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Abstract

Accurate time series forecasting is a key issue to support individual and or-
ganizational decision making. In this paper, we introduce novel methods
for multi-step seasonal time series forecasting. All the presented methods
stem from computational intelligence techniques: evolutionary artificial neu-
ral networks, support vector machines and genuine linguistic fuzzy rules.
Performance of the suggested methods is experimentally justified on sea-
sonal time series from distinct domains on three forecasting horizons. The
most important contribution is the introduction of a new hybrid combination
using linguistic fuzzy rules and the other computational intelligence methods.
This hybrid combination presents competitive forecasts, when compared with
the popular ARIMA method. Moreover, such hybrid model is more easy to
interpret by decision-makers when modeling trended series.
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1. Introduction

Forecasting the future is an important tool to support individual and
organizational decision making. Time Series Forecasting (TSF) predicts the
behavior of a given phenomenon based solely on the past patterns of the
same event. In particular, an interesting TSF variant addresses seasonal
data (e.g. monthly sales). Under such analysis, multi-step ahead prediction,
i.e. forecasting several periods in advance, is highly relevant (e.g. for setting
early production plans) in distinct domains, such as Agriculture, Finance,
Sales and Production [41].

Computational Intelligence (CI) denotes a branch of the Artificial In-
telligence field that relies on heuristic algorithms inspired in biological and
natural intelligence. These CI algorithms include elements of learning and
adaptation (e.g. neural networks, fuzzy rules and evolutionary computation)
that facilitate intelligent behavior in complex real-world problems [25].

Although mainly statistical TSF methods (e.g. Holt-Winters exponential
smoothing or ARIMA methodology) are widely used in practice [41], several
computational intelligence techniques have been recently proposed for TSF
as well [50]. For instance, some examples of CI applied to TSF are: Artificial
Neural Networks (ANN) [18], evolutionary computation [16], Support Vector
Machines (SVM) [42], immune systems [49], fuzzy techniques [5], or their
combinations [36, 51].

While CI methods were successfully employed in different real-world tasks
and several papers on their use in TSF were published, they became more
standard in data mining applications rather than in time series, where statis-
tical methods still dominate the market [41]. Such preference for established
statistical methods is due to several factors, such as conservatism of some
forecasting community members [55], but mainly due to a heritage of inferior
performance of the first attempts to apply CI to TSF. Moreover, recent CI
approaches to TSF often ignore very important issues such as hyperparam-
eter selection (e.g. optimal choice of ANN topology), although it has been
proved that an appropriate feature and model selection for a CI TSF model
is crucial in order to provide constantly better performance [19]. Similarly,
some typical arguments in favor of CI models, such as interpretability and
linguistic nature of fuzzy models may seem to be a sort of an unsupported
claim or even an empty cliché [9].

These observations are among the main motivations for this paper, which
has a fourfold goal: 1) to provide readers with a kind of tasting of distinct
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methods that may serve as an alternative to standard statistical methods and
that may even outperform them; 2) to introduce how these methods may be
enhanced, e.g., by using the sensitivity analysis to improve a feature selection
for SVM or by a genetic algorithm to search for the optimal ANN; 3) to
introduce purely new combinations of interpretable linguistic fuzzy rules with
improved ANN and SVM that provide both – accurate forecasting models
and easy to interpret and understand descriptions of the data generating
processes; 4) and finally, to challenge prior evidence on the inferior forecasting
accuracy of CI in operational forecasting [18].

Therefore, we present three novel1 CI approaches for multi-step seasonal
TSF: the Automatic Design of Artificial Neural Networks (ADANN), which
uses genetic algorithms to evolve ANN structures; the SVM with time lag
selection based on a sensitivity analysis procedure; and the linguistic fuzzy
approach to the trend-cycle analysis and forecasts. The first two methods
from different perspectives focus on feature and model selection process for
CI methods that is often omitted [20]. The latter method focuses on the
interpretability issue of fuzzy models. Moreover, we propose the very new
hybrid combinations of these CI methods, such that the fuzzy approach to
the trend-cycle forecasts is complemented by the earlier two approaches that
forecast seasonal components. The main contribution is the presentation of
these novel methods and the experimental justification of their potential.
Besides the achieved high quality accuracy, such models are more easy to
interpret by decision-makers when modeling trended series.

The paper is organized as follows. First, in Section 2, we introduce the
used forecasting methods and principles. Next, in Section 3 we describe
the seasonal datasets, introduce the forecasting accuracy metrics and finally,
introduce a benchmark that serves as a comparison baseline. Then, in Section
4 we present and discuss the obtained results. Finally, we conclude the paper
in Section 5.

2. Forecasting methods

Before we introduce the used forecasting methods, we briefly recall the
problem. Let {yt | t = 1, . . . , T} ⊂ R be the past values (called in-samples) of

1All three CI methods were separately proposed in the 2010 IEEE World Congress on
Computational Intelligence (WCCI), under the special session “Computational Intelligence
in Forecasting”.
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a given time series. TSF task is to built a model that analyzes the in-samples
in order to forecast the future values (so-called out-of-samples). Thus, the
task is to determine

{Ft = yt − et | t = T + 1, . . . , T + h} ⊂ R, h ≥ 1 (1)

where et denotes the forecasting error that should be minimized according to
an accuracy measure (see Section 3.2) and h denotes the forecasting horizon.
We assume that only in-sample data is used to build such TSF model. After
fitting (also known as training) a given time series model, the last known
values are fed into the model and it determines the out-of-sample. In case
of h > 1, either the model directly outputs multi-step ahead forecasts or the
out-of-samples are forecasted iteratively by using 1-ahead forecasts (and the
remaining up to the h− 1 predicted values) as inputs of the model [15].

2.1. Automatic Design of Artificial Neural Networks (ADANN)

Time series processes often exhibit temporal and spatial variability and
suffer by issues of nonlinearity of physical processes, conflicting spatial and
temporal scale and uncertainty in parameter estimates. ANNs are flexible
models that have the capability to learn the underlying relationships between
the inputs and outputs of a process, without needing the explicit knowledge
of how these variables are related. We recall typical examples in market
predictions [24] or in meteorological [27] and network traffic forecasting [15].

As mentioned above, finding an adequate ANN model for a particular
time series is a key issue. Different studies have treated with the design of
an ANN from three different points of view.

• Connection weights: values for each connection in an ANN.

• Topology: number of hidden layers, hidden nodes in each layer, etc.

• Learning rules: learning factor and momentum values.

Related to the estimation of the connection weights, it is well known that
learning algorithms like backpropagation usually got stuck in a local mini-
mum [56]. Whitley et al. [64] proposed the use of evolutionary computation
to search for appropriate connection weights and avoiding the local mini-
mum problem by means of a global search. Later, Belew et al. [7] proposed
a hybrid approach carrying out a global search by a genetic algorithm and
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tuning better the connection weights obtained through a backpropagation-
like learning algorithm. Distinct constructive/destructive methods for the
evolution of topologies of ANNs have been presented [28], but those based
on evolutionary computation obtain better results [43]. At last, there are
some works that try to evolve the learning rules [35].

In this paper, a novel evolving hybrid system that uses both, a genetic
algorithm and the backpropagation learning, is proposed. This approach
involves an evolution of the ANN topology and backpropagation learning
parameter, with multiple initializations.

Normalization of the time series data has to be done as an initial step
and after fitting the ANN, the inverse process is carried out. This step is
important as ANN with logistic activation functions output values within the
range [0,1]. Time series in-samples are transformed into a pattern set with I
inputs. A single neuron is placed at the output layer and multi-step forecasts
are often performed using an iterative feedback of the previous forecasts [17].
Therefore, each time series is transformed into a patterns set where each
pattern consists of:

(Nt−I , . . . , Nt−2, Nt−1)→ Nt

where all Ni values correspond to the normalized yi ones. This pattern set is
used to train and validate each ANN generated during the Genetic Algorithm
(GA) execution. Thus, the data is split into training (with the first X% data)
and validation sets (with the remaining patterns), as shown in Figure 1.

The search for the best ANN design can be performed by a GA [26] using
exploitation and exploration. When using such GA, there are three crucial
issues: i) the solution space and what is included into a chromosome; ii) how
each solution is codified into a chromosome, i.e. encoding schema; and iii)
what is the fitness function.

In this work, we opted for a multilayer perceptron as the base forecasting
model, with one hidden layer and backpropagation as the learning algorithm,
according to [21]. Regarding the backpropagation choice, we note that we use
multiple initializations (as distinct seeds are used, see Equation 2) and also
evolve its learning factor. Under such scheme, backpropagation is unlikely
to fall into a local minima. Moreover, backpropagation is the most used
algorithm in the TSF domain and studies presenting learning algorithms that
outperform backpropagation should be viewed critically, since there is a bias
to publish only algorithms that outperform the standard backpropagation
[39]. Also, a majority of such papers do not report all details about training
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Figure 1: Process to obtain training and validation sets.

parameters and use few distinct initializations.
A direct encoding schema for fully connected multilayer perceptron is

considered. For this encoding scheme the information placed into the chro-
mosome is: two decimal digits, i.e., two genes to codify the number of inputs
nodes (I); two genes for the number of hidden nodes (H); two genes for
the learning factor (α); and the last ten genes for the initialization seed (s)
value of the connection weights, as the seed in the Stuttgart Neural Network
Simulator (SNNS) [67] is a “long int”. This way, the values of I, H, α and
s are obtained from the chromosome as follows:

chromosome = gI1gI2gH1gH2gα1gα2gs1gs2 . . . gs10|∀k, gk ∈ {0, 1, . . . , 9},
s = gs1gs2 . . . gs10 ,
I = 10gI1 + gI2 + 1,
H = 10gH1 + gH2 + 1,
α = (10gα1 + gα2)/100.

(2)
The search process (GA) will consist of the following steps (Figure 2):
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1. A randomly generated population, i.e., a set of randomly generated
chromosomes, is obtained.

2. The phenotypes (ANN architectures) and fitness value of each indi-
vidual of the actual generation is obtained. To obtain the phenotype
associated to a chromosome and its fitness value:

(a) The phenotype of an individual of the actual generation is first
obtained (using SNNS tool).

(b) Then for each neural network i, training and validation pattern
subsets are obtained from time series data depending on the num-
ber of inputs nodes of neural network i.

(c) The net is trained with backpropagation using SNNS [67]. When
the validation error is minimal during the training process the
architecture (topology and weights) is saved – early stopping. This
architecture is the final phenotype of the individual.

3. The fitness is the minimum mean square validation error2, during the
learning process.

4. Once the fitness value for whole population is available the GA oper-
ators, namely elitism, selection, crossover and mutation are applied in
order to generate the population of the next generation.

5. Steps 2, 3 and 4 are iteratively executed till a maximal number of
generations is reached.

Since the GA works as a second order optimization procedure, the tun-
ing of its internal parameters is not very crucial, i.e. using a population
size of 46, 50 or 54 does not substantially change the results. Based on a
few empirical experiments, we set the GA parameters to: population size,
50; maximum number of generations, 100; percentage of the best individual
that stay unchangeable to the next generation (percentage of elitism), 10%;
crossover: parents are split in one point randomly selected, offspring are the
mixed of each part from parents; mutation probability will be one divided

2The mean square error in the fitness function is chosen in order to reduce extreme
errors that may highly affect multi-step ahead forecasts. Preliminary experiments have
shown that this choice leads to the best forecasts.
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Figure 2: Schema of ANN design by GA.

by the length of the chromosome (1/16 = 0.07), and it will be carried out
for each gene of the chromosome.

2.2. SVM - Support Vector Machine

SVM is a powerful learning tool that is based on a statistical learning
theory and was developed in the 1990s due to the work of Vapnik and its
collaborators [13]. It is based on two key concepts: using a kernel function
SVM transforms input variables into a high dimensional feature space and
then it finds the best hyperplane to model the data in the feature space.

The motivation for using SVM for forecasting is the same as for ANN:
both are flexible models, i.e., with no a priori imposed restriction in compar-
ison to classical TSF methods, thus both present complex nonlinear learning
capabilities. However, SVMs present theoretical advantages over ANNs such
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as the absence of local minima in the learning phase. Hence, SVMs have
been rapidly proposed for TSF [32, 42].

When applying SVM to TSF, variable (e.g. a time lag) selection process is
useful to discard irrelevant time lags in order to obtain a simpler model that
is easier to interpret and that usually performs better [17, 32]. Hence, simi-
larly to ANN, the variable selection process is a critical issue. Additionally,
SVM hyperparameters such as its kernel parameter need to be adjusted [31].
Complex models may overfit the data and lose the capability to generalize,
while too simple models present limited learning capabilities. We address
this crucial issue by proposing a computationally efficient procedure that
performs a simultaneous time lag and SVM model selection for multi-step
ahead forecasting. That is the main contribution of this Section.

SVM as any regression algorithm can be applied to TSF by adopting a
sliding time window of time lags {k1, k2, . . . , kI}, that is used to build a fore-
cast. For a given time period t, the model inputs are y = (yt−kI , . . . , yt−k2 , yt−k1)
and the desired output is yt. For example, let us consider the series 61,102,143,
184,235 (yt values). If the {1, 3} window is adopted, then two training exam-
ples can be created: (6, 14)→ 18 and (10, 18)→ 23.

In SVM regression [58], the input (y with domain Y ) is transformed
into a high m-dimensional feature space (=), by using a nonlinear mapping
φ : Y → = that does not need to be explicitly known but that depends on a
kernel function κ(x, x′) =< φ(x), φ(x′) >, where < u, v > denotes the inner
product of vectors u and v. Then, the SVM algorithm finds the best linear
separating hyperplane tolerating a small error ε when fitting the data in the
feature space:

ŷt,t−1 = w0 +
m∑
i=1

wiφ(y) (3)

where wi ∈ < are coefficient weights. The ε-insensitive loss function sets an
insensitive tube around the residuals and the tiny errors within the tube are
discarded, see Figure 3.

We adopt the popular gaussian kernel, which presents less parameters
than other kernels (e.g. polynomial) [63]: κ(x, x′) = exp(−λ||x− x′||2), λ >
0. The SVM performance is affected by three parameters: λ, ε and C (a
trade-off between fitting the errors and the flatness of the mapping). The
kernel parameter λ produces the highest impact in the SVM performance, in
comparison to C or ε. Such behavior is shown in Figure 4, which presents
the sensitivity of the forecasting validation errors (in terms of boxplots) for
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Figure 3: Example of a linear SVM regression and the ε-insensitive loss function (adapted
from [58]).

the passengers series, using the time window {1, ..., 13}, when ranging each
individual parameter within ten levels (σ ∈ 2{−15,...,3}, C ∈ 2{−1,...,6} and ε ∈
2{−8,−1}) and fixing the remaining hyperparameter at their average values.
Hence, to reduce the search space, the first two values are set using the
heuristics [12]: C = 3 (for a standardized output) and ε = σ̂/

√
N , where

σ̂ = 1.5/N ×
∑N

i=1(yi − ŷi)
2 and ŷi is the value predicted by a 3-nearest

neighbor algorithm.
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Figure 4: Example of forecasting mean absolute validation error boxplots for SVM model
when λ, C and ε are changed.

Given the setup adopted, the forecasting performance is affected by both
time lag and model selection. A better generalization, due to the reduced
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input space, is achieved if only relevant time lags are fed into the model [32].
Also, if the kernel parameter (λ) is set with values that are too large or too
small, a poor generalization will be achieved.

Sensitivity analysis [38] is a procedure that is applied after the training
phase and analyzes the model responses when the inputs change. Let ŷt−k(j)
denote the output obtained by holding all input variables at their average
values except yt−k, which varies through its entire range with j ∈ {1, . . . , L}
levels. If a given input variable yt−k is relevant then it should produce a high
variance Vk. Thus, its relative importance Rk can be given by:

Vk =
∑L

j=1 (ŷt−k(j)− ŷt−k(j))2/(L− 1),

Rk = Vk/
∑I

i=1 Vi × 100 (%).
(4)

This is a simple procedure that only measures single input variance and not
interactions of inputs. Yet, even with this limitation, this computationally
fast procedure has outperformed other more sophisticated algorithms, e.g.
genetic algorithms, for the input variable selection [38].

We propose a simultaneous variable and model selection procedure for
multi-step ahead forecasting. The method starts with a maximum of Imax
time lags and iteratively deletes one input until there are no time lags. The
sensitivity analysis is used to select the least relevant lag to be deleted in each
iteration, allowing a reduction of the computational effort by a factor of Imax
when compared to the standard backward selection procedure. Before feeding
the SVM, all variables are standardized to a zero mean and one standard
deviation. After the training, the SVM outputs are post-processed with the
corresponding inverse scaling function. During a given iteration, a grid search
is used to find the best model hyperparameter γ ∈ {2−15, 2−13, . . . , 21}. The
training data is divided into training and validation sets. The former, with
2/3 of the training data, is used to train the SVM model. The latter, with
the remaining 1/3, is used to select the best model. Similarly to ADANN, we
adopted the MSE metric for selecting such a model. After the variable and
model selection phase, the final model is retrained using all training data (i.e.
in-samples). The last known values are fed into the model and multi-step
forecasts are built iteratively by using 1-ahead predictions as inputs [15].

The SVM experiments were conducted using the rminer library[14] of
the R tool, which adopts the Sequential Minimal Optimization algorithm to
fit the model. In this work, we set L = 6 [38] and also, Imax was set to K+ 1
where K denotes the seasonal period (i.e., 13 for monthly time series). The
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intention is to include all up to the seasonal lag plus an additional one that
may be relevant for trended series.

2.3. Linguistic fuzzy approach

So far, a notable number of works aiming at fuzzy approach to time series
modeling and prediction has been published. For instance, a study presenting
Takagi-Sugeno rules [61] in the view of the Box-Jenkins methodology [5]
or a direct fuzzification of ARIMA [62] have been published. Analogously,
various neuro-fuzzy approaches that lie on the border between ANN, Takagi-
Sugeno models and evolving fuzzy systems, are very often successfully used
[36, 40, 57].

However, the Takagi-Sugeno rules use functional consequents without any
linguistic meanings and do not employ any kind of logical implication; evolv-
ing system usually well tune (Gaussian) fuzzy sets to have a center, say,
at node 5.6989 and the width parameter equal to 2.8893, see [40]. Hence,
most of such fuzzy approaches, although very powerful, disregarded the im-
portance of interpretability – leading to results that are actually black-box
functions that do not provide any meaningful linguistic information [9].

Motivated by this lack of interpretability, we deal with the linguistic ap-
proach initiated in [48, 59]. There, the authors were motivated by the fact
that a decomposition of a time series assumes the privilege of the inter-
pretable model where the interpretability is meant in a sense of “readability”
for non-statisticians and non-mathematicians. Even more, interpretability is-
sue is even strengthened by using fuzzy rules of a linguistic nature to describe
and forecast the trend-cycle of a given time series.

The main idea of the approach is as follows. First, a time series is decom-
posed into the so called trend-cycle [68] and the seasonal component using
a special technique called fuzzy transform. Second, the trend-cycle is de-
scribed by the so-called linguistic description3 comprised from fuzzy rules.
The fuzzy rules describe the data generating process autoregressively in an
interpretable form. Finally, an autoregressive model of the seasonal compo-
nents is used to forecast these components. Both forecasted components are
composed together to obtain the time series forecast.

The fuzzy transform (F-transform) [52] is a special approximation tech-
nique that transforms a given continuous function defined on a real interval

3Alternatively we may use more common notion fuzzy rule base. The reason to intro-
duce this term is published, e.g., in [45].
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[a, b] ⊂ R into a simpler space of n-dimensional vectors Rn, and then it
transforms the result back.

First, fuzzy partition of [a, b] (consisting of basic functions) is constructed.
Usually, the uniform fuzzy partition is considered, i.e., n equidistant nodes
ci ∈ [a, b] are fixed and c0, cn+1 are defined as follows a = c0 = c1 and that
b = cn = cn+1. The basic functions are fuzzy sets Ai : [a, b]→ [0, 1] such that
Ai(x) > 0 for x ∈ (ci−1, ci+1) and Ai = 0 elsewhere.

Given a fuzzy partition, the (direct) F-transform of f : [a, b] → R is a
vector Fn[f ] = [F1, . . . , Fn] with the components of the F-transform:

Fi =

∫ b
a
f(x)Ai(x) dx∫ b
a
Ai(x) dx

, i = 1, . . . , n (5)

that determine averaged values of f above the corresponding basic functions.
If the function f is not given analytically but only by a set of samples (mea-
surements), the definite integrals in (5) are replaced by finite summation.

This is applied in case of a time series which is viewed as a discrete func-
tion y(t) given at nodes t = 1, . . . , T . Then an appropriate4 fuzzy partition
of the interval [1, T ] is constructed and the fuzzy transform determined:

Yi =

∑T
t=1 y(t)Ai(t)∑T
t=1Ai(t)

, i = 1, . . . , n. (6)

The inverse transform converts the direct F-transform vector into a con-
tinuous function that approximates the original one. It is given as a linear
combination of basic functions and the components of the F-transform:

yF,n(t) =
n∑
i=1

YiAi(t). (7)

The optimality of the F-transform components according to the piecewise
integral least square criterion or other properties such as noise reduction
ability justifying the choice of this technique may be found in [52, 53, 60].

4Appropriateness is determined by the seasonality/frequency and consequently again
interpretability. The F-transform components will later on appear in linguistic fuzzy
rules, i.e., for the sake of readability and transparency, they should somehow mirror their
averaging nature. For instance, in case of monthly time series, basic functions covering 12
(or 24) values of a time series express (bi-)annual averages of the measured value.
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The role of the inverse F-transform of a given time series is to mode its
trend-cycle and thus the seasonal component St can be obtained using:

St = yt − yF,n(t). (8)

I order to forecast the trend-cycle, it is sufficient to forecast future F-
transform components Yn+1, . . . , Yn+ζ , where ζ depends on the forecasting
horizon h and the width of the basic functions. The trend-cycle forecast at
time nodes T +1, . . . , T +h will be given as values of the inverse F-transform
at these nodes, i.e., as yF,(n+ζ)(T + 1), . . . , yF,(n+ζ)(T + h).

This F-transform component evolution may be analyzed and described
using autoregressive fuzzy rules comprising a linguistic description. Both the
components and their first- and/or second-order differences:

∆Yi = Yi − Yi−1, ∆2Yi = ∆Yi −∆Yi−1,

serve as antecedent and consequent variables of fuzzy rules. This leads to a
linguistic description comprised of fuzzy rules such as the following one

IF ∆Yi−1 is B∆i−1 AND Yi is Bi THEN ∆Yi+1 is C∆i+1 (9)

describing the autoregressive nature of the trend-cycle. Note, that the rules
are automatically generated by the so called linguistic learning algorithm [8]
implemented in the LFLC software package [23].

Symbols B∆i−1,Bi and C∆i+1 in (9) denote evaluative linguistic expres-
sions (typically very big, extremely small or roughly medium), i.e., special
expressions that are used to evaluate a quantity with a tolerance to uncer-
tainty and imprecision. Their importance and the potential to model their
meaning mathematically have been stressed already by L. A. Zadeh in [66].

The theory of the evaluative linguistic expressions is by far out of scope
of this paper so, we recall only the main features and for details refer to
[44]. The evaluative expressions always use one of the expressions of the
basic trichotomy small (Sm), medium (Me), big (Bi) that can be modified
by a specific adverb called linguistic hedge. These hedges (extremely (Ex),
significantly (Si), very (Ve), more or less (ML), roughly (Ro), quite roughly (QR),
very roughly (VR)) – either widen or narrow the meaning of the expressions
and thus, they may be ordered according to their specificity.

The mathematical model of the meaning of evaluative expressions is based
on intensions and extensions in various contexts. Obviously, the meaning of
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“tall” when talking about skyscrapers or beetles is different. On the other
hand, independently on the context (skyscrapers or bugs), the expression
“tall” always denotes some objects on the right hand side of the notional set
of possible values. This fact is modeled by an intension of an expression.
Whenever a context, that is a triplet of real numbers 〈vL, vM , vR〉 where
vL < vM < vR, is specified, we may project the intension to the extension of
the expression that is modeled by a fuzzy set on [vL, vR]. This approach of
modeling meaning of natural language expression fully obeys the paradigms
of linguistics. For details see [44].

Sm
Bi

Me

vL vR

1
ML Sm

Ex Sm

ML Me

DEE(Bi)DEE(Sm)

DEE(Ex Sm)

DEE(Me)

Figure 5: Fuzzy sets that model extensions of some expressions and their defuzzifications.

Using an inference, linguistic rules such as (9) are used to forecast future
F-transform components. Perception-based logical deduction [47] is the infer-
ence that was designed for fuzzy rules with evaluative linguistic expressions.
Given an input, perception selects the most fired rule(s), i.e., extension(s)
of antecedent(s) to which the input has the highest membership degree. If
there are more than one such antecedents, the most specific one(s) (according
to the ordering of linguistic hedges) is/are chosen and the respective fuzzy
rule(s) is/are used5.

After the membership degree to the antecedent of a rule chosen by the
perception is determined, the  Lukasiewicz fuzzy implication [6] is applied

5This relates only to expressions with the same element of the basic trichotomy. Ex-
pressions using distinct elements of the trichotomy cannot be ordered according to their
specificity.
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in order to modify the respective consequent and thus to deduce a con-
clusion. If more rules are fired their consequences are aggregated by the
minimum operation. In order to forecast the future F-transform component
that is a crisp number, the defuzzification of evaluative expressions (DEE)
is employed. Figure 5 displays defuzzified values of some typical evaluative
linguistic expressions, for details see [44].

Note, that long forecasting horizons may lead to a higher number ζ of
predicted F-transform components. In these situations, more steps ahead
forecasting models (linguistic descriptions) may be advantageous [59].

2.4. Combination of CI techniques

While ADANN and SVM approaches introduced above aim at modeling
and forecasting entire time series, the linguistic fuzzy approach focuses only
on modeling and forecasting the trend-cycle of a given time series. This
means that seasonal components have to be forecasted separately and com-
posed together with the trend-cycle forecast. Seasonal components may be
predicted statistically, as described in [59] or in [48], although any other TSF
technique may be used as well. Given the scope of this paper, we found
natural to propose the use of CI approaches, i.e., the use of ADANN and
SVM, leading to two novel fuzzy hybrids, termed here Fuzzy ANN (FANN)
and Fuzzy SVM (FSVM).

3. Time series data and evaluation

3.1. Time series datasets

In this work, we address seasonal data, since we believe multi-step fore-
casts are particularly useful for these type of series. Furthermore, seasonal
series are commonly present in several domains, such as agriculture, sales,
or economy. To compare the proposed TSF methods, we selected 8 bench-
mark time series (Table 1). Seven of them are monthly series from the well-
known Hyndman’s Time Series Data Library [33]. These are the passengers
dataset [10] containing the information about the number (in thousands) of
passengers of international airlines (Jan’49-Dec’60); pigs series related to
numbers of pigs slaughtered in Victoria (Jan’80-Aug’95); cars data consist-
ing of car sales in Quebec (’60-’68); abraham12 represents gasoline demand
at Ontario in millions of gallons (’60-’75), milk includes monthly milk pro-
duction in pounds per cow (’62-’75), writing containing industry sales for
printing and writing paper in thousands of French francs (Jan’63-Dec’72) and
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cryer7 that collects Portland Oregon average monthly bus ridership divided
by one hundred (Jan’73-Jun’82). All these seven datasets contain real-world
data from different areas, which makes them interesting to forecast. First,
because accurate forecasts can have an impact in their application domains.
Second, these datasets suffered indirectly from external and dynamic phe-
nomena, such as weather, economic or technological conditions that are more
difficult to predict.

The last series, called mackey-glass, is based on the Mackey-Glass differ-
ential equation [29] and it is widely regarded as a benchmark for comparing
the generalization ability of different methods. This series is a chaotic time
series generated from a time-delay ordinary differential equation. This time
series has been chosen in order to extend the experimental datasets by a
different kind of a benchmark, i.e., by a time series that is not based on
real-world data, that is not on a monthly basis, and that contains neither a
trend nor a noise component.

3.2. Evaluation

The global performance of a forecasting model is evaluated by an error
measure. Historically, Mean Absolute Error (MAE) or (Root) Mean Squared
Error ((R)MSE) are very popular error measures. However, Mean Square
Error is too sensitive to outliers [4] and furthermore, both (R)MSE and
MAE are scale-dependent measures and hence, it can be hardly used for
a comparison across more time series since every single time series has a
different impact on the overall results [3]. For example, it has been shown
that five of the 1001 series from the M-competition dominated the RMSE
ranking of the forecasting methods and the remaining 996 series had only
little impact on the ranking [4].

Symmetric Mean Absolute Percentage Error (SMAPE) and Mean Abso-
lute Scaled Error (MASE) [34]:

SMAPE =
1

h

T+h∑
t=T+1

|et|
(|yt|+ |Ft|)/2

× 100%, (10)

MASE =
1

h

T+h∑
t=T+1

|et|
1

T−1

∑T
j=2 |yj − yj−1|

, (11)

where et = yt−Ft for t = T + 1, . . . , T +h, both belong to scale independent
error measures, thus can be more easily used to compare methods across
different time series.
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Although the SMAPE was originally proposed in [2] in a different form,
formula (10) adopts the variant used in [1] since it does not lead to negative
values (ranging from 0% to 200%). However, there are still two main SMAPE
drawbacks [34]: the denominator may be close to zero, and a heavier penalty
is given to under-forecasting when compared to over-forecasting.

More recently proposed [34], the MASE is more widely applicable and
does not hold the SMAPE disadvantages. When MASE > 1, the forecasts
are worse (on average) when compared with the in-sample one-step forecasts
of the näıve random-walk method. In other words MASE compares the
average out-of-sample et with the average in-sample first difference and it
relativizes the prediction error with respect to fluctuations from the past.

Generally, it is not suggested to rely only on one error measure [3, 18]
since distinct results may be obtained for different measures. However, it is
worth recalling the empirical evidence [18] that very good methods perform
consistently well across multiple measures. For the sake of correct evaluation,
we avoid choosing between SMAPE and MASE and apply both measures.

Table 1: Time series seasonal period and in-sample/out-of-sample sizes

Time Seasonal #in-samples #out-of-samples
Series Period (K) (T ) (h3)
passengers 12 120 24
pigs 12 164 24
cars 12 84 24
abraham12 12 168 24
milk 12 144 24
writing 12 96 24
cryer7 12 90 24
mackey-glass 30 731 60

It is worth recalling that forecasting accuracy depends upon forecasting
horizons [18]. Thus, we opted to compute errors for three distinct forecasting
horizons: h1 = K; h2 = 1.5K; and h3 = 2K, where K is the seasonal period.
The K, T and h3 values for the eight benchmark series are presented in
Table 1.
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3.3. ARIMA by ForecastPror as a comparison benchmark

In order to present the results with a clear insight of how good they are,
a well-known method is used as a comparison benchmark. We chose the sea-
sonal variant of the very popular seasonal Autoregressive Integrated Moving
Average (ARIMA) model [10]. Note, that in order to avoid any bias from
a naive implementation of ARIMA, we adopted the ForecastPror (FP) [30]
professional forecasting software. In particular, the tool was fed with the
in-samples of the six datasets from Table 1 and executed the full automatic
parameter selection of ARIMA to obtain the forecasts. This automatic selec-
tion includes the search for the best ARIMA variant, including its internal
parameters, and detection of events such as level shifts or outliers.

The choice of FP ARIMA was straightforward because of several reasons.
First, all presented CI methods are also of autoregressive nature. Second,
the chosen benchmark is by far better than standard ARIMA. This is mainly
due to the implementation by FP enhanced by above mentioned events detec-
tion and optimization which make the FP ARIMA a method that is difficult
to outperform. This is underlined by the fact that other methods, such as
exponential smoothing or mathematical curve fitting, were also tested as pos-
sible benchmarks but did not outperform FP ARIMA. Third, the automatic
FP ARIMA is a popular tool that is at disposal of many forecasting profes-
sionals, who may easily check the results. Moreover, comparison to a such
widely used tool has a significant explanatory value, which is fully coherent
with principles of evaluating method [3]. Finally, latest advanced methods
have no standardized implementations and thus, one risks that the results
highly depends rather on the particular chosen implementation than on the
potential of the method itself.

4. Results

4.1. Forecasting Performance

First, we analyze the performance of ADANN and SVM forecasting meth-
ods, when compared with the automatic ARIMA (FP). Accuracy was mea-
sured on all three forecasting horizons h1, h2, h3 by both SMAPE and MASE
(Tables 2 and 3). With respect to SMAPE, ADANN is the best option (for
all horizons) for passengers, abraham12, cryer7 and partly also for writing
(for h2 and h3). SVM outperforms the other methods for series pigs (for h1,
tie with FP for h2), for writing (for h1) and finally for mackey-glass series
(for all horizons). Under the same metric, FP gives the best forecasts for cars

19



Table 2: Comparison of the individual methods (%SMAPE, best values in bold)

Horizon
Series h1 h2 h3

FP ADANN SVM FP ADANN SVM FP ADANN SVM

passengers 6.5 2.2 5.0 7.3 2.5 6.0 8.0 2.5 7.1
pigs 6.1 7.3 5.8 6.1 10.0 6.1 7.1 11.5 7.2
cars 7.4 10.6 11.0 8.4 9.5 10.2 9.1 9.8 10.0
abraham12 5.5 4.1 6.2 6.2 4.5 7.4 6.2 3.8 7.0
milk 0.8 1.4 1.1 1.0 1.9 1.3 0.9 2.3 1.3
writing 7.3 7.1 6.3 9.0 7.4 8.4 9.9 7.7 8.3
cryer7 9.0 3.5 5.6 12.1 5.9 7.3 13.8 6.0 7.4
mackey-glass 22.7 2.8 1.4 21.5 3.6 1.7 26.2 6.5 2.4
Mean 8.2 4.9 5.3 9.0 5.7 6.1 10.2 6.3 6.3
Median 6.9 3.8 5.7 7.9 5.2 6.7 8.6 6.3 7.2

and milk (all horizons) and for h2 (jointly with SVM) and h3 it is the best
option for pigs. The comparison is very similar when adopting SMAPE. The
only two differences are: ADANN is now a tie with SVM for writing series
for h1, SVM is equally best as FP for pigs and h3.

The overall comparison is performed using the arithmetic mean and me-
dian (over all series, last rows of Tables 2 and 3) for both metrics and all
horizons. When compared with the arithmetic mean, the median is more
robust with respect to outliers. Globally, ADANN is the best for all series
and horizons. The only exception is for h3, SMAPE and the arithmetic
mean, where SVM is equally accurate. According both mean and median
aggregation measures, FP is ranked at third place.

In Tables 4 and 5, we compare the fuzzy hybrids from Section 2.4 (FANN
and FSVM) with ARIMA (FP). For both MASE and SMAPE metrics, FANN
obtains the best results for passengers, abraham12 and mackey-glass. ARIMA
performed generally best for pigs, cars, writing, cryer7 and milk (in this case
and according to SMAPE it is tie with SVM for h2). SVM wins only in a
single case.

Overall (i.e. when considering the arithmetic mean and median), FANN
is ranked at first place with respect to SMAPE for all horizons, followed by
FSVM. A similar observation is found for median values of MASE errors
with the only change that FSVM shares the best median with FANN for
h1. Thus we can state that although ARIMA performed best for half of the
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Table 3: Comparison of the individual methods (MASE, best values in bold)

Horizon
Series h1 h2 h3

FP ADANN SVM FP ADANN SVM FP ADANN SVM

passengers 1.24 0.42 1.02 1.40 0.48 1.22 1.60 0.51 1.52
pigs 0.64 0.74 0.61 0.64 1.02 0.64 0.76 1.17 0.76
cars 0.54 0.70 0.72 0.62 0.67 0.70 0.66 0.68 0.69
abraham12 1.12 0.83 1.24 1.23 0.89 1.48 1.27 0.77 1.41
milk 0.19 0.31 0.25 0.22 0.43 0.30 0.21 0.53 0.29
writing 0.47 0.42 0.42 0.63 0.50 0.60 0.69 0.50 0.60
cryer7 3.06 1.15 1.84 4.11 1.88 2.39 4.77 1.95 2.42
mackey-glass 1.30 0.15 0.08 1.29 0.21 0.10 1.48 0.32 0.13
Mean 1.07 0.59 0.77 1.27 0.76 0.93 1.43 0.80 0.98
Median 0.88 0.56 0.67 0.94 0.59 0.68 1.02 0.61 0.73

series considered, its accuracy for the remaining series was not that stable,
when compared with the other two methods, yielding an overall mean and
median that globally ranks this method at third place. However, taking
into account only the arithmetic mean of errors measured by MASE, then
ARIMA outperforms both fuzzy hybrids although not significantly. More
detailed discussion will be provided in Section 4.3.

4.2. Interpretability of fuzzy rules

Interpretability is often assumed to be a key feature (and advantage) of
fuzzy models in various areas of application [11]. However, this aspect of
fuzzy models is sometimes overused. Undoubtedly, there is a significant dif-
ference between rather numerically oriented fuzzy models such as the Takagi-
Sugeno rules and models that are, say, more linguistically oriented, such as
fuzzy rules with fuzzy sets that interpret both antecedents and consequents.
But even in the latter case there are fundamental differences. For example,
a misleading interpretation of conjunctive (Mamdani-Assilian) rules as fuzzy
IF-THEN rules, although their meaning is rather different [22, 46], is a com-
mon weakness. In addition, even if the interpretation is correct, some types
of treatment of the interpretations of linguistic labels with several parame-
ters may lead to something that is very far from anything that may be called
“linguistic”.
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Table 4: Comparison of FANN, FSVM and FP (%SMAPE, best values in bold)

Horizon
Series h1 h2 h3

FP FANN FSVM FP FANN FSVM FP FANN FSVM

passengers 6.5 2.1 3.0 7.3 2.6 3.8 8.0 2.5 3.9
pigs 6.1 6.7 7.7 6.1 6.7 7.9 7.1 8.2 7.8
cars 7.4 12.1 11.6 8.4 10.5 10.3 9.1 10.0 10.9
abraham12 5.5 4.0 4.8 6.2 5.1 5.5 6.2 5.6 5.9
milk 0.8 1.1 1.0 1.0 1.1 0.9 0.9 1.1 1.0
writing 7.3 8.8 7.5 9.0 8.0 9.0 9.9 8.7 9.9
cryer7 9.0 16.1 14.1 12.1 18.4 17.5 13.8 18.5 17.7
mackey-glass 22.7 3.9 6.8 21.5 3.9 10.5 26.2 9.6 19.0
Mean 8.2 6.9 7.1 9.0 7.0 8.2 10.2 8.0 9.5
Median 6.9 5.4 7.2 7.9 5.9 8.5 8.6 8.5 8.9

The previous sentence aims at well-tuned fuzzy models constructed with
help of various tuning strategies leading to black-box functions that disregard
the importance of interpretability. Let us recall the following crucial idea [9]:
“one may argue that proper input-output behavior is the central goal of auto-
matic tuning. To some extent, this is true; however, this is not the primary
mission of fuzzy systems.” This idea perfectly addresses TSF. Even here, the
accuracy of forecasts is undoubtedly the key issue. Nevertheless, we have to
keep in mind the motivation behind using a fuzzy model, which generally
assumed to provide an interpretable, transparent and understandable model
rather than to follow only optimality goals.

We do not claim that fuzzy models should not be precise. Vice-versa,
fuzzy models seem to be very promising within the forecasting area so far
and any forecasting model, including a fuzzy one, should perform the TSF
task with high accuracy. The goal is an interpretable model that does not
necessarily “leads to a painful loss of accuracy” [9].

The key issue in maintaining the interpretability even in the case of a
tuned fuzzy model, should be the fulfillment of several constrains on fuzzy
sets that interpret linguistic expressions. Namely, they should be ordered
according to natural order of linguistic expressions. That is, the interpreta-
tion of small should placed to the left of the interpretation of medium and so
on. In addition, they should be convex and form a partition of the universe.
Let us stress, that these constraints are fully consistent with the theory of
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Table 5: Comparison of FANN, FSVM and FP (MASE, best values in bold)

Horizon
Series h1 h2 h3

FP FANN FSVM FP FANN FSVM FP FANN FSVM

passengers 1.24 0.39 0.56 1.40 0.50 0.75 1.60 0.49 0.80
pigs 0.64 0.70 0.80 0.64 0.71 0.81 0.76 0.87 0.81
cars 0.54 0.79 0.75 0.62 0.71 0.69 0.66 0.75 0.74
abraham12 1.12 0.80 0.96 1.23 1.01 1.09 1.27 1.15 1.22
milk 0.19 0.24 0.22 0.22 0.25 0.21 0.21 0.24 0.22
writing 0.47 0.61 0.52 0.63 0.58 0.65 0.69 0.62 0.69
cryer7 3.06 5.66 4.91 4.11 6.41 6.09 4.77 6.52 6.18
mackey-glass 1.30 0.22 0.36 1.29 0.23 0.58 1.48 0.49 1.03
Mean 1.07 1.18 1.14 1.27 1.30 1.36 1.43 1.39 1.46
Median 0.88 0.66 0.66 0.94 0.65 0.72 1.02 0.69 0.81

evaluative expressions based on the basic trichotomy of small, medium and
big and the ordering of linguistic hedges.

A similar idea is adopted in [54] where authors claim that their tuning
method does not modify the initial partition in a severe manner (and inter-
pretability is thus kept), because the widths of membership functions change
by 12.9% on average and their centers change by 3.1%. Membership func-
tions of fuzzy sets assigned to linguistic expressions in the approach discussed
in this paper do not change at all. Thus, an interpretation of each linguistic
expression (its intension and given a context also its extension) is the same
anywhere in any linguistic description.

To underline the interpretability and the linguistic nature of evaluative
expressions and the used fuzzy IF-THEN rules, we present one of the gener-
ated models. Let us consider the pigs time series. In addition to the forecast
itself, a user is provided by the linguistic description composed of 10 fuzzy
rules symbolically displayed in Table 6. As we can see, all of the rules are
purely linguistic – all the antecedents and consequents are linguistic evalua-
tive expressions according to the respective theory. It means, that artificial
fuzzy sets related to anonymous expression denoted as Aij are not used.

Thus, every single fuzzy rule can indeed be taken as a sentence in natural
language. For instance, consider the very first fuzzy rule:

IF Yi is Bi AND ∆Yi is QR Sm AND ∆Yi−1 is Ex Sm THEN ∆Yi+1 is VR Sm.
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Table 6: Fuzzy rules generated for the description and prediction of pigs time series.
Abbreviations of evaluative expressions can be found in Section 2.3.

Nr. Antecedents Consequent
Yi ∆Yi ∆Yi−1 ⇒ ∆Yi+1

1 Bi QR Sm Ex Sm ⇒ VR Sm
2 QR Bi −Ro Bi VR Sm ⇒ −Si Bi
3 Ex Bi VR Sm QR Sm ⇒ −Ro Bi
4 Ro Bi Ex Sm Sm ⇒ QR Sm
5 Ze −Ex Bi −Ro Bi ⇒ Ex Sm
6 Ex Sm Ex Sm −Ex Bi ⇒ Ve Sm
7 Si Sm Ve Sm Ex Sm ⇒ Sm
8 Sm Sm Ve Sm ⇒ VR Sm
9 VR Sm VR Sm Sm ⇒ VR Bi

10 QR Bi VR Bi VR Sm ⇒ −Ex Sm

It may be read as follows:

If the number of pigs slaughtered in the current year is big and the biannual
increment is quite roughly small and the previous biannual increment was

also positive with extremely small strength then the upcoming biannual
increment will be very roughly small.

Hence, such a rule may be understood as follows. Given a big number of
slaughtered pigs and with increasing and slight increasing trend from the last
observation the increase will not finish but will continue with very roughly
slight strength.

Similarly, we can consider the second fuzzy rule where one can find an in-
formation that having quite roughly big number of slaughtered pigs with
trend that changed its direction from (very roughly) small increment to
(roughly) big decrease signalizes that the trend numbers really reached a
kind of saturation of the market and the number of slaughtered pigs will
continue in a strong decrease.

We claim, that such readable information is an additional value that
might be very helpful (e.g. to check if the model makes sense within the
domain) for further decision-making and management processes. This is
particularly useful for critical domain applications (e.g. control or medicine).
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4.3. Discussion
When analyzing the obtained results in Section 4.1, it is clear that ADANN

and SVM with the sensitivity analysis provided overall (mean, median) better
results than the benchmark. Since for some time series and for some horizons
the comparison benchmark was not outperformed and since we should also
critically take into account the empirical nature of the comparison, we do not
claim that these methods perform generally better for any time series. How-
ever, their forecasting power and potential has been clearly demonstrated.

Focusing on the precision only, ADANN seems to take an advantage in
comparison to SVM equipped with the sensitivity analysis. However, also
other aspects should be taken into account. Mainly the computational costs
that are most preferably measured by the computation time. On a standard
PC, the enhanced SVM needs up to tens of seconds (more than one hundred
only for the mackey-glass time series), while ADANN requires on average
tens of minutes, at some cases even above 100 minutes, and in the case of
the very long mackey-glass series, the computational effort transcends more
than 20 hours. In case of the monthly time series that were used for the
experimental evaluation, higher time requirements are not usually a crucial
problem. Nevertheless, in case of a need of an urgent decision-making or
in case of a high-frequency time series (on a daily or even hourly basis)
such enormous time requirements disqualify ADANN and favor SVM. For
the completeness of the information, let us stress that the computational
requirements for the linguistic fuzzy approach are up to few seconds and
thus, do not significantly increase the requirements of FANN and FSVM in
comparison to their pure ADANN and SVM versions.

The computational costs are usually closely related to another interesting
aspect – model simplicity. Tables 7 and 8 show the main characteristics of the
best forecasting models obtained by ADANN and SVM, respectively. Table
7 shows the number of input and hidden nodes of the topology obtained
by ADANN as result for each time series. In Table 8 it can be observed
the λ parameter for the kernel and which time lags are used by the sliding
window. Observing the tables, we can see that sensitivity analysis search for
SVM selects much simpler models, with 2 to 9 inputs, when compared with
ADANN. Except for mackey-glass, SVM always includes the seasonal time
lag (i.e. K = 12).

Similarly to the individual methods, the combined ones FANN and FSVM
in overall evaluations (means and medians with respect to both metrics) out-
perform the benchmark with the exception – means of error measured by
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Table 7: Best ADANN models.

Series input nodes hidden nodes
passengers 32 53
pigs 42 92
cars 32 54
abraham 12 44 111
milk 55 87
writing 37 76
cryer7 34 28
mackey-glass 15 163

Table 8: Best SVM models

Series λ Window #lag deletions
passengers 2−7 {1,12} 11
pigs 2−7 {1,2,3,5,12,13} 7
cars 2−7 {1,3,4,5,6,8,11,12,13} 4
abraham 12 2−9 {1,2,10,11,12,13} 7
milk 2−7 {1,12} 11
writing 2−5 {12} 12
cryer7 2−7 {1,12} 11
mackey-glass 2−3 {1,5,6,10} 27

MASE. Observing Table 5, it is clear that the reason lies in the inaccurate
predictions of FANN and FSVM in one series – cryer7. And this time se-
ries has significantly higher influence on the overall evaluation measured by
MASE than the other series. And as stated above, arithmetic mean is more
sensitive to such outliers when compared with the median. It is also inter-
esting to note that measured by SMAPE, cryer7 is not that much significant
in the overall evaluation. This confirms the necessity of using more that just
one accuracy metric that can lead to misleading conclusions.

Since ADANN as well as SVM performed well for cryer7, it is the fuzzy
approach forecasting the trend-cycle that is responsible for the weak forecast-
ing performance of FANN and FSVM. This fact can be visually observed from
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Figure 6. The problem is that there is a change in the trend-cycle develop-
ment that has not been observed before and thus, can hardly be predicted.
The top element of the so far nearly constantly increasing cryer7 series is
only three values before the end of in-samples set. The last three decreasing
values are sufficient for ADANN and SVM methods which underlines their
flexibility but rather insufficient for the fuzzy approach and enhanced FP
ARIMA that forecast a continually increasing trend.

In the case of the fuzzy approach, the problem is that it takes into account
the components of the F-transform and these are average values. Last three
decreasing values do not change the whole component sufficiently in order to
provide an evidence of a decreasing trend-cycle. This is a common weakness
of any method using aggregated values (recall e.g. PAA – the Piecewise
Aggregate Approximation [37]) in case of an unlucky placement of the border
point between the in-sample set and the out-sample set.
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Figure 6: Graph of cryer7 time series. Black line depicts the in-samples, red line depicts
the out-samples, blue line depicts the trend-cycle including its prediction.

Moreover, if we artificially delete the cryer7 time series, FANN as well
as FSVM outperform not only the FP ARIMA but for some horizons also
their related individual methods ADANN and SVM. So, it is a harmony
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of several conditions (unobserved change in the trend-cycle development;
specific placement of the border between in-samples and out-samples; too
significant influence of one series to overall results with respect to a single
accuracy metric) that leads to the overall evaluation that does not favor the
fuzzy hybrids in comparison to the benchmark when using mean and MASE.

On the other hand, we have to stress that the proposed fuzzy approach is
targeted for trended series. For comparison purposes, we applied the fuzzy
variants (FANN and FSVM) to the stationary mackey-glass series, although
it makes no sense to describe linguistically a trend for such series.

Table 9: Total wins when comparing ADANN and FANN (best values in bold)

Horizon
Error h1 h2 h3

Metric ADANN FANN ADANN FANN ADANN FANN

SMAPE 4 4 6 2 5.5 2.5
MASE 4 4 6 2 5 3

Table 10: Total wins when comparing SVM and FSVM (best values in bold)

Horizon
Error h1 h2 h3

Metric SVM FSVM SVM FSVM SVM FSVM

SMAPE 5 3 5 3 5 3
MASE 5 3 4 4 5 3

Tables 9 and 10 compare the individual CI methods (ADANN and SVM)
with their fuzzy variants (FANN and FSVM). For the comparison, we com-
puted the total number of pairwise wins, where the best method for a given
series receives 1 point and ties count 0.5 points for both methods. While
in general the individual methods (ADANN and SVM) outperform their
fuzzy variants, there are horizon and error metric combinations (e.g. h1

and SMAPE for ADANN vs SVM) where the hybrid methods win in half of
the series considered. Taking into account what we previously stated about
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the fuzzy performance on cryer7 and mackey-glass, this is a very interesting
result. In particular, if we take into account that the fuzzy models are more
easy to interpret by humans, as shown in Section 4.2.

5. Conclusions

We have introduced four methods for time series forecasting from distinct
Computational Intelligence (CI) subfields. The goal was fourfold: to provide
readers with a kind of tasting of distinct methods that may serve as an al-
ternative to standard statistical methods; to introduce how these methods
may be improved, such as: Support Vector Machine (SVM) by the sensi-
tivity analysis or a genetic algorithm search for an optimal Artificial Neural
Network (ANN); to introduce purely new combinations of interpretable lin-
guistic Fuzzy rules with improved ANN (FANN) and SVM (FSVM) that
provide both – accurate forecasts and easy to interpret forecasting models
for trended data; and finally, to challenge prior evidence on the inferior fore-
casting accuracy of CI in operational forecasting [18].

As a comparison baseline, we have chosen the popular seasonal ARIMA
method, as implemented by the enhanced and automatic version provided
by the professional ForecastPror tool. For the comparison, we have decided
to include seven monthly time series of a different nature (e.g. seasonality,
trend, stationarity) and from distinct domains. Furthermore, this dataset
was enriched with the well-known mackey-glass chaotic time series. Forecast
accuracy was measured by two well-established and strongly motivated met-
rics, MASE and SMAPE, and the multi-step ahead forecasts were measured
over three different horizons.

Using the particular setting (time series, forecasting horizons, error mea-
sures), the obtained results have shown that globally all proposed CI methods
(i.e. ANN, SVM, FANN and FSVM) are competitive when compared with
ARIMA. In general, the neural network based methods (ANN and FANN)
outperformed the kernel based ones (SVM and FSVM). However, the ob-
tained neural network models are more complex and require more computa-
tional effort (e.g. ADANN requires often several hours of computation time
while SVM only demands a few minutes). Another interesting outcome is
that the fuzzy CI combinations (FANN and FSVM), designed for trended
seasonal series, attain a similar performance when compared with their in-
dividual CI methods. This is an interesting result, as the linguistic fuzzy
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approach is more easy to interpret by humans, thus the obtained models can
be more easily accepted by decision-makers.

In future research, we intend to extend the linguistic approach (FANN and
FSVM) for multivariate time series that are particularly relevant in financial
and economical domain where one quantity is usually explained with help of
other quantities (e.g. future unemployment rate is forecasted based on past
and current GDP, trade balance and retail sales). Furthermore, additional CI
combinations can be explored (e.g. use of evolutionary algorithms to select
the SVM time lag inputs and parameters).
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[60] M. Štěpnička, O. Polakovič, A neural network approach to the fuzzy
transform, Fuzzy sets and Systems 160 (2009) 1037–1047.

[61] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applica-
tions to modeling and control, IEEE Transactions on Systems, Man and
Cybernetics 15 (1985) 116–132.

[62] F. M. Tseng, G. H. Tzeng, Yu, B. J. C. Yuan, Fuzzy ARIMA model for
forecasting the foreign exchange market, Fuzzy Sets and Systems 118
(2001) 9–19.

[63] W. Wang, Z. Xu, W. Lu, X. Zhang, Determination of the spread pa-
rameter in the Gaussian kernel for classification and regression, Neuro-
computing 55 (3) (2003) 643–663.

35



[64] D. Whitley, T. Hanson, Optimizing neural networks using faster, more
accurate genetic search, in: Proc. 3rd International Conference on Ge-
netic Algorithms, 1989, pp. 391–396.

[65] L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338–353.

[66] L. A. Zadeh, The concept of a linguistic variable and its application to
approximate reasoning I, II, III, Information Sciences 8-9 (1975) 199–
257, 301–357, 43–80.
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