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Institution: Embry-Riddle Aeronautical University 
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Solar Sail spacecraft have become increasingly popular due to their ability to perform long term 

missions without the need for propellant.  Because solar sail propulsion is so unique, most 

research has been focused on developing new mechanical control techniques. However, it can be 

argued that more advanced control algorithms can be used to mitigate the shortcomings of 

commonly used control actuators, specifically reaction wheels, when applied to solar sails. This 

thesis will research how a sliding mode controller compares to a PID controller with respect to 

settling time and state response error over a range of maximum reaction wheel torque values. 

The actuator saturation and actuator energy are then compared for two different sliding mode 

controllers and a PID controller. It was found that the sliding mode controller performed at 

minimum 14% better in terms of settling time and 7.7% better in terms of state response error, 

however the PID controller performed 24% better in terms of actuator saturation and energy. 

Further research should be done to study the potential benefits of sliding mode controllers in 

terms of their benefits to reduce actuator saturation and energy.  
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Back in 1865, Jules Verne wrote "there will some day appear velocities far greater than 

these [of the planets and the projectile], of which light or electricity will probably be the 

mechanical agent ... we shall one day travel to the moon, the planets, and the stars." [1].  This is 

theorized to be the first published work suggesting the use of light for spacecraft propulsion.  

Several spacecraft have used solar radiation pressure (SRP) as part of their control strategy. For 

example, both the Mariner 10 and MESSENGER missions took advantage of the solar radiation 

pressure acting on their solar panels to conserve propellant [2], [3]; MTSAT-1R uses a solar sail 

to counterbalance the solar radiation pressure acting on the spacecraft [4]; and after a fuel leak, 

the Hayabusa spacecraft used solar radiation pressure in conjunction with ion engines as an 

attitude control solution [5].  These spacecraft are early demonstrations of effective use of solar 

radiation pressure for attitude control, however several other projects have attempted active 

attitude control using a solar sail as their primary thrust.  The most notable being the Japan 

Aerospace Exploration Agency

Control Device (RCD) that changes the reflectivity of specified sections of their sail to produce a 

torque, changing their sun angle and thus the direction of their thrust vector [6].  The Planetary 

Society also launched LightSail 2 that uses a reaction wheel for attitude control [7].  

By capturing the momentum of light produced by the sun and using it as a method of 

propulsion, thrust is produced without the need for propellant (Figure 1).   

Chapter I: 

Introduction 
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Therefore, taking advantage of the solar radiation pressure that would otherwise need to be 

mitigated is a more efficient propulsion method.  

However, this adds considerable modifications to the attitude control system of a solar 

sail when compared to the typical spacecraft.  Constant solar radiation pressure is acting on the 

sail and therefore needs to be constantly controlled in contrast to other control systems that can 

switch their propulsion systems on and off.   

Another challenge lies in the dynamics and kinematics of a solar sail. It has been shown 

that small sail masses coupled with large sail areas produce the highest accelerations [8].  

However, this type of sail will also produce a large moment of inertia and therefore require more 

torque to control. Simulations done by both Adeli and Wie show that the commonly used 

reaction wheel is at high risk of experiencing reaction wheel saturation to control even a small 

sailcraft [8] [9]. 

 

    

 

Figure 1: Illustration of how photons can be used to create thrust in space [8] 
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Significance of the Study 

Once it is properly developed, solar sail propulsion technology will allow spacecraft to 

employ highly non-Keplerian orbits. One advantage of this is the potential establishment of 

artificial LaGrange points, allowing satellites to be placed in more useful vantage points for 

scientific missions such as weather observation and geoengineering [10]. Another important 

advantage that is gained with solar sail propulsion is the absence of fuel, which increases mission 

lifetimes. Because of these two main benefits, solar sail technology has many important 

applications for future spaceflights.  A short list of possible applications includes near earth 

asteroid rendezvous missions, lunar base supply missions, interplanetary probing missions, solar 

imaging missions, and space debris deorbiting missions.  

The case study used in this thesis will apply to a multi-rendezvous mission to de-orbit 

space debris. At altitudes above 800 km, aerodynamic drag becomes less effective, making 

altitudes above 800 km ideal for solar sails. Since aerodynamic drag also affects space debris, it 

takes longer for it to deorbit at altitude between 800-1400 km making space debris deorbiting an 

ideal application for solar sail technology [11].  

No current systems are in place to mitigate the increase of space debris. The development 

of solar sail propulsion technology could allow for an autonomous system that will collect space 

debris around the planet. With the development of this technology, multiple spacecraft could be 

deployed to accomplish their missions simultaneously and remain in orbit much longer than a 

satellite with traditional propulsion attitude control. From this research, steps will be made to 

reduce the amount of space debris, resulting in fewer subsequent collisions.  
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Even though extensive international guidelines have been released on how to mitigate 

space debris, such as ISO 24113, these guidelines are non-binding [12].  Since 1961, over 290 

events have occurred that contributed to the increase in space debris.  It is assumed that 750,000 

objects larger than 1 cm have been produced as a result [11]. The largest debris-generating event 

being the Chinese FengYun-1C , an intentional anti-satellite missile test, which increased the 

collision probability by 60% for spacecraft in sun-synchronous orbit [13]. Because these objects 

have such high velocities, small objects have the potential to cause major damage. Kessler 

Syndrome is the scenario postulated by Don Kessler in 1978 theorizing that fragments will 

continually collide with large objects until all that is remaining is collision fragments.  As stated 

previously, most space debris is trapped orbiting at altitudes between 800-1400 km, therefore 

making it a perfect area for Kessler Syndrome to occur.  It is estimated that an object as small as 

1 mm could destroy subsystems on a satellite, a 1 cm object can penetrate the ISS shields, and 

collision with a 10 cm object can cause catastrophic fragmentation [14].  Without mitigation, 

altitudes from 800-1400 km may be considered too dangerous for space activities within a few 

decades, posing challenges to many valuable scientific missions.  

Figure 2 

previous years if there is no mitigation. 

Figure 2: Comparison of space debris from 1957-2018 with a projection for 2030 [47] 
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Statement of the Problem 

Changing the direction of a solar sail  normal vector requires a larger amount of torque 

than a typical satellite due to the increased moment of inertia caused by the sail. Because of this, 

many researchers attempt to provide new control actuator solutions that work more effectively 

for solar sails. However, these solutions often prove to be mechanically complex with many 

points of potential failure. Using these new control methods also makes it difficult to reach the 

required Technological Readiness Level (TRL) to launch a solar sail mission. Without a high 

enough TRL, missions will not make it to launch until extensive testing is performed. This would 

significantly increases the timeline on solar sail projects and hinder the progress that can be 

made with solar sail technology. It can be argued that rather than changing the control actuators, 

improving the control algorithm will allow reliable and well-studied control actuators, such as 

reaction wheels, to be used. However, solar sail research that is focused on the control algorithm 

often employs algorithms with major limitations.  

As discussed in more detail in Chapter II, extensive research has been done on PID 

algorithms and LQR algorithms. While these algorithms are proven to work in numerical 

simulations, they require fine tuning that cannot be accurately achieved through simulation. A 

more robust solution would be the sliding mode controller (SMC). Since the sliding mode 

controller switches between the minimum and maximum torques values, it is not as sensitive to 

controller gains as PID and LQR controllers. This also makes the sliding mode controller more 

directly correlated to electrically switching actuators, potentially improving actuator performance 

in comparison to PID and LQR controllers.  Research assessing the benefits of SMC is also 

discussed in Chapter II.  
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Purpose Statement 

 The purpose of this thesis is to explore the advantages of more advanced control 

algorithms when applied to solar sail technology.  

Research Questions 

 Will a sliding mode controller show improved performance compared to a PID controller in 

regard to settling time and state response error over a range of maximum torque values?  

 When using a constant maximum torque value, will the SMC also show improved 

performance compared to a PID controller in terms of actuation energy and state response 

error? 

Delimitations 

In order to reduce the amount of complexity to an already complex system, the well-

studied, cost-effective reaction wheels will be used for attitude control. This thesis will provide 

simulations that model the solar sail dynamics and kinematics. A non-linear sliding mode 

controller is derived and applied to the attitude of the solar sail spacecraft. A PID controller will 

also be developed for comparison. This simulation will study the systems state response from 

each controller for a varying maximum torque values to analyze the performance of different 

sized reaction wheels. An in-depth performance analysis will then be done with the lowest 

maximum torque value based on actuator saturation and actuation energy. 

This thesis models a solar sail in an initially circular, equatorial orbit with an initial 

altitude of 1800km. A PID controller is initially developed to compare its state response error 

and settling time to the system with that of the sliding mode cont The PID 

controller will have saturation limits based on the maximum torque values used. The sliding 

mode controller is non-linear, and Lyapunov stability is mathematically proven for the given 
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system. kinematics will be 

modeled with quaternions. 

It will be assumed that the solar sail will use reaction wheels as the primary control 

mechanism. The spacecraft will feature of 40x40 m sail, resulting in a characteristic acceleration 

of . A CubeSat will serve as the base of the spacecraft. The mass of the spacecraft 

is 40 kg. It will also be assumed that the spacecraft is in a circular orbit upon launch from the 

rocket. The sailcraft will perform two 90-degree roll rotations in one orbit to perform orbit 

raising. This is discussed in more detail in the following chapters. 

Limitations  

The solar sail model assumes a rigid body spacecraft using an ideal sail model. Therefore, 

this research will not model sail wrinkles, sail billowing, thermal deformation of the sail, or 

structural vibration of the sail. These effects are complex to calculate and predict and out of 

scope of this thesis [15].  

Aerodynamic drag will also not be modeled. The altitude of the initial orbit has negligible 

aerodynamic drag forces [11]. Effects  also have minimal effect on 

equatorial orbits [15]. 

 

List of Acronyms 

ACS  Attitude Control System 

AD Aerodynamic Drag 

AMT  Active Mass Translator 

CM/CP Center of Mass/Center of Pressure 
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LEO  Low-Earth Orbit 

RCS  Reaction Control System  

RSLQR  Robust Servomechanism Linear Quadratic Regulator 

RW  Reaction Wheel 

SLS Space Launch System  

SRP Solar Radiation Pressure 

TRL  Technological Readiness Level 

List of Units 

 AU  Astronomical Unit 

 mNm  Milinewton-Meter 

 J  Joules 

 rad  Radians 

 s  Seconds 
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Solar Sail Projects   

 -D 

(2008) and Th  [16], [7].  Before NASA or The Planetary 

Society could try again, JAXA launched IKAROS in 2010.  They ambitiously launched the 

 sail to Venus.  IKAROS became the first successful spacecraft 

fully propelled by sunlight [6]. Three years after NanoSail-D, NASA launched NanoSail-D2 to 

test sail deployment and de-orbit capability in order to raise the Technological Readiness Level 

(TRL) of solar sails.  Active attitude control was not attempted for this mission [17]. In 2015, 

The Planetary Society launched LightSail 1 to demonstrate a new sail deployment method. This 

system did not perform solar sailing, and therefore had no controls for solar sailing [7]. However, 

in 2019, LightSail 2 launched. That spacecraft was able to successfully raise its orbit with a solar 

sail, although one-third of the time it is in detumble mode due to momentum wheel saturation 

[18]. To learn from past projects, the ones that had attitude control systems will be analyzed in 

depth.  

While it is clear that not many solar sail projects have come to fruition, there have been 

several promising projects proposed and currently being developed that will also be discussed. 

-Earth Asteroid (NEA) Scout project is planned to launch as a secondary payload 

on board the Space Launch System (SLS) Artemis-1 launch, scheduled for March 1, 2021. Its 

mission is to rendezvous with a nearby asteroid to conduct science imagery. Another promising 

oject. CubeSail is a proposed low-cost 

Chapter II: 

Literature Review 
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demonstration of UltraSail, a larger, heliogyro concept meant for interplanetary and interstellar 

missions [19]. For the CubeSail demonstration, two nearly identical CubeSat satellites are to 

deploy a 20  sail. The two satellites will be inserted into a sun-synchronous terminator orbit at 

an altitude of 800km [20]. The University of Surrey also has a project named CubeSail that is a 

3U CubeSat with a 25  sail intended to demonstrate the propulsive effect and deorbiting 

capabilities of solar radiation pressure [21]. 

Even though these projects have vastly different missions, the control algorithms used are 

th a few outliers. These algorithms will be discussed in more detail 

in the following sections. 

 

PID Controllers  

As mentioned in Chapter I, PID controllers work well in simulation, but there are 

limitations that limit their effectiveness in real-world scenarios if those limitations are not 

addressed. The Planetary Society proved this results in 2019. As shown in Figure 3, the 

simulated data does not align well with the flight data. In an interview, Project Manager David 

Spencer admitted they are actively controlling the spacecraft two-thirds of the time.  However, 

one-third of the time they are in detumble mode due to the inability to get rid of the momentum 

produced by the momentum wheel [18]. To learn from their mistakes, the modeling and controls 

of LightSail 2 will be analyzed.  

Boreal Space modeled the initial controllers used on LightSail 2. They modeled 

aerodynamic drag, solar radiation pressure, gravity gradient, and several sensor errors to 
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construct a PID controller for detumbling. Georgia Institute of Technology then modeled the 

apogee raising strategy with an on/off control strategy (Figure 4).  

 

The results from this simulation are shown in Figure 5.  

Figure 4: On/ off control strategy attempted by LightSail 2 [22] 
 

Figure 3: Flight data and sail control performance for LightSail 2 [18] 
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 This figure shows that the simulation results of their control algorithm proved to be successful, 

however as Figure 3 shows, the real-world results were not as successful. Even though their 

model was thorough enough to include AD, gravity gradient, and SRP, they did not provide any 

alteration to the controller gains outside of their simulations [22].  

 While this algorithm was implemented in the on-board controller, manual control of the 

algorithm parameters and spacecraft actuators was also available. This decision proved to be 

very useful . The team resorted to manual 

control to switch the spacecraft into detumbling mode. However, the team added a new control 

mode that abandons the on/off strategy. They now keep the spacecraft sun-pointed to reduce 

momentum wheel saturation and to provide a better charging orientation for the batteries [23].  

While this control strategy will not reduce orbital decay, it could offer a more consistent initial 

attitude for starting on-off thrust maneuvers  

Figure 5: Simulation results from LightSail 2 control strategy [22] 
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 Two proposed improvement to this method comes from the University of Surrey. 

 attitude control and deployment provides several 

improvements to the simple PID algorithm (2011). 

 One improvement is a simple quaternion feedback proportional derivative (PD) 

 with the commanded 

angular velocity and quaternion profile, the PD controller outputs a torque command about each 

axis from equation 2.1. 

 

Where   can be found from equation 2.2.  

  

And K and C are quaternion error and angular velocity error gains. For the problem to be 

considered globally asymptotically stable, equations 2.3-2.6 show possible  and  

combinations that can be used.  
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Where k,  and 

signum function.  

 Another control method proposed by Adeli is a PID controller with saturation limiters 

(2010). The definition of the control output is given in equation 2.7 

 

Where K is the attitude gain, C is the attitude rate gain, U is the torque limitation on the 

actuators, and L is a limit on the error. To avoid actuator saturation, as happened to LightSail 2,  

K and C should be defined as  and  where is the linear control bandwidth 

and  is the damping ratio. To further improve the controller by eliminating steady-state error, an 

integral term must be added. Also, to reach a more rapid transient settling, L can be defined 

using equation 2.9, resulting in the final PID controller: 

 

 

 

Where T is the time constant controlling the integral term (typically T ~ 10/( )) [8]. While 

this controller solves the problem of control hardware limitations, it is vulnerable to hardware 

-Scout project 

excels.  
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 Orphee, et al. at NASA proposes using three subsystems for their Attitude Control 

System (ACS), the Reaction Wheel (RW) control system, the Reaction Control System (RCS), 

and an Active Mass Translator (AMT) (2017). By using four reaction wheels, the team will use 

an allocation algorithm that will distribute the commanded torque to prevent reaction wheel 

saturation, taking care of the main hardware limitation of reaction wheels Figure 6 shows the 

feedback control loop for the reaction wheel.  

 

As shown, the star tracker and IMU sensors are input to a Kalman filter. This is necessary 

because of the varying amounts of noise experienced by the star tracker and IMU at different 

body rates.  

 b.) 

Figure 6: Feedback control loop for NEA-  [37] 

a.) 
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Using a Kalman filter is also useful in the case of sensor failure. This algorithm was able to meet 

rements of 0.5 degree pointing attitude error, a maximum of 130 arcsec 

error during a 60 second period, and a maximum of 13 arcsec during a 0.7 second period. The 

results of the simulation are shown in Figure 7. 

 

LQR Controllers  

Unlike a PID controller, the LQR controller provides optimal control, though it does 

come with the cost of added complexity. Like the PID controller, the LQR gains are difficult to 

tune properly through simulation. This is due to both environmental uncertainties, and, unlike 

PID controllers, the non-intuitive relationship between the controller parameters and the 

controller behavior. One proposed solution comes from Tsinghua University.  

Figure 7: Simulations results in terms of attitude error (left), pointing stability over 0.7 seconds (middle), and 
pointing stability over 60 seconds (right) for NEA- action wheel control feedback loop [37] 

 

c.) 
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Shahin Firuzi and Shengping Gong (2018) propose using a robust servomechanism linear 

quadratic regulator (RSLQR) for the control algorithm for a flexible solar sail in Low-Earth 

Orbit (LEO). This algorithm uses an LQR controller that is augmented with a model of the 

actuator dynamics. Including the actuator dynamics improves the model of the environment, 

allowing the controller to better handle environmental uncertainties. In the paper, they model 

solar radiation pressure and aerodynamic drag. They then analyze the deformation under these 

forces and recalculate the resulting torques accordingly. It is assumed that sliding masses will be 

used to change the CM/CP offset of the spacecraft for attitude control. Given the model of the 

system as , the control law is defined as  where  is the control input 

vector,  is the state vector, and  is the total gain.  can be found from solving the equation 

 where R is a symmetric, positive definite cost matrix, B is taken from the system 

model, and X is solved from the Riccati equation shown in equation 2.11. 

 

Where Q is a symmetric, positive semidefinite cost matrix. The simulation modeled a circular 

orbit at an altitude of 600km and 20kg sliding masses. The results from this simulation are 

shown in Figure 8. 

  
Figure 8: Simulation results of circular orbit at 600km including SRP of flexible sail, aerodynamic drag, and 

RSLQR controller where  is the torque vector generated by deviation of center of pressure, and its component 
[38] 
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 While this helps with the problem of environmental uncertainty, the problem of tuning 

the complex controller gains still exists. Pukniel, Coverstone, Burton, & Carroll from the 

University of Illinois attempts to solve this problem (2011)

LQR attitude control simulator is shown in Figure 9.  

 Their attitude control simulator, shown in Figure 9, outputs the optimum duty cycle to 

detumble and orient the satellite from the linear quadratic regular (LQR) block. The LQR uses 

two cost functions, detumbling time and tracking time, that are changed based on the phase of 

the mission. Initially, the controller is meant to focus on reducing the rotation rates, therefore the 

detumbling time cost function is defined as the time required to reach  on all three axis.  

After this has been achieved, the tracking time cost function is used. To focus on proper 

alignment of the satellite, this cost function is defined as the time required to stabilize the 

spacecraft within  on all three axes. 

 Because tuning LQR parameters is often non-intuitive, the CubeSail team decided to tune 

their controller using a genetic algorithm. They run the algorithm for 50 generations and test the 

 is the initial attitude,  is the initial 
rotational rate,  is the gravity gradient torque, and  is the aerodynamic drag torque [20] 
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attitude control simulator with random initial altitudes and worst-case rotational rates 1000 

times. The results from this simulation are shown in Figure 10.  

 

 Since generic algorithms are probability based, the results shown in Figure 10 show a 

well-distributed curve. Therefore, the most frequently output performance is average rather than 

optimal. While this method may be more robust to uncertainties, it comes at a cost of losing 

optimality.  

SMC  

Sliding mode controllers are known to be more robust in comparison to both PID and 

LQR controllers, especially in their ability to remain stable in the case of unpredictable 

conditions. For example, Lian et. al analyze the effects of actuator saturation and model 

uncertainty when using a SMC for solar sail attitude control [24]. For this controller, Lian et. al 

uses a radial basis function (RBF) to approximate the upper bound of the unknown model 

uncertainty caused by elastic deformation of the structure and the input error between the actual 

and unrestricted control inputs. They derive the linear sliding mode function in equation 2.12. 

 

Figure 10: Statistical aggregation of the detumbling time, tracking time, and energy when run 1000 times [20] 
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Where e  is the error between the actual and desired attitude angle and   is its derivative, c is 

the controller gain, and  where  is the gravitational constant,  is the difference 

between the actual control input and the unrestricted control input and R is the position vector. A 

saturation function is then applied to the SMC function to reduce chattering. Using the Lyapunov 

stability theorem, the system is proven to be asymptotically stable when the true anomaly is 

This paper also proves the system has finite true anomaly stability. The authors also designed 

bang-bang radial basis function controller for comparison. The results of their numerical 

simulations are shown in Figure 11.  

 

Figure 11: Pitch and pitch velocity error results for a) infinite-time asymptotic stable control; b) finite-time 
asymptotic stable control; c) bang-bang-RBF control [24] 
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As shown, the SMC with finite-time asymptotic stability had the lowest state response error and 

shortest transition time, making it the best performing controller. To further test the controller, an 

attitude maneuver from earth-to-sun pointing mode is simulated. The results are shown in Figure 

12. 

 

Figure 12: Control torque results for a) infinite-time asymptotic stable control; b) finite-time asymptotic stable 
control; c) bang-bang-RBF control [24] 

As shown, the SMC with finite-time asymptotic stability again proved to perform the best based 

on state response error and transition time criteria.  
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 While this study using sliding mode control is valid, research has made improvements to 

the use of the sliding mode control function with solar sail applications. One such used an 

adaptive second-order SMC to analyze station-keeping control in a displaced orbit for a solar 

sail. Due to its variable structure, the second-order SMC has improved robustness. It can also 

deal with nonlinear and nonaffine systems. [25] 

 In this thesis, a second-order terminal sliding surface is adopted. A control law is then 

derived using more reasonable uncertainty variables, such as lightness number and external 

disturbances. An adaptive law is derived for these two variables and updated separately for the 

control law.  To reduce the potentially large errors caused by taking the first and second 

-gain observer is also constructed. The response 

curves from the numerical simulations, assuming initial injection errors of the displaced radius 

and height error are both 10000 km, are shown in Figure 13. 

Figure 13: Tracking error response and attitude angles of the solar sail [25] 

As shown, the attitude is stable, and it lacks the common chattering problem with SMC. Even 

with the initial errors, tracking error converge to less than 6 km after 350 days. With this method, 

only the spacecraft position is needed, eliminating the need for velocity or accelerating. While 
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this controller is more advance and therefore show impressive results, the actuator is ignored and 

therefore so is the potential for actuator faults.  

  

Other Controllers    

 Another noteworthy control strategy is the one developed by Tsuda used on the IKAROS 

project (2010). IKAROS was the first spacecraft to truly demonstrate solar sailing, and active 

attitude control. Because it was an interplanetary mission, the sail for IKAROS is much larger 

than most of the other sails at 200  JAXA developed a Reflectance Control Device (RCD) for 

their sail. These devices consist of a liquid crystal that changes its reflectivity upon an electrical 

impulse. IKAROS used 72 sheets of RCDs, shown in Figure 14, allowing them to change the 

spin axis orientation by 1 degree at 1 AU at 1 rpm spin rate.  

 

JAXA did not use booms to deploy their sail, instead they attached weights to the end of 

tethers and use gas-liquid thrusters to spin the spacecraft and keep the sail deployed. Due to their 

Figure 14: IKAROS sail design [6] 
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unique control and deployment methods, their control strategy is highly specific to their 

spacecraft. While this may not be applicable to most spacecraft, because IKAROS was the most 

successful solar sail project to date, an analysis of their control strategy is beneficial.  

Since their sail is constantly spinning, they only use the Sun angle to control their 

attitude, as shown in Figure 15.  

is also shown in Figure 15. As shown, they can 

dramatically change their Sun angle, which directly correlates to the thrust produced. On 

December 8, 2010, IKAROS successfully completed the Venus flyby, thereby completing all 

their mission objectives [6].  

Figure 14: Control method and data for IKAROS [6] 

Figure 15: IKAROS Control Strategy 
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 Because IKAROS is a spin-type solar sail, its attitude control logic is slightly more 

complicated.  The 

order to maintain attitude control in a fixed direction (Figure 16).  

The control logic for this system requires the onboard controller to receive a pulse signal 

from a slit-type sun sensor during every rotation. From the pulse signal, the spin period is 

[26].   

 

Summary 

It can be concluded that PID controllers are widely used due to their simplicity. However, 

an argument can be made that using a PID controller without modifications to the controller 

gains or accounting for hardware limitations is not enough for a solar sail project, as 

demonstrated with LightSail 2. An LQR controller may provide more robust control, however 

the same problem persists with environmental uncertainties leading to ineffective controller 

parameters. LQR controllers have an additional complication of tuning non-intuitive controller 

parameters. While this can be solved using genetic algorithms, the nature of this method of 

Figure 16: Demonstration of IKAROS control logic for RCD [6] 
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artificial intelligence not only greatly increases computational complexity, but also provides 

average gains and often overlooks simpler solutions. The best controller that is analyzed in this 

thesis to solve the problem of uncertainties and actuator dynamics is the SMC. Based on the 

benefits proven from previous research, it can be argued that SMC deserves more research into 

improving the control law to analyze reaction wheel saturation for solar sail attitude dynamics 

control. One method is described in detail in the next chapter.  
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Research Approach   

a.) Research Question 

This thesis attempts to answer the following research questions: 

 Will a sliding mode controller show improved performance compared to a PID 

controller in regard to settling time and state response error over a range of maximum 

torque values?  

 When using a constant maximum torque value, will the SMC also show improved 

performance compared to a PID controller in terms of actuation energy and state 

response error? 

b.) Data Collection 

To answer the research questions posed, the attitude quaternions for both the PID 

controller and the SMC will be calculated from an orbital and attitude dynamics and 

kinematics simulation algorithm and analyzed based on their output torque, stability, and 

settling time.   

c.) Ideal Outcome 

T show 

improved state response error and shorter settling time than a PID controller. The actuation 

energy and state response error must also be lower. 

 

Chapter III: 

Methodology 
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Mathematical Model 

a.) Discussion of Simulation 

To analyze the response of each controller with different reaction wheels, a range of 

maximum reaction wheel torque values are tested on each controller. As the maximum torque 

value decreases, the likelihood of reaction wheel saturation increases because there is less torque 

available to stabilize the system. Therefore, maximum torque values ranging from 10 mNm 

(typically seen on 6- -

[27] [28]. The controller gains will be tuned to produce the lowest settling time for each 

maximum torque value. Since the roll angle is defined as normal to the sail, and the angle 

between the sail normal and the direction of the solar radiation pressure force is directly related 

the amount of thrust that will be produced, only the settling time for the roll angle is analyzed. 

This is shown in Figure 19 The controller performance is then compared for a constant 

maximum torque value using settling time, state response error, and actuator energy. Settling 

time is calculated by subtracting the time at which the roll axis first reaches zero by the time the 

roll axis from the controller is within 2% of zero. State response error is calculated by taking the 

difference between the actual attitude quaternion and the desired attitude quaternion for each 

time step, finding the sum, and normalizing over the simulation runtime. Actuation energy is 

calculated by integrating over the output torque curve. All simulations were done in MATLAB 

with a time step of 0.1s.  

  The physical characteristics of the sail are taken from a proposed sail design used in 

textbook [29]. The area of the sail (A) is 1400 , the total mass (m) is 40kg, and the 

moments of inertia are  = 6000 ,   = 3000 , and  = 3000  where 1, 2, 



29
 

 

and 3 represent the roll, pitch, and yaw angles respectively. Using these values, the characteristic 

acceleration can be calculated from equation 3.1  

 

Where  is the nominal solar-radiation-pressure constant at 1 AU from the 

sun and  is the overall sail thrust coefficient, typically around 1.8 [29]. This results in a 

characteristic acceleration equal to .  

 The steering laws for the solar sail involve two 90-degree yaw rotations of the body 

frame throughout the orbit to demonstrate orbit raising. A schematic is shown in Figure 19. 

This is the same steering logic used by LightSail 2, which resulted in actuator saturation using a 

PID controller. Using this logic with attitude quaternions and the mathematical model presented 

earlier in the chapter, the resulting attitude quaternion is potted in Figure 20.  

Figure 19: Demonstration of orbit raising logic using two 90-degree yaw rotations (left) [22] with the 
steering angles used shown in both the orbital reference frame   and body reference 

frame   (right).  



30
 

 

 

Figure 20: Desired quaternion response using two 90-degree rotations 

 

b.) Attitude Dynamics and Kinematics   

The basic attitude dynamics of a rigid body spacecraft is shown in equation 3.2. 

 

In these equations, is the state vector consisting of the roll, pitch and yaw angles.  is the 

moment of inertia vector.  is the torque due to solar radiation pressure, and  is the torque 

produced by the reaction wheel. Here, the reaction wheel dynamics are estimated as , 

where  is the angular momentum of the reaction wheel. 

A study by Bong Wie shows that defining control angles that are more closely related to 

the orbital elements will provide a simpler control output. Therefore, the angles proven to give 

the simpler output from the study are used [30].  
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Figure 17: Orbital geometry used to define control angles [30] 

 Considering the coordinate frames presented in Figure 17, above,  represents the 

fixed, geocentric coordinate frame and  represents the orbital frame, where  is in the 

direction of  ,  is tangent to the orbit in the direction of the motion of the spacecraft, and  is 

the perpendicular vector outside of the orbital plane. 

Using the  coordinate frame, the cone and clock angles, are defined to 

transform the orbital frame to the body frame, as shown in Figure 18. 

 

Figure 18: cone ( ) and clock ( ) angles of the solar sail [30] 
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Therefore, to transform from the global frame,  , to the body frame, , the orbital 

elements must first be defined as quaternions using equations 3.3a-3.3e: 

 

Assuming the vector, , is in the global  frame, it can then be transformed to the body 

frame by defining the quaternion  with equation 3.4 and 3.5. 

 

 

Where  is the conjugate of . 

Using as the inertial attitude quaternion, the kinematic differential equations in terms of the 

attitude quaternion is given in equation 3.6  

 

Where  with the real part of the quaternion defined as . 

The desired attitude quaternion from the commanded cone/clock angles, , is equal to the 

multiplication of  with , as defined above. From this, the error is calculated using 

equation 3.7. 

 

Where  is the conjugate of . 

The model of solar radiation pressure is taken from Bong Wie as well and shown in 

equations 3.8 and 3.9 [30]. The force from the sun is assumed to come from the  direction.   
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Where  = 1 Astronomical Unit (AU) and  is the magnitude of the r vector.  is the 

characteristic acceleration of the sail at 1 AU and is calculated using equation 3.10. 

 

Where  is the nominal solar-radiation-pressure constant at 1 AU from the 

sun and  is the overall sail thrust coefficient, typically around 1.8 [29]. This will give the solar 

radiation pressure force of the sail in , therefore the equation  must 

be used to rotate it to the body frame. Once it is in the body frame, it is multiped by the distance 

between the  cm/cp point to the sail to get . 

c.) Orbital Dynamics   

The orbital elements are needed to transform between the global  frame and the fixed 

 body frame for calculating the solar radiation pressure. They are also needed to employ 

the steering laws applied to the cone and clock angles  for orbit raising. The equations 

described in this section are explained in detail by Howard D. Curtis and Bong Wie [29] [31]. 

Initial X, Y, and Z coordinates are defined based on the initial launch condition of the satellite. 

The r vector is defined as . r is then calculated from equation 3.11. 

 

Initial velocity is also calculated based on approximate launch conditions. The v vector is 

defined as . v is then calculated from equation 3.12. 
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The specific angular momentum vector and magnitude is calculated from equations 3.13 and 

3.14. 

 

 

The lines of nodes if calculated from equation 3.15. 

 

The longitude of the ascension node,  can be defined using equation 3.16. 

 

Where  is the  component of the line of nodes vector. The inclination can also be calculated 

from the angular velocity using equation 3.17. 

 

, from equation 3.18 

 

Where  is the velocity in the radial direction defined as . Then, the true anomaly,  is 

calculated from equation 3.19. 

 

The eccentricity is also related to the argument of periapsis, , according to equation 3.20 
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Where  represents the  component of the eccentricity vector. To ensure orbit raising,  and  

are defined using equations 3.21 and 3.22 

 

 

After these orbital elements are calculated,  and  can then be updated by integrating equation 

3.23. 

 

d.) Controller Derivation         

        Both the PID and SMC can now be derived. 

PID  

        The PID controller will simply be defined as  

 

Where , , and  are the proportion, integral, and derivative controller gains, respectively.  

is the attitude quaternion and  is the error calculated between the control quaternion and 

the attitude quaternion is shown in equation 3.7. Since the output will be a quaternion, only the 

vector portion of the control will be used and applied to the attitude dynamics based on its 

corresponding components. To account for real-world actuator constraints, a saturation function 
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is used on the control, imposing a maximum torque value. This is done using the logic presented 

in equation 3.25 

 

Where  is the maximum amount of torque produced by the reaction wheel. The , , and 

 are first tuned using Zeigler-Nichols method and are then manually tuned to improve settling 

time. The steps used for the Ziegler-Nichols method are shown in the results section. To make 

tuning more manageable, the gains are tuned to 2 significant figures. 

 SMC         

The sliding mode controller begins by re-defining  such that it will drive the system to 

the sliding surface, defined in equation 3.26. 

 

Where  is a tuning parameter that defines how quickly the system will approach the sliding 

surface and  is the error quaternion defined in the attitude dynamics and kinematics section 

above. Recall the unit quaternion definition, , where  is the vector 

component of the quaternion and  defines the angle of rotation about the Euler axis. 

identity for complex numbers to define .  Now the logarithm of the error quaternion can 

be derived as .  By setting the sliding surface to  , it can be seen that the error 

quaternion will always be driven towards zero [32]. While other functions may be used for the 

sliding surface, the natural logarithm function is used because it guarantees local asymptotic 

stability, as proven in the next section, unlike a quadratic function, which cannot always 

guarantee local asymptotic stability. Once the sliding surface is reached, it will guide the system 

to the equilibrium point at a faster rate using a logarithmic function over a linear function.  is 

also tuned manually until the lowest settling time is reached. 
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Now, define a function that calculates the distance between the current state of the system 

and the sliding surface. In this case, it was defined using equation 3.27. 

 

This function will drive the system to the sliding mode, and once it gets there, it will switch back 

and forth on the sliding mode, forcing it to equilibrium. The control can finally be defined using 

equation 3.28.  

 

To mathematically show the limitations of the sliding mode controller, consider the derivative of 

the sigma function shown in equation 3.29. 

 

Since the desire is to drive  to zero,  . Therefore, 

. If this condition is not met, then  will not be sufficient to control the 

system. 

 

Stability Proof        

To prove Lyapunov stability for the sliding surface, first derive the Lyapunov function 

using equation 3.30. 

 

Taking the derivative of this results in equation 3.31 

 

After differentiating the  quaternion, the derivative of the Lyapunov function is shown in 

equation 3.32.  
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Since  is greater than 0 for all states not equal to the equilibrium point,  

all states not equal to the equilibrium point, and  is not identically 0 for any state other than the 

equilibrium point, local asymptotic stability is proven using  

[29]. It is important to note that since  is a unit quaternion, it is confined by a unit sphere in 

4-D space, allowing the stability proof to hold true for all values of .  
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Chapter IV: 

Results and Discussion 

 

Orbital Dynamics Verification 

 The orbital dynamics can be verified using conservation of energy. The orbital energy 

should remain constant throughout the entirety of the orbit. The energy of the orbit was 

calculated using  

 

Time Step (s)  Percent Error 
0.01 0.0018 0.007% 

0.1 0.0178 0.073% 
1 0.1805 0.74% 

10 2.0934 8.6% 
 

 

The change in orbital energy throughout the orbit is shown in Table 2. Due to computer 

rounding, the difference in orbital energy calculated is directly related to the time step of the 

simulation.  The graph in Figure 21 shows the change in orbital energy as a function of the time 

Figure 21: Linear relationship between the change in orbital energy and the time 
step of the simulation 

Table 2: Relationship between the time step and change in orbital energy 
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step value of the simulation. As shown, as the time step decreases, the change in orbital energy 

also decreases. This trend implies that with an infinitely small timestep, the change orbital 

energy will converge to be zero. Since the maximum orbital energy is 24.39 J, when the time 

step is set above 0.5, the simulation becomes unstable due to the finite number of significant 

figures imposed by computer hardware. Therefore, the time step chosen for this thesis is 0.1 due 

to the more reliable numerical stability and runtime of the simulation.  

Response to Varying Maximum Torque 

a.) PID 

        The PID controller was tuned manually for each new  value. The state response with 

no control input is shown in Figure 22, where q1 represents the scalar term of the quaternion and 

q2, q3, and q4 represent the roll, pitch, and yaw axis, respectively. 

Figure 22: State response with no control input 
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The gains of the PID controller were first approximated using the Zeigler-Nichols tuning 

method. The  and  gains are first set to zero and the  gain is increased from zero until 

the output reaches a steady oscillation. This value is denoted as  the period of the 

oscillation is denoted . The initial guess of the PID gain values can now be found from 

equations 4.1a-4.1c [33]. 

 

 

 

Using , the response of the system when  is shown in Figure 23.  

 

Figure 23: Steady oscillation used to find  when  = 1 
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In this case,  is found to be 1 and  is 1,610s. Therefore, =0.6,  and 
. The system response using these gains is shown in Figure 24.  

While this is a good starting point, the goal is to achieve the lowest settling time and state 

response error. Settling time is calculated by subtracting the time at which the roll axis first 

reaches zero by the time the roll axis from the controller is within 2% of zero. State response 

error is calculated by taking the difference between the actual attitude quaternion and the desired 

attitude quaternion for each time step, finding the sum, and normalizing over the simulation 

runtime. By keeping the time step and runtime of the simulation the same for every run, the state 

response error can be reasonably compared.  controls how fast the rate of the error is driven to 

zero. Therefore increasing  will have a more significant effect on reducing the settling time. It 

was found that increasing  to 190 provides a response that improves the settling time of the 

Figure 24: System response using a PID controller with gains tuned using Ziegler-
Nichols method with the desired control  
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roll axis while overshoot to stay within 2% of the desired response.  is more closely related to 

state response error since it controls error directly. After tuning the  gain, it was found that 

slightly reducing  to 0.59 also improved the settling time, resulting in the time shown in Table 

3. Increasing  also increased the settling time while decreasing  did not change the settling 

time. Therefore,  was kept the same. To make tuning the PID controllers more manageable, the 

gains are tuned to a maximum of 2 significant figures. A plot of the response is shown in Figure 

25. These steps were repeated for different  values. Table 3 shows the initial Zeigler-

Nichols coefficients, the manually tuned coefficients and each set of coefficients respective 

settling times and state response error calculated from . 

Figure 25: State response using a PID controller with gains =0.59,  
and  for   = 10 mNm with the desired control 
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Table 3: Corresponding controller gains, settling times, and state response errors 

 PID Controller  
 

[mNm] 
Tuning 
Method    

Settling time 
( ) 

State response error 
( ) [radians/s] 

10 Ziegler-
Nichols 

0.60  120 2520s 12.6 

10 Manual 0.59  190 1580s 13.4 

0.5 Ziegler-
Nichols 

12 0.014 2700 3600s 21.8 

0.5 Manual 7.1 0.014 2900 2340s 21.1 

0.2 Ziegler-
Nichols 

6.0 0.0034 2600 Does not settle 35.9 

0.2 Manual 4.9 0.0034 3300 3590s 35.8 
 

 Sliding mode Controller  

 
[mNm] 

Tuning 
Method  

Settling time 
[s] 

State Response error 
( ) [radians/s] 

10 Manual 0.015 481s 4.48 

0.5 Manual 0.00359 1900s 19.5 

0.2 Manual 0.0023 2960s 31.3 

 

Since the goal is to test low maximum torque values, the next maximum torque value 

analyzed is 0.5 mNm. The state response for this  value after the manual tuning is shown in 

Figure 26. 

As shown in table 3, the settling time increases by 790s when   is increased from 10 

mNm to 0.5mNm, even when using PID gains tuned to minimize the settling time. When 

applying  = 0.1 mNm, the state response error of  increases significantly from 13.4 rad/s 

to 35.8 rad/s, shown in Figure 27.  With the PID gains tuned to maximum settling time about the 

roll axis (corresponding to q2 on the figure), the system response does not remain stable around 

the desired response for very long. 
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Figure 26: State response using a PID controller with gains =0.71,  and 
 for  = 0.5 mNm with the desired control  

Figure 27: State response using a PID controller with gains =4.9,  and 
 for  = 0.2 mNm with the desired control  



46
 

 

b.) SMC  

Since the sliding mode controller only has one controller gain, tuning is simpler compared to 

the PID controller. The controller gain, , is related to how fast the system converges to the 

sliding surface. Setting  too low, in this case 0.003, will increase the settling time, as shown in 

Figure 28.  

 

Figure 28: State response using a sliding mode controller where =0.003 and =10mNm 

However, setting  too high, in this case 0.1, will cause overshoot, resulting in unwanted 

oscillations, as shown in Figure 29.  
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Figure 29: State response using a sliding mode controller where =0.1 and =10mNm 

 Therefore,  is chosen based on which value produces the shortest settling time. From manual 

tuning, it was found =0.015 produces a state response with the shortest settling time when 

=10mNm. The state response is shown in Figure 30. 

 Table 3 shows that the sliding mode controller has a shorter settling time than the PID 

controller that was also tuned for minimum settling time at the same  value. The state 

response using a SMC for  values equal to 0.5 mNm and 0.2 mNm is shown in Figures 31 

and 32. It is also shown in Table 3 that the settling time for the sliding mode controller is 

consistently shorter for different maximum torque values.  
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Figure 30: State response using a sliding mode controller where =0.015 and =10mNm 

 

Figure 31: State response using a sliding mode controller where =0.00359 and 
=0.5mNm  



49
 

 

 

 

Figure 32: State response using a sliding mode controller where =0.0023 and 
=0.2mNm 

 

 

Performance Analysis with Constant Maximum Torque 

Since the smallest maximum torque value is the most prone to reaction wheel saturation 

causing instability, that is the constant maximum torque value chosen to effectively compare the 

performance of the SMC and the PID controller. As shown in Table 3, the SMC has a shorter 

settling time than the PID controller. However, state response error should also be analyzed in 

this case since a lower state response error about the roll axis corresponds to more efficient 

production of thrust. The state response error for the SMC and PID controller about the roll axis 

is shown in Figure 33.  
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Figure 33: Error about the roll axis for a PID controller (right) and a SMC (left) 

While these results are very similar, Table 3 shows the sum of the state response error of the 

SMC is 4.5 rad/s less than the PID controller.  

 Another important output to analyze is the controller output torque. Since a SMC already 

switches from minimum to maximum output torque values, the time at which a control torque is 

sustained before it switches to the next maneuver is the time being considered. Comparing the 

output torques from the two controllers in Figure 34 and Table 4 shows that the PID controller is 

at maximum significantly less than the sliding mode. The main reason for this is because the 

Figure 34: Control torque output for PID controller (left) and SMC (right) 
1st maneuver  2nd maneuver  1st maneuver  2nd maneuver  
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sliding mode controller is restricted to either maximum or minimum while the PID controller can 

be any value in between. Therefore, using this method to compare the PID controller to the 

sliding mode is not a fair comparison. 

Table 4: Comparison of time spent at maximum control torque  

 
 

Time at max after 1st 
maneuver [s] 

Time at max after 2nd 
maneuver [s] 

Total time at 
max [s] 

SMC 
 2009 3744 5753 
 1313 1830 3143 
 1334 2943 4277 

 Sum of total time: 13,173 

PID 
 1135 2150 3285 
 646 660 1306 
 614 710 1324 

   Sum of total time: 5915 
 

A fairer comparison would be to replace the sign function in the sliding mode controller to the 

saturation function used on the PID controller. This way, the sliding mode controller has the 

same output restrictions as the PID controller. The state response and output control torque using 

a saturation function for the SMC is shown in Figure 35. Using this method eliminates reaction 

wheel saturation, but significantly increases the state response error. This suggests that reaction 

wheel saturation may be necessary to produce a stable response when using smaller reaction 

wheels. Therefore, the amount of time a reaction wheel is saturated should be a secondary 

concern compared to settling time and state response error. 

However, one metric that is related to the amount of time a reaction wheel is saturated 

that may be a higher concern is the actuation energy. This is characterized by the area under the 

torque curve. Table 5 compares the PID controller to the SMC when the sign function is used 

and when the sigmoid function is used.  

As expected, the SMC with the sign function showed to have the highest amount of 

actuation energy. The SMC with the saturation function showed to have the lowest, but at a 



52
 

 

major cost to performance compared to both the SMC with the sign function and the PID 

controller. Therefore, in terms of actuation energy, the PID controller is the best choice to 

balance performance and energy. However, modeling improvements may be made to the SMC 

controller with the sign function that could reduce actuation energy. This will be discussed 

further in the following section.  

Table 5: Performance comparison of PID and two different sliding mode controllers  

 PID SMC (sign) SMC (sat) 

 [J] 2.1201 1.933 0.9473 

 [J] 2.1796 3.0103 0.0180 

 [J] 0.6998 1.6751 0.0498 

Sum [J] 4.9995 6.6184 1.0151 

Settling Time [s] 2590 3590 Does not settle 

State response error [rad/s] 35.8 31.3 38.3 

 

 

 

 

Figure 35: Control torque output (left) and system response (right) of a sliding mode controller using 
a saturation function with =0.394 and =0.2mNm 
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Chapter V: 

Conclusion 

 

In this thesis, the settling time and system response were analyzed for a PID and a sliding 

mode controller for a range of maximum control torque values. Then, for a constant maximum 

torque value, the settling time, controller output torque, actuation energy, and state response 

error of the roll angle were analyzed. The data presented in this thesis shows that the SMC has 

improved performance, compared to a PID controller, in terms of settling time and stability when 

tested over a range of maximum torque values. A summary of the performance difference is 

given in Table 6.   

Table 6: Difference between SMC and PID controller in terms of settling time and state response error  

 
[mNm] 

Percent 
Improvement in 
Settling time [s] 

Percent Improvement 
in State Response 

Error ( ) 
Best Performing 

Controller 
10 69.5% 66.6% SMC 
0.5 18.8% 7.7% SMC 
0.2 14.4% 17.5% SMC 

 

The PID controller showed to produce reaction wheel saturation for a shorter period than 

a SMC with a sign function. However, when a saturation function was employed with the SMC, 

it was shown to produce no reaction wheel saturation but with a cost of reduced controller 

performance. This suggests two things. One being that reaction wheel saturation may be 

necessary for producing a stable state response with a short settling time and small state response 

error. The other being that even small modifications to the SMC can produce very different 

results and more research must be done on its potential to limit reaction wheel saturation while 

still producing a favorable state response. Because the SMC employing a sign function showed 
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to produce more reaction wheel saturation, it also results in a higher actuation energy than the 

PID controller.  

Based on the results presented in this thesis, the sliding mode controller is advantageous 

over the PID controller in terms of state response performance and settling time, especially in 

cases with higher maximum torques. However, if power draw is a significant concern, a PID 

controller may be a better solution, or modifications to the sliding mode controller should be 

researched.  

Future Work 

The actuation energy may be improved by including an electromechanical model of the 

reaction wheel and defining the sliding mode controller to control voltage rather than torque. The 

discontinuous behavior of the SMC employing a sigmoid function relates more closely to 

switching voltage than switching torque, since there is a more significant time delay when 

switching torque.  

The addition of a sliding mode observer has been shown to improve robustness of the 

controller and may also aid in robustness under actuator limitations [34]. A sliding mode 

observer improves performance in real-world implementation due to its ability to filter and 

weigh sensor data. 

Deriving a sliding mode controller via backstepping method has been shown to improve 

reaction wheel saturation [35]. The use of recursive Lyapunov functions allows for the controller 

to compensate or nonlinear disturbances and take advantage of stabilizing nonlinearities 

simultaneously.   
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Figure A.1:  State response used to find the Tc Zeigler-Nichols coefficient where Kcr=20 and umax= 
0.5*10^-3 

 

Figure A.2: State response using unaltered Zeigler Nichols derived PID gains for umax = 0.5*10^-3 
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Figure A.3: State response using unaltered Zeigler Nichols derived PID gains for umax = 0.2mNm 
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