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An analysis of the fire occurrences parameters is essential to save human lives, 

property, timber resources and conservation of biodiversity. Data conversion formats such as 

raster to ASCII facilitate the integration of various GIS software’s in the context of RS and 

GIS modeling. This research explores fire occurrences in relation to human interaction, 

fuel density interaction, euclidean distance from the perennial streams and slope using 

artificial neural networks. The human interaction (ignition source) and density of fuels is 

assessed by Newton’s Gravitational theory.  Euclidean distance to perennial streams and 

slope that do posses a significant role were derived using GIS tools. 

 All the four non linear predictor variables were modeled using the inductive 

nature of neural networks. The Self organizing feature map (SOM) utilized for fire size 

risk classification produced an overall classification accuracy of 62% and an overall 

kappa coefficient of 0.52 that is moderate (fair) for annual fires. 
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CHAPTER I  
 

INTRODUCTION 
 
 

Forests are an important asset to mankind in terms of their valuable role in 

preserving the environment to sustain life. Fire is useful in every day life. Natural fires 

and accidental fires can turn theses fires as a negative asset to the society. In United 

States, an average of 250,000 wildfires occurs per year that affects almost 5 million acres 

of forest, brush, and grass-covered lands (Wilson and Davis 1988). Annual fire protection 

services and loses costs more than half billion and two billion respectively in United 

States (Wilson and Davis 1988). Fire potential in general is lower in eastern US, still 

Mississippi on average has 3760 wildfires per year (Cooke et al, 2007). Natural disasters 

like the Hurricane Katrina have raised the fire threat of the state of MS that necessitated a 

Geographic information system (GIS) based fire management approach by Mississippi 

Forestry Commission (Gilreath, 2006). The Concept of GIS and remote sensing (RS) is 

becoming increasingly important to combat fires by forest management agencies. GIS 

can be used to monitor the fire source variables in fire risk mapping that is simple and 

efficient. Artificial neural networks (ANN) are recently emerged computational tools  in 

the context of GIS and RS to model complex real world problems that are empirical in 

nature that provide exact solutions  to precise or imprecise problems (Basheer and 

Hajmeer,2000). Kohonen Self organizing neural networks find application in 
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classification problems, pattern recognition and data reduction. In the context of fire risk 

modeling, variables that are complex in nature can be best analyzed by self organizing 

feature map of artificial neural networks. Ultimately, the managers can visualize the 

source variables that create a particular fire pattern to combat fires.  

The primary objective of this research is to implement ANN’s self organizing feature 

map (SOM) for the associated fire input variables (human interaction, fuel density 

interaction, slope and Euclidean distance from perennial streams) and test the accuracy of 

predictions in the potential model for the Southeast Fire District of Mississippi.  

There are two significant aspects associated with the present research. 

1. The implementation of ANN to the associated four non linear predictor variables 

that are not easily described by deterministic processes. 

2. The development of fuel density layer in a similar way to the human interaction 

layer as one of the variables in the present research. 

This research is organized in to five chapters to provide readers with information 

pertaining to various concepts of this work, the details of which are outlined below: 

Chapter I introduces the importance of forests, forest fires and the need of the forest fire 

research. 

Chapter II discusses the background information and review of literature related to the 

forest fires, the variables (ignition sources from human impacts, Fuel density interaction, 

slope and distance from perennial streams) considered in the present research, ANN, 

SOM approach of the ANN, various GIS related fire models as well as ANN related fire 

models. 
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Chapter III explains the research objectives/goals of the present research. 

Chapter IV deals with the materials and methods. As a part of this chapter study area, the 

various vector layers as well as the raster layers, data preparation used for the present 

research were discussed in detail. 

Chapter V deals with results and discussion of the present research. The results of the 

four variables (city interaction, fuel density interaction, slope and Euclidean distance 

from perennial streams), SOM approach of ANN and accuracy obtained for the present 

classification are discussed in this section. 

Chapter VI deals with summary and conclusions. The usefulness, limitations associated 

with the present research, and further research suggestions were listed in this chapter. 
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CHAPTER II  
 

BACKGROUND INFORMATION AND LITERATURE REVIEW 
 

 
This chapter reviews the past studies in relation to importance of forests, 

beneficial and harmful effects of forest fires, historic fire trends in MS, GIS fire models, 

four variables of the present research, ANN and SOM concepts.  

2.1 Forests, Fire and wildfire 

Globally, forests and other woody areas occupy 40 percent of the land surface and 

they serve as an important source of substantial goods and services to mankind (Wright, 

2004). Forests play an important role in the carbon cycle, radiation budget and maintaining 

climatic balance and changes that occur in forest biomass effects these processes (Roy and 

Ravan 1996). Forests help to reduce carbon emission as they store large quantities of carbon 

and exchange it with the atmosphere by photosynthesis and respiration (Brown etal. 1999).  

Fire is a disturbance process well before human interaction that altered North 

American land scapes approximately 12-20 million years ago (Ankica Grant, 2007). Fire 

as a natural process manages vegetation for fuel load reduction, regeneration and 

biodiversity conservation (Ankica Grant, 2007).  Fire is important in everyday lives (cooking 

and warmth) to regenerate land and clear land (Ankica Grant, 2007). With the advent of the 

Europeans, people became aware of possible damage that could occur to agricultural lands, towns 

and cities and used fire suppression measures.  
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Wildland fire  is one of the most ubiquitous of all terrestrial disturbance agents 

(Perry, 1998) and has been an important constituent in the natural environment (kemp, 1981; 

Cope and Chaloner, 1985) that effects ecological process such as vegetation succession and 

ecosystem structure and function (Kotsias and Karteris, 2003).   

Forest fire is a fire burn that occurs in forested areas, brush, grass, tundra, or other 

vegetation (Ankica Grant, 2007). Natural fires, accidental and/or arson fires and man-

controlled fires (prescribed fires) are the categories of forest fires. Of the various land 

covers, forests constitute the major portion of the burned area and the cost estimate to 

suppress these fires exceeds one billion dollars (Terry 1997). With this general 

information on fires, forest fires, and importance of fires a look at the fire trend in MS 

would provide the readers an insight in relevance to the present work. 

2.2 Fires in Mississippi  

Rudis and Skinner, 1991 studies the importance and distribution of fires in the  

South Central U.S. and stated that seventy five percent of forests burned during the last 

10 years (1981-1990) were associated with wood production, livestock or wildlife 

production, or vegetation management and three percent is associated with natural 

disturbance. Fire evidence (systematic surveys along with recent inventories from private 

and public forest inventories) is reported to occur on 26 percent (22.4 out of 87.2 million 

acres) of timber land surveyed. Of this in the year 1987, 4.8 million acres fire evidence is 

reported in MS.  

Cooke et al, 2007 stated that though a low fire potential exists in the eastern US, a 

14 year (1991-2004, Figure 2.1) historic fire data analysis obtained from the Mississippi 



 
Forestry Commission showed that MS on average experiences 3670 wildfires per year. A 

minimum of 1847 fires and maximum of 6616 fires were reported during the 14 year 

period.  

Recently, with in the past six years (1999-2004) over 20,000 fire burns were 

reported in the state of MS. Many of these fires occur in the southeastern region of MS as 

such the south east part consisting of 22 counties (Figure 4.1) is regarded as south eastern 

fire district and leader of forest fires in MS (MFC, 2004 and Gilreath, 2006).  The 

following figure shows the fire incidents per month in a year for the study area.  

 

 

 

 

 

 

 

 

 

 
 
Figure 2.1 Fire incidents per month from 1990 to 2003 
 
 

As such it is evident that the highest fire potential occurs in MS at two time 

periods (Figure 2.1). The two time periods corresponds to winter and summer seasons 

respectively. The fire potential in winter ranges from January to March while the summer 
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fire potential is from July to November. In general, high fire occurrences exists in 

February and March in winter and in September and October in summer (Gilreath, 2006). 

Summer season in general experiences dry spells with fires more of anthropogenic origin. 

In contrast to summer, late summer and early fall witness evaporation exceeding 

precipitation (Gilreath, 2006). The summer dry spells together with anthropogenic factors 

exacerbates the fire potential to the state of MS (Gilreath, 2006). In winter one million 

hectares prescribed burns are done annually in the state of MS that sometimes become 

uncontrolled in the south east coastal plain of MS (Gilreath, 2006). In spite of high 

precipitation, the highest fire potential in the winter peaks (January to March) illustrates 

the importance of human component in fire modeling and the details of various fire 

models are reviewed below. 

2.3 Fire models 

Forest ecosystems are subjected to a wide variety of natural and anthropogenic 

disturbances such as fire, drought, insect and disease attacks, wind throw and breakage, 

air pollution, rain and surface water acidification, snow/ice damage, threatened and 

endangered species viability, and other small scale disturbances (Schmoldt D.L., 2001). 

Fire is one of the serious threats to forests along with insect and disease attack (Schmoldt D.L., 

2001). 

Risk is an attribute of loss event or disturbance as such fire risk is a fire attribute 

that consists of two components of potency and chance. Potency is the cost i.e. the 

severity and size of the fire while chance is the likelihood of the fire (Schmoldt D.L., 

2001).  Analysis of the fire risk prone areas may be stated as to assess the areas that have 
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a chance of fire occurrence with the severity and size of the fire for that area or simply the 

areas with a chance of fire origin that can spread to other areas (Esra Erten et al., 2004). The 

chance component of fire risk is usually referred as the fire potential which is the 

likelihood or probability that a particular landscape is susceptible to fire in presence of an 

ignition source (Cooke et al, 2007). 

Wildfire is an ecological (Ankica Grant, 2007) that is a part of ecological modeling. 

Ecological modeling provides methods to understand ecological systems, to assess 

human impacts and aid in environmental decision making (Reginald Mead, 2006). 

Ecological modeling can be process based, empirical based or a combination of both 

(Reginald Mead, 2006). A process based (expert systems) ecological process has low 

predictive power with high explanatory depth that tries to combine prior knowledge of 

the process to model it. Empirical based (Neural networks) ecological approaches are 

data based with high predictive power and low explanatory depth that are exactly 

opposite to process based models. A combined approach is a hybrid of the two 

approaches such as the Bayesian belief networks (Reginald Mead, 2006). 

  Klabokidis et al, 2004 used a fire danger rating index that consists of fire weather 

index, fire hazard index, fire risk index and fire risk index. The fire weather index 

included variables such as air temperature, wind velocity, relative humidity and 

precipitation. The fire hazard index included the fuel models including fuel moisture 

content; elevation and aspect while the fire risk index included distances related to roads, 

livestock, power lines, urban areas and as such related to human activities. As such the 

variables considered in this research are all can be grouped under fire hazard index. 
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Similarly Brenner, 2002 derived a final fire risk assessment system for the state of 

Florida. He used a weighted model of three indexes namely wildland fire susceptibility 

index (WFSI), fire effects index (FEI) and fire response accessibility index (FRAI) for 

this purpose. WFSI represented GIS variables such as historic fire locations, fuel model, 

canopy closure, aspect, slope, elevation, weather, and fire size. FEI included GIS 

variables representing fire fighting facilities, tree plantations, a quantification of urban 

interface, and utility corridors. FRAI included data such as roads, resource locations and 

water bodies. The variables under these three indexes suggest the possible fire occurrence 

factors for the south eastern US. 

 The interaction among various variables such as vegetation, slope, aspect, distance 

from roads and distance from settlements to determine fire risk areas in Turkey was studied 

by Esra Erten et al. (2004) using LANDSAT satellite imagery and GIS. They used 

LANDSAT TM images before (1992) and after (1998) fire to identify burned area, vegetation 

loss. They used a supervised classification approach to identify the forest land cover and  

integrated this satellite imagery with GIS parameters such as topography, vegetation type, 

vicinity to roads and settlements to identify fire risk areas. Their differential weights to these 

parameters indicated that aspect, slope and landforms are crucial in determining the fire 

spread. The results also indicated that that fire spread is more rapid on up-slopes and least 

rapid on down slope with southern slopes more prone to fire. 

The roles played by abiotic, biotic and human factors in determining the spatial 

patterns of wildfire’s origin across the upper mid western United States were studied by 

Jeffrey Cardille et al. (2001). Their research mainly focused on a set of factors (a biotic, 
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biotic and human variable) that explained fire activity, the variation that exists from these 

set of factors to the rest of factors and the effect of spatial scale variation on these 

predictive variables. The results indicated that no single factor or factor type dominates 

and fire pattern analysis depends on both fire size and fire activity. The factors related to 

these parameters could be easily interpreted and factors significant at one spatial scale are 

also significant at the other indicating the analysis strength. The multivariate analysis 

study revealed that areas with higher population density, higher road density and lower 

distance to non-forest areas were more likely to catch fire.  

Iwan Setiawan et al, 2004 derived fire hazard map using land use, road network, 

slope, aspect and elevation data in Pahang, Malaysia. Based on the fire history data, the 

results suggested that southern aspect logged over peat swamp forests have higher fire 

potential (greater than 40%). The results also showed that fire hazard increases with 

increasing surface slope. 

In general, models can be grouped in to fire behavior, fire potential and fire risk 

models. Fire behavior is based on fuel factors such as moisture content and fuel temperature 

of live and dead fuels (Dasgupta et al, 2006).  Fire potential is related mainly to climate, 

topography, anthropogenic influences and vegetation (Cooke et al, 2007). In general, the 

following variables are considered under each category. Climatic variables such as  

Precipitation, evaporation, wind and lightening (Cooke et al, 2007), topographic variables 

such as slope and aspect (Esra Erten et al, 2004), ignition variables such as road density 

(Gilreath 2006) or interaction among cities population (Raviraj, 2007) or socio-economic 

factors like age distribution, education level, population density, household income, living 

conditions, and employment status (Baird et al., 1969) as human ignition source, fuels and 
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landscape  have been found to influence probability and distribution of forest fires. The same 

variables when used to estimate fire size and severity along the likelihood of fire occurrence 

constitute the fire risk as is the situation under the present study. 

Though one cannot control nature, a forest fire risk zone map can be used to 

evaluate forest fire problems to find satisfactory solutions (Jaiswal et al., 2002) and 

minimize fire frequency. With all this available information on the GIS variables in 

various fire models this research had chosen the following four variables which indicates 

the importance of each variable with respect to the current research.  

2.4 GIS variables of ANN  
  

2.4.1  Ignition sources from Human Impacts 

 Presently human based ignitions are the most common source of wild fires (Whelan, 

1995) and human-caused fires have an annual average increase of nearly ten times than 

lightning-caused fires (Hildebrand, 2003). In the United States, two-thirds of forest fires are 

attributed to humans (Zhai et al., 2003) that became extremely important in the Northern US 

as well as the Southern United States where humans serve as fire ignition source either by 

carelessness  or by arson (Raviraj, 2007).  

Human risk can be mapped by relating location of fires to specific areas of land 

use or human activity such as roads, camping sites, cities, forest urban interfaces or a 

particular land use type are all responsible for fires. (Vliegher et al., 1993; Langhart et al., 

1998; Alcazar et al., 1998; Chuvieco and Congalton 1989). The characteristics, contiguity 

and area size of vegetation, fire ignition sources, fire suppression, and fuel loads are all 

influenced directly by human factors (Pye et al., 2003).   In recent years wildfire risk is an 
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increasing concern where humans live in close proximity to forests (Greenberg and 

Bradley 1997, Lavin 1997). 

Different parameters are used to represent the human component in forest fire 

modeling such as the road density (Gilreath, 2006), distance to primary roads, secondary 

roads, urban areas, waste disposal, railways, recreation areas, agricultural works, grazing 

lands, forestry works and other similar high population density areas (Kalabokidis et al, 

2004). All these parameters especially road density indicates the strength of access that 

human’s posses to areas of high fire potential. 

The gravity model is one of the earliest spatial interaction models (Fischer, 2000) 

have been implemented in various fields related to migration and transportation (Raviraj 

2007). Spatial interaction is broadly defined as movement of people, commodities, capital 

and information over geographic space that results from a decision process (Fischer, 2000). 

Raviraj, 2007, stated that gravity interaction model is generally used for market analysis 

to analyze the market area surrounding a shopping center laid the foundation of spatial 

interaction modeling. Newton’s law of gravity that utilizes a mass and a friction variable 

to measure the attractiveness is now extended to analyze local human phenomena.  

Using the gravity based spatial interaction approach, Raviraj, 2007 recently 

studied forest fire prone areas in the South East fire district of MS. The human risk as a 

spatial component along with fuel variable was used to predict fire occurrences for SE 

MS fire district. The results suggested that fires occur in clusters. This particular model 

when validated with the historic fire data proved to be a better representation and 

estimator of fire risk that represented fire frequency as per fire risk zone as for example 
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very low fire risk is represented by less number of fires and very high fire risk zone 

contained high fire frequency. In comparison to the to road density, significant estimates 

were noticed for very low fire risk for all seasons and summer low fire risk while for all 

other fire risks (medium, high and very high) of other seasons (annual, summer and 

winter) the Gravity model showed better results. This indicates the importance of human 

component in forest fire modeling that is associated with the present study area. Thus 

about 41 cities are present in the study area with a population ranging from 1005 

(Sumrall) to 71127 (Gulfport) with interaction among these cities posing different fire 

level threats in different areas, this research would like to use the recently developed 

gravity based city interaction as the human component in the present research. 

2.4.2 Fuel Characteristics  

Vegetation plays an important role in the spread of fires (Countryman, 1972) and 

the literature review suggests the use of vegetation characteristics such as fuel type that 

aid fire spread in fire risk modeling (Andrews, 1986; Deeming et al., 1977). Further the 

forest harvest dumps, construction, mis-management practices and accidental/ intentional 

/ prescribed fires all affect fire behavior and there by fire potential (Zhai et al., 2003).  

Cooke et al, 2007 stated vegetation plays a vital role in fuel estimation as 

particular vegetation types are more predisposed than the other and in MS fires are 

common in needle leaf conifers particularly in pines, mixed coniferous and broad 

deciduous stands compared to broad leaf deciduous plants. More over natural disasters 

such as the Hurricane Katrina or other rapid environmental changes results in significant 

vegetation damage that increase fuel loads as well as fire potential. 



 

14 

Schultz, 1997 stated that MS mainly contains the even-age needle-leaf evergreen 

forest stands. Similarly the Southern Fire District mainly contains the needle leaf 

evergreen forest cover with Loblolly pine as the principal type and has the second largest 

Loblolly pine stands in US. This Loblolly pine (Pinus taeda) is more susceptible to fire 

compared to the well fire adopted long leaf pines and are particularly susceptible to 

wildfires when they reach less than 4.6 meters tall (Schultz, 1997).   

Wear and Greis, 2002 studied the fuel characteristics of longleaf and Loblolly 

pine. They sated that the morphological natural adaptation of longleaf pine with 

widespread root system and rapid growth places the terminal buds of seedlings well 

above the height of most forest fire flames. The thickened plant parts such as the stem 

bark along the needles defend the buds and make these plants fire resistant. Loblolly pine 

though generally grows in the wet areas, presently inhabits even the abandoned 

agricultural and longleaf pine areas that add more fuel prone to fire. 

Fuel type and age of fuel stands are also important in fire prediction in terms of 

the ignition level. Tanskanen et al. (2005) showed that differences in the moisture regime 

of surface fuels of different age classes that are dominated by pines results in significant 

varying ignition conditions which affirm that the age of the fuel stand plays an important 

role in fire prediction.  

Cooke et al, 2007 studied the pre and post Katrina fuel conditions as a fire 

potential component for southern MS. They used fire occurrence fire data age grid to 

derive four similar age groups within fire frequency class. Forests of indefinite age and 

uneven aged mixed forest species are grouped under no origin class while relatively 
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young (10-19), intermediate (20-25), and mature age (26-30 and older) are the other age 

classes included in the study. Number of fires, average fire size, number of fires 

normalized by area and percentage of burned area in each class were analyzed to assign 

the fire hazard to each group. This resulted in unique age type combinations as no origin 

conifers, conifers 10-19, conifers 20-25, conifers 26-30 and older, no origin mixed, 

mixed 10-19, mixed 20-25, mixed 26-30 and older, no origin hard wood, broad leaf 10-

19, broad leaf 20-25, broad leaf 26-30 and older. Their results suggested that fire hazard 

has increased after the hurricane Katrina as is evident with increase in to a very high fire 

risk class from higher risk class in conifers 10-19. The conifers of 26-30 remained at a 

very high fire risk both before and after Katrina and are considered to be highly 

susceptible to fire.    

Thus pines of 20-30 years were considered to be more fire susceptible and the fire 

susceptibility might vary as per areas of the forest and their spatial separation. This idea 

is recently explored to calculate city interaction based on population of cities and their 

spatial separation using Newton’s Gravity Model (Raviraj, 2007). As with the population 

density, fuel densities with a specific fuel type and age at different spatial separation might 

pose a different fire threat at different locations that this research explored and used as one 

the variable in predicting forest fire occurrence. 

2.4.3  Topography 

             A number of fire models exist that are based on the slope and aspect as influences 

on fire spread. The models include important topographic factors such as steep slopes, 

aspect, and elevation (Gilreath, 2006). The effect of topography on fire may be positive or 
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negative and is not an important factor in the Coastal Plain of the US (Wade, 1988). In 

general, topography effects the solar radiation, wind speed, wind direction in an area, and 

generate wind eddies that increases fire potential (Raviraj, 2007). 

Elevation influences vegetation composition, fuel moisture and humidity. More 

than 90% of cases of forest fires occur at 100 meters above sea level. Most of these fires 

occur in areas which are below sea level. Fires are less severe at higher elevations due to 

higher rainfall. Steep gradient increases the rate of fire spread because of more efficient 

convective preheating and ignition and eastern aspects dry faster since gradients facing 

east receive more ultraviolet light during the day (Chuvieco and Congalton, 1989). 

  In another finding Jo et al., 2000 stated that southern exposures have high solar and 

wind influences compared to the northern slopes. In Southern and South Western aspect, 

greater than 60% of the forest fires occur on slopes in the range of 0° and 20° and fire hazard 

increases with increasing slope. 

Slope considered to be an important fire variable, is an insignificant factor in 

wildfire prediction in Mississippi (Zhai et al, 2003). In the Southeastern U.S. fires 

occurrence chances are high in uplands compared to bottomland. Surrogate slope factors 

such as spectral differences in Landsat TM images between various forest types that 

characterize slope are in use in Mississippi (Collins et al., 2005 and Gilreath, 2006).  

 Though slope is considered insignificant in fire prediction for MS, based on a 

number of literature reviews discussed above, slope plays an important factor in fire 

spread that disposes high slope areas at a greater risk. Also with Jo et al, 2000 findings as 

60% of the forest fires occur in slopes of 0 to 20 degrees, and as the slope of the study 
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area varies from 0 to 36 degrees, this research utilized slope as one the variable in fire 

prediction. 

2.4.4 Euclidean distance to perennial streams 

            Water bodies are reported to function as natural firebreaks that affect fire spread  

(Daniel et al., 2005). Larsen, 1997 studied the spatial and temporal variations in forest 

fire frequency in the boreal forests of Northern Alberta. They used forest stand age, fire 

scar and historical data to test the hypothesis that fire frequency varies with mean 

waterbreak distance (MWD) around a site. The results suggested that fire cycle length 

varies inversely with the MWD around a site. Further, the relation is highly significant in 

jack pine and aspen forests than in black or white spruce forests. Thus MWD influence, 

respectively, variations in forest dominant and fire frequency.  

Cyr et. al, 2007 studied the effects of broad scale, fine scale and intermediate 

factors to analyze the potential influence fire frequency using a proportional hazard 

model and a semi-parametric analysis. The average distance to water bodies was 

considered as a potential intermediate physiographic and topographic factor in 

determining fire frequency. The results showed that a two to six fold variation in fire 

frequency is related to geographic and topographic factors.  

Bergeron, 1991 studied the fire regime of southern boreal forest in relation to 

landscapes in northwestern Quebec for islands of Lake Duparquet in comparison to the 

adjacent lakeshore. The results suggested that lake shores have a very few large fires 

where as islands due to abundant pines, witness less intense and high frequent fires. This 
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suggests a low chance of fire occurrences near to the water bodies in comparison to far 

off places. 

  Distance to water bodies is one of the potential factors in forest fire modeling. 

About 12815 perennial streams are present in the study area that might have a significant 

influence of forest fires. In general water bodies regulate the surrounding climate and soil 

permeability that dispose areas with differential fire threats. As inverse relation exists 

with fires and distance from water bodies in many of the situations. Keeping in view of 

the existing majority of perennial streams in the study area this utilized Euclidean 

distance from perennial streams as one the variable in forest fire prediction. 

2.5 Fire management  

Fire suppression is important in terms of public safety, owned property and protection of 

resources (Ankica Grant, 2007). In the US, the government expend an annual average of 

greater than $800 million to mitigate wildfires (NIFC, 2006) and the annual fire protection 

services and loses account to more than half billion and two billion respectively (Wilson 

and Davis 1988).   

Wright, 2004 stated that wildfire danger rating systems have been in use by many 

developed countries. A variety of factors influence the size, spread and suppression cost of 

fires. It is difficult, expensive, and requires lot of time as well as energy to analyze the fire 

responsible factors in order to combat wild fires. The success in combating pre-suppression and 

post suppression of wild fires by forest management agencies depends on their understanding and 

prediction of forest fire.  
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Burgan, 1998 stated that fire danger rating systems are being implemented by the 

US Forest service from 1954 and National Fire Danger Rating System (NFDRS) was the 

first national system. Started in 1972, the NFDRS has been recently revised in 1988. 

Wildland Fire Assessment System (WFAS) utilize interpolate spot measurements to map 

national level fire potential and the information is available to the general public and fire 

protection agencies in every state.  

Similarly fire models are being in use by individual states and the state of Florida 

has developed one such descriptive model using seasonal climatic swifts and highly 

prone grass landscape to indicate areas of fire potential that poses threat to humans 

(Gilreath 2006 and Brenner, 2002). Thus fire danger rating systems and fire models are 

valuable to locate high fire potential areas and implement needed actions by the fire 

protection agencies.  

2.6 GIS and forest fire modeling  

Geographic Information System (GIS) is “a comport system for capturing, storing, 

querying, analyzing and displaying geographically referenced data” (Chang K.T, 2006). 

Fire modeling is based on a variety of spatially driven factors such as vegetation, topography, 

weather, management activity, residential pattern, location and neighborhood that needs 

sophisticated analytical techniques to analyze forest fires (Chou et al., 1990).  

GIS is one such sophisticated tool that is capable of organizing and analyzing the 

complex spatial and temporal traits of forest fires (Zhai et al., 2003) that uses an information 

and decision support system to enhance management practices (Sunar and Ozkan 2001).   
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Thus using appropriate information, ArcGIS can be used in modeling to visualize the relation 

that exists for an event and its associated factors (Raviraj, 2007). This particular software can 

support various data formats to be exchanged and used for techniques available in other GIS 

softwares as is the use of Artificial neural works (ANN’s) usage from IDRISI Andes for the 

present study. 

2.7 Artificial neural networks  

Artificial intelligence (AI) methods utilize modern methods of problem solving 

such as knowledge-based systems, fuzzy logic, artificial neural networks, and Bayesian 

belief networks by applying varying computational and algorithmic approaches that 

integrate human cognitive abilities and provide computers with a capability to solve 

problems (Schmoldt D.L., 2001). Of the AI approaches, Artificial neural networks 

(ANNs) deal with decision making using trained patterns with little explicit knowledge 

(Schmoldt D.L., 2001).  

The field of AI also has many applications in the area of ecological modeling 

(Reginald Mead, 2006) and risk analysis (Schmoldt D.L., 2001). In forestry, ANN’s of AI 

derive the relationship between the dependent and independent variables in a much 

different way similar to empirical statistical models (Schmoldt D.L., 2001).  Mc Cormick 

et al., 2004 stated that in wild fire modeling the use of ANN is unique in contrast to 

modern models that integrate the relationships between fire behavior environment 

variables such as fuel, topography and climate, also capture and analyze the cover, 

landform and climate interactions that might be unique both temporally and spatially.  



 

21 

Over the last several years, the use of ANN’s has increased considerably due to 

advances in computing performance (Skapura 1996). Also ANN’s due to their adaptability 

and ability to produce classification accuracies higher than those of statistical classifiers, has 

become prominent in scientific community and witnessed increased research in remote 

sensing field (Paola and Schowengerdt 1995, Atkinson and Tatnall 1997). 

ANN’s have been defined as a system that includes many simple processing 

elements that operates in parallel and the function is determined by network structure, 

connection, weights and node function (Hara et al. 1994). 

Similarly Haykin 1994 defines ANN’s as a “A massively parallel distributed 

processor that has a natural propensity for storing experiential knowledge and making it 

available for use” 

Sunar and Ozkan, 2001 describes the the main characteristics of ANN’s as: 

(i) Intrinsic ability to generalize;  

(ii) Make weaker a priori assumptions about the statistical distribution of the classes 

in the dataset than a parametric Bayes classifier, and 

(iii) Capable of forming highly nonlinear decision boundaries in the feature space.   
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Table 2.1 Advantages and disadvantages of ANN (Silva A.P., 2003) 
 

ANN: Advantages ANN: Disadvantages 

Capable to learn non linear and very 
complex relations Long training time requirement and  

Possible over-fitting 

Easy to use, implement and integrate the 
results in a GIS. 
 

Deciding most efficient network structure 

for a particular problem and 

Ability to handle noisy data, and Inconsistent results due to the initial 

weights and learning parameters 

Good predictive capabilities Difficult to understand it’s internal behavior

 

Pijanowski et al., 2002 stated that ANN’s are powerful tools that utilize machine learning 

approach to numerically solve relationships between inputs and outputs and are used in wide 

range of discipline like economics, medicine, landscape classification, mechanical 

engineering and remote sensing. They further stated that the ANN’s posses the generalization 

and mathematical features to perform well on unfamiliar data that is not adversely affected 

by errors in the original data and can even perform well on data sets derived by imperfect 

satellite remote sensing land use or forest type classification that does not hamper the 

accuracy of the fire risk model at large. 

Sunar and Ozkan, 2001 stated that several ANN”s architectures and algorithms 

have been derived and implemented in the areas such as classification, forecasting and 

modeling.  Of all unsupervised or coarse training and supervised or fine learning are the 

two primary types presently in use. The unsupervised ANN’s are similar to principal 

component analysis, factor analysis and cluster analysis where ANN’s discover statistical 
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regularities in its inputs that to develop different modes of behavior to represent different 

classes (Sunar and Ozkan, 2001). Supervised ANN”s is similar to regression and 

discriminant analysis that compares the actual known output with the predicted output 

(Sunar and Ozkan, 2001). 

Hepner et al. 1990 stated that the complex relationships that exist between input 

variables to predict an output for a given input object can be best modeled using 

supervised learning approach.  Presently, of the available thirty different ANN’s (Peng 

and Wen 1999), SOM has been used in a lot of areas such as data classification, pattern 

recognition, image analysis, and exploratory data analysis (Jiang and Harrie, 2004). A 

review of the SOM as is the method utilized for the fire size risk classification is 

discussed below. 

2.8 SOM 

SOM approach of ANN is used in this research to classify fire size risk and a brief 

review of some of the related concepts is reviewed in the proceeding paragraphs. 

Self Organizing Map or SOM or Kohonen Neural Networks hereafter referred to 

as SOM was developed by Kohonen (Kohonen, 2001).  One of the fascinating properties 

of SOM is the automatic detection (self organizing) of the relationships within the set of 

input patterns (Brand Tso and Mather) and it aids in preserving the toplogical relations 

i.e. similar close input space patterns will be mapped to the associated close output space 

and vice-versa (Jiang  and Harrie , 2004). 



 
SOM is widely in use for classification problems and environmental studies that 

more than 4300 papers were present related to SOM (Tran et al, 2003 and Kohonen, 

2001) as is the central concept in the present fire size risk classification. 

Characteristics of SOM:  Wang, S and Wang, H, 2002 stated three unique 

characteristics of SOM 

1. Do not depend on any associated statistical test assumptions and  is effective in 

with high-dimensional data  

2.  It is flexible and can be utilized in cluster analysis as it ignores the statistical 

assumptions of the input data and 

3. It provides a way to visualize the clusters of high dimensional data that is not 

present in any other data analysis method. 

SOM architecture: The neural network depicted in Figure 2.2 is the two-layer SOM 

architecture used for a three input variables. 

 
 

   

 

 

 

 

 

 

Figure 2.2 SOM architecture for three input layers (IDRISI Andes) 
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Wang, S and Wang, H, 2002 stated that the lower layer represent input data while 

the upper layer output nodes represents the organization map of the input patterns after 

the unsupervised or supervised approach as the case may be. Variable connection weights 

are used to connect every lower layer node to every upper-layer node.  

SOM Normalization approach: Similar to GIS multi criteria decision analysis, SOM 

also require the variables to be normalized by a transformation technique to comparable 

units. A number of transformation techniques exist that are in use today of which score 

range method is widely used for ANN classifications (Basheer and Hajmer 2000; 

Anthony and Xia Li 2002). In the score range the difference that exists between the 

minimum score and the raw data is divided by the score range thus standardizing the 

scores from 0 to 1 (Malczewski, 1999). This allows all the variables in the present study 

to receive equal attention during the training process and match the synaptic weights 

range (IDRISI Andes help contents) 

SOM Process: Tran et al, 2003 stated that SOM is a two-dimensional neural network 

whose nodes arrange multidimensional input variables. The process self organizes the 

input data to a lower two dimensional map of output nodes having very little or no idea of 

the data   input data structure. The output nodes associate with the referenced variables 

possess  the same dimension as the input vectors and represent well defined clusters with 

similar properties. SOM approach needs prior specification of the output nodes and the 

output map’s configuration before the learning process.  
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SOM Network Parameters 

i) SOM Classification/ Learning Function 

As with other classification techniques, SOM also utilize unsupervised or a 

supervised approaches for classification purposes. Unsupervised classification has been 

defined as identification of natural groups, or structures, within multi-spectral data and 

supervised classification as processes of using samples of known identity to assign pixels 

to classes (Campbell 1987).  

Sunar and Ozkan, 2001 studied the use of unsupervised iterative self organising 

data algorithm and maximum likelihood approach to identify burned fire classes in 

Turkey. The results suggested that this classification approach yielded a perfect unbiased 

assessment of burned area.  

The unsupervised or coarse tuning of the SOM utilizes the clustering approach. 

Wang, S and Wang, H, 2002 stated that SOM is a typical artificial intelligence technique 

of cluster analysis. A cluster is a well defined group of close observations as per 

Euclidean distance and in general, hierarchical, partitioning and overlapping are the three 

statistical clustering methods. Each clustering uses its own approach to derive clusters 

such as allocating the observations to the nearest cluster centers that are renewed and 

observations are reallocated till a steady state is obtained. SOM uses this idea of 

clustering that is an alternate to statistical cluster analysis  

Miller and Yool, 2002 studied different classification approaches and stated that higher 

accuracies were obtained using unsupervised iterative self organising data algorithm for 

classifying multi-spectral data. They found that stratified pre fire vegetation improve the 



 

27 

accuracy. Supervised approaches require ground data as training sites with at least fifty 

points per class that might be impractical for many fires studies and could be substituted 

by Land sat image accuracy.  

The present SOM is one such classification approach that utilizes coarse tuning as 

unsupervised approach and fine tuning as a supervised approach. 

ii) Learning rate 

Learning mainly consists of specifying the input, output determination and modifying the 

weights by specified training rules (Hoffmann, 2005). In general slower learning rate 

requires more time to produce a well trained system and faster learning rates neglect the 

minor discriminations that are accomplished by slower training. The learning function 

generally contains the learning rate parameter that is positive and lies between zero and 

one.  If the value is greater than one, the learning algorithm easily overshoots to correct 

the weights, and the network will oscillate.  

iii) Gain term 

Hoffmann, 2005 stated that gain term and neighborhood radius is used to control the 

speed and accuracy of the approximation (quality of the final surface). The gain term is 

similar to a Gaussian function that is a measure of the movement of the grid. The gain 

term value is also positive that lies between zero and one. During the initial iterations 

(control the steepness of the convergence), a large gain term value is desired that 

considers the overall shape of the scattered data compared to the final iterations that 

requires smaller gain term values and as the value reaches to zero, convergence is 

achieved. 



 
iv) Neighborhood radius 

Initially training process utilizes a large neighborhood and small random numbers 

for connection weights to identify the input vectors of the incoming data to transmit to 

the output nodes using these connections (Wang, S and Wang, H, 2002).  

The neighborhood function is one that decreases with the distance in the output 

space nearer to the winning unit that is responsible for interaction among different units. 

It’s a time decay function during training (IDRISI andes help contents) with large initial 

neighborhood radius that slowly decreases in size over time to separate each unit from its 

neighbor effects (Wang, S and Wang, H, 2002). Many of the SOM implementations 

reduce the radius to 1 (Figure 2.3) to have a neighboring effect even in the final stages of 

training while few implementations set this parameter to decrease to zero.  
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Figure 2.3:  A two dimensional neighborhood of radius d=1 (left) and d=2 (right) around 

neuron 13 (Source: Neural network Tool box) 
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Later the weights are updated according to the Kohonen's learning rule (Kohonen, 

1989) to find an active output node in a “winner take all” competition that is the output 

node with weights most similar  with the local density function of the cluster centers 

approximately the probability density function of the input vectors (Wang, S and Wang, 

H, 2002). In general the weight update takes place for the active output node and its 

topological neighbors to represent organized output nodes that are realm clusters derived 

without an idea of a priori cluster centers (Wang, S and Wang, H, 2002; Fig. 4.13). 

2.9 ANN based models for image classification 

Filippi and Jensen, 2006 studied the utility of Fuzzy unsupervised ANN (Fuzzy 

Linear vector quantization ANN) in classifying the AVIRIS image. The results are at par 

with the traditional multilayer perceptron. A classification accuracy of 82.82 % and 

84.66% were obtained for FLVQ and MLP respectively. FLVQ proved to be 

computationally efficient and less time consuming than all other supervised and 

unsupervised algorithms. 

Arora et al., 2004 studied land slide hazard zontaion using artificial neural 

network approach in the Bhagirathi (Ganga) valley of Himalyas. The study utilized IRS – 

1 B sensor data to produce a classification accuracy of around 80% with a small training 

data and showed same trend to existing ground truth locations. 

Sanchez et al., 2003 used ANN as a tool for mineral potential mapping with GIS. 

A trained network is used to estimate an efficient gold potential map.  The results stated 

that ANN is an effective tool for mineral exploration spatial data analysis. 
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GIS and ANN based land transformation model (LTM) was used to forecast and 

assess the impact of urban sprawl in coastal watersheds along eastern lake Michigan 

(Pijanowski et al., 2002). This LTM used a multilayer perceptron neural net to forecast 

urban use changes over 2020 and 2040 using non urban sprawl and urban sprawl trends. 

This approach was able to characterize two of the nine watersheds under study area 

consideration to experience the most urban change in the next 20-40 years. 

ANN was used in land cover classification using remotely sensed data (Kavzoglu 

and Mather, 2003). They studied the optimum design of ANN for classification problem. 

They further compared this optimum ANN design with that of the heuristics approach 

and maximum likelihood classifier. The results suggested a higher classification could be 

achieved with the use of optimized ANN approach as it incorporates all relevant ancillary 

data. 

In a study to characterize the relative suitability of environments for forest types 

in a complex tropical vegetation mosaic, Hilbert et al., (1999) used ANN to characterize 

the relative suitability of forest classes defined by their physiognomy and canopy 

structure. The study utilized seven climate, nine soil parent material classes and seven 

terrain variables. The model is highly successful in accurately predicting 75% of forest 

mosaic compared to the 28% accuracy achieved by maximum likelihood method. The 

authors stated that ANN approach has high potential for climate analysis and vegetation 

patterns where use of ANN is highly applicable. 

Sunar and Ozkan, 2001 used an Artificial neural networks model for IRS-1C 

image data to estimate the burned area by classifying the image. The network architecture 
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utilized two input units, five nuerons in the first hidden layer and fifteen second hidden 

units and six output units representing landcover classes. The study utilized 864 training 

pixels represnting appropriate land covers classes. The learning rate used for this purpose 

is 0.3 with 2000 iterations. The results of ANN in terms of the area burned (6294 ha) was 

little bit higher and closer to the actual area burned (7094 ha) compared to the 

conventional methods (6290 ha). 

Pijanowski et al., (2001) used a neural network base urban change model for two 

metropolitan areas of the upper midwest of the united states. The study utilized three 

model types and four model performance metrics. The results indicated that neural net 

model in most cases performed well on pattern analysis and not on location using Kappa 

as the performance metric. Pijanowski et al., (2002) used land transformation (LTM) to 

study the effects of nine factors (roads, highways, residential streets, rivers, Great lakes 

coastlines, recreational facilities, inland lakes, agricultural density and quality of views) 

that influence urbanization pattern in coastal watershed. ANN was implemented to learn 

the patterns of development and test the predictive ability of the model. The results 

indicated that the model performed well with a relatively high predictive ability of 46% at 

a higher resolution. 

Franzini et al., (2001) studied the connections using SOM in a group of variables 

related to social, economic and environmental to analyze Milan urban system complexity. 

They concluded SOM is better than classification tree and factor analysis approaches. 

They stated that SOM uses an unsupervised method of fuzzy and self organized 

approaches to analyze nonlinear correlation that don’t need any exogenous rules. Further 
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SOM is found to be a powerful tool to reduce and synthesize information to derive a base 

knowledge from a complex system. 

Weijian wan and Donald Fraser (1999) developed a concept of multiple self 

organizing maps (MSOM’s) for multisource fusion and compound classification. Their 

concept is based on Kohonen SOM and results indicated by kappa index of agreement 

stated that MSOM can be used for multi source fusion with high dimensionality, complex 

characteristics and disparity. 

Bacao et al., (2005) in his research on self organizing maps as substitutes for K 

means clustering stated that Kohonen’s self organizing maps is most effective method 

with  proper training parameters. 

Basheer and Hajmeer (2000) in their article on ANN stated that ANN’s are recent 

computational tools to solve complex real world problems. These models are empirical in 

nature that can be used to derive accurate solutions for precise or imprecise problems. 

Suwardi Annas et al., (2007) in their research compared Self organizing map and 

principal component analysis methods for classifying and visualizing fire risk in forest 

regions. The results suggested that SOM is better suited than PCA for visualizing fire risk 

distribution in forests. The color coding and labeling also proved to be effective in 

visualizing the classified fire risk. 

2.10 Accuracy assessment 

RMSE, error or confusion matrix and Kappa statistics were the common methods 

employed to assess map accuracy (Prabhu, C.L, 2006). Of these error or confusion matrix 

and Kappa statistics are discrete multivariate techniques to measure map accuracy 



 
(Prabhu, C.L, 2006). The error matrix is valuable to assess the overall map and individual 

class accuracies enabling calculations in terms of producers and user’s accuracy (Prabhu, 

C.L, 2006).  

Filippi and Jensen (2005) stated that producer’s and user’s accuracy evaluates the 

omission and commission errors respectively. Omission and commission errors were 

obtained by dividing these correctly identified pixels by column row totals respectively 

for that class.  

The kappa coefficient measure considers the proportion of agreement between data sets 

that is due to chance alone and offsets the chance agreement by considering off diagonal 

elements (Prabhu, C.L, 2006).  

Simpson, 2008 stated that it’s a value that is less than or equal to 1. A value of 1 

indicates a perfect agreement while less than that is interpreted accordingly by different 

authors. The value of Kappa can be derived using equation …… (Simpson, 2008) 

 ……………………Equation 2.1  

 

where   Po and  P e are observed and expected level of agreements  under 

consideration. Some of the possible interpretations of Kappa value are listed by Simpson, 

2008. (Table 6.1a & b).  

With all this available ready hand information, the present forest fires research is a 

ecological process that require ecological modeling with ANN’s method of the available 

AI techniques. Further as SOM of ANN’s is widely implemented in classification 

problems as is the present fire risk classification, this research would explore the use of 

33 



 

34 

SOM approach with the justified variables of citi interaction, fuel density interaction, 

slope and distance to water bodies. 
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CHAPTER III  
 

RESEARCH OBJECTIVES 
 
 

Literature review justifies the use of the proposed four variables considered in this 

study (city interaction, Fuel density interaction, slope and Euclidean distance to perennial 

streams). All the four variables were treated as independent layers to derive a fire 

potential model. The fuel density interaction among fuels was calculated similar to cities 

interaction (Raviraj, 2007). Fire is an ecological process that requires an understanding of 

the ecological modeling. ANN’s of AI has been found to be extensively useful in 

ecological modeling that extracts relationship between dependent and independent 

variables. Further SOM of ANN’s finds its valuable application in the classification 

problems.  

This study tests ANN’s applicability for predicting forest fire potential for SE fire 

district of MS. Cities, perennial streams and historic fire locations were used as a part of 

the vector data. Similarly fuels, digital elevation model (DEM) and Euclidean distance to 

perennial streams were used as a part of raster data format. For this research city 

interaction layer was obtained from the previous work of Raviraj, 2007. The pine class 

with 20-30 years of age is considered to be highly prone to fire. The density of fuels was 

assessed by Newton’s Gravitational theory similar to city interaction calculation. 

Euclidean distance to perennial streams and slope layers were derived using the spatial 
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analyst GIS tools and relevant data sources. All the variables are treated as inputs in an 

artificial neural network model in order to find the dependency of historic fire 

occurrences with respect to these four variables to predict fire risk.   

Any fire potential model should include historical fire occurrence data for model 

validation (Chuvieco et al., 2004). A five year period of fire occurrences from 1999 to 

2005 in SE Mississippi fire district was utilized for this ANN model validation.   

Therefore, the primary objective of this research is to implement ANN’s SOM 

model for the associated fire input variables and test the accuracy of predictions in 

potential model for the Southeast Fire District of Mississippi. The details pertaining to 

data and methods mentioned above are discussed at length in the next chapter. 
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CHAPTER IV  
  

MATERIALS AND METHODS 
 
 

4.1 Study area 

The study area is located in south eastern MS. The Longitude and Latitude for MS are 

88°7'Wto91°41'W and 30° 13' N to 35° N respectively (Net state.com). 

The state is surrounded by Tennessee in the North and the Gulf of Mexico on the south. 

Mississippi borders Alabama on the east and Arkansas and Louisiana on the west (Net 

state.com). The average elevation for the MS is 300 feet above sea level (Net state.com). 

Specifically the study area covers 22 counties in MS popularly called the Southeastern 

Fire District of MS (Figure 4.1). It includes the mid Coastal plain -gentle hill topography, 

developed drainage, and diverse soils (Schultz, 1997). The Lower Coastal Plain includes 

well drained forest soils and deep sandy alluvial soils (Schultz, 1997). 
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Figure 4.1: Counties in Southeast fire district of MS 
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4.2 Vector Data 

GIS spatial data can be physically represented either in a rater or vector format. 

Vector data format utilizes strings of coordinates to represent features in terms of points, 

lines and polygons. The vector data utilized in this research is outlined in figure 4.2 and is 

described below. 

4.2.1 Cities layer 

The city theme layer was utilized to derive the city interaction layer using 

Newton’s law of spatial interaction by Raviraj in 2007. The cities polygon layer was 

obtained from Mississippi Automated Resource Information System (MARIS). The state 

wide cities theme layer is clipped to the study area and projected to a Mississippi 

Transverse Mercator (MSTM).  

4.2.2 Perennial streams  

Perennial streams vector data is important in terms of calculating the Euclidean 

distance from sreams to historic fire occurrences. Perennial streams data is available as a 

vector (line) file in MARIS. This state wide theme layer is obtained from MARIS, 

clipped to the study area and projected to MSTM.  

4.2.3 Historic fire location dataset  

The historic fire data from 1999 to 2003 was obtained from the Mississippi State 

Forestry Commission. The points are entered as x, y coordinates with an attribute table, 
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projected in a Mississippi Transverse Mercator (MSTM) projection, and stored as a shape 

file. These fire locations are important in training the SOM as well as validating the 

model results. 

4.3 Raster data 

Raster format data utilizes a two dimensional matrix of uniform grid cells that are 

homogeneous with square, rectangular or regular in shape. These cells are usually 

referred to as pixels. This research utilized the raster data that is outlined in figure 4.2 and 

is explained below. A 30 m resolution is utilized for these raster grids with MSTM 

projection. 

4.3.1 Fuels 

Satellite images were obtained from satellite imagery of Landsat earth observation 

program for approximately every five years from 1974 to 2003 (Cooke et al., 2007). The 

available data from Multispectral scanner (MSS), Thematic Mapper (TM) and Enhanced 

Thematic Mapper (ETM+) was rectified to a common base map to derive forest age of 

the  of the available land cover in 2003. Also forest type and land cover information was 

used to finally obtain a unique age species layer. This work was done at the spatial 

information technology lab of Mississippi State University by Collins (Collins et al., 

2005). These unique age and species layers are important to obtain the fuel density 

interaction layer. 
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4.3.2 Digital elevation model (DEM) 

DEM is available on MARIS website with 30 m resolution and MSTM projection. 

The DEM was processed by university of Mississippi Geoformatics centre (UMGC) and 

is available in compressed interchange (.e00) format for individual counties. The meta 

 data is available on line at the MARIS site for further information.  The grids were sink 

filled and mosaicked using the mosaic tool in Arc Map platform  DEM was used to 

calculate the slope of the study area that facilitate fire spread and their by fire risk.   

4.3.3 Euclidean distance  

Perennial stream data obtained from MARIS was used to derive the Euclidean 

distance from the streams in ArcMap. The resultant is a raster layer with 30 m resolution 

with MSTM projection that represents the distance from each stream to fire occurrences 

in the study area. 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.2: GIS data used for fire risk analysis 

 
The common coordinate system (MSTM) ensures the accurate overlay of all the layers. 

GIS allow integrated analysis of spatial and attribute data. These data can be manipulated 

and analyzed to derive information suitable for a particular application (Malczewski, 

1999). Table 4.1 and figure 4.3 outline the summary of variables and research work 

respectively to derive information related to fire risk analysis of the SE fire of MS. 
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Table 4.1 Summary of the variables utilized for fire risk analysis 
 

 

 GIS Data 
Format 

Variable GIS 
Data 

Format

Source Resolution 

City Vector City interaction Raster Raviraj, 2007 30x30 m 

 Fuel density 
interaction 

Raster MSS, TM & 
ETM+ 

30x30 m 

DEM  Slope Raster MARIS 30x30 m 

Perennial 
streams 

Vector Distance to perennial 
streams 

Raster MARIS 30x30 m 
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Figure 4.3: Flow chart depicting the fire risk analysis of the SE fire district 
 

4.4 Data Preparation  
 

4.4.1  City /population interaction  

This work was carried out by previous master’s student in the Dept. of 

Geosciences (Raviraj, 2007). The cities layer was obtained from the MARIS. The layer 

was clipped to the study area. Centroids were generated for each city. Distances of one 

city area to other city areas was calculated using a GIS distance tool. The population and 

distance factors of the cities layer were used to calculate the spatial interaction using the 

gravity equation (Equation 4.1). From this Gravity spatial interaction a population 
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interaction layer is generated (Figure 4.4). A threshold of 1000 people is considered as 

the basis of population interaction. Interaction is the sum of gravitational effect that a 

particular city population posses as a function of distance and population of rest of the 

cities in the study area.  
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Figure 4.4: City interaction with respect to fire size of SE fire district 

 

less than 50 acre

50-100 acre

100-150 acre

150-200 acre

greater than 200 acre

0 20 40 60 8010
Kilometers

Training Data  

Citi Interaction

High 

 

Low 



 

47 

4.4.2 Fuel density interaction 

Land sat MMS, TM and ETM+ images were used to derive thematic maps of land 

cover types (Table 4.3) and forest stand age (Table 4.2). A post classification change 

detection method in which two temporal images are classified individually, then 

compared to identify changed pixels (Cooke et al., 2007). Further unsupervised approach 

is used to determine forest type (Cooke et al., 2007). Once the thematic classifications 

were obtained, a unique reclassification scheme was used to assign unique integer values 

for forest age and land cover type. Additive map algebra is used in raster calculator to 

obtain a species age combination layer (Table 4.4 and Figure 4.5). 

 

Table 4.2 Unique Age values used to Age Classes Derived from MSS, TM & ETM+ 
 

Age Classes Unique Values 
 

Open Areas 10 
Regenerating Areas 20 

Non-Origin (>30 years) Forest 30 
Zero to Nine years 40 

10 to 19 Years 50 
20 to 30 Years 60 

Greater than 30 Years 70 
 

 

 

 

 



 
Table 4.3 Unique Values used to Land Cover Classes Derived from MSS, TM & ETM+ 

 

Land Cover Classes Unique Values 
 

Open Areas 1 
Regenerating Areas 2 

Broadleaf Deciduous Forests 3 
Mixed Broadleaf 

Deciduous/Needle-leaf 
Evergreen Forests 

4 
 

Needle-leaf Evergreen Forests 5 
 
 
 

Table 4.4 Unique species and age values used to derive pine 20-30 yr age group layer 
 

 

Species age category Risk potential

Non-origin HW, HW:20-30 yr, HW: >30 yr 0(Very Low) 

Open, HW: 0-9 yr, HW:10-19 yr 1 

Non-origin MX, MX : 0-9 yr, MX: 20-30 yr, MX: >30 yr 2 

Non-origin Pine, Pine: 0-9 yr, MX: 10-19 yr, Pine:>30 yr 3 

Pine(10-19 yr) 4 

Pine(20-30 yr) 5(very High) 

Note:  HW: Hardwood; MX: Mixed vegetation; yr: age in years; > Greater than 
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Figure 4.5: Unique Age and species used to derive pine 20-30 yr age group layer 

   

Post Katrina studies (Cooke et al, 2007) indicated that pine class with 20-30 years 

age group is highly prone to fire. This particular species age combination is separated 

using reclassification and additive map algebra methods (Table 4.4) for further analysis 

to obtain fuel density interaction layer. The steps involved are Clump and sieve, filtering 

or sieve, centroid generation, and Point distance calculation 

Clump and sieve method provides a way to generalize classified images. It is a 

form of contiguity analysis that can be utilized to group similar pixels called raster 

regions or clumps (ERDAS Field Guide). Contiguity analysis can be used either to create 

raster regions for a large class or eliminate too small raster regions not fit in an 

application (ERDAS Field Guide). Fuel size is also an important factor in determining 
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fire frequency and generally high fire frequency is associated with large fuel size 

(Johnson and Van Wagner, 1985). Similar pixels in the pine of age group 20-30 yr are 

grouped using this technique.  

In situations, where very small clumps are not practical (require a minimum area 

for a particular application as less than one acre forest in the present study is not practical 

to consider as forest fire), they can be sieved out according to their sizes (ERDAS Field 

Guide). Areas were calculated to these fuel (pine 20-30 year age) clumps. The minimum 

area for classification as forest land is one acre (FIA Glossary). Consequently, a threshold 

size of 1 acre is used to filter these clumps. 

Centroids were generated for these clumps (pine with 20-30 yr and above 1 acre) 

using ArcMap. Arc GIS proximity analysis tool was utilized to determine the distance of 

a particular centroid (point feature) to rest of the centroids (Near Features). The result is 

an output database file containing the fields of input feature id, near feature id and 

distance (Arc GIS desktop help).  Default search radius is utilized for this purpose which 

implies, point distance is calculated from one input feature to all other available (5561 

clumps) near features.  

Fuel density Interaction 

Interaction calculation is based on the Newton’s gravity equation (Equation 4.2 

and Figure 4.6). The equation is similar to the city interaction calculation that states that 

interaction is directly proportional to the area each clump and inversely proportional 

square of the spatial separation between these clumps. Thus interaction is the sum of the 

gravitational effect that each particular fuel type and age clump area posses as a function 



 
of distance and area of rest of the clumps. A total of 5562 clumps were found in this 

study area with area greater than one acre. The following equation is used to calculate the 

interaction of one clump to the rest of the clumps.  

 
∑
=

=

=
5562

1
2

*n

i

ni

d
aactionFuelIntera ……………………………Equation 4.2 

 

a = Area of fuel clump/stand; 

 i = 1 to 5562;  

d = distance between two fuel clumps/stands 

 

 

 

 

 

 

 

 

 

 

Figure 4.6:  Flow diagram depicting the Fuel density Interaction variable for fire risk 
analysis 
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The summation of the interaction value (Figure 4.7) of a clump with respect to all other 

clumps thus obtained was populated back to the fuel attribute table thereby generating a 

fuel density interaction layer (Figure 4.8) 
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Total Interaction: 
1023368.3365672121

 

 
Figure 4.7: Table indicating the Fuel density Interaction calculation 

 
 
 
 
 
 
 

 
 

 

 

 



 
 

 
 
 
 
 
 
 

.

53 

 
 

Figure 4.8: Fuel density interaction with respect to fire size of SE fire district 
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4.4.3 Slope 

Slope is also one of the important factors considered in fire risk analysis. Slope is 

calculated as the rate of change in value of a cell to its neighboring cells, usually for an 

eight pixel window that identifies the steep down hill descent from that cell. Lower slope 

indicates flat terrain, and higher slope values indicate steep terrain. Literature review 

states that steep slopes are associated with higher fire potential compared to gentle or flat 

slopes. From the mosaiced DEM, slope is calculated (Figure 4.9).  
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Figure 4.9: Slope with respect to fire size of SE fire district 



 
4.4.4 Euclidean distance from perennial streams 

The streams were clipped to the study area and Euclidean distance to these 

streams feature is calculated using Arc Map spatial analyst straight line distance tool 

(Figure 4.11). Euclidean distance function initially converts the streams line vector 

format to a raster with the specified cell size (30 m). The distance algorithm was then 

used to calculate the distance from the center of the stream source cells to the center of 

each of the surrounding cells using hypotenuse, with the x-max and y-max as the other 

two legs of the triangle (Figure 4.10). The shortest distance to a stream source was 

determined and the values were assigned to the cell location on the output raster.  

 

 

 

 

 

Figure 4.10: Euclidean distance calculation (Source: Arcmap desktop help) 
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Figure 4.11: Result of Euclidean distance with respect to fire size of SE fire district 
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Data Normalization 

The variables used in the analysis were in different ranges and different units. For 

example slope is measured in degrees and the values range from 0 to 36. Similarly 

Euclidean distance to perennial streams is measured in metere. Based on Basheer and 

Hajmer, 2000 the following linear transformation (Equation 4.3) is used to proportionally 

normalize the data between 0 and 1 in the range of the maximum and minimum values 
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Wher

MZ

 

 
e  
is the normalized value of  

Minimum value of  
   max

i
aximum value of  

 iZ

All the layers were re-projected to the Mississippi State Transverse Mercator 

(MSTM) projection with a 1983 North American Datum (NAD83) and the Geodetic 

Reference System of 1980 (GRS 80). The independent variables of fuel density 

interaction, human interaction, slope and distance to perennial streams were maintained 

as raster grids with a 30-meter resolution.  These independent layers are used in ANN 

(SOM) to generate a fire potential prediction. 

Artificial neural networks 

The ANN analysis (SOM) was carried out according to the procedures outlined in 

IDRISI Andes GIS software. Figure 4.12 describes the ANN-SOM architecture and 

topology utilized for fire size risk prediction of SE fire district of MS. ASCII format was 

ix iZ
min
iZ iZ

minmax

min

ii

ii
i zz

zzx
−
−

= ……………………………Equation 4.3 



 
used to import raster data into IDRISI Andes and for output. All four variables analyzed 

were entered individually to the network architecture. These variables were analyzed with 

network parameters related to neighborhood radius, minimum and maximum learning 

rates, minimum and maximum gain term, fine tuning rule and the number of epochs to 

obtain a best classified fire risk map. 
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Figure 4.12:   SOM architecture and topology used for forest fire risk (Source: Lidia 
Diappi et al 2002) 

 

Before analyzing these variables in terms of classified fire risk, the variables are 

first trained using the historic fire locations. Five classes of training data sets were chosen 

based on fire size. These classes were appended and were brought to a usable vector 

training format in IDRISI Andes version. First a coarse training is used that is similar to 

an unsupervised approach where competitive learning and lateral interaction result in 

fundamental topological regions of neuron weights that represent clusters and sub 



 
clusters in the input data (IDRISI Andes help contents). The following represent the set 

of variables or neurons utilized for this research. 

X = {City interaction, Fuel density Interaction, Slope and Euclidean distance to streams}, 

a four dimensional feature vector input to the neural network architecture. The Euclidean 

distances (Equation 4.4) between weight /reference vector and input feature vector were 

calculated in the SOM tool using the following equation (IDRISI Andes help contents) 
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Where 

n
ix  is the input to neuron i at iteration n and 

n
jiW  is the synaptic weight from input neuron i to output neuron  j at iteration n.  

 

Finally the neuron in the output layer is determined based on minimum Euclidean 

distance measure that is calculated as shown in equation 4.5.  

 

 

Learning rate is used to alter the weights of the winner and the specified neighborhood 

radius according to the equations 4.6 and 4.7 below (IDRISI Andes help contents). 
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t
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n
ji WW =+1 nγIf d winner j is not with in…………..Equation 4.7 



 
Where is the learning rate at n th iteration and 

d winner j is the distance of the winner neuron and other neurons in the output layer. 

The above two equations implies that the winner neurons are altered by the 

learning rate (Figure 4.13) within the specified neighborhood radius while outside the 

specified radius are left unaltered (IDRISI Andes help contents). For this situation a high 

neighborhood radius is specified initially in coarse training in comparison to the fine 

tuning. The learning rate is a value that can set in the range of 0 to 1. 

 

 

 

 

 

 

 

Figure 4.13: SOM weight update function (Source: Lidia Diappi et al 2002) 

 

This is the process that occurs in the coarse or unsupervised training phase. In the fine 

tuning phase, the decision boundaries are refined between classes based on training data. 

This helps to improve the accuracy of classification. For the purpose of fine tuning 

Learning vector quantization (LVQ) parameter is used (IDRISI Andes help contents). 

The LVQ parameter utilized for this research is uses the following equations 4.8, 4.9 and 

4.10. 
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If i and ji are not equal  ………………………………Equation 4.10 

  
)(1 n

jii
nn

ji
n
ji wxww −+=+ δ If classified x is true  …………..Equation 4.8 

 )(1 nnnn wxww −−=+ δ If classified x is False  …………..Equation 4.9 
 

Where W  is the weight vector of the winner neuron and   
ii

ji

nδ is the gain term that can be adjusted in the range of 0 to 1. 

 

In the process of this neural network architecture, learning rate and gain term are all set to 

decline with time between the maximum and minimum values. Similarly the 

neighborhood radius is also a time decay function that encloses all neurons initially and 

only winner in the final stage (IDRISI Andes help contents). 
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CHAPTER V 
 

RESULTS AND DISCUSSIONS 
 
 

To have a preliminary understanding of the dependency of fire size with respect 

to these variables, all the variables are plotted with respect to the fuel size. The results of 

which are discussed below for each variable. 

5.1 City interaction 

The values obtained from city interaction calculation, were normalized, scaled 

from 0 to 100 method and finally converted to integer grids (Gilreath, 2006) for graphical 

analysis. City interaction might be expressed as the number of people interacting per unit 

square distance. The Fire size with respect to city interaction showed a negative skewed 

distribution. From the graph (Figure 5.1), the distribution shows a non linear trend that 

could not be fit with a single equation. In general, fire size seems to be low (less than 

fifty acres) at low population interaction (below 0.3 percent), increases as city interaction 

increases (from 0.4 to 0.84 percent) and start decreasing from 0.84 percent of city 

interaction. 
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Figure 5.1: Historic fire size occurrences with respect to city interaction 

 

5.2 Fuel density interaction 

The density interaction indicates the chance of fire occurrence between fuel 

stands with respect to their areas. The interaction is directly proportional to the areas of 

the fuel stands and varies inversely to their distance. This interaction values were used to 

generate a risk map. The data are normalized by score range method, scaled from 0 to 

100 and finally converted to integer grids (Gilreath, 2006). Higher interaction implies 

fuel stands with large areas and in close proximity to other fuel stands and vice versa.  As 

a preliminary step in order to understand the dependency of historic fires on this fuel 

density interaction layer, a graph is plotted. The graph (Figure 5.2) showed an 
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approximately normal distribution with peaks and shoulders at high fuel density 

interaction values that could not be fit with a single equation. 

 

 

 
Figure 5.2: Historic fire size occurrences with respect to Fuel density interaction 

 

5.3 Slope 

Slope is calculated in degrees. The values of slope for the study area ranged from 

0 to 36. The data are normalized by score range method, scaled from 0 to 100 and finally 

converted to integer grids (Gilreath, 2006). The values of slope with respect to historic 

fire data are extracted using spatial analysis tools extract values to points in Arc Map. 

Similar to other variables, historic fire size data is plotted with respect to the slope values 

(Figure 5.3). The graph too showed different trends at various regions (high fire sizes 

even at flat slopes indicating grass fires followed by peak fire sizes at a slope of 18 

degrees and later on decreases) that could not be best fit with a simple equation. 
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Figure 5.3: Historic fire size occurrences with respect to slope 
 

5.4 Euclidean distance to streams 

The Euclidean distance values of the historic fires to the perennial stream feature 

ranged from 0 to 7674 meter. Similar to the other three variables the data are normalized by 

score range method, scaled from 0 to 100 and finally converted to integer grids (Gilreath 

2006). The euclidean distance values with respect to historic fire data are extracted using 

spatial analysis tools extract values to points in Arc Map. A graph (Figure 5.4) of the historic 

fire size occurrence data with respect to the Euclidean distance of the perennial streams 

showed a positively skewed distribution that could not be fit with a single equation. In 

general the graph showed a drastic decrease in fire sizes beyond a distance of 2302 m from 

perennial streams. 
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Figure 5.4:  Historic fire size occurrences with respect to Euclidean distance to perennial 

streams 
 

5.5 Artificial neural networks 

       The dependency of the historic fire occurrences to these four variables (city 

interaction, Fuel density interaction, slope and distance to perennial streams) could 

not be properly mapped with simple equations. The graphs revealed a step wise 

function (separate equations at different parts of the curve) to model the fire risk. At 

this stage SOM of neural network stream proved to be an alternative to classify fire 

risk. All the variables were fed to the SOM architecture. Of the several neural 

network parameters the following network architecture showed the highest accuracy. 

  Topology: 7507 columns and 10290 rows. 
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Input layer neurons i.e. the four input variables of city interaction, fuel density Interaction, 

slope and Euclidean distance to streams. 

Output layer neurons: five classes of fire risk i.e. fire size risk of less than 50 acre,                         

50 to 100 acre, 100-150 acre, 150 to 200 acre and   greater than 200 acre. 

  Various network parameters such as learning rate, gain term, neighborhood radius and 

iterations were involved in using the SOM approach as such they are explained here under. 

A 1 by 3 interval was chosen that will sample all pixels in the input variables. (A 

1 by 1 interval will sample all pixels in the input images and increase the time for 

calculation. Conversely, increasing the interval will decrease the time for calculation-

IDRISI help contents). 

Learning rate:  It is a time decay function that is set in the range of 0.5 to1 

These parameters reduced the quantization error to 0.0005 and fine tuning was 

utilized to obtain higher accuracy. Linear vector quantization is used for fine tuning with 

2000 iterations and a gain term of 0.0001 to 0.0005. In coarse tuning the neighborhood 

radius is at large initially while it was decreased to 1 in fine tuning.  A minimum mean 

distance algorithm is used to classify the unknown pixels in this research. All the above 

network parameters resulted in a final fire risk map that is described below. 

Final map: The SOM process yielded the final map as shown in figure 5.5.  The final map 

along the training data used for classifying fire size risk is shown in figure 5.6. Blue 

colour represents a fire size risk of less than 50 acres while red colour represents a fire 

size risk of greater than 200 acre. In terms of the associated four variables from the map it 

is evident that fire size risk of less than 50 acre are likely the places where few people 
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interact with fuel sizes less than 50 acre that are very nearer to the water bodies on almost 

gentle slope. Similarly fire size risks of greater than 200 acre are likely the places that 

find the best in relation to four associated variables and are generally the places with 

more number of people interacting with fuel sizes greater than 200 acre on medium 

slopes (13-18 degrees) that lie within 100 to 4000 meter from the water bodies. 

Training data: A total of 250 training points are used for fire size risk analysis. Five 

classes (Table 5.1) of fire sizes were used for training with SOM of ANN.  Historic fire 

occurrence data was separated in to these fire size classes and training points were 

selected randomly from these sizes with in the study area (Figure 5.5 & 5.6).  

Accuracy assessment:  The SOM approach uses in general 50% of the training data for 

training and the other 50% for testing. The result of the IDRISI SOM classification also 

yielded an error matrix and Kappa coefficient to analyze the fire prediction accuracy for 

the variables considered in the classification.  The error matrix   thus obtained is a 

symmetrical matrix that represents fire size risk prediction by SOM along the rows and 

fire occurrence or training data along the columns (Table 5.1). 
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Table 5.1 Error matrix analysis obtained for SOM fire size risk analysis 

Fire size 
risk 

Less 
than 

50 acre 

50-100 
acre 

100-
150 
acre 

150-
200 
acre 

Greater 
than 

200 acre
Total Errors of 

Comission 

Less than 
50 acre 36 3 8 3 6 56 0.3571 

50-100 acre 5 33 0 3 1 42 0.2143 
100-150 

acre 6 9 29 2 2 48 0.3958 

150-200 
acre 3 4 9 22 1 39 0.4359 

Greater 
than 200 

acre 
5 6 9 11 34 65 0.4769 

Total 55 55 55 41 44 250  
Errors of 
Omission 0.3455 0.4000 0.4727 0.4634 0.2273  0.3840 

 
 

This errors matrix was used to obtain the accuracies (Table 5.2) using the 

procedure stated by Filippi and Jensen (2005). In the present situation, producer’s 

accuracy refers to the chance that the used fire occurrence training point correctly 

predicts fire size risk while the user’s accuracy determines the likelihood that a particular 

predicted fire size risk class represents the same category on the ground (Prabhu, 2006). 
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Table 5.2 Accuracy obtained for classified fire size risk of SE MS 

Fire size risk Less than 
50 acre 

50-100 
acre 

100-150 
acre 

150-200 
acre 

Greater 
than 200 

acre 

Accuracy 
(%) 

Producer’s 

65.45 60.00 52.73 53.66 77.27 

User’s 64.29 78.57 60.42 56.41 52.31 

 

 
The kappa coefficient is a second measure that is used to determine the predicted fire size 

risk map accuracy. The overall kappa coefficient of 0.5201 is obtained for the present 

classification of fire size risk. The kappa index of agreement for individual fire size 

classes (Table 5.3) varied from 0.4 to 0.6 that considered fair and moderate (Simpson, 

2008).   

 

Table 5.3 Kappa index of agreement derived from SOM for fire size risk classification 

Fire size class Kappa Index of Agreement 

Less than 50 acre 0.5548 

50-100 acre 0.5192 

100-150 
acre 0.4149 

150-200 acre 0.4509 

Greater than 200 acre 0.6929 
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Figure 5.5: ANN SOM final map indicating classified fire risk for SE MS 
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Figure 5.6: ANN SOM Classified fire risk for SE MS along trained data  
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Discussion 

ANN’s form a part of Artificial intelligence group. Artificial intelligence techniques are 

being employed in risk analysis especially in the areas of ecological modeling due to their 

ability to deal with uncertainty, vagueness, incomplete and inexact specifications, 

intuition, and qualitative information (Schmoldt D.L., 2001). As a part of fire risk 

modeling this research figured a non linear relation ship that existed among the four 

variables in relation to fire size. To deal with such complex ecological processes the 

inductive nature of ANN is found to be ideal to model fire patterns.  

The analysis of the fire size occurrences and the four variables was accomplished using 

GIS and IDRISI softwares. Arc GIS was used to derive the four variables and IDRISI 

Andes version was used to implement SOM part of ANN. Initially it has taken time to 

optimize network parameters and the usable data interchange formats. ASCII format 

found to be the best data interchange format from GIS to IDRISI Andes and vice versa.  

Once all the data is in usable format, one can try with various network parameters to 

increase the accuracy of classification. 

This research is peculiar in comparison to the earlier fire researches by Gilreath 

(2006) and Raviraj (2007). While Gilreath focused mainly on road density, Raviraj 

utilized additive model on gravity based human interaction and fuels. This research 

considered a group of variables in relation to fire occurrences and also classified fire 

sizes. This can be extended to any number of variables provided all have the same 
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topology and for further research recommends the use of more training data over longer 

time periods (eg., 15 years…fires & climate) to develop seasonal models that are of 

greater interest to fire managers. 
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CHAPTER VI 
 

SUMMARY AND CONCLUSIONS 
 
 

Artificial neural networks proved to be a best alternative in situations where the 

data distribution is irregular that do not follow a particular regular pattern and required 

stepwise functions at various stages of the distribution. SOM proved to be fascinating in 

the area of neural networks for classification purposes. Learning is also efficient, 

effective, and suitable for classification purposes. IDRISI SOM module aided the 

integration of Arcmap data to perform the analysis. The module result also yielded an 

error matrix and kappa coefficient as the measures of classification accuracy. 

 Error matrix produced an overall classification accuracy of 63 % and overall 

kappa coefficient value of 0.5201. These values lie in the range of fair or moderate as per 

the kappa values interpretation outlined by Simpson, (2008) (Table 6.1a & b).  
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Table 6.1 (a & b) Kappa coefficient interpretations (Source: Simpson 2008) 

(a) 

Category Kappa value 

Poor agreement Less than 0.20 

Fair agreement 0.20 to 0.40 

Moderate agreement 0.40 to 0.60 

Good agreement 0.60 to 0.80 

Very good agreement 0.80 to 1.00 

(b) 

 

Category Kappa value  

Poor Less than 0 .40 

Fair 0.40- 0.59 

Good 0.60- 0.74 

Excellent Greater than 0.74 

One of the limiting factors found in this research is the historic fire data locations 

used for training. Only few Training data points are available for classes of 150 to 200 

acre and greater than 200 acre fire risk classes. Training data is also limiting in terms of 

fire type and age in obtaining higher accuracies of classified fire risk. There is no clear 

cut demarcation of the forest type and in what age class the fires occurred while the 

research considered only pine forest type with 20-30 years age group to calculate fuel 

density interaction. That might be one aspect that has hindered the improvement of 

classification accuracy.  
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In terms of input variables of ANN, linear trend existed in all the variables only to 

a certain part of the data set as is evident from the graphs (Figure 5.1, 5.2, 5.3 & 5.4). A 

common observation from the graphs was that the fire size risk is low at low city 

interaction as well as at low fuel density interaction. Fire size risk is also low with respect 

to low Euclidean distance and majority of the fire size is accumulated with in the first 40 

percent of the perennial stream distance. With respect to slope, other than a fire size peak 

on flat terrain that could probably be bush land fires located in the study area it showed a 

similar trend of low fire size in lesser slopes. 

A general observation associated with the four variables was that, fire size risk 

was low at low variable values, increased to a certain extent and started declining. This 

particular irregular trend that existed in the associated variables for forest fire size risk 

was very well predicted by the present SOM approach. All the results can be summarized 

and concluded as follows: 

• High fire sizes were associated with 13 to 21 degrees of slope for the study area 

with peak fire sizes occurring around 18 degrees. 

• A significant drop in fire sizes occurs beyond 2302 meter distance from perennial 

streams. 

• Neural networks are good for modeling complex ecological processes using 

variables that are not linear predictors 

• The inductive nature of ANN is ideal for modeling fire patterns that are not easily 

described by deterministic processes 

• The accuracy is moderate (fair) 62% for annual fires 
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• Accuracies are likely to improve for seasonal fire prediction 

• Implementation is easy in the GIS analytical environment  

• Implementation for fire management agencies will require analyst training and 

development of a user-friendly interface 

• SOM is good for classification purposes  

Similarly, the limitations associated with the present research can be summarized 

as follows: 

• Topology is a constraint 

• Historic fire data – no clear cut for fire type and age 

• Lack of adequate amounts of training data made seasonal modeling difficult 

• Needs time for training and optimizing the network parameters  

• Low explanatory depth  

• Neural networks are sensitive to local conditions and training data and 

extrapolation to different geographic areas and landscape conditions is often a 

drawback to wide use. 
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