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Abstract
We prove that any non-adaptive algorithm that tests whether an unknown Boolean function
f : {0, 1}n → {0, 1} is a k-junta or ε-far from every k-junta must make Ω̃(k3/2/ε) many queries
for a wide range of parameters k and ε. Our result dramatically improves previous lower bounds
from [12, 38], and is essentially optimal given Blais’s non-adaptive junta tester from [7], which
makes Õ(k3/2)/ε queries. Combined with the adaptive tester of [8] which makes O(k log k+ k/ε)
queries, our result shows that adaptivity enables polynomial savings in query complexity for
junta testing.
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1 Introduction

This paper is concerned with the power of adaptivity in property testing, specifically property
testing of Boolean functions. At a high level, a property tester for Boolean functions is a
randomized algorithm which, given black-box query access to an unknown and arbitrary
Boolean function f : {0, 1}n → {0, 1}, aims to distinguish between the case that f has some
particular property of interest versus the case that f is far in Hamming distance from every
Boolean function satisfying the property. The main goals in the study of property testing
algorithms are to develop testers that make as few queries as possible, and to establish lower
bounds matching these query-efficient algorithms. Property testing has by now been studied
for many different types of Boolean functions, including linear functions and low-degree
polynomials over GF (2) [11, 2, 6], literals, conjunctions, s-term monotone and non-monotone
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26:2 Settling the Query Complexity of Non-Adaptive Junta Testing

DNFs [32, 18], monotone and unate functions [23, 20, 13, 16, 15, 27, 4, 28, 14, 3], various types
of linear threshold functions [30, 31, 9], size-s decision trees and s-sparse GF (2) polynomials
and parities [18, 9, 10], functions with sparse or low-degree Fourier spectrum [24], and much
more. See e.g. [33, 34, 22] for some fairly recent broad overviews of property testing research.

In this work we consider the property of being a k-junta, which is one of the earliest and
most intensively studied properties in the Boolean function property testing literature. Recall
that f is a k-junta if it has at most k relevant variables, i.e., there exist k distinct indices
i1, . . . , ik and a k-variable function g : {0, 1}k → {0, 1} such that f(x) = g(xi1 , . . . , xik) for
all x ∈ {0, 1}n. Given k = k(n) : N → N and ε = ε(n) : N → R>0, we say an algorithm
which has black-box access to an unknown and arbitrary f : {0, 1}n → {0, 1} is an ε-tester
or ε-testing algorithm for k-juntas if it accepts with probability at least 5/6 when f is a
k(n)-junta and rejects with probability at least 5/6 when f is ε(n)-far from all k(n)-juntas
(meaning that f disagrees with any k(n)-junta g on at least ε(n) · 2n many inputs).

Property testers come in two flavors, adaptive and non-adaptive. An adaptive tester
receives the value of f on its i-th query string before deciding on its (i+ 1)-st query string,
while a non-adaptive tester selects all of its query strings before receiving the value of f on
any of them. Note that non-adaptive testers can evaluate all of their queries in one parallel
stage of execution, while this is in general not possible for adaptive testers. This means that
if evaluating a query is very time-consuming, non-adaptive algorithms may sometimes be
preferable to adaptive algorithms even if they require more queries. For this and other reasons,
it is of interest to understand when, and to what extent, adaptive algorithms can use fewer
queries than non-adaptive algorithms (see [36, 35] for examples of property testing problems
where indeed adaptive algorithms are provably more query-efficient than non-adaptive ones).

The query complexity of adaptive junta testing algorithms is at this point well understood.
In [17] Chockler and Gutfreund showed that even adaptive testers require Ω(k) queries to
distinguish k-juntas from random functions on k + 1 variables, which are easily seen to be
constant-far from k-juntas. Blais [8] gave an adaptive junta testing algorithm that uses only
O(k log k + k/ε) queries, which is optimal (for constant ε) up to a multiplicative factor of
O(log k).

Prior to the current work, the picture was significantly less clear for non-adaptive junta
testing. In the first work on junta testing, Fischer et al. [19] gave a non-adaptive tester that
makes O(k2(log k)2/ε) queries. This was improved by Blais [7] with a non-adaptive tester
that uses only O(k3/2(log k)3/ε) queries. On the lower bounds side, [7] also showed that for
all ε ≥ k/2k, any non-adaptive algorithm for ε-testing k-juntas must make Ω (k/(ε log(k/ε)))
queries. Buhrman et al. [12] gave an Ω(k log k) lower bound (for constant ε) for non-adaptively
testing whether a function f is a size-k parity; their argument also yields an Ω(k log k) lower
bound (for constant ε) for non-adaptively ε-testing k-juntas. More recently, [38] obtained a
new lower bound for non-adaptive junta testing that is incomparable to both the [7] and
the [12] lower bounds. They showed that for all ε : k−ok(1) ≤ ε ≤ ok(1), any non-adaptive
ε-tester for k-juntas must make

Ω
(

k log k
εc log(log(k)/εc)

)
many queries, where c is any absolute constant less than 1. For certain restricted values of ε
such as ε = 1/ log k, this lower bound is larger than the O(k/ε+k log k) upper bound for [8]’s
adaptive algorithm, so the [38] lower bound shows that in some restricted settings, adaptive
junta testers can outperform non-adaptive ones. However, the difference in performance is
quite small, at most a o(log k) factor. We further note that all of the lower bounds [7, 12, 38]
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are of the form Ω̃(k) for constant ε, and hence rather far from the Õ(k3/2)/ε upper bound
of [7].

1.1 Our results
The main result of the paper is the following theorem:

I Theorem 1. Let α ∈ (0.5, 1) be an absolute constant. Let k = k(n) : N → N and
ε = ε(n) : N → R>0 be two functions that satisfy k(n) ≤ αn and 2−n ≤ ε(n) ≤ 1/6 for all
sufficiently large n. Then any non-adaptive ε-tester for k-juntas must make Ω̃(k3/2/ε) many
queries.

Together with the Õ(k3/2)/ε non-adaptive upper bound from [7], Theorem 1 settles the
query complexity of non-adaptive junta testing up to poly-logarithmic factors.

1.2 High-level overview of our approach
Our lower bound approach differs significantly from previous work. Buhrman et al. [12]
leveraged the connection between communication complexity lower bounds and property
testing lower bounds that was established in the work of [9] and applied an Ω(k log k) lower
bound on the one-way communication complexity of k-disjointness to establish their lower
bound. Both [7] and [38] are based on edge-isoperimetry results for the Boolean hypercube
(the edge-isoperimetric inequality of Harper [25], Bernstein [5], Lindsey [29], and Hart [26]
in the case of [7], and a slight extension of a result of Frankl [21] in [38]). In contrast, our
lower bound argument takes a very different approach; it consists of a sequence of careful
reductions, and employs an upper bound on the total variation distance between two Binomial
distributions (see Claim 15).

Below we provide a high level overview of the proof of the lower bound given by Theorem 1.
First, it is not difficult to show that Theorem 1 is a consequence of the following more specific
lower bound for the case where k = αn:

I Theorem 2. Let α ∈ (0.5, 1) be an absolute constant. Let k = k(n) : N → N and
ε = ε(n) : N → R>0 be two functions that satisfy k(n) = αn and 2−(2α−1)n/2 ≤ ε(n) ≤ 1/6
for sufficiently large n. Then any non-adaptive ε-tester for k-juntas must make Ω̃(n3/2/ε)
many queries.

See Appendix A for the proof that Theorem 2 implies Theorem 1.
We now provide a sketch of how Theorem 2 is proved. It may be convenient for the

reader, on the first reading, to consider α = 3/4 and to think of ε as being a small constant
such as 0.01.

Fix a sufficiently large n. Let k = αn and ε = ε(n) with ε satisfying the condition
in Theorem 2. We proceed by Yao’s principle and prove lower bounds for deterministic
non-adaptive algorithms which receive inputs drawn from one of two probability distributions,
Dyes and Dno, over n-variable Boolean functions. The distributions Dyes and Dno are designed
so that a Boolean function f ← Dyes is a k-junta with probability 1 − o(1) and f ← Dno
is ε-far from every k-junta with probability 1− o(1). In Section 2 we define Dyes and Dno,
and establish the above properties. By Yao’s principle, it then suffices to show that any
q-query non-adaptive deterministic algorithm (i.e., any set of q queries) that succeeds in
distinguishing them must have q = Ω̃(n3/2/ε).

This lower bound proof consists of two components:
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1. A reduction from a simple algorithmic task called Set-Size-Set-Queries (SSSQ for short),
which we discuss informally later in this subsection and we define formally in Section 3.
This reduction implies that the non-adaptive deterministic query complexity of
distinguishing Dyes and Dno is at least as large as that of SSSQ.

2. A lower bound of Ω̃(n3/2/ε) for the query complexity of SSSQ.

Having outlined the formal structure of our proof, let us give some intuition which may
hopefully be helpful in motivating our construction and reduction. Our yes-functions and
no-functions have very similar structure to each other, but are constructed with slightly
different parameter settings. The first step in drawing a random function from Dyes is
choosing a uniform random subset M of Θ(n) “addressing” variables from x1, . . . , xn. A
random subset A of the complementary variables M is also selected, and for each assignment
to the variables in M (let us denote such an assignment by i), there is an independent random
function hi over a randomly selected subset Si of the variables in A. A random function
from Dno is constructed in the same way, except that now the random subset A is chosen to
be slightly larger than in the yes-case. This disparity in the size of A between the two cases
causes random functions from Dyes to almost always be k-juntas and random functions from
Dno to almost always be far from k-juntas.

An intuitive explanation of why this construction is amenable to a lower bound for
non-adaptive algorithms is as follows. Intuitively, for an algorithm to determine that it is
interacting with (say) a random no-function rather than a random yes-function, it must
determine that the subset A is larger than it should be in the yes-case. Since the set M
of Θ(n) many “addressing” variables is selected randomly, if a non-adaptive algorithm uses
two query strings x, x′ that differ in more than a few coordinates, it is very likely that they
will correspond to two different random functions hi,hi′ . Hence every pair of query strings
x, x′ that correspond to the same hi can differ only in a few coordinates in M, with high
probability, which significantly limits the power of a non-adaptive algorithm in distinguishing
Dyes and Dno no matter which set of query strings it picks. This makes it possible for us to
reduce from the SSSQ problem to the problem of distinguishing Dyes and Dno at the price of
only a small quantitative cost in query complexity, see Section 4.

At a high level, the SSSQ task involves distinguishing whether or not a hidden set
(corresponding to A) is “large.” An algorithm for this task can only access certain random
bits, whose biases are determined by the hidden set and whose exact distribution is inspired
by the exact definition of the random functions hi over the random subsets Si. Although
SSSQ is an artificial problem, it is much easier to work with compared to the original problem
of distinguishing Dyes and Dno. In particular, we give a reduction from an even simpler
algorithmic task called Set-Size-Element-Queries (SSEQ for short) to SSSQ (see Section 5.1)
and the query complexity lower bound for SSSQ follows directly from the lower bound for
SSEQ presented in Section 5.2.

Let us give a high-level description of the SSEQ task to provide some intuition for how we
prove a query lower bound on it. Roughly speaking, in this task an oracle holds an unknown
and random subset A of [m] (here m = Θ(n)) which is either “small” (size roughly m/2) or
“large” (size roughly m/2 + Θ(

√
n · logn)), and the task is to determine whether A is small

or large. The algorithm may repeatedly query the oracle by providing it, at the j-th query,
with an element ij ∈ [m]; if ij /∈ A then the oracle responds “0” with probability 1, and if
ij ∈ A then the oracle responds “1” with probability ε/

√
n and “0” otherwise. Intuitively,

the only way for an algorithm to determine that the unknown set A is (say) large, is to
determine that the fraction of elements of [m] that belong to A is 1/2 + Θ(logn/

√
n) rather

than 1/2; this in turn intuitively requires sampling Ω(n/ log2 n) many random elements of
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[m] and for each one ascertaining with high confidence whether or not it belongs to A. But
the nature of the oracle access described above for SSEQ is such that for any given i ∈ [m],
at least Ω(

√
n/ε) many repeated queries to the oracle on input i are required in order to

reach even a modest level of confidence as to whether or not i ∈ A. As alluded to earlier, the
formal argument establishing our lower bound on the query complexity of SSEQ relies on an
upper bound on the total variation distance between two Binomial distributions.

1.3 Organization and Notation
We start with the definitions of Dyes and Dno as well as proofs of their properties in Section 2.
We then introduce SSSQ in Section 3, and give a reduction from SSSQ to the problem of
distinguishing Dyes and Dno in Section 4. More formally, we show that any non-adaptive
deterministic algorithm that distinguishes Dyes and Dno can be used to solve SSSQ with only
an O(logn) factor loss in the query complexity. Finally, we prove in Section 5 a lower bound
for the query complexity of SSSQ. Theorem 2 then follows by combining this lower bound
with the reduction in Section 4.

We use boldfaced letters such as f ,A,S to denote random variables. Given a string
x ∈ {0, 1}n and ` ∈ [n], we write x(`) to denote the string obtained from x by flipping the `-th
coordinate. An edge along the `th direction in {0, 1}n is a pair (x, y) of strings with y = x(`).
We say an edge (x, y) is bichromatic with respect to a function f (or simply f -bichromatic) if
f(x) 6= f(y). Given x ∈ {0, 1}n and S ⊆ [n], we use x|S ∈ {0, 1}S to denote the projection of
x on S.

2 The Dyes and Dno distributions

Let α ∈ (0.5, 1) be an absolute constant. Let n be a sufficiently large integer, with k = αn,
and let ε be the distance parameter that satisfies

2−(2α−1)n/2 ≤ ε ≤ 1/6. (1)

In this section we describe a pair of probability distributions Dyes and Dno supported
over Boolean functions f : {0, 1}n → {0, 1}. We then show that f ← Dyes is a k-junta with
probability 1− o(1), and that f ← Dno is ε-far from being a k-junta with probability 1− o(1).

We start with some parameters settings.
Define

δ
def= 1− α ∈ (0, 0.5), p

def= 1
2 , q

def= 1
2 + logn√

n
,

m
def= 2δn+ δ

√
n logn, t

def= n−m = (2α− 1)n− δ
√
n logn, N

def= 2t.

A function f ← Dyes is drawn according to the following randomized procedure:
1. Sample a random subset M ⊂ [n] of size t. Let Γ = ΓM : {0, 1}n → [N ] be the function

that maps x ∈ {0, 1}n to the integer encoded by x|M in binary plus one. Note that
|M| = n− t = m.

2. Sample an A ⊆M by including each element of M in A independently with probability p.
3. Sample independently a sequence of N random subsets S = (Si : i ∈ [N ]) of A as follows:

for each i ∈ [N ], each element of A is included in Si independently with probability
ε/
√
n. Next we sample a sequence of N functions H = (hi : i ∈ [N ]), by letting

hi : {0, 1}n → {0, 1} be a random function over the coordinates in Si, i.e., we sample an
unbiased bit zi(b) for each string b ∈ {0, 1}Si independently and set hi(x) = zi(x|Si).

CCC 2017
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Figure 1 An example of how an input x ∈ {0, 1}n is evaluated by f ∼ Dyes (or Dno). The
relevant variables of x are shaded gray. All variables in M index x into h2, which is a random
function over the variables S2, which are sampled from A by including each with probability ε/

√
n.

4. Finally, f = fM,A,H : {0, 1}n → {0, 1} is defined using M,A and H as follows:

f(x) = hΓM(x)(x), for each x ∈ {0, 1}n.

In words, an input x is assigned the value f(x) as follows: according to the coordinates
of x in the set M (which intuitively should be thought of as unknown), one of the N
functions hi (each of which is, intuitively, a random function over an unknown subset
Si of coordinates) is selected and evaluated on x’s coordinates in Si. For intuition, we
note that both M and M will always be of size Θ(n), the size of A will almost always be
Θ(n), and for a given i ∈ [N ] the expected size of Si will typically be Θ(ε

√
n) (though

the size of Si may not be as highly concentrated as the other sets when ε is tiny).

A function f ← Dno is generated using the same procedure except that A is a random subset
of M drawn by including each element of M in A independently with probability q (instead
of p). See Figure 1 for an example of how an input x ∈ {0, 1}n is evaluated by f ∼ Dyes or
Dno.

2.1 Most functions drawn from Dyes are k-juntas
We first prove that f ← Dyes is a k-junta with probability 1− o(1).

I Lemma 3. A function f ← Dyes is a k-junta with probability 1− o(1).

Proof. By the definition of Dyes, all the relevant variables of f ∼ Dyes belong to M ∪A.
Note that |M| = t. On the other hand, the expected size of A is δn + δ

√
n logn/2. By a

Chernoff bound,

|A| ≤ δn+ δ
√
n logn
2 + δ

√
n logn
4 < δn+ δ

√
n logn

with probability 1− o(1). When this happens we have |M ∪A| < αn = k. J

2.2 Most functions drawn from Dno are ε-far from k-juntas
Next we prove that f ← Dno is ε-far from any k-junta with probability 1− o(1). The details
of the argument are somewhat technical so we start by giving some high-level intuition,
which is relatively simple. Since q = p + log(n)/

√
n, a typical outcome of A drawn from

Dno is slightly larger than a typical outcome drawn from Dyes, and this difference causes
almost every outcome of |M ∪A| in Dno (with M ∪A being the set of relevant variables
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for f ← Dno) to be larger than k by at least 9
√
n. As a result, the relevant variables of any

k-junta must miss either (a) at least one variable from M, or (b) at least 9
√
n variables from

A. Missing even a single variable from M causes the k-junta to be far from f (this is made
precise in Claim 6 below). On the other hand, missing 9

√
n variables from A means that

with probability at least Ω(ε), at least one variable is missing from a typical Si (recall that
these are random (ε/

√
n)-dense subsets of A). Because hi is a random function over the

variables in Si, missing even a single variable would lead to a constant fraction of error when
hi is the function determining the output of f .

I Lemma 4. A function f ← Dno is ε-far from being a k-junta with probability 1− o(1).

Proof. Fix any subset M ⊂ [n] of size t, and we consider f = fM,A,H where A and H are
sampled according to the procedure for Dno. With probability 1− o(1) over the choice of A,
we have

|A| ≥ qm− δ
√
n logn
2 ≥ δn+ 2δ

√
n logn and |M ∪A| ≥ k + δ

√
n logn. (2)

We assume this is the case for the rest of the proof and fix any such set A ⊂M . It suffices to
show that f = fM,A,H is ε-far from k-juntas with probability 1− o(1), where H is sampled
according to the rest (steps 3 and 4) of the procedure for Dno (by sampling Si from A and
then hi over Si).

The plan for the rest of the proof is the following. For each V ⊂M ∪A of size 9
√
n, we

use EV to denote the size of the maximum set of vertex-disjoint, f -bichromatic edges along
directions in V only. We will prove the following claim:

I Claim 5. For each V ⊂ M ∪ A of size 9
√
n, we have EV ≥ ε2n with probability 1 −

exp(−2Ω(n)).

Note that when EV ≥ ε2n, we have dist(f , g) ≥ ε for every function g that does
not depend on any variable in V . This is because, for every f -bichromatic edge (x, x(`))
along a coordinate ` ∈ V , we must have f(x) 6= f(x(`)) since the edge is bichromatic but
g(x) = g(x(`)) as g does not depend on the `th variable. As a result, f must disagree with g
on at least ε2n many points.

Assuming Claim 5 for now, we can apply a union bound over all(
|M ∪A|

9
√
n

)
≤
(

n

9
√
n

)
≤ 2O(

√
n logn)

possible choices of V ⊂ M ∪ A to conclude that with probability 1 − o(1), f = fM,A,H is
ε-far from all functions that do not depend on at least 9

√
n variables in M ∪ A. By (2),

this set includes all k-juntas. This concludes the proof of the Lemma 4 modulo the proof of
Claim 5. J

In the rest of the section, we prove Claim 5 for a fixed subset V ⊂M ∪ A of size 9
√
n.

We start with the simpler case when V ∩M is nonempty.

I Claim 6. If V ∩M 6= ∅, then we have EV ≥ 2n/5 with probability 1− exp(−2Ω(n)).

Proof. Fix an ` ∈ V ∩M ; we will argue that with probability 1− exp(−2Ω(n)) there are at
least 2n/5 f -bichromatic edges along direction `. This suffices since such edges are clearly
vertex-disjoint.

Observe that since ` ∈ M , every x ∈ {0, 1}n has Γ(x) 6= Γ(x(`)). For each b ∈ {0, 1}M ,
let Xb be the set of x ∈ {0, 1}n with x|S = b. We partition {0, 1}n into 2t−1 pairs Xb and

CCC 2017
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Xb(`) , where b ranges over the 2t−1 strings in {0, 1}M with b` = 0. For each such pair, we use
Db to denote the number of f -bichromatic edges between Xb and Xb(`) . We are interested
in lower bounding

∑
b Db.

We will apply Hoeffding’s inequality. For this purpose we note that the Db’s are inde-
pendent (since they depend on distinct hi’s), always lie between 0 and 2m, and each one has
expectation 2m−1. The latter is because each edge (x, x(`)) has f(x) and f(x(`)) drawn as
two independent random bits, which is the case since Γ(x) 6= Γ(x(`)). Thus, the expectation
of
∑
b Db is 2n−2. By Hoeffding’s inequality, we have

Pr
[∣∣∣∑Db − 2n−2

∣∣∣ ≥ 2n

20

]
≤ 2 · exp

(
−2(2n/20)2

2t−1 · 22m

)
= exp

(
−2Ω(n)

)
since t = Ω(n). This finishes the proof of the claim. J

Now we may assume that V ⊂ A (and |V | = 9
√
n). We use I to denote the set of

i ∈ [N ] such that Si ∩ V 6= ∅. The following claim shows that I is large with extremely high
probability:

I Claim 7. We have |I| ≥ 4.4εN with probability at least 1− exp(−2Ω(n)) over the choice
of S.

Proof. For each i ∈ [N ] we have (using 1 − x ≤ e−x for all x and 1 − x/2 ≥ e−x for
x ∈ [0, 1.5]):

Pr
[
i ∈ I

]
= 1−

(
1− ε√

n

)9
√
n

≥ 1− e−9ε ≥ 4.5ε,

since ε/
√
n is the probability of each element of A being included in Si and ε ≤ 1/6 so

9ε ≤ 1.5.
Using ε ≥ 2−(2α−1)n/2 from (1), we have E[|I|] ≥ 4.5εN = 2Ω(n). Since the Si’s

are independent, a Chernoff bound implies that |I| ≥ 4.4εN with probability 1−exp(−2Ω(n)).
J

By Claim 7, we fix S1, . . . , SN to be any sequence of subsets of A that satisfy |I| ≥ 4.4εN
in the rest of the proof, and it suffices to show that over the random choices of h1, . . . ,hN
(where each hi is chosen to be a random function over Si), EV ≥ ε2n with probability at
least 1− exp(−2Ω(n)).

To this end we use ρ(i) for each i ∈ I to denote the first coordinate of Si in V , and
Zi to denote the set of x ∈ {0, 1}n with Γ(x) = i. Note that the Zi’s are disjoint. We
further partition each Zi into disjoint Zi,b, b ∈ {0, 1}Si , with x ∈ Zi,b iff x ∈ Zi and x|Si = b.
For each i ∈ I and b ∈ {0, 1}Si with bρ(i) = 0, we use Di,b to denote the number of f -
bichromatic edges between Zi,b and Zi,b(ρ(i)) along the ρ(i)th direction. It is clear that such
edges, over all i and b, are vertex-disjoint and thus,

EV ≥
∑
i∈I

∑
b∈{0,1}Si
bρ(i)=0

Di,b. (3)

We will apply Hoeffding’s inequality. Note that Di,b is 2m−|Si| with probability 1/2, and
0 with probability 1/2. Thus, the expectation of the RHS of (3) is∑

i∈I
2|Si|−1 · 2m−|Si|−1 = |I| · 2m−2 ≥ 1.1ε2n,
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using |I| ≥ 4.4εN . Since all the Di,b’s are independent, by Hoeffding’s inequality we have

Pr
[ ∣∣RHS of (3)− |I| · 2m−2∣∣ ≥ 0.01|I| · 2m−2

]
≤ 2 · exp

(
− 2(0.01|I| · 2m−2)2∑

i∈I 2|Si|−1 · 22(m−|Si|)

)
≤ exp

(
−2Ω(n)

)
,

since |I| ≥ Ω(εN) = 2Ω(n). When this does not happen, we have EV ≥ 0.99 · |I| · 2m−2 > ε2n.

3 The Set-Size-Set-Queries (SSSQ) Problem

We first introduce the Set-Size-Set-Queries (SSSQ for short) problem, which is an artificial
problem that we use as a bridge to prove Theorem 2. We use the same parameters p, q
and m from the definition of Dyes and Dno, with n being sufficiently large (so m = Ω(n) is
sufficiently large as well).

We start by defining Ayes and Ano, two distributions over subsets of [m]: A ∼ Ayes is
drawn by independently including each element of [m] with probability p and A ∼ Ano is
drawn by independently including each element with probability q. In SSSQ, the algorithm
needs to determine whether an unknown A ⊆ [m] is drawn from Ayes or Ano. (For intuition,
to see that this task is reasonable, we observe here that a straightforward Chernoff bound
shows that almost every outcome of A ∼ Ayes is larger than almost every outcome of
A ∼ Ano by Ω(

√
n logn).)

Let A be a subset of [m] which is hidden in an oracle. An algorithm accesses A (in order
to tell whether it is drawn from Ayes or Ano) by interacting with the oracle in the following
way: each time it calls the oracle, it does so by sending a subset of [m] to the oracle. The
oracle responds as follows: for each j in the subset, it returns a bit that is 0 if j /∈ A, and
is 1 with probability ε/

√
n and 0 with probability 1− ε/

√
n if j ∈ A. The cost of such an

oracle call is the size of the subset provided to the oracle.
More formally, a deterministic and non-adaptive algorithm Alg = (g, T ) for SSSQ accesses

the set A hidden in the oracle by submitting a list of queries T = (T1, . . . , Td), for some
d ≥ 1, where each Ti ⊆ [m] is a set. (Thus, we call each Ti a set query, as part of the name
SSSQ.)

Given T , the oracle returns a list of random vectors v = (v1, . . . ,vd), where vi ∈ {0, 1}Ti
and each bit vi,j is independently distributed as follows: if j /∈ A then vi,j = 0, and if
j ∈ A then

vi,j =
{

1 with probability ε/
√
n

0 with probability 1− (ε/
√
n).

(4)

Note that the random vectors in v depend on both T and A.
Given v = (v1, . . . ,vd), Alg returns (deterministically) the value of
g(v) ∈ {“yes”, “no”}.

The performance of Alg = (g, T ) is measured by its query complexity and its advantage.

The query complexity of Alg is defined as
∑d
i=1 |Ti|, the total size of all the set queries.

On the other hand, the advantage of Alg is defined as

Pr
A∼Ayes

[
Alg(A) = “yes”

]
− Pr

A∼Ano

[
Alg(A) = “yes”

]
.
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I Remark 8. In the definition above, g is a deterministic map from all possible sequences of
vectors returned by the oracle to “yes” or “no.” Considering only deterministic as opposed
to randomized g is without loss of generality since given any query sequence T , the highest
possible advantage can always be achieved by a deterministic map g.

We prove the following lower bound for any deterministic, non-adaptive Alg in Section 5.

I Lemma 9. Any deterministic, non-adaptive Alg for SSSQ with advantage at least 2/3
satisfies

d∑
i=1
|Ti| ≥

n3/2

ε · log3 n · log2(n/ε)
.

4 Reducing from SSSQ to distinguishing Dyes and Dno

In this section we reduce from SSSQ to the problem of distinguishing the pair of distri-
butions Dyes and Dno. More precisely, let Alg∗ = (h,X) denote a deterministic and
nonadaptive algorithm that makes q ≤ (n/ε)2 string queries1 X = (x1, . . . , xq) to a hidden
function f drawn from either Dyes or Dno, applies the (deterministic) map h to return
h(f(x1), . . . , f(xq)) ∈ {“yes”, “no”}, and satisfies

Pr
f∼Dyes

[
Alg∗(f) = “yes”

]
− Pr

f∼Dno

[
Alg∗(f) = “yes”

]
≥ 3/4. (5)

We show how to define from Alg∗ = (h,X) an algorithm Alg = (g, T ) for the problem
SSSQ with query complexity at most τ · q and advantage 2/3, where τ = cα · 5 log(n/ε) and

cα = − 1
log(1.5− α) > 0 with (1.5− α)cα = 1/2

is a constant that depends on α. Given this reduction it follows from Lemma 9 that
q ≥ Ω̃(n3/2/ε). This finishes the proof of Theorem 2.

We start with some notation. Recall that in both Dyes and Dno, M is a subset of [n]
of size t drawn uniformly at random. For a fixed M of size t, we use Eyes(M) to denote
the distribution of A and H sampled in the randomized procedure for Dyes, conditioning
on M = M . We define Eno(M) similarly. Then conditioning on M = M , f ∼ Dyes is
distributed as fM,A,H with (A,H) ∼ Eyes(M) and f ∼ Dno is distributed as fM,A,H with
(A,H) ∼ Eno(M). This allows us to rewrite (5) as

1(
n
t

) · ∑
M :|M |=t

(
Pr

(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
−

Pr
(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

])
≥ 3

4 .

We say M ⊂ [n] is good if any two queries xi and xj in X with Hamming distance
‖xi − xj‖1 ≥ τ have different projections on M , i.e., (xi)|M 6= (xj)|M . We prove below that
most M ’s are good.

I Claim 10. PrM
[
M is not good

]
= o(1).

1 Any algorithm that makes more than this many queries already fits the Ω̃(n3/2/ε) lower bound we aim
for.
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Proof. For each pair of strings xi and xj in X with Hamming distance at least τ , the
probability of them having the same projection on M (drawn uniformly from all size-t
subsets) is at most(

n−τ
t

)(
n
t

) = (n− τ − t+ 1) · · · (n− t)
(n− τ + 1) · · ·n ≤

(
1− t

n

)τ
≤
(
2(1− α) + o(1)

)τ
< (1.5− α)τ

≤ O
( ε
n

)5
,

by our choices of cα and τ . The claim follows by a union bound over at most q2 ≤ (n/ε)4

pairs. J

We can split the sum (5) into two sums: the sum over good M and the sum over bad M .
By Claim 10 the contribution from the bad M is at most o(1), and thus we have that

1(
n
t

) · ∑
good M

(
Pr

(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
−

Pr
(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

])
is at least 3/4− o(1). Thus, there must exist a good set M ⊂ [n] of size t with

Pr
(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
− Pr

(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

]
≥ 2/3.

(6)

Fix such a good M . We use Alg∗ = (h,X) and M to define an algorithm Alg = (g, T ) for
SSSQ as follows (note that the algorithm Alg below actually works over the universe M
(of size m) instead of [m] as in the original definition of SSSQ but this can be handled by
picking any bijection between M and [m]; accordingly A ∼ Ayes is drawn by including each
element of M with probability p and A ∼ Ano is drawn by including each element of M with
probability q). We start with T :
1. First we use M to define an equivalence relation ∼ over the query set X, where xi ∼ xj

if (xi)|M = (xj)|M . Let X1, . . . , Xd, d ≥ 1, denote the equivalence classes of X, and let
us write ρ(`) for each ` ∈ [d] to denote the value Γ(x) ∈ [N ] that is shared by all strings
x ∈ X`.

2. Next we define a sequence of subsets of M , T = (T1, . . . , Td), as the set queries of Alg,
where

T` =
{
i ∈M : ∃x, y ∈ X` such that xi 6= yi

}
. (7)

To upper bound |T`|, fixing an arbitrary string x ∈ X` and recalling that M is good, we have
that

|T`| ≤
∑
y∈X`

‖x− y‖1 ≤
∑
y∈X`

τ = τ · |X`|.

As a result, the query complexity of Alg (using T as its set queries) is at most
d∑
`=1
|T`| ≤ τ ·

d∑
`=1
|X`| ≤ τ · q.

It remains to define h and then prove that the advantage of Alg = (g, T ) for SSSQ is
at least 2/3. Indeed the g that we define is a randomized map and we describe it as a
randomized procedure below (by Remark 8 one can extract from g a deterministic map that
achieves the same advantage):
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1. Given v1, . . . , vd, v` ∈ {0, 1}T` , as the strings returned by the oracle upon being given T ,
let

R` =
{
j ∈ T` : v`,j = 1

}
. (8)

For each ` ∈ [d], the procedure draws a random function f ` : {0, 1}R` → {0, 1}, by
flipping 2|R`| many independent and unbiased random bits.

2. Next for each query x ∈ X`, ` ∈ [d], we feed f `(x|R`) to h as the bit that the oracle
returns upon the query x. Finally the procedure returns the result (“yes” or “no”) that h
returns.

In the rest of the proof we show that the advantage of Alg = (g, T ) is exactly the same as
the LHS of (6) and thus, is at least 2/3.

For convenience, we use Vyes to denote the distribution of responses v = (v1, . . . ,vd) to
T when A ∼ Ayes, and Vno to denote the distribution when A ∼ Ano. Then the advantage
of Alg is

Pr
v∼Vyes

[
g(v) = “yes”

]
− Pr

v∼Vno

[
g(v) = “yes”

]
.

It suffices to show that

Pr
v∼Vyes

[
g(v) = “yes”

]
= Pr

(A,H)∼Eyes(M)

[
Alg∗(fM,A,H) = “yes”

]
and (9)

Pr
v∼Vno

[
g(v) = “yes”

]
= Pr

(A,H)∼Eno(M)

[
Alg∗(fM,A,H) = “yes”

]
. (10)

We show (9); the proof of (10) is similar. From the definition of Vyes and Eyes(M) the
distribution of (R` : ` ∈ [d]) derived from v ∼ Vyes using (8) is the same as the distribution
of (Sρ(`) ∩ T` : ` ∈ [d]): both are sampled by first drawing a random subset A of M and then
drawing a random subset of A ∩ T` independently by including each element of A ∩ T` with
the same probability ε/

√
n (recall in particular equation (4) and step 3 of the randomized

procedure specifying Dyes in Section 2). Since fM,A,H(x) for x ∈ X` is determined by a
random Boolean function hρ(`) from {0, 1}Sρ(`) to {0, 1}, and since all the queries in X` only
differ by coordinates in T`, the distribution of the q bits that g feeds to h when v ∼ Vyes is
the same as the distribution of (f(x) : x ∈ X) when f ∼ Eyes(M). This finishes the proof of
(9), and concludes our reduction argument.

5 A lower bound on the non-adaptive query complexity of SSSQ

We will prove Lemma 9 by first giving a reduction from an even simpler algorithmic task,
which we describe next in Section 5.1. We will then prove a lower bound for the simpler task
in Section 5.2.

5.1 Set-Size-Element-Queries (SSEQ)
Recall the parameters m, p, q and ε and the two distributions Ayes and Ano used in the
definition of problem SSSQ. We now introduce a simpler algorithmic task called the Set-Size-
Element-Queries (SSEQ) problem using the same parameters and distributions.

Let A be a subset of [m] hidden in an oracle. An algorithm accesses the oracle to tell
whether it is drawn from Ayes or Ano. The difference between SSSQ and SSEQ is the way an
algorithm accesses A. In SSEQ, an algorithm Alg′ = (h, `) submits a vector ` = (`1, . . . , `m)
of nonnegative integers.
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On receiving `, the oracle returns a random response vector b ∈ {0, 1}m, where each
entry bi is distributed independently as follows: if i /∈ A then bi = 0, and if i ∈ A then

bi =
{

1 with probability λ(`i)
0 with probability 1− λ(`i)

, where λ(`i) = 1−
(

1− ε√
n

)`i
.

Equivalently, for each i ∈ A, the oracle independently flips `i coins, each of which is 1
with probability ε/

√
n, and at the end returns bi = 1 to the algorithm if and only if at

least one of the coins is 1. Thus, we refer to each `i as `i element-queries for the ith
element.
After receiving the vector b from the oracle, Alg′ returns the value h(b) ∈ {“yes”, “no”}.
Here h is a deterministic map from {0, 1}m to {“yes”, “no”}.

Similar to before, the performance of Alg′ is measured by its query complexity and its
advantage:

The query complexity of Alg′ = (h, `) is defined as ‖`‖1 =
∑m
i=1 `i. For its advantage,

we let Byes denote the distribution of response vectors b to query ` when A ∼ Ayes, and
Bno denote the distribution when A ∼ Dno. The advantage of Alg′ = (h, `) is then
defined as

Pr
b∼Byes

[
h(b) = “yes”

]
− Pr

b∼Bno

[
h(b) = “yes”

]
.

I Remark 11. It is worth pointing out (we will use it later) that the highest possible advantage
over all deterministic maps h is a monotonically non-decreasing function of the coordinates
of `. To see this, let A be the underlying set and let ` and `′ be two vectors with `i ≤ `′i
for every i ∈ [m]. Let b and b′ be the random vectors returned by the oracle upon ` and `′.
Then we can define b∗ using b′ as follows: b∗i = 0 if b′i = 0; otherwise when b′i = 1, we set

b∗i =

1 with probability λ(`i)/λ(`′i)

0 with probability 1− λ(`i)/λ(`′i)
.

One can verify that the distribution of b is exactly the same as the distribution of b∗. Hence
there is a randomized map h′ such that the advantage of (h′, `′) is at least as large as
the highest possible advantage achievable using `. The remark now follows by our earlier
observation in Remark 8 that the highest possible advantage using `′ is always achieved by a
deterministic h′.

The following lemma reduces the proof of Lemma 9 to proving a lower bound for SSEQ.

I Lemma 12. Given any deterministic and non-adaptive algorithm Alg = (g, T ) for SSSQ,
there is a deterministic and non-adaptive algorithm Alg′ = (h, `) for SSEQ with the same
query complexity as Alg and advantage at least as large as that of Alg.

Proof. We show how to construct Alg′ = (h, `) from Alg = (g, T ), where h is a randomized
map, such that Alg′ has exactly the same query complexity and advantage as those of Alg.
The lemma then follows from the observation we made earlier in Remark 8.

We define ` first. Given T = (T1, . . . , Td) for some d ≥ 1, ` = (`1, . . . , `m) is defined as

`j =
∣∣{i ∈ [d] : j ∈ Ti}

∣∣.
So ‖`‖1 =

∑d
i=1 |Ti|. To define h we describe a randomized procedure P that, given any

b ∈ {0, 1}m, outputs a sequence of random vectors v = (v1, . . . ,vd) such that the following
claim holds.
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I Claim 13. If b ∼ Byes (or Bno), then P (b) is distributed the same as Vyes (or Vno,
respectively).

Assuming Claim 13, we can set h = g ◦ P and the advantage of Alg′ would be the same
as that of Alg. In the rest of the proof, we describe the randomized procedure P and prove
Claim 13.

Given b ∈ {0, 1}m, P outputs a sequence of random vectors v = (v1, . . . ,vd) as follows:
If bj = 0, then for each i ∈ [d] with j ∈ Ti, P sets vi,j = 0.
If bj = 1 (this implies that `j > 0 and j ∈ Ti for some i ∈ [d]), P sets (vi,j : i ∈ [d], j ∈ Ti)
to be a length-r, where r = |{i ∈ [d] : j ∈ Ti}|, binary string in which each bit is
independently 1 with probability ε/

√
n and 0 with probability 1− ε/

√
n, conditioned on

its not being 0r.

Proof of Claim 13. It suffices to prove that, fixing any A ⊆ [m] as the underlying set hidden
in the oracle, the distribution of v is the same as the distribution of P (b). The claim then
follows since in the definitions of both Byes and Vyes (or Bno and Vno), A is drawn from Ayes
(or Ano, respectively).

Consider a sequence v of d vectors v1, . . . , vd with vi ∈ {0, 1}Ti for each i ∈ [d], and let

nj,1 = |{i ∈ [d] : j ∈ Ti and vi,j = 1}| and nj,0 = |{i ∈ [d] : j ∈ Ti and vi,j = 0}|,

for each j ∈ [m]. Then the v returned by the oracle (in SSSQ) is equal to v with probability:

1
{
∀j /∈ A, nj,1 = 0

}
·
∏
j∈A

(
ε√
n

)nj,1 (
1− ε√

n

)nj,0
, (11)

since all coordinates vi,j are independent. On the other hand, the probability of P (b) = v is

1
{
∀j /∈ A, nj,1 = 0

}
·∏

j∈A

(
1
{
nj,0 = `j

}
·
(

1− ε√
n

)`j
+ 1

{
nj,1 ≥ 1

}
·
(

ε√
n

)nj,1 (
1− ε√

n

)nj,0)
,

which is exactly the same as the probability of v = v in (11). J

This finishes the proof of Lemma 12. J

5.2 A lower bound for SSEQ
We prove the following lower bound for SSEQ, from which Lemma 9 follows:

I Lemma 14. Any deterministic, non-adaptive Alg′ for SSEQ with advantage at least 2/3
satisfies

‖`‖1 > s
def= n3/2

ε · log3 n · log2(n/ε)
.

Proof. Assume for contradiction that there is an algorithm Alg′ = (h, `) with ‖`‖1 ≤ s and
advantage at least 2/3. Let `∗ be the vector obtained from ` by rounding each positive `i to
the smallest power of 2 that is at least as large as `i (and taking `∗i = 0 if `i = 0). From
Remark 11, there must be a map h∗ such that (h∗, `∗) also has advantage at least 2/3 but
now we have 1) ‖`∗‖1 ≤ 2s and 2) every positive entry of `∗ is a power of 2. Below we abuse
notation and still use Alg′ = (h, `) to denote (h∗, `∗): Alg′ = (h, `) satisfies ‖`‖1 ≤ 2s, every
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positive entry of ` is a power of 2, and has advantage at least 2/3. We obtain a contradiction
below by showing that any such ` can only have an advantage of o(1).

Let L = dlog(2s)e = O(log(n/ε)). Given that ‖`‖1 ≤ 2s we can partition {i ∈ [m] : `i > 0}
into L + 1 sets C0, . . . , CL, where bin Cj contains those coordinates i ∈ [m] with `i = 2j .
We may make two further assumptions on Alg′ = (h, `) that will simplify the lower bound
proof:

We may reorder the entries in decreasing order and assume without loss of generality
that

` =

2L, . . . , 2L︸ ︷︷ ︸
cL

, 2L−1, . . . , 2L−1︸ ︷︷ ︸
cL−1

, . . . , 1, . . . , 1︸ ︷︷ ︸
c0

, 0, . . . , 0

 , (12)

where cj = |Cj | satisfies
∑
j cj · 2j ≤ 2s. This is without loss of generality since Ayes and

Ano are symmetric in the coordinates (and so are Byes and Bno).
For the same reason we may assume that the map h(b) depends only on the number of
1’s of b in each set Cj , which we refer to as the summary S(b) of b:

S(b) def=
(
‖b|CL‖1, ‖b|CL−1‖1, . . . , ‖b|C0‖1

)
∈ ZL+1

≥0 .

To see that this is without loss of generality, consider a randomized procedure P that,
given b ∈ {0, 1}m, applies an independent random permutation over the entries of Cj for
each bin j ∈ [0 : L]. One can verify that the random map h′ = h ◦ P only depends on the
summary S(b) of b but achieves the same advantage as h.

Given a query ` as in (12), we define Syes to be the distribution of S(b) for b ∼ Byes
(recall that Byes is the distribution of the vector b returned by the oracle upon the query `
when A ∼ Ayes). Similarly we define Sno as the distribution of S(b) for b ∼ Bno. As h only
depends on the summary the advantage is at most dTV(Syes,Sno), which we upper bound
below by o(1).

From the definition of Byes (or Bno, respectively) and the fact that Ayes (or Ano, respect-
ively) is symmetric over the m coordinates, we have that the L+ 1 entries of Syes (of Sno, re-
spectively) are mutually independent, and that their entries for each Cj , j ∈ [0 : L], are distrib-
uted as Bin(cj , pλj) (as Bin(cj , qλj), respectively), where we have λj = 1− (1− (ε/

√
n))2j .

In order to prove that dTV(Syes,Sno) = o(1) and achieve the desired contradiction, we
will give upper bounds on the total variation distance between their Cj-entries for each
j ∈ {0, . . . , L}.

I Claim 15. Let X ∼ Bin(cj , pλj) and Y ∼ Bin(cj , qλj). Then dTV(X,Y) ≤ o (1/L) .

We delay the proof of Claim 15, but assuming it we may simply apply the following
well-known proposition to conclude that dTV(Syes,Sno) = o(1).

I Proposition 16 (Subadditivity of total variation distance). Let X = (X1, . . . ,Xk) and
Y = (Y1, . . . ,Yk) be two tuples of independent random variables. Then dTV(X,Y) ≤∑k

i=1 dTV(Xi,Yi).

This gives us a contradiction and finishes the proof of Lemma 14. J

Below we prove Claim 15.
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Proof of Claim 15. The claim is trivial when cj = 0 so we assume below that cj > 0.
Let r = pλj and x = logn · λj/

√
n. Then X ∼ Bin(cj , r) and Y ∼ Bin(cj , r + x). As

indicated in Equation (2.15) of [1], Equation (15) of [37] gives

dTV(X,Y) ≤ O
(

τ(x)
(1− τ(x))2

)
, where τ(x) def= x

√
cj + 2

2r(1− r) , (13)

whenever τ(x) < 1. Substituting for x and r, we have (using cj ≥ 1, r ≤ 1/2 and p = 1/2)

τ(x) = O

(
logn · λj√

n
·
√
cj
r

)
= O

(
logn ·

√
λj · cj
n

)
= O

 1
L
·

√
n1/2 · λj

2j · ε · logn

 ,

where the last inequality follows from

cj · 2j ≤ 2s ≤ O
(

n3/2

ε · log3 n · L2

)
.

Finally, note that (using 1− x > e−2x for small positive x and 1− x ≤ e−x for all x):

1− λj =
(

1− ε√
n

)2j

≥
(
e−2ε/

√
n
)2j

= e−2j+1ε/
√
n ≥ 1−O(2jε/

√
n)

and
√
n · λj

2j · ε = O(1). This implies τ(x) = o(1/L) = o(1). The claim then follows from
(13). J
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A Proof of Theorem 1 assuming Theorem 2

We prove the following claim in Appendix A.1.

I Claim 17. Let ε(n) be a function that satisfies 2−n ≤ ε(n) ≤ 1/5 for sufficiently large n.
Then any non-adaptive algorithm that accepts the all-0 function with probability at least 5/6
and rejects every function that is ε-far from (n− 1)-juntas with probability at least 5/6 must
make Ω(1/ε) queries.

Next let k(n) and ε(n) be the pair of functions from the statement of Theorem 1. We consider
a sufficiently large n (letting k = k(n) and ε = ε(n) below) and separate the proof into two
cases:

2−(2α−1)k/(2α) ≤ ε ≤ 1/6 and 2−n ≤ ε < 2−(2α−1)k/(2α).

For the first case, if k = O(1) then the bound we aim for is simply Ω̃(1/ε), which follows
trivially from Claim 17 (since k ≤ αn < n− 1 and the all-0 function is a k-junta). Otherwise
we combine the following reduction with Theorem 2: any ε-tester for k-juntas over n-variable
functions can be used to obtain an ε-tester for k-juntas over (k/α)-variable functions. This
can be done by adding n− k/α dummy variables to any (k/α)-variable function to make the
number of variables n (as k ≤ αn). The lower bound then follows from Theorem 2 since α is
a constant. For the second case, the lower bound claimed in Theorem 1 is Ω̃(1/ε), which
follows again from Claim 17. This concludes the proof of Theorem 1 given Theorem 2 and
Claim 17. J

A.1 Proof of Claim 17
Let C be a sufficiently large constant. We prove Claim 17 by considering two cases:

ε ≥ C logn
2n and ε <

C logn
2n .

For the first case of 2nε ≥ C logn, we use D1 to denote the following distribution over
n-variable Boolean functions: to draw g ∼ D1, independently for each x ∈ {0, 1}n the value
of g(x) is set to 0 with probability 1− 3ε (recall that ε ≤ 1/5) and 1 with probability 3ε.

We prove the following lemma for the distribution D1:

I Lemma 18. With probability at least 1− o(1), g ∼ D1 is ε-far from every (n− 1)-junta.
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Proof. Note that every (n − 1)-junta is such that for some i ∈ [n], the function does not
depend on the i-th variable; we refer to such a function as a type-i junta. An easy lower
bound for the distance from a function g to all type-i juntas is the number of g-bichromatic
edges (x, x(i)) divided by 2n. When g ∼ D1 each edge (x, x(i)) is independently g-bichromatic
with probability 6ε(1 − 3ε) ≥ 12ε/5 (as ε ≤ 1/5). Thus when 2nε ≥ C logn, the expected
number of such edges is at least

2n−1 · (12ε/5) ≥ (6/5) · 2nε ≥ (6/5) · C logn.

Using a Chernoff bound, the probability of having fewer than 2nε bichromatic edges along
direction i is at most 1/n2 when C is sufficiently large. The lemma follows from a union
bound over i. J

As a result, when 2nε ≥ C logn, if A is a non-adaptive algorithm with the property
described in Claim 17, then A must satisfy

Pr
[
A accepts the all-0 function

]
− Pr

g∼D1

[
A accepts g

]
≥ 2/3− o(1).

But any such non-adaptive algorithm must make Ω(1/ε) queries as otherwise with high
probability all of its queries to g ∼ D1 would be answered 0, and hence its behavior would
be the same as if it were running on the all-0 function.

Finally we work on the case when 1 ≤ 2nε = O(logn). The proof is the same except
that we let g be drawn from D2, which we define to be the distribution where all entries of
g ∼ D2 are 0 except for exactly 2nε of them picked uniformly at random. The claim follows
from the following lemma:

I Lemma 19. With probability at least 1− o(1), g ∼ D2 is ε-far from every (n− 1)-junta.

Proof. This follows from the observation that, with probability 1−o(1), no two points picked
form an edge. When this happens, we have 2nε bichromatic edges along the ith direction for
all i. J
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