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Abstract.  This paper explores new types of fractals created by iteration of the functions xn+1 = 

f1(xn, yn) and yn+1  = f2(xn, yn) in a general plane, rather than in the complex plane.  Iteration of 

such functions generates orbits with novel fractal patterns.  Especially interesting are N-th order 

polynomials, raised to a positive or negative integer power, p, 
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Such functions create novel fractal patterns, including budding, spiked, striped, dragon head, and 

bat-like forms.  The present faculty working paper shows how to create a rich variety of complex 

and fascinating fractals using this generalized approach, which is accessible to students with high 

school level skills in mathematics and coding. 

 

 

 

Keywords.  Algorithmic art, Chaos, Complex plane, Dynamics, Escape set, Fractals, Graphics, 

Iteration, Julia set, Mandelbrot set, Prisoner set. 

 

 

 

 

Background 

 

The fractal patterns in algorithmic or computer generated art are based on the concept of 

iteration.  This concept can be demonstrated easily in just one dimension. Let f(x) be a function 

of real variable, x, and consider the sequence of computations x0, x1 = f(x0), x2 = f(x1), x3 = f(x2), 

and so on, such that the input or argument of f(x) in step n + 1 equals the output or value of f(x) 

in step n.  This process in which xn+1 = f(xn) is called iteration or recursion. 
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Figure 1. Example of iteration, a prisoner set, an escape set, and a Julia set in one dimension, x, 

which is represented on the vertical axis.  Note log scale.  Here 
2

n1n xx  .  Iterations with seed 

values x0 < 1 rapidly dive toward zero.  These seed values constitute the prisoner set.  Iterations 

with seed values x0 > 1 rapidly climb toward infinity.  These seed values constitute the escape 

set.  The boundary at point x0 = 1 is the Julia set.  

 

 

Consider the following one-dimensional example.  Suppose f(x) = x
2
, and x0 = 2.  Then, as n  

 , xn  .  However, if x0 = ½, then as n   , xn  0.  The set of all seed values, x0 , for 

which for which the iterated values xn   is called the escape set.  The set of all seed values of 

x0 for which iterated values, xn , remain finite is called the prisoner set.  As shown in Figure 1 for 

this one-dimensional example, the escape set includes all x0 > 1, and the prisoner set includes all 

x0 < 1.  The boundary between the escape set and the prisoner set is called the Julia set.  Here the 

Julia set is{1}.  In general, the prisoner set is the set of seed values, x0, for which the iterated 

values, xn, remain bounded as  n  approaches infinity.  The escape set is the set of seed values, x0, 

for which the iterated values, xn, are unbounded as  n  approaches infinity.  The Julia set includes 

any points at the border between the prisoner set and the escape set.   
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When this process is extended to two dimensions the Julia sets in some cases become extremely 

intricate and infinitely long curves in the plane showing increasingly finer, but self-similar detail, 

no matter how much that a region of the plane is magnified.  Such an infinitely long pattern in 

two dimensions is called a fractal.  Many beautiful fractal-like patterns can be found in nature, 

including trees, mountains, and coastlines.   

 

Classically, fractals are generated mathematically in two dimensions by the iteration of functions 

of complex numbers, z = x + iy, for ordinary, real numbers x and y and 1i  .  Complex 

numbers can be represented in the complex plane with x-values on the horizontal axis and y-

values on the vertical axis.  In the present paper, instead of working exclusively in the complex 

plane, which has restrictive and particular rules, we explore new types of fractals generated by 

iteration of the arbitrary functions, f1 and f2 in two dimensions, namely 

 

)y,x(fx nn11n            (1a) 

 

)y,x(fy nn21n  .          (1b) 

 

This concept of translating the complex plane into a more general two dimensional discrete map 

was described previously by Wang, Chang, and Gu (2007) and also by Sprott and Pickover 

(1995).  It provides a general and mathematically accessible framework for creation of artistic 

patterns for algorithmic art, many of which are fractal in nature.  For any given pair of functions, 

f1 and f2, a computer program can test all possible values of seed values, x0, y0 , to check for 

escape behavior.  Then, all points x0, y0 in a selected region of the plane can be color coded by 

escape speed, as follows.  Define a grid-like two-dimensional array of discrete points, x0, y0, in 

the plane, usually near the origin, with each point representing a picture element (pixel) in the 

final digital image.  For each particular x0, y0, begin the iteration process )y,x(fx nn11n   and 

)y,x(fy nn21n   for iterations n = 0, 1, 2, 3, ..., nmax.  Continue iteration until either the distance 

of point xn, yn from the origin exceeds a certain preset limit, R, or until the number of iterations 

equals the maximum allowable number of iterations, nmax.   If 
22

n

2

n Ryx   for the “practical 

escape radius”, R, then stop iteration and assign point (x0, y0) to the escape set.  Otherwise, if  n 

= nmax and 
22

n

2

n Ryx  , then assign point (x0, y0) to the prisoner set.  Furthermore, for points 

x0, y0 in the escape set use the last tested value of  n  (call this value n*) as a measure of the 

escape speed.  Smaller values of n* indicate faster escape. 

 

Using  n*  in this way, the two dimensional map can be color coded by escape speed for artistic 

effect.  If n* = nmax , then the pixel centered at x0, y0 is colored to represent the prisoner set.  If 

n* < nmax, then the pixel centered at x0, y0 is colored differently as a function of n*.  In this way 

the colors of points outside the prisoner set are assigned according to escape speed in a way that 

highlights the boundary of the prisoner set.  
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A general algorithm for making such escape speed images is listed in Box 1. 

 

 

 

Box 1. General computational algorithm for fractal image generation 

 

set escape radius, R, and maximum number of iterations, nmax 

 

read image dimensions, image resolution, parameters for functions f1 and f2,  

and color parameters 

 

open image file, write image name and format specifications 

 

for each pixel 

 

 determine coordinates x0, y0 

 

 for n = 0 to nmax  1 

 

  compute xn+1 and yn+1  using specified functions f1 and f2 

 

  if 
22

1n

2

1n Ryx   , then exit this for loop 

 

 next n 

 

 assign desired red, green, and blue (RGB) color levels (0 to 255)  

            to the selected pixel as specified functions, fR(n), fG(n), fB(n) 

 

write RGB coded image data in a convenient format 

 

next pixel 

 

close image file 

 

 

 

Figure 2 shows a set of escape speed images for iteration of the functions  

 

cyxx 2

n

2

n1n            (2a) 

 

nn1n yx2y             (2b) 

 

with tunable parameter, c .  The images are reminiscent of the famous Mandelbrot set.   



5 

 

 

 

     
(a)       (b) 

 

 

     
(c)       (d) 

 

 

Figure 2.  Escape-time fractal for iteration of Equations 2(a) and 2(b).  Practical escape radius, R 

= 8.4.  The number of the last completed iteration, n*, is the iteration number when escape 

distance from the origin becomes > R, or if there is no escape in nmax iterations, then n* = nmax.  

Prisoner set is black (n* = 20); near field escape set is pink 5  n* < 20; far field escape set is 

gray (n* < 5).  The constant c is a tunable parameter.  In (a) c = 0.7.  In (b) c = 0.9.  In (c) c = 

1.1.  In (d) c = 1.3.  Numerically, the horizontal range of the images extends from x = 2 to x 

= 2.  The vertical range extends from y = 1 to y = 1.  
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The patterns in Figure 2 are true fractals, as is shown for case c = 0.9 in Figure 2(b) by the 

expanded scale and higher resolution representation shown in Figure 3. 

 

 

 
 

 

Figure 3.  Escape-time fractal for iteration of Equations 2(a) and 2(b) for c = 0.9.  Prisoner set 

is black; near field escape set is pink; far field escape set is gray.  Numerically, the horizontal 

range of the image extends from x = 0.5 to x = 0.5.  The vertical range extends from y = 0 to y 

= 1.   
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Figures 4 and 5 show even higher resolution and more expanded views of the fractal pattern in 

Figure 3.  Figure 4 represents 20-fold magnification of Figure 2(b).  Figure 5 represents 200-fold 

magnification.  The fractal pattern is preserved across magnification by more than two orders of 

magnitude.   

 

 

 
 

 

Figure 4.  Escape-time fractal for iteration of Equations 2(a) and 2(b) for c = 0.9.  Prisoner set 

is black; near field escape set is pink; far field escape set is gray.  Numerically, the horizontal 

range of the image extends from x = 0.05 to x = 0.05.  The vertical range extends from y = 0.75 

to y = 0.85.   
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Figure 5.  Escape-time fractal for iteration of Equations 2(a) and 2(b) for c = 0.9.  Prisoner set 

is black; near field escape set is pink; far field escape set is gray.  Numerically, the horizontal 

range of the image extends from x = 0.005 to x = 0.005.  The vertical range extends from y = 

0.81 to y = 0.82.   

 

 

The present faculty working paper shows how to create a rich variety of complex and fascinating 

fractals using the general approach of Equations (1) and techniques that are accessible to students 

with high school level skills in mathematics and coding. 
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Fractals created by iteration of general polynomial functions, raised to an integer power 

 

The forgoing framework provides an easy way to specify iteration formulas for fractal patterns.  

For example, consider N-th order polynomial functions, raised to an integer power, p, 
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or in more compact notation,  
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where  p  may be either a positive or negative integer.  (If p = 0 we have the degenerate prisoner 

set of {1, 1}.)  The form of the fractal is determined by the coefficient matrices 
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Here we examine several examples of the iteration of such polynomial functions. 

 

Consider iteration of the second order polynomial function shown in Figure 6, for which 

 

1yxx 2

n

2

n1n            (5a) 

 

nnnn1n yx2yxy  ,         (5b) 

 

A = 

001

000

101





  ,  B = 

000

021

010

  ,  and power, p = 1.   

 

Addition of the x and y terms to Equation (2b) transforms a lumpy fractal pattern into a spikey 

fractal pattern that is reminiscent of stylized sailing ships. 
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Figure 6.  Escape-time fractal in the plane for iteration of Equations (5).  Practical escape radius, 

R = 8.4.  Iteration number when escape distance from origin becomes > R = n*.  Prisoner set is 

black (n*  20); near field escape set is pink 5  n* < 20; far field escape set is gray (n* < 5).  

Numerically, the horizontal range of the image extends from x = 2 to x = 2.  The vertical range 

extends from y = 2 to y = 2.  

 

The fractal nature of the pattern in Figure 6 can be revealed by magnification of the image, as 

shown in Figures 7 and 8, which correspond to 20X and 40X magnification, respectively.   
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Figure 7.  Escape-time fractal in the plane for iteration of Equations (5), corresponding to the top 

portion of Figure 6.  Practical escape radius, R = 8.4.  Iteration number when escape distance 

from origin becomes > R = n*.  Prisoner set is black (n*  20); near field escape set is pink 5  

n* < 20; far field escape set is gray (n* < 5).  Numerically, the horizontal range of the image 

extends from x = 0.6 to x = 0.4.  The vertical range extends from y = 0.8 to y = 1.0.  
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Figure 8.  Escape-time fractal in the plane for iteration of Equations (5), corresponding to the top 

part of Figure 7.  Practical escape radius, R = 8.4.  Iteration number when escape distance from 

origin becomes > R = n*.  Prisoner set is black (n*  20); near field escape set is pink 5  n* < 

20; far field escape set is gray (n* < 5).  Numerically, the horizontal range of the image extends 

from x = 0.55 to x = 0.45.  The vertical range extends from y = 0.9 to y = 1.0.  
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Inverse power transformation can lead to dramatically different results.  Consider Equations (6): 
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n1n            (6a) 
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nnn1n yx2yx22y   ,         (6b) 

 

for which 

 

A = 

001

000

101





  ,  B = 

200

020

002

  ,  and power, p = 1.   

 

For exponent p = 1, an interesting pattern appears, as shown in Figures 9(a) through 9(d).  The 

dotted box in Figure 9(a) indicates approximately the region expanded to create Figure 9(b), etc.  

The structures are reminiscent of the rings of the planet Saturn in that the greater the 

magnification, the more detail is seen.  The self-similar pattern of rings is revealed with 

successively greater and greater magnification.  This kind of self-similarity at different scales is a 

characteristic of fractals.  The magnification in Figure 9(d) is over 100X that in Figure 9(a).  

Thus Equations (6) appear to produce a new type of striped fractal. 
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   (a)       (b) 

 

     
(c)       (d) 

 

 

Figure 9.  Escape-time fractal in the plane for iteration of Equations (6).  Practical escape radius, 

R = 8.4.  Iteration number when escape distance from origin becomes > R = n*.  Prisoner set is 

red (n*  20); near field escape set is pink to green 5  n* < 20; far field escape set is blue (n* < 

5).  Numerically, the ranges of the images extend from (a) x = 2 to x = 2 and y = 2 to y = 2; 

(b) x = 0.5 to x = 0.5 and y = 0 to y = 1; (c) x = 0.05 to x = 0.05 and y = 0.4 to y = 0.5; and (d) 

x = 0.005 to x = 0.005 and y = 0.48 to y = 0.49.  Dotted boxes indicate expanded regions. 
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Figure 10 depicts iteration of the functions (7a) and (7b), 
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for which 

 

A = 

0001
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  ,  B = 
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  ,  and power, p = 1.   

 

 

The resulting dragon head structures are new and unusual.  In this example the prisoner set and 

the Julia set look connected.  
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(c)     (d) 

 

Figure 10.  Escape-time fractal in the plane for iteration of Equations (7).  Practical escape 

radius, R = 8.4.  Iteration number when escape distance from origin becomes > R = n*.  Prisoner 

set is black (n*  20); near field escape set is pink 5  n* < 20; far field escape set is gray (n* < 

5).  Numerically, the ranges of the images extend from (a) x = 1 to x = 1 and y = 1.5 to y = 

1.5; (b) x = 0.3 to x = 0.3 and y = 0.6 to y = 1.5; (c) x = 0.04 to x = 0.02 and y = 1.20 to y = 

1.29; and (d) x = 0.004 to x = 0.006 and y = 1.260 to y = 1.275.  Dotted boxes indicate 

expanded regions. 
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Figures 11 and 12 illustrate two more varied examples, in which Equations (8) and (9) are used 

to generate different fractal patterns.  These patterns do not have reflection symmetries.  

However, the self-similar repeating patterns are clearly present, highly angular, and less frequent 

than in the classical fractal patterns, such as those of the Mandelbrot set.  To generate Figure 11 

we have 
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for which 
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  ,  B = 
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  ,  and power, p = 1.   

 

Equations (9) may be used to generate an even more abstract form of fractal: 
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  ,  B = 
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  ,  and power, p = 1.   

 

The resulting pattern is shown in Figure 12. 
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(a)      (b) 

 

 

Figure 11.  Escape-time coded fractal in the plane for iteration of Equations (8).  Practical 

escape radius, R = 8.4.  Iteration number when escape distance from origin becomes > R = n*.  

Prisoner set is black (n*  20); near field escape set is pink 5  n* < 20; far field escape set is 

gray (n* < 5).  Numerically, the ranges of the images extend from (a) x = 2 to x = 2 and y = 2 

to y = 2; (b) x = 0.2 to x = 0.4 and y = 1 to y = 1.6.  Dotted box indicates expanded region. 
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(a)      (b) 

 

 

Figure 12.  Escape-time coded fractal in the plane for iteration of Equations (9).  Practical 

escape radius, R = 8.4.  Iteration number when escape distance from origin becomes > R = n*.  

Prisoner set is black (n*  20); near field escape set is pink 5  n* < 20; far field escape set is 

gray (n* < 5).  Numerically, the ranges of the images extend from (a) x = 3 to x = 3 and y = 2 

to y = 2; (b) x = 0.8 to x = 1.8 and y = 2.5 to y = 1.5.  Dotted box indicates expanded region. 

 

 

Figure 13 shows the results of just one foray into the realm of randomly chosen, higher order 

polynomials.  The functions in Equations (10) were selected at random, followed by some fine 

tuning of one coefficient (3) to enhance visual interest and complexity. 

 
36532

1 yxyxxy1f           (10a) 

 
664445

2 yxyx3yxxyf           (10b) 
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In frames (b) through (f) the region including the small island at the top left of Figure 13(a) is 

successively magnified.  The small island, itself has a small island, which in turn has a small 

island that is clearly visible at 4000X magnification.  This third generation island comprised less 

than one quarter pixel in the original image of Figure 13(a).  An invisible speck in the original 2 

unit by 2 unit square is itself a fractal pattern that can be magnified indefinitely.  

 

 

    
(a) 1X      (b) 4X 

 

 

    
(c) 40X     (d) 160X 
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(e) 1000X     (f) 4000X 

 

Figure 13.  Fractals generated by iteration of Equations (10).  The horizontal and vertical ranges 

in dimensionless units are 2 to 2 and 2 to 2, respectively in (a); 2 to 1 and 0.5 to 1.5 in (b); 

1.43 to 1.23 and 1.2 to 1.4 in (c); 1.325 to 1.300 and 1.370 to 1.395 in (d);  

1.320 to 1.316 and 1.386 to 1.390 in (e); and 1.319 to 1.318 and 1.389 to 1.390 in (f).  

 

 

Discussion 

 

Here we explore the use of general polynomial functions, followed by optional power function 

transformation, as fractal generators.  The use of complex arithmetic, based on 1 , is not 

required to create fractal patterns.  Paired polynomial functions of ordinary real numbers, 

subjected to iteration in the plane, can be used to create artistic two-dimensional maps of 

prisoner, escape, and Julia sets with genuine fractal properties.  A large contingent of potential 

fractal patterns awaits exploration, including many undiscovered forms, both organic, and 

otherworldly.  Only pre-college math and programming skills are required.  Using this approach, 

students of many levels of mathematical ability can search for novel types of fractals in a general 

way, realizing that not all combinations of functions, f1 and f2, will produce genuine fractals, but 

that other combinations of functions may lead to new and undiscovered forms.   

 

Even further generalization of these simple concepts is straightforward.  The trick of raising the 

functions f1 and f2 to an arbitrary positive or negative power, p, namely 
p
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, is itself a specific example of a 

broader concept for adding additional variety using a secondary function g(f) to obtain 

 )y,x(fg)y,x(f nn1nn1  , and  )y,x(fg)y,x(f nn2nn2  .  In the case of raising to a power, g(u) = 

u
p
.  Moreover, if desired, this process could be continued to obtain arbitrarily complicated forms 
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  )y,x(fgh)y,x(f nn1nn1
 ,   )y,x(fgh)y,x(f nn2nn2

 , etc., as long as each generation of 

chained functions maps to the original plane. 

 

Another domain of generalization involves three dimensional or higher dimensional fractals.  

Clearly, the forgoing process can be expanded to three or more dimensions: 

 

)z,y,x(fx nnn11n 
 

 

)z,y,x(fy nnn21n            (11) 

 

)z,y,x(fz nnn31n   

 

or 

 

)w,z,y,x(fx nnnn11n   

 

)w,z,y,x(fy nnnn21n   

            (12) 

)w,z,y,x(fz nnnn31n   

 

)w,z,y,x(fw nnnn41n  , etc., 

 

for which prisoner sets, escape sets, and Julia sets can be defined analogously to those in two 

dimensions.  In three dimensions prisoner sets are volumes and Julia sets are surfaces.  In four 

dimensions prisoner sets are hyper-volumes, and Julia sets are volumes, and so on.  As the 

number of dimensions increases, the required computation time increases greatly and the 

challenges of graphical rendering of higher dimensional fractals become more formidable.  

Nevertheless, the opportunities for discovery are unlimited. 
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