far field escape set is

gray (n* < 5). The constant c is a tunable parameter. In (a) c = 0.7. In (b) c = 0.9. In (c) c =

1.1. In (d) c = 1.3. Numerically, the horizontal range of the images extends from x = 2 to x

= 2. The vertical range extends from y = 1 to y = 1.

6

The patterns in Figure 2 are true fractals, as is shown for case c = 0.9 in Figure 2(b) by the

expanded scale and higher resolution representation shown in Figure 3.

Figure 3. Escape-time fractal for iteration of Equations 2(a) and 2(b) for c = 0.9. Prisoner set

is black; near field escape set is pink; far field escape set is gray. Numerically, the horizontal

range of the image extends from x = 0.5 to x = 0.5. The vertical range extends from y = 0 to y

= 1.

7

Figures 4 and 5 show even higher resolution and more expanded views of the fractal pattern in

Figure 3. Figure 4 represents 20-fold magnification of Figure 2(b). Figure 5 represents 200-fold

magnification. The fractal pattern is preserved across magnification by more than two orders of

magnitude.

Figure 4. Escape-time fractal for iteration of Equations 2(a) and 2(b) for c = 0.9. Prisoner set

is black; near field escape set is pink; far field escape set is gray. Numerically, the horizontal

range of the image extends from x = 0.05 to x = 0.05. The vertical range extends from y = 0.75

to y = 0.85.

8

Figure 5. Escape-time fractal for iteration of Equations 2(a) and 2(b) for c = 0.9. Prisoner set

is black; near field escape set is pink; far field escape set is gray. Numerically, the horizontal

range of the image extends from x = 0.005 to x = 0.005. The vertical range extends from y =

0.81 to y = 0.82.

The present faculty working paper shows how to create a rich variety of complex and fascinating

fractals using the general approach of Equations (1) and techniques that are accessible to students

with high school level skills in mathematics and coding.

9

Fractals created by iteration of general polynomial functions, raised to an integer power

The forgoing framework provides an easy way to specify iteration formulas for fractal patterns.

For example, consider N-th order polynomial functions, raised to an integer power, p,

p

NN

NN

N3

3N

N2

2N

N

1N

N

0N

2N

N2

23

23

22

22

2

21

2

20

N

N1

3

13

2

121110

N

N0

3

03

2

020100

1

yxayxayxaxyaya

yxayxayxaxyaya

yxayxayxaxyaya

xaxaxaxaa

)y,x(f















































 (3a)

p

NN

NN

N3

3N

N2

2N

N

1N

N

0N

2N

N2

23

23

22

22

2

21

2

20

N

N1

3

13

2

121110

N

N0

3

03

2

020100

2

yxbyxbyxbxybyb

yxbyxbyxbxybyb

yxbyxbyxbxybyb

xbxbxbxbb

)y,x(f















































, (3b)

or in more compact notation,

p

N

0i

N

0j

i

n

j

njinn11n yxa)y,x(fx 







 

 

 (3c)

p

N

0i

N

0j

i

n

j

njinn21n yxb)y,x(fy 







 

 

 , (3d)

where p may be either a positive or negative integer. (If p = 0 we have the degenerate prisoner

set of {1, 1}.) The form of the fractal is determined by the coefficient matrices

A =



















............

...aaa

...aaa

...aaa

333231

232221

131211

 and B =



















............

...bbb

...bbb

...bbb

333231

232221

131211

. (4)

10

Here we examine several examples of the iteration of such polynomial functions.

Consider iteration of the second order polynomial function shown in Figure 6, for which

1yxx 2

n

2

n1n  (5a)

nnnn1n yx2yxy  , (5b)

A =

001

000

101





 , B =

000

021

010

 , and power, p = 1.

Addition of the x and y terms to Equation (2b) transforms a lumpy fractal pattern into a spikey

fractal pattern that is reminiscent of stylized sailing ships.

11

Figure 6. Escape-time fractal in the plane for iteration of Equations (5). Practical escape radius,

R = 8.4. Iteration number when escape distance from origin becomes > R = n*. Prisoner set is

black (n*  20); near field escape set is pink 5  n* < 20; far field escape set is gray (n* < 5).

Numerically, the horizontal range of the image extends from x = 2 to x = 2. The vertical range

extends from y = 2 to y = 2.

The fractal nature of the pattern in Figure 6 can be revealed by magnification of the image, as

shown in Figures 7 and 8, which correspond to 20X and 40X magnification, respectively.

12

Figure 7. Escape-time fractal in the plane for iteration of Equations (5), corresponding to the top

portion of Figure 6. Practical escape radius, R = 8.4. Iteration number when escape distance

from origin becomes > R = n*. Prisoner set is black (n*  20); near field escape set is pink 5 

n* < 20; far field escape set is gray (n* < 5). Numerically, the horizontal range of the image

extends from x = 0.6 to x = 0.4. The vertical range extends from y = 0.8 to y = 1.0.

13

Figure 8. Escape-time fractal in the plane for iteration of Equations (5), corresponding to the top

part of Figure 7. Practical escape radius, R = 8.4. Iteration number when escape distance from

origin becomes > R = n*. Prisoner set is black (n*  20); near field escape set is pink 5  n* <

20; far field escape set is gray (n* < 5). Numerically, the horizontal range of the image extends

from x = 0.55 to x = 0.45. The vertical range extends from y = 0.9 to y = 1.0.

14

Inverse power transformation can lead to dramatically different results. Consider Equations (6):

1yxx 2

n

2

n1n  (6a)

2

n

2

nnn1n yx2yx22y  , (6b)

for which

A =

001

000

101





 , B =

200

020

002

 , and power, p = 1.

For exponent p = 1, an interesting pattern appears, as shown in Figures 9(a) through 9(d). The

dotted box in Figure 9(a) indicates approximately the region expanded to create Figure 9(b), etc.

The structures are reminiscent of the rings of the planet Saturn in that the greater the

magnification, the more detail is seen. The self-similar pattern of rings is revealed with

successively greater and greater magnification. This kind of self-similarity at different scales is a

characteristic of fractals. The magnification in Figure 9(d) is over 100X that in Figure 9(a).

Thus Equations (6) appear to produce a new type of striped fractal.

15

 (a) (b)

(c) (d)

Figure 9. Escape-time fractal in the plane for iteration of Equations (6). Practical escape radius,

R = 8.4. Iteration number when escape distance from origin becomes > R = n*. Prisoner set is

red (n*  20); near field escape set is pink to green 5  n* < 20; far field escape set is blue (n* <

5). Numerically, the ranges of the images extend from (a) x = 2 to x = 2 and y = 2 to y = 2;

(b) x = 0.5 to x = 0.5 and y = 0 to y = 1; (c) x = 0.05 to x = 0.05 and y = 0.4 to y = 0.5; and (d)

x = 0.005 to x = 0.005 and y = 0.48 to y = 0.49. Dotted boxes indicate expanded regions.

16

Figure 10 depicts iteration of the functions (7a) and (7b),

3

n

2

nnn

2

nn1n yyxyxyx  (7a)

2

n

2

n

3

nn1n y3x3xxy  , (7b)

for which

A =

0001

0010

0101

0000



 , B =

0000

0030

0300

1010

 , and power, p = 1.

The resulting dragon head structures are new and unusual. In this example the prisoner set and

the Julia set look connected.

17

(a) (b)

(c) (d)

Figure 10. Escape-time fractal in the plane for iteration of Equations (7). Practical escape

radius, R = 8.4. Iteration number when escape distance from origin becomes > R = n*. Prisoner

set is black (n*  20); near field escape set is pink 5  n* < 20; far field escape set is gray (n* <

5). Numerically, the ranges of the images extend from (a) x = 1 to x = 1 and y = 1.5 to y =

1.5; (b) x = 0.3 to x = 0.3 and y = 0.6 to y = 1.5; (c) x = 0.04 to x = 0.02 and y = 1.20 to y =

1.29; and (d) x = 0.004 to x = 0.006 and y = 1.260 to y = 1.275. Dotted boxes indicate

expanded regions.

18

Figures 11 and 12 illustrate two more varied examples, in which Equations (8) and (9) are used

to generate different fractal patterns. These patterns do not have reflection symmetries.

However, the self-similar repeating patterns are clearly present, highly angular, and less frequent

than in the classical fractal patterns, such as those of the Mandelbrot set. To generate Figure 11

we have

3

nn

2

nnnn1n yyxyxyx  (8a)

2

n

2

n

2

nnn

2

nn1n yx3yx3yx3xy  , (8b)

for which

A =

0001

0000

0111

0000



 , B =

0000

0330

0300

0010

 , and power, p = 1.

Equations (9) may be used to generate an even more abstract form of fractal:

2

nnn

2

n1n yxyx1x  (9a)

2

n

2

n

2

nnn1n yyxyxy  (9b)

for which

A =

0000

0010

0100

0001

 , B =

0000

0101

0010

0000


 , and power, p = 1.

The resulting pattern is shown in Figure 12.

19

(a) (b)

Figure 11. Escape-time coded fractal in the plane for iteration of Equations (8). Practical

escape radius, R = 8.4. Iteration number when escape distance from origin becomes > R = n*.

Prisoner set is black (n*  20); near field escape set is pink 5  n* < 20; far field escape set is

gray (n* < 5). Numerically, the ranges of the images extend from (a) x = 2 to x = 2 and y = 2

to y = 2; (b) x = 0.2 to x = 0.4 and y = 1 to y = 1.6. Dotted box indicates expanded region.

20

(a) (b)

Figure 12. Escape-time coded fractal in the plane for iteration of Equations (9). Practical

escape radius, R = 8.4. Iteration number when escape distance from origin becomes > R = n*.

Prisoner set is black (n*  20); near field escape set is pink 5  n* < 20; far field escape set is

gray (n* < 5). Numerically, the ranges of the images extend from (a) x = 3 to x = 3 and y = 2

to y = 2; (b) x = 0.8 to x = 1.8 and y = 2.5 to y = 1.5. Dotted box indicates expanded region.

Figure 13 shows the results of just one foray into the realm of randomly chosen, higher order

polynomials. The functions in Equations (10) were selected at random, followed by some fine

tuning of one coefficient (3) to enhance visual interest and complexity.

36532

1 yxyxxy1f  (10a)

664445

2 yxyx3yxxyf  (10b)

21

In frames (b) through (f) the region including the small island at the top left of Figure 13(a) is

successively magnified. The small island, itself has a small island, which in turn has a small

island that is clearly visible at 4000X magnification. This third generation island comprised less

than one quarter pixel in the original image of Figure 13(a). An invisible speck in the original 2

unit by 2 unit square is itself a fractal pattern that can be magnified indefinitely.

(a) 1X (b) 4X

(c) 40X (d) 160X

22

(e) 1000X (f) 4000X

Figure 13. Fractals generated by iteration of Equations (10). The horizontal and vertical ranges

in dimensionless units are 2 to 2 and 2 to 2, respectively in (a); 2 to 1 and 0.5 to 1.5 in (b);

1.43 to 1.23 and 1.2 to 1.4 in (c); 1.325 to 1.300 and 1.370 to 1.395 in (d);

1.320 to 1.316 and 1.386 to 1.390 in (e); and 1.319 to 1.318 and 1.389 to 1.390 in (f).

Discussion

Here we explore the use of general polynomial functions, followed by optional power function

transformation, as fractal generators. The use of complex arithmetic, based on 1 , is not

required to create fractal patterns. Paired polynomial functions of ordinary real numbers,

subjected to iteration in the plane, can be used to create artistic two-dimensional maps of

prisoner, escape, and Julia sets with genuine fractal properties. A large contingent of potential

fractal patterns awaits exploration, including many undiscovered forms, both organic, and

otherworldly. Only pre-college math and programming skills are required. Using this approach,

students of many levels of mathematical ability can search for novel types of fractals in a general

way, realizing that not all combinations of functions, f1 and f2, will produce genuine fractals, but

that other combinations of functions may lead to new and undiscovered forms.

Even further generalization of these simple concepts is straightforward. The trick of raising the

functions f1 and f2 to an arbitrary positive or negative power, p, namely
p

N

0i

N

0j

i

n

j

njinn1 yxa)y,x(f 







 

 

 and

p
N

0i

N

0j

i

n

j

njinn2 yxb)y,x(f 







 

 

, is itself a specific example of a

broader concept for adding additional variety using a secondary function g(f) to obtain

 )y,x(fg)y,x(f nn1nn1  , and  )y,x(fg)y,x(f nn2nn2  . In the case of raising to a power, g(u) =

u
p
. Moreover, if desired, this process could be continued to obtain arbitrarily complicated forms

23

  )y,x(fgh)y,x(f nn1nn1
 ,   )y,x(fgh)y,x(f nn2nn2

 , etc., as long as each generation of

chained functions maps to the original plane.

Another domain of generalization involves three dimensional or higher dimensional fractals.

Clearly, the forgoing process can be expanded to three or more dimensions:

)z,y,x(fx nnn11n 

)z,y,x(fy nnn21n  (11)

)z,y,x(fz nnn31n 

or

)w,z,y,x(fx nnnn11n 

)w,z,y,x(fy nnnn21n 

 (12)

)w,z,y,x(fz nnnn31n 

)w,z,y,x(fw nnnn41n  , etc.,

for which prisoner sets, escape sets, and Julia sets can be defined analogously to those in two

dimensions. In three dimensions prisoner sets are volumes and Julia sets are surfaces. In four

dimensions prisoner sets are hyper-volumes, and Julia sets are volumes, and so on. As the

number of dimensions increases, the required computation time increases greatly and the

challenges of graphical rendering of higher dimensional fractals become more formidable.

Nevertheless, the opportunities for discovery are unlimited.

References

JC Sprott and CA Pickover, Automatic generation of general quadratic map basins, Computers &

Graphics 19(2), 309-313, 1995

Wang Xing-yuan, Chang Pei-jun, and Gu Ni-ni, Additive perturbed generalized Mandelbrot–

Julia sets, Applied Mathematics and Computation 189, 754–765. 2007

	Purdue University
	Purdue e-Pubs
	9-14-2017

	Generalized Fractals for Computer Generated Art: Preliminary Results
	Charles F. Babbs
	Recommended Citation

	tmp.1505737503.pdf.4jLyF

