5,164 research outputs found

    Project RISE: Recognizing Industrial Smoke Emissions

    Full text link
    Industrial smoke emissions pose a significant concern to human health. Prior works have shown that using Computer Vision (CV) techniques to identify smoke as visual evidence can influence the attitude of regulators and empower citizens to pursue environmental justice. However, existing datasets are not of sufficient quality nor quantity to train the robust CV models needed to support air quality advocacy. We introduce RISE, the first large-scale video dataset for Recognizing Industrial Smoke Emissions. We adopted a citizen science approach to collaborate with local community members to annotate whether a video clip has smoke emissions. Our dataset contains 12,567 clips from 19 distinct views from cameras that monitored three industrial facilities. These daytime clips span 30 days over two years, including all four seasons. We ran experiments using deep neural networks to establish a strong performance baseline and reveal smoke recognition challenges. Our survey study discussed community feedback, and our data analysis displayed opportunities for integrating citizen scientists and crowd workers into the application of Artificial Intelligence for social good.Comment: Technical repor

    Evaluating Lightning-Caused Fire Occurrence Using Spatial Generalized Additive Models: A Case Study in Central Spain

    Get PDF
    [EN] It is widely accepted that the relationship between lightning wildfire occurrence and its influencing factors vary depending on the spatial scale of analysis, making the development of models at the regional scale advisable. In this study, we analyze the effects of different biophysical variables and lightning characteristics on lightning-caused forest wildfires in Castilla y Le´on region (Central Spain). The presence/absence of at least one lightningcaused fire in any 4 × 4-km grid cell was used as a dependent variable and vegetation type and structure, terrain, climate, and lightning characteristics were used as possible covariates. Five prediction methods were compared: a generalized linear model (GLM), a random forest model (RFM), a generalized additive model (GAM), a GAM that includes a spatial trend function (GAMs) and a spatial autoregressive model (AUREG). A GAMs with just one covariate, apart from longitude and latitude for each observation included as a combined effect, was considered the most appropriate model in terms of both predictive ability and simplicity. According to our results, the probability of a forest being affected by a lightning-caused fire is positively and nonlinearly associated with the percentage of coniferous woodlands in the landscape, suggesting that occurrence is more closely associated with vegetation type than with topography, climate, or lightning characteristics. The selected GAMs is intended to inform the Regional Government of Castilla y Le´on (the fire and fuel agency in the region) regarding identification of areas at greatest risk so it can design long-term forest fuel and fire management strategiesSIFunding for this research was provided by the Universidad de León under the project titled “Análisis de la distribución espacial y temporal y caracterización de fenómenos tormentosos en el medio agrícola y forestal de la Meseta Central y del Norte de España.” AEMET provided the lightning strike and meteorological data use

    Artificial neural networks to detect forest fire prone areas in the southeast fire district of Mississippi

    Get PDF
    An analysis of the fire occurrences parameters is essential to save human lives, property, timber resources and conservation of biodiversity. Data conversion formats such as raster to ASCII facilitate the integration of various GIS software’s in the context of RS and GIS modeling. This research explores fire occurrences in relation to human interaction, fuel density interaction, euclidean distance from the perennial streams and slope using artificial neural networks. The human interaction (ignition source) and density of fuels is assessed by Newton’s Gravitational theory. Euclidean distance to perennial streams and slope that do posses a significant role were derived using GIS tools. All the four non linear predictor variables were modeled using the inductive nature of neural networks. The Self organizing feature map (SOM) utilized for fire size risk classification produced an overall classification accuracy of 62% and an overall kappa coefficient of 0.52 that is moderate (fair) for annual fires

    A review of machine learning applications in wildfire science and management

    Full text link
    Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table
    corecore