81 research outputs found

    An integrated wireless communication architecture for maritime sector

    Get PDF
    The rapid evolution of terrestrial wireless systems has brought mobile users more and more desired communication services. Maritime customers are asking for the same, such as the concepts of “Broadband at Sea” and “Maritime Internet”. Quite a lot of research work has focused on the development of new and better maritime communication technologies, but less attention has been paid on interworking of multiple maritime wireless networks or on satisfying service provisioning. To address this, an integrated wireless Communication Architecture for Maritime Sector (CAMS) has been introduced in this article. CAMS is aimed at 1) granting maritime customers uninterrupted connectivity through the best available network and 2) providing them with the best-provisioned communication services in terms of mobility, security and Quality of Experience (QoE). To address mobility challenge, the IEEE 802.21 standard is recommended to be used in CAMS in order to achieve seamless handover. CAMS provides application-level QoE support attending to the limited communication resources (e.g. bandwidth) at sea. Certain security considerations have also been proposed to supplement this architecture

    Handover management for hybrid satellite/terrestrial networks

    Get PDF
    9 pagesInternational audienceInitially envisaged to support handover between different wireless 802.x network technologies, the IEEE 802.21 standard also appears as the good candidate for handover management in future integrated satellite / terrestrial systems. This paper presents an analysis of how this standard could be implemented in the frame of a realistic scenario and taking into account the current trends in wireless network and mobility architectures. Our solution is then evaluated by means of emulation over a DVB-RCS representative testbed, and based on an experimental MIH implementation. We finally show that seamless handover can nearly be achieved with very short service outages

    Optimized Handover and Resource Management: An 802.21 Based Scheme to Optimize Handover and Resource Management in Hybrid Satellite-Terrestrial Networks

    Get PDF
    International audienceSatellite communications can provide fourth generation (4G) networks with large-scale coverage. However, their integration to 4G is challenging because satellite networks have not been designed with handover in mind. The setup of satellite links takes time, and so, handovers must be anticipated long before. This paper proposes a generic scheme based on the Institute of Electrical and Electronics Engineers 802.21 standard to optimize handover and resource management in hybrid satellite-terrestrial networks. Our solution, namely optimized handover and resource management (OHRM), uses the terrestrial interface to prepare handover, which greatly speeds up the establishment of the satellite link. We propose two mechanisms to minimize the waste of bandwidth due to wrong handover predictions. First, we leverage the support of 802.21 in the terrestrial access network to shorten the path of the signaling messages towards the satellite resource manager. Second, we cancel the restoration of the satellite resources when the terrestrial link rolls back. We use OHRM to interconnect a digital video broadcasting and a wireless 4G terrestrial network. However for the simulation tool, we use a WiMAX as the terrestrial technology to illustrate the schemes. The simulation results show that OHRM minimizes the handover delay and the signaling overhead in the terrestrial and satellite networks

    SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS

    Full text link
    A finales de los años noventa, y al comienzo del nuevo milenio, las redes inalámbricas han evolucionado bastante, pasando de ser sólo una tecnología prometedora para convertirse en un requisito para las actividades cotidianas en las sociedades desarrolladas. La infraestructura de transporte también ha evolucionado, ofreciendo comunicación a bordo para mejorar la seguridad vial y el acceso a contenidos de información y entretenimiento. Los requisitos de los usuarios finales se han hecho dependientes de la tecnología, lo que significa que sus necesidades de conectividad han aumentado debido a los diversos requisitos de las aplicaciones que se ejecutan en sus dispositivos móviles, tales como tabletas, teléfonos inteligentes, ordenadores portátiles o incluso ordenadores de abordo (On-Board Units (OBUs)) dentro de los vehículos. Para cumplir con dichos requisitos de conectividad, y teniendo en cuenta las diferentes redes inalámbricas disponibles, es necesario adoptar técnicas de Vertical Handover (VHO) para cambiar de red de forma transparente y sin necesidad de intervención del usuario. El objetivo de esta tesis es desarrollar algoritmos de decisión (Vertical Handover Decision Algorithms (VHDAs)) eficientes y escalables, optimizados para el contexto de las redes vehiculares. En ese sentido se ha propuesto, desarrollado y probado diferentes algoritmos de decisión basados en la infraestructura disponible en las actuales, y probablemente en las futuras, redes inalámbricas y redes vehiculares. Para ello se han combinado diferentes técnicas, métodos computacionales y modelos matemáticos, con el fin de garantizar una conectividad apropiada, y realizando el handover hacia las redes más adecuadas de manera a cumplir tanto con los requisitos de los usuarios como los requisitos de las aplicaciones. Con el fin de evaluar el contexto, se han utilizado diferentes herramientas para obtener información variada, como la disponibilidad de la red, el estado de la red, la geolocalizaciónMárquez Barja, JM. (2012). SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17869Palanci

    Analysis of Reconfigurability, Control and Resource Management in Heterogeneous Wireless Networks

    Get PDF
    Modern communications networks integrate different access technologies that require interoperability for seamless and user-transparent transfer of multimedia-reach content. Latest standardization activities in this area pinpoint the IEEE 802.21 standard as an enabler of media independent handovers in various scenarios. Additionally, the implementation of the heterogeneous network paradigm yields optimized and efficient resource management techniques emphasizing the need for reconfiguration and interoperability capabilities within future wireless networks. This paper analyzes a combination of reconfigurability, interoperability and resource management aspects in heterogeneous wireless networks based on the IEEE 802.21 standard. It introduces a novel platform for wireless heterogeneous communication systems and a prototype of a reconfigurable mobile terminal that rely on the IEEE 802.21 standard. The introduced platforms are extensively validated through simulations and laboratory experiments showcasing that the IEEE 802.21-backed interoperability is able to support uninterrupted content delivery across multiple communication technologies with high performance

    Mobility and Handoff Management in Wireless Networks

    Get PDF
    With the increasing demands for new data and real-time services, wireless networks should support calls with different traffic characteristics and different Quality of Service (QoS)guarantees. In addition, various wireless technologies and networks exist currently that can satisfy different needs and requirements of mobile users. Since these different wireless networks act as complementary to each other in terms of their capabilities and suitability for different applications, integration of these networks will enable the mobile users to be always connected to the best available access network depending on their requirements. This integration of heterogeneous networks will, however, lead to heterogeneities in access technologies and network protocols. To meet the requirements of mobile users under this heterogeneous environment, a common infrastructure to interconnect multiple access networks will be needed. In this chapter, the design issues of a number of mobility management schemes have been presented. Each of these schemes utilizes IP-based technologies to enable efficient roaming in heterogeneous network. Efficient handoff mechanisms are essential for ensuring seamless connectivity and uninterrupted service delivery. A number of handoff schemes in a heterogeneous networking environment are also presented in this chapter.Comment: 28 pages, 11 figure

    Path signalling in a wireless back-haul network integrating unidirectional broadcast technologies

    Get PDF
    The black-haul infrastructures of today's wireless operators must support the triple-play services demanded by the market or regulatory bodies. To cope with increasing capacity demand, in our previous work, we have developed a cost-effective heterogeneous layer 2.5 wireless back-haul (WiBACK) architecture, which leverages the native multicast capabilities of broadcast technologies such as DVB to off-load high-bandwidth broadcast content delivery. Furthermore, our architecture provides support for unidirectional technologies on the data and the control plane. This adopts a centralized coordinator approach, in which coordinator nodes install so-called management and data pipes. No routing state is kept at plain WiBACK nodes, which merely store QoS-aware pipe forwarding state. Consequently, the architecture requires a reliable protocol to push resource allocation and pipe forwarding state into the network, considering possibly unidirectional connectivity. Such a protocol, whose task is related to MPLS label distribution, is essential during the initial forming of WiBACK topologies and during regular network operations to reliably manage the data pipes. In this paper, we present a novel approach to extend our IEEE 802.21-inspired WiBACK TransportService and, based upon this, the design of an RSVP-TE-style pipe signalling protocol using nested hop-by-hop request/response MIH transactions that supports signalling over unidirectional technologies. A thorough evaluation and successful testbed deployments show that this protocol reliably signals pipe state even under high loss conditions
    • …
    corecore