39 research outputs found

    Adaptivity Helps for Testing Juntas

    Get PDF
    We give a new lower bound on the query complexity of any non-adaptive algorithm for testing whether an unknown Boolean function is a k-junta versus epsilon-far from every k-junta. Our lower bound is that any non-adaptive algorithm must make Omega(( k * log*(k)) / ( epsilon^c * log(log(k)/epsilon^c))) queries for this testing problem, where c is any absolute constant <1. For suitable values of epsilon this is asymptotically larger than the O(k * log(k) + k/epsilon) query complexity of the best known adaptive algorithm [Blais,STOC\u2709] for testing juntas, and thus the new lower bound shows that adaptive algorithms are more powerful than non-adaptive algorithms for the junta testing problem

    Mildly Exponential Lower Bounds on Tolerant Testers for Monotonicity, Unateness, and Juntas

    Full text link
    We give the first super-polynomial (in fact, mildly exponential) lower bounds for tolerant testing (equivalently, distance estimation) of monotonicity, unateness, and juntas with a constant separation between the "yes" and "no" cases. Specifically, we give ∙\bullet A 2Ω(n1/4/ε)2^{\Omega(n^{1/4}/\sqrt{\varepsilon})}-query lower bound for non-adaptive, two-sided tolerant monotonicity testers and unateness testers when the "gap" parameter ε2−ε1\varepsilon_2-\varepsilon_1 is equal to ε\varepsilon, for any ε≥1/n\varepsilon \geq 1/\sqrt{n}; ∙\bullet A 2Ω(k1/2)2^{\Omega(k^{1/2})}-query lower bound for non-adaptive, two-sided tolerant junta testers when the gap parameter is an absolute constant. In the constant-gap regime no non-trivial prior lower bound was known for monotonicity, the best prior lower bound known for unateness was Ω~(n3/2)\tilde{\Omega}(n^{3/2}) queries, and the best prior lower bound known for juntas was poly(k)\mathrm{poly}(k) queries.Comment: 20 pages, 1 figur

    Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

    Get PDF
    We give a poly(log(n),1/epsilon)-query adaptive algorithm for testing whether an unknown Boolean function f:{-1, 1}^n -> {-1, 1}, which is promised to be a halfspace, is monotone versus epsilon-far from monotone. Since non-adaptive algorithms are known to require almost Omega(n^{1/2}) queries to test whether an unknown halfspace is monotone versus far from monotone, this shows that adaptivity enables an exponential improvement in the query complexity of monotonicity testing for halfspaces

    An Adaptivity Hierarchy Theorem for Property Testing

    Get PDF
    Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of adaptive testing algorithms, wherein each query may be determined by the answers received to prior queries, and their non-adaptive counterparts, in which all queries are independent of answers obtained from previous queries. In this work, we investigate the role of adaptivity in property testing at a finer level. We first quantify the degree of adaptivity of a testing algorithm by considering the number of "rounds of adaptivity" it uses. More accurately, we say that a tester is k-(round) adaptive if it makes queries in k+1 rounds, where the queries in the i\u27th round may depend on the answers obtained in the previous i-1 rounds. Then, we ask the following question: Does the power of testing algorithms smoothly grow with the number of rounds of adaptivity? We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem for property testing. Specifically, our main result shows that for every n in N and 0 <= k <= n^{0.99} there exists a property Pi_{n,k} of functions for which (1) there exists a k-adaptive tester for Pi_{n,k} with query complexity tilde O(k), yet (2) any (k-1)-adaptive tester for Pi_{n,k} must make Omega(n) queries. In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing natural properties of graphs

    An adaptivity hierarchy theorem for property testing

    Get PDF
    Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of adaptive testing algorithms, wherein each query may be determined by the answers received to prior queries, and their non-adaptive counterparts, in which all queries are independent of answers obtained from previous queries. In this work, we investigate the role of adaptivity in property testing at a finer level. We first quantify the degree of adaptivity of a testing algorithm by considering the number of "rounds of adaptivity" it uses. More accurately, we say that a tester is k-(round) adaptive if it makes queries in k+1 rounds, where the queries in the i'th round may depend on the answers obtained in the previous i-1 rounds. Then, we ask the following question: Does the power of testing algorithms smoothly grow with the number of rounds of adaptivity? We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem for property testing. Specifically, our main result shows that for every n in N and 0 <= k <= n^{0.99} there exists a property Pi_{n,k} of functions for which (1) there exists a k-adaptive tester for Pi_{n,k} with query complexity tilde O(k), yet (2) any (k-1)-adaptive tester for Pi_{n,k} must make Omega(n) queries. In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing natural properties of graphs

    An adaptivity hierarchy theorem for property testing

    Get PDF
    Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of adaptive testing algorithms, wherein each query may be determined by the answers received to prior queries, and their non-adaptive counterparts, in which all queries are independent of answers obtained from previous queries. In this work, we investigate the role of adaptivity in property testing at a finer level. We first quantify the degree of adaptivity of a testing algorithm by considering the number of "rounds of adaptivity" it uses. More accurately, we say that a tester is k-(round) adaptive if it makes queries in k+1 rounds, where the queries in the i'th round may depend on the answers obtained in the previous i-1 rounds. Then, we ask the following question: Does the power of testing algorithms smoothly grow with the number of rounds of adaptivity? We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem for property testing. Specifically, our main result shows that for every n in N and 0 <= k <= n^{0.99} there exists a property Pi_{n,k} of functions for which (1) there exists a k-adaptive tester for Pi_{n,k} with query complexity tilde O(k), yet (2) any (k-1)-adaptive tester for Pi_{n,k} must make Omega(n) queries. In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing natural properties of graphs

    Settling the Query Complexity of Non-Adaptive Junta Testing

    Get PDF
    We prove that any non-adaptive algorithm that tests whether an unknown Boolean function f is a k-junta or epsilon-far from every k-junta must make ~Omega(k^{3/2}/ epsilon) many queries for a wide range of parameters k and epsilon. Our result dramatically improves previous lower bounds from [BGSMdW13,STW15], and is essentially optimal given Blais\u27s non-adaptive junta tester from [Blais08], which makes ~O(k^{3/2})/epsilon queries. Combined with the adaptive tester of [Blais09] which makes O(k log k + k / epsilon) queries, our result shows that adaptivity enables polynomial savings in query complexity for junta testing
    corecore