5,464 research outputs found

    Modeling Adaptation with Klaim

    Get PDF
    In recent years, it has been argued that systems and applications, in order to deal with their increasing complexity, should be able to adapt their behavior according to new requirements or environment conditions. In this paper, we present an investigation aiming at studying how coordination languages and formal methods can contribute to a better understanding, implementation and use of the mechanisms and techniques for adaptation currently proposed in the literature. Our study relies on the formal coordination language Klaim as a common framework for modeling some well-known adaptation techniques: the IBM MAPE-K loop, the Accord component-based framework for architectural adaptation, and the aspect- and context-oriented programming paradigms. We illustrate our approach through a simple example concerning a data repository equipped with an automated cache mechanism

    Modeling adaptation with a tuple-based coordination language

    Get PDF
    In recent years, it has been argued that systems and applications, in order to deal with their increasing complexity, should be able to adapt their behavior according to new requirements or environment conditions. In this paper, we present a preliminary investigation aiming at studying how coordination languages and formal methods can contribute to a better understanding, implementation and usage of the mechanisms and techniques for adaptation currently proposed in the literature. Our study relies on the formal coordination language Klaim as a common framework for modeling some adaptation techniques, namely the MAPE-K loop, aspect- and context-oriented programming

    An Autonomous Engine for Services Configuration and Deployment.

    Full text link
    The runtime management of the infrastructure providing service-based systems is a complex task, up to the point where manual operation struggles to be cost effective. As the functionality is provided by a set of dynamically composed distributed services, in order to achieve a management objective multiple operations have to be applied over the distributed elements of the managed infrastructure. Moreover, the manager must cope with the highly heterogeneous characteristics and management interfaces of the runtime resources. With this in mind, this paper proposes to support the configuration and deployment of services with an automated closed control loop. The automation is enabled by the definition of a generic information model, which captures all the information relevant to the management of the services with the same abstractions, describing the runtime elements, service dependencies, and business objectives. On top of that, a technique based on satisfiability is described which automatically diagnoses the state of the managed environment and obtains the required changes for correcting it (e.g., installation, service binding, update, or configuration). The results from a set of case studies extracted from the banking domain are provided to validate the feasibility of this propos

    ContextErlang: A language for distributed context-aware self-adaptive applications

    Get PDF
    Self-adaptive software modifies its behavior at run time to satisfy changing requirements in a dynamic environment. Context-oriented programming (COP) has been recently proposed as a specialized programming paradigm for context-aware and adaptive systems. COP mostly focuses on run time adaptation of the application’s behavior by supporting modular descriptions of behavioral variations. However, self-adaptive applications must satisfy additional requirements, such as distribution and concurrency, support for unforeseen changes and enforcement of correct behavior in the presence of dynamic change. Addressing these issues at the language level requires a holistic design that covers all aspects and takes into account the possibly cumbersome interaction of those features, for example concurrency and dynamic change. We present ContextErlang, a COP programming language in which adaptive abstractions are seamlessly integrated with distribution and concurrency. We define ContextErlang’s formal semantics, validated through an executable prototype, and we show how it supports formal proofs that the language design ensures satisfaction of certain safety requirements. We provide empirical evidence that ContextErlang is an effective solution through case studies and a performance assessment. We also show how the same design principles that lead to the development of ContextErlang can be followed to systematically design contextual extensions of other languages. A concrete example is presented concerning ContextScala
    • …
    corecore