1,031 research outputs found

    An application of adaptive fault-tolerant control to nano-spacecraft

    Get PDF
    Since nano-spacecraft are small, low cost and do not undergo the same rigor of testing as conventional spacecraft, they have a greater risk of failure. In this paper we address the problem of attitude control of a nano-spacecraft that experiences different types of faults. Based on the traditional quaternion feedback control method, an adaptive fault-tolerant control method is developed, which can ensure that the control system still operates when the actuator fault happens. This paper derives the fault-tolerant control logic under both actuator gain fault mode and actuator deviation fault mode. Taking the parameters of the UKube-1 in the simulation model, a comparison between a traditional spacecraft control method and the adaptive fault-tolerant control method in the presence of a fault is undertaken. It is shown that the proposed controller copes with faults and is able to complete an effective attitude control manoeuver in the presence of a fault

    A Comparison of PID and Sliding Mode Controllers When Applied to the Orbit Raising of a Satellite Using Solar Sail Propulsion

    Get PDF
    Solar Sail spacecraft have become increasingly popular due to their ability to perform long term missions without the need for propellant. Because solar sail propulsion is so unique, most research has been focused on developing new mechanical control techniques. However, it can be argued that more advanced control algorithms can be used to mitigate the shortcomings of commonly used control actuators, specifically reaction wheels, when applied to solar sails. This thesis will research how a sliding mode controller compares to a PID controller with respect to settling time and state response error over a range of maximum reaction wheel torque values. The actuator saturation and actuator energy are then compared for two different sliding mode controllers and a PID controller. It was found that the sliding mode controller performed at minimum 14% better in terms of settling time and 7.7% better in terms of state response error, however the PID controller performed 24% better in terms of actuator saturation and energy. Further research should be done to study the potential benefits of sliding mode controllers in terms of their benefits to reduce actuator saturation and energy

    Space science/space station attached payload pointing accommodation study: Technology assessment white paper

    Get PDF
    Technology assessment is performed for pointing systems that accommodate payloads of large mass and large dimensions. Related technology areas are also examined. These related areas include active thermal lines or power cables across gimbals, new materials for increased passive damping, tethered pointing, and inertially reacting pointing systems. Conclusions, issues and concerns, and recommendations regarding the status and development of large pointing systems for space applications are made based on the performed assessments

    Retrospective Cost-based Adaptive Spacecraft Attitude Control.

    Full text link
    Fixed gain attitude control laws are sensitive to modeling errors and actuator nonlinearities. Adaptive control can solve many of these challenges. We present a retrospective cost-based adaptive spacecraft attitude controller designed using the system's impulse response as modeling information. The performance metric is based on rotation matrices and thus, the controller does not suffer from singularities or discontinuities present in vector attitude representations. We demonstrate robustness to inertia and actuator scaling as well as actuator misalignment and nonlinearities, unknown disturbances, sensor noise and bias for thrusters and reaction wheels through numerical simulations. We implement an averaged Markov parameter and decentralized control to address the problem of the singular input matrix of magnetic torquers. For control moment gyros, we develop a hybrid linearization and impulse response-based Markov parameter and present new guidelines to evaluate the feasibility of desired rest-to-rest maneuvers. Finally, we address the problem of angular velocity-free attitude control of a flexible spacecraft with noncollocated sensors and actuators. We present a new approach to controlling harmonic nonminimum-phase systems using the step and impulse response of the linearized system. We demonstrate robustness to model uncertainty through system analysis and numerical simulations.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111607/1/gecruz_1.pd

    Spacecraft Attitude Stabilization with Piecewise-constant Magnetic Dipole Moment

    Full text link
    In actual implementations of magnetic control laws for spacecraft attitude stabilization, the time in which Earth magnetic field is measured must be separated from the time in which magnetic dipole moment is generated. The latter separation translates into the constraint of being able to genere only piecewise-constant magnetic dipole moment. In this work we present attitude stabilization laws using only magnetic actuators that take into account of the latter aspect. Both a state feedback and an output feedback are presented, and it is shown that the proposed design allows for a systematic selection of the sampling period.Comment: arXiv admin note: text overlap with arXiv:1411.275

    C-SIDE: The control-structure interaction demonstration experiment

    Get PDF
    The Control-Structure Interaction Demonstration Experiment (C-SIDE) is sponsored by the Electro-Optics and Cryogenics Division of Ball Aerospace Systems Group. Our objective is to demonstrate methods of solution to structure control problems utilizing currently available hardware in a system that is an extension of our corporate experience. The larger space structures with which Ball has been associated are the SEASAT radar antenna, Shuttle Imaging Radar (SIR) -A, -B and -C antennas and the Radarsat spacecraft. The motivation for the C-SIDE configuration is to show that integration of active figure control in the radar's system-level design can relieve antenna mechanical design constraints. This presentation is primarily an introduction to the C-SIDE testbed. Its physical and functional layouts, and major components are described. The sensor is of special interest as it enables direct surface figure measurements from a remote location. The Remote Attitude Measurement System (RAMS) makes high-rate, unobtrusive measurements of many locations, several of which may be collocated easily with actuators. The control processor is a 386/25 executing a reduced order model-based algorithm with provision for residual mode filters to compensate for structure interaction. The actuators for the ground demonstration are non-contacting, linear force devices. Results presented illustrate some basic characteristics of control-structure interaction with this hardware. The testbed will be used for evaluation of current technologies and for research in several areas. A brief indication of the evolution of the C-SIDE is given at the conclusion
    • …
    corecore