115 research outputs found

    Fuzzy Reasoning Approach for Predicting Web Services QoS/QoE with ANFIS

    Get PDF
    Nowadays, the web service (WS) usage in information systems (IS) includes determining a feasible WS that fulfils a set of non-functional requirements of Quality of Services (QoS) and user’s needs of Quality of Experience (QoE). While most existing studies evaluate WS from one perspective, i.e., users, and are based on data-driven approach, which employs a numerical dataset to learn a reasoning model, they overlook that users express their needs in a non-numerical form. To address these issues, we propose a new fuzzy reasoning approach for predicting WS QoS/QoE with the adaptive neuro-fuzzy inference system (ANFIS) that encompasses multiple viewpoints and perspectives, and is also suitable for linguistic terms. To verify the efficiency, we implemented the proposed approach, conducted two experiments and compared them. The results show a good performance of the proposed approach for predicting WS QoS/QoE, and, consequently, it can be considered a suitable tool for predicting

    Towards Better Performance in the Face of Input Uncertainty while Maintaining Interpretability in AI

    Get PDF
    Uncertainty is a pervasive element of many real-world applications and very often existing sources of uncertainty (e.g. atmospheric conditions, economic parameters or precision of measurement devices) have a detrimental impact on the input and ultimately results of decision-support systems. Thus, the ability to handle input uncertainty is a valuable component of real-world decision-support systems. There is a vast amount of literature on handling of uncertainty through decision-support systems. While they handle uncertainty and deliver a good performance, providing an insight into the decision process (e.g. why or how results are produced) is another important asset in terms of having trust in or providing a ‘debugging’ process in given decisions. Fuzzy set theory provides the basis for Fuzzy Logic Systems which are often associated with the ability for handling uncertainty and possessing mechanisms for providing a degree of interpretability. Specifically, Non-Singleton Fuzzy Logic Systems are essential in dealing with uncertainty that affects input which is one of the main sources of uncertainty in real-world systems. Therefore, in this thesis, we comprehensively explore enhancing non-singleton fuzzy logic systems capabilities considering both capturing-handling uncertainty and also maintaining interpretability. To that end the following three key aspects are investigated; (i) to faithfully map input uncertainty to outputs of systems, (ii) to propose a new framework to provide the ability for dynamically adapting system on-the-fly in changing real-world environments. (iii) to maintain level of interpretability while leveraging performance of systems. The first aspect is to leverage mapping uncertainty from input to outputs of systems through the interaction between input and antecedent fuzzy sets i.e. firing strengths. In the context of Non-Singleton Fuzzy Logic Systems, recent studies have shown that the standard technique for determining firing strengths risks information loss in terms of the interaction of the input uncertainty and antecedent fuzzy sets. This thesis explores and puts forward novel approaches to generating firing strengths which faithfully map the uncertainty affecting system inputs to outputs. Time-series forecasting experiments are used to evaluate the proposed alternative firing strength generating technique under different levels of input uncertainty. The analysis of the results shows that the proposed approach can also be a suitable method to generate appropriate firing levels which provide the ability to map different uncertainty levels from input to output of FLS that are likely to occur in real-world circumstances. The second aspect is to provide dynamic adaptive behaviours to systems at run-time in changing conditions which are common in real-world environments. Traditionally, in the fuzzification step of Non-Singleton Fuzzy Logic Systems, approaches are generally limited to the selection of a single type of input fuzzy sets to capture the input uncertainty, whereas input uncertainty levels tend to be inherently varying over time in the real-world at run-time. Thus, in this thesis, input uncertainty is modelled -where it specifically arises- in an online manner which can provide an adaptive behaviour to capture varying input uncertainty levels. The framework is presented to generate Type-1 or Interval Type-2 input fuzzy sets, called ADaptive Online Non-singleton fuzzy logic System (ADONiS). In the proposed framework, an uncertainty estimation technique is utilised on a sequence of observations to continuously update the input fuzzy sets of non-singleton fuzzy logic systems. Both the type-1 and interval type-2 versions of the ADONiS frameworks remove the limitation of the selection of a specific type of input fuzzy sets. Also this framework enables input fuzzy sets to be adapted to unknown uncertainty levels which is not perceived at the design stage of the model. Time-series forecasting experiments are implemented and results show that our proposed framework provides performance advantages over traditional counterpart approaches, particularly in environments that include high variation in noise levels, which are common in real-world applications. In addition, the real-world medical application study is designed to test the deployability of the ADONiS framework and to provide initial insight in respect to its viability in replacing traditional approaches. The third aspect is to maintain levels of interpretability, while increasing performance of systems. When a decision-support model delivers a good performance, providing an insight of the decision process is also an important asset in terms of trustworthiness, safety and ethical aspects etc. Fuzzy logic systems are considered to possess mechanisms which can provide a degree of interpretability. Traditionally, while optimisation procedures provide performance benefits in fuzzy logic systems, they often cause alterations in components (e.g. rule set, parameters, or fuzzy partitioning structures) which can lead to higher accuracy but commonly do not consider the interpretability of the resulting model. In this thesis, the state of the art in fuzzy logic systems interpretability is advanced by capturing input uncertainty in the fuzzification -where it arises- and by handling it the inference engine step. In doing so, while the performance increase is achieved, the proposed methods limit any optimisation impact to the fuzzification and inference engine steps which protects key components of FLSs (e.g. fuzzy sets, rule parameters etc.) and provide the ability to maintain the given level of interpretability

    Forecasting seasonal time series with computational intelligence: on recent methods and the potential of their combinations

    Get PDF
    Accurate time series forecasting is a key issue to support individual and or- ganizational decision making. In this paper, we introduce novel methods for multi-step seasonal time series forecasting. All the presented methods stem from computational intelligence techniques: evolutionary artificial neu- ral networks, support vector machines and genuine linguistic fuzzy rules. Performance of the suggested methods is experimentally justified on sea- sonal time series from distinct domains on three forecasting horizons. The most important contribution is the introduction of a new hybrid combination using linguistic fuzzy rules and the other computational intelligence methods. This hybrid combination presents competitive forecasts, when compared with the popular ARIMA method. Moreover, such hybrid model is more easy to interpret by decision-makers when modeling trended series.The research was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070). Furthermore, we gratefully acknowledge partial support of the project KON- TAKT II - LH12229 of MSˇMT CˇR

    Gantry and bridge cranes neuro-fuzzy control by using neural-like structures of geometric transformations

    Get PDF
    Fuzzy logic is based on the use of natural language such as ‘far or close’, ‘cold or hot’ and etc. Its application range is very wide, from household appliances to the management of complex industrial processes. Many modern management tasks cannot be simply solved by classical methods because of the very great complexity of mathematical models. However, mathematical transformations are required for using the fuzzy logic theory on a computer and give a possibility to convert linguistic variables to their numerical value in the computer and vice versa. In this paper a gantry and bridge crane control system for managing carts swinging during transporting a load with high accuracy positioning during movement is presented. T-Controller fuzzy inference system as a base for crane management system is described and its main advantages in comparison with traditional systems are delineated. Schema of simplified crane model is introduced

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    The Application of ANN and ANFIS Prediction Models for Thermal Error Compensation on CNC Machine Tools

    Get PDF
    Thermal errors can have significant effects on Computer Numerical Control (CNC) machine tool accuracy. The errors come from thermal deformations of the machine elements caused by heat sources within the machine structure or from ambient temperature change. The effect of temperature can be reduced by error avoidance or numerical compensation. The performance of a thermal error compensation system essentially depends upon the accuracy and robustness of the thermal error model and its input measurements. This thesis first reviews different methods of designing thermal error models, before concentrating on employing Artificial Intelligence (AI) methods to design different thermal prediction models. In this research work the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used as the backbone for thermal error modelling. The choice of inputs to the thermal model is a non-trivial decision which is ultimately a compromise between the ability to obtain data that sufficiently correlates with the thermal distortion and the cost of implementation of the necessary feedback sensors. In this thesis, temperature measurement was supplemented by direct distortion measurement at accessible locations. The location of temperature measurement must also provide a representative measurement of the change in temperature that will affect the machine structure. The number of sensors and their locations are not always intuitive and the time required to identify the optimal locations is often prohibitive, resulting in compromise and poor results. In this thesis, a new intelligent system for reducing thermal errors of machine tools using data obtained from thermography data is introduced. Different groups of key temperature points on a machine can be identified from thermal images using a novel schema based on a Grey system theory and Fuzzy C-Means (FCM) clustering method. This novel method simplifies the modelling process, enhances the accuracy of the system and reduces the overall number of inputs to the model, since otherwise a much larger number of thermal sensors would be required to cover the entire structure. An Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means clustering (ANFIS-FCM) is then employed to design the thermal prediction model. In order to optimise the approach, a parametric study is carried out by changing the number of inputs and number of Membership Functions (MFs) to the ANFIS-FCM model, and comparing the relative robustness of the designs. The proposed approach has been validated on three different machine tools under different operation conditions. Thus the proposed system has been shown to be robust to different internal heat sources, ambient changes and is easily extensible to other CNC machine tools. Finally, the proposed method is shown to compare favourably against alternative approaches such as an Artificial Neural Network (ANN) model and different Grey models

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields

    Synthesis of intelligent hybrid systems for modeling and control

    Get PDF
    • 

    corecore