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ABSTRACT 

 

Commercial-Off-The-Shelf (COTS) equipment for the AOCS subsystem bring several advantages 

such as high processing power, lower mass/volume, lower power usage, and low cost. Their across-

the-board adoption in space is however currently confronted by their robustness and reliability issues. 

Their susceptibility to single event upsets, unpredictable end-of-life performances, and maybe even 

permanent failures, directly impact mission availability and performance. To address these chal-

lenges, this paper proposes advanced and innovative control and FDIR techniques. In particular, the 

aim is early FDIR targeting a varied selection of failure cases for a variety of COTS AOCS equip-

ment. A range of state-of-the-art algorithms are investigated, some of which have shown great poten-

tial in other flight control applications like UAVs. Innovative FDI techniques like Adaptable estima-

tion, Model-based FDI, and Machine-learning based FDI, as well as advanced control techniques like 

adaptive control, and Non-holonomic control are studied to assess their potential benefits when cop-

ing with COTS failures. These techniques were prototyped and implemented in an FDIR focussed 

AOCS simulator (GAFE). To demonstrate possible advantages for space missions compared to stand-

ard FDIR practices in the industry, the techniques are applied to two mission use cases, EarthCARE 

and OneSat, covering different applications, orbit regime, environment, and design philosophies, thus 

providing a varied set of mission performance and availability requirements to be fulfilled by the 

AOCS subsystem. The paper then goes on to present the test results for each of the techniques as 

applied to chosen fault cases with varying fault types, magnitudes, and dynamic conditions. The de-

tection and isolation capabilities and recovery performance are used as criteria to compare to classical 

fault management concepts for particular failure cases in the respective missions. The paper also 

discusses driving aspects and challenges of implementation of the methods for the missions as well 

as the potential benefits of their use as compared to classical FDI and control techniques for low-cost 

COTS equipment. 

1 INTRODUCTION 

The current rapid growth in the small satellite, large constellation market is evident across the space 

industry. With it, reducing costs at each level of system development is becoming an increasingly 

driving constraint. For large constellation missions, hardware procurement is a cost driver due to the 

sheer number of components, while for small satellite missions, the share of hardware in total space-

craft cost is relatively large. In these contexts, therefore, the interest towards shifting to standard, low-

cost Commercial-Off-The-Shelf (COTS) equipment is enormous. The cost of a hardware unit for 
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space applications is driven by both, design for high performance and reliability in space environ-

ment, and quality control practices. Lower cost COTS equipment is thus inherently confronted by 

robustness and reliability issues, coming from both design as well as quality control practices, like 

lack of characterisation in radiation environment, shorter lifetime at design, and poor lot control.  

 

A survey and analysis of Attitude and Orbit Control Systems (AOCS) COTS equipment showed that 

these issues manifest themselves in a variety of failure signatures at equipment, AOCS, and Fault 

Detection, Isolation and Recovery (FDIR) levels. While the failure characterisation does not differ 

from that of nominal hardware, the frequency of failure and probability of its occurrence is higher for 

COTS equipment. Classical, threshold- and/or redundancy-based FDIR techniques, while entirely 

capable of handling the failure types, might not be scalable to large constellation and small-sat context 

from a cost perspective. 

    

This work thus focuses on addressing these COTS AOCS equipment failures using advanced AOCS 

and FDIR algorithms, assess their performance for FDIR and compare the results with classical 

AOCS and FDIR design solutions. The aim is to increase mission availability and to maintain perfor-

mance, despite the use of low-cost COTS hardware. 

 

To that end, a number of advanced estimation, control and FDI techniques were surveyed. Criteria 

such as robustness, ease of implementation, processing power needs, maturity etc. were evaluated 

base on the literature. This, complemented with an assessment of their suitability to COTS failure 

cases, was used to trade and select five of them. These five techniques are: 

 Adaptable estimation,  

 Model-based FDI,  

 Machine-learning based FDI,  

 Adaptive control, and  

 Non-holonomic control 

 

The paper describes the evaluation of these techniques going from development of the algorithm 

prototypes to assessment of their performance when applied to specific mission use cases and failure 

types. These performances are compared to standard methods and algorithms. 

2 ALGORITHM ASSESSMENT 

The developed prototypes were implemented on simulations of one of two mission use cases: Earth-

CARE or OneSat. The mission use cases were chosen based on their representativeness and comple-

mentarity. EarthCARE represents a typical classical low-earth-orbit earth observation mission with 

medium-high reliability and performance requirements. It on-boards classical space qualified equip-

ment. Complementarily, OneSat represents geostationary earth orbit platform typically with telecom 

payloads. The OneSat product line comprises automotive qualified COTS equipment. 

 

The algorithms were designed targeting a variety of failure types for different AOCS equipment. The 

test cases for assessment encompassed different orbit regimes (a result of the mission use case), dy-

namic conditions, modes, and failure types and magnitudes. Table 2-1 provides a top-level summary 

of the assessment cases for each technique. The assessment was supported by comparison to the nom-

inal FDIR techniques on the two missions for the criteria, also shown in Table 2-1. 
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Table 2-1: Summary of implementation and test cases for individual algorithm assessment 

Technique Mission Equipment  Failure in Failure type Assessment Criteria 

1

. 

Adaptable  

estimation 

OneSat Star-tracker Output Euler  

Angle 

Output data 

freeze, drift 

Failure detection time 

Earth-

CARE 

Magnetometer Output Mag-

netic Field 

Output data 

freeze, drift 

Failure detection time 

Star-tracker Output Euler  

Angle 

Output data 

freeze, drift 

Failure detection time 

2

. 

Model based 

FDI 

Earth-

CARE 

Reaction 

wheel 

Friction Torque Coulomb friction 

bias and drift 

Failure detection time, 

Sensitivity to model, op-

erational constraints 

3

. 

ML Based FDI OneSat Star-tracker Output Euler  

Angle 

Output drift with 

varying ampli-

tudes 

Failure detection time 

4

. 

Adaptive control Earth-

CARE 

Reaction 

wheel 

Output Actuator 

Torque 

Output bias and 

drift of varying 

magnitudes 

Control performance, 

convergence 

5

. 

Non-Holonomic OneSat Reaction 

wheel 

Output Actuator 

Torque 

Complete failure 

(under-actuated 

spacecraft) 

Control performance, 

convergence 

  

The Generic AOCS/ Guidance Navigation and Control (GNC) Techniques and Design Framework 

(GAFE) simulator [1] was used to implement the assessment cases except for non-holonomic assess-

ment, which was performed in a simplified simulator. GAFE is an FDIR focussed closed loop AOCS 

simulator providing convenient mechanisms to model equipment and algorithms based on existing 

libraries as well as create new algorithms. It allows for extensive treatment of failure description and 

induction for all equipment types, and easy implementation of parameter and functional monitors.  

 

 

Figure 2-1 GAFE Simulator Top Level Blocks [1] 

 

2.1 Adaptable Estimation 
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The formulation of the adaptable estimation algorithm relies on a dynamic model describing the re-

lationship between the physical model and the measurement provided by the equipment. The formu-

lation of an estimation problem allows recognising the discrepancy between the two.  

 

For the case of the magnetometer, a dynamic model is derived that the geomagnetic field should 

satisfy. This is done as follows: the measurement equation for the magnetometer is given by: 

 

𝑏 = 𝐴𝑏0 (1) 

where 𝑏 denotes the magnetic field measurement in the Spacecraft body frame, 𝐴 is the attitude ma-

trix and 𝑏0 denotes the components of the magnetic field in the orbital reference frame. Differentiat-

ing with respect to time: 

�̇� = 𝑆(𝜔)𝑏 + 𝐴𝑏0̇. (2) 

where 𝜔 is the vector of body angular rate. Discrete time formulation as well as the magnetometer 

output equations are then equations 3 and 4 respectively: 

 

𝑏(𝑘 + 1) = (𝐼 + ∆𝑡𝑆(𝜔(𝑘))) 𝑏(𝑘) + ∆𝑡𝐴(𝑘)𝑏0̇ 

𝑦(𝑘) = 𝑏(𝑘) + 𝑛(𝑘) 

 

(3) 

(4) 

where 𝑛 represents the magnetometer’s measurement noise (assumed white).  

 

A one-step-ahead adaptive Kalman predictor is designed using this model to check sanity of the mag-

netic field measurement against the model and attitude and angular rate measurements. An adaptation 

scheme is considered to take variability or uncertainty in the process noise covariance into account. 

This is defined for the process noise covariance matrix Q as: 

 

𝑄(𝑘) = 𝛼𝑄(𝑘 − 1) + (1 − 𝛼)𝐾𝑘𝑑(𝑘)𝑑′(𝑘)𝐾𝑘
𝑇

, (5) 

 

Where 𝛼 is the gain of the adaptive filter and 𝑑(𝑘)  is the difference between the actual measurement 

and its predicted value. 

 

The failure detection in the equipment unit is performed by observing the variations of the norm of 

Q. Fast variations of the values of the variance matrix are observed when a failure has occurred. This 

information is used to activate a flag, which indicates that the occurrence of failure. A preliminary 

tuning was performed to set the threshold of Q norm variation that triggers failure detection. 

 

The adaptable estimation algorithm was implemented for two equipment, Star-trackers and Magne-

tometers. Adaptable estimation for star-trackers was also incorporated and tested on both missions, 

OneSat and EarthCARE, as shown in Table 2-1. OneSat does not have on-board a magnetometers. A 

comparison with the standard FDI is shown. Note that in standard FDI design, detection of data freeze 

occurs in the unit measurement-processing algorithm with simple threshold based checks. The detec-

tion of drifts occurs via intra-equipment check at estimation level, and thus needs redundant equip-

ment. A summary of the tests performed along with failure parameters is provided in Table 2-2. 

 

Table 2-2 Test result summary of adaptable estimation 

Star-tracker Dynamic Con-

dition 

Mission Detection Time – from injection 

Failure 

type 

Magni-

tude 

  Standard existing FDI in 

mission 

Adaptable Estimation 

Data 

freeze 

N/A Steady State EarthCARE 0.5 s 0.5 s 
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Drift 

 

0.3°/s Steady State OneSat 200 s 20 s 

0.3°/s Steady State EarthCARE 8.5 s 0.5 s 

0.3°/s Slew Manoeuvre EarthCARE Not Detected Not Detected 

Magnetometer  

Data 

freeze 

N/A Steady State EarthCARE 35.5 s 0.5 s 

 

In general, the adaptable estimation algorithm shows comparable or lower failure detection time than 

the standard algorithm implemented in the mission. Further, the algorithm can isolate the failure to 

the unit, also in case of slow drifts, without the need for analytical/equipment redundancy. 

 

One of the main challenges of using adaptable estimation for detection is the characterisation of the 

variation of the norm of Q. While it should ideally remain constant in the absence of anomalies (fail-

ures), in real simulations variations can occur in mission “nominal” situations triggering a false de-

tection. For star-trackers for example, high noise in rate estimation led to jumps in norm of Q. This 

was not observed if rate was provided though the Gyro. 

 

2.2 Model Based FDI 

 

The formulation of Model-Based FDI, as with adaptable estimation, relies on a dynamic model of the 

system. For this study, the algorithm was formulated to estimate the coulomb friction coefficient of 

the reaction wheel. The use case was monitoring the friction torque to allow for early detection of 

degrading performance induced by increasing friction. The reaction wheel model is represented by 

Eq 6, 

𝐽�̇� = 𝑇𝑎𝑐𝑡 − (𝑐) 𝑡𝑎𝑛ℎ(𝜔) −  𝑠𝑖𝑔𝑛(𝜔)(𝑣)𝜔𝑣𝑒𝑥𝑝 (6) 

 

where 𝐽 is the wheel moment of inertia, ω is the wheel angular rate, 𝑐 is the Coulomb coefficient, 𝑣 

is the viscosity gain, 𝑣𝑒𝑥𝑝 the viscosity exponent. 𝑇𝑎𝑐𝑡 is the wheel actuation torque. The model is 

discretised, and linearised, similar to the adaptable estimation problem to formulate a robust Extended 

Kalman Filter to estimate 𝑐  from measurements of 𝑇𝑎𝑐𝑡 and 𝜔. 

 

For the purpose of early detection of increasing friction, a regression scheme is applied to reveal 

trends in the parameter variation. Every 𝑡𝑖𝑛𝑡 s, the parameter estimation is regressed onto a model 

with a constant component and a linear component. Batch least squares is then used to estimate the 

intercept and slope of the regression model. The variation of this slope is characterised for varying 

dynamics in the mission use case (EarthCARE) to set threshold that trigger fault detection. 

 

There were three types of tests performed on the model-based FDI for the fault case of friction anom-

aly. The test cases and results are tabulated in Table 2-3 as a summary. The first two focus on anomaly 

detection and time. The third test case varies the model parameters 𝑐, 𝑣, 𝑣𝑒𝑥𝑝 of Eq. 6 to assess the 

sensitivity of the algorithm. Note that this variation of model parameters should only represent the 

uncertainty in the model, which are unknown at the algorithm´s implementation phase. Any known 

model discrepancy can be updated parametrically in the algorithm. 

 

Table 2-3 Test result summary of model based FDI 

1. Failure Case 1 Definition 

Manipulated parameter  Coulomb friction coefficient 

Manipulation type Bias 

S/C dynamics Steady State 
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Coefficient 

(Nm) 

Detect, Isolate Detection 

Time 

Comments 

5e-5 No detection -- Very low friction torque fault case 

5e-4 Detection and 

unit isolation 

10 min An order of magnitude less than nomi-

nal total friction torque 

5e-3 Detection and 

unit isolation 

3 min In the range of the nominal total fric-

tion torque 

5e-2 Detection and 

unit isolation 

3 min Larger than max allowed total friction 

torque for EarthCARE 

2. Failure Case 2 Definition 

Manipulated parameter  Coulomb friction coefficient 

Manipulation type Drift (random walk coefficient) 

S/C dynamics Steady State 

Coefficient 

(Nm) 

Detect, Isolate Detection 

Time 

Comments 

5e-6 No detection -- Negligible drift in friction torque 

5e-5 Detection and 

unit isolation 

10 min Nominal Drift 

5e-4 Detection and 

unit isolation 

2.8 min Aggressive drift (changes the order of 

magnitude of total friction) 

5e-3 Detection and 

unit isolation 

2.8 min Very aggressive drift 

3. Sensitivity to Parameter Variation 

Deviant parameter  Nominal value Acceptable deviation w/o trigger-

ing false faults 

Coulomb friction co-

efficient 

1e-5 10x 

Viscous friction gain 1e-5 3% 

Viscous friction ex-

ponent 

1.5 <1% 

 

 

Exemplarily, the coulomb friction coefficient as estimated by the algorithm is shown for a no-fault 

case compared to a bias or drift induced within the simulation in Figure 2-2. It can be seen that the 

algorithm correctly estimates this deviation and triggers a fault detection. For information, the first 

jump seen in the coefficient friction is the initialisation of the Kalman Filter. 
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Figure 2-2 Model based estimated Coulomb coefficient for nominal case vs bias induced at 7000s 

(left); drift induced at 6000s (right) 

For comparison for test cases 1 and 2 in Table 2-3 , in the standard EarthCARE mission implementa-

tion, friction monitoring is performed using the friction estimator whose primary function is to feed 

friction torque forward in the control loop. The fault detection threshold for monitoring is set to +-

45mNm as maximum nominal friction limit. This mechanism does not trigger a failure detection for 

the fault parameters shown in Table 2-3. The FDIR in the EarthCARE mission triggers transition to 

ASM if the maximum threshold is surpassed, leading to loss of mission availability. 

 

The model-based algorithm thus clearly shows promising results in early detection of the fault it 

targets, including detection of very low magnitudes of faults. The algorithm shows a clear advantage 

compared to the existing handling of friction wheel anomaly in EarthCARE, which, given the relia-

bility of the equipment it uses, is quite sufficient to meet the mission requirements. However, for any 

mission relying on COTS hardware with increased sensitivity to faults, the algorithm provides an 

intelligent way of ensuring mission availability by identifying small deviations in friction behaviour 

early on prompting quick recovery without performance loss. 

 

The driver in implementation of model-based FDI solution was characterisation of slope variation to 

quantify threshold for triggering faults. While a series of simulations was performed to characterise 

what would be “nominal” variation over the course of the mission, this characterisation will need an 

extensive campaign if the algorithm is to be flown. Another particular challenge of using model-based 

FDI on missions will be model integrity. It is known that the reaction wheel mechanical and thermal 

properties change over the course of years of use. This in turn will change the friction properties. If 

the model based FDI is to be used over the entire mission duration, it should ideally be based on a 

more involved model considering all possible variations. Otherwise, its operational use should be 

limited to a certain mission phase/duration. 

 

2.3 Machine Learning-Based FDI 

 

The application of deep learning in FDI is still limited. A large amount and wide variety of fault 

samples are needed to train a deep learning model with acceptable reliability and generalisation ca-

pability. It is often difficult to satisfy such requirement as faults occur infrequently. In addition, data 

obtained at different times or plant sites may follow different distributions due to parameter changes 

or performance degradation. Consequently, the diagnostic deep models will not be applicable until 

sufficient fault data covering all these changes become available. This limitation may be overcome 



ESA GNC-ICATT 2023 – G. Pandey 

 

 

 

8 

by using the data generated from computer simulations, which comes with the inevitability of model-

plant mismatch. Transfer learning is a promising approach to address such mismatch. 

The transfer-learning task can be accomplished by using one-class support vector machines 

(OCSVMs) to convert raw telemetry into an abstract representation that is effectively identical for 

both a spacecraft simulator and the flight unit [2]. An LSTM network designed to diagnose faults 

from this common representation can therefore train on data from the simulator and transfer its learn-

ing to operate on data from the real satellite. 

 

Formulated for a single angle output (𝜃) of a star-tracker, the measurement model can be given as 

 

𝜃𝑖(𝑡) = 𝜃∗(𝑡) +  𝑛(𝑡)    for 𝑖 = 1, . . 𝑁𝑠  (7) 

 

Where 𝜃∗(𝑡)  is the real attitude angle n (t) is a Gaussian noise, and 𝑁𝑠 is the number of star trackers.  

The process is summarised as follows: 

 𝑁𝑠  independent linear combinations of the measurement signals are computed. If this step is 

not performed, the faults are not uniquely identifiable, and the problem is not well-posed. For 

example, since 𝜃∗(𝑡) ≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, we cannot discriminate faults from manoeuvres.  

 Dimensionality is reduced using a sliding window to process each signal into a cluster of 

lower-dimensional vectors. The simplest sliding window extracts the signal’s mean 𝜇 and var-

iance 𝜎2 from the window to form a cluster of data in (𝜇, 𝜎2) space. This reduces the sensi-

tivity to noise and the input dimension of the OC-SVM obtaining a faster training procedure. 

 Due to modelling errors and the variety of ways anomalies can manifest in telemetry signals, 

the simulated telemetry may not resemble the actual telemetry on orbit. To ensure that the 

algorithm is robust to these differences, the sliding window outputs are processed by a layer 

of OC-SVMs 

 Finally, a Neural Network (NN) classifies the type of faults. Temporal context is critical be-

cause anomalies can represent temporary false positives or be related to each other across 

signals and across time. For this reason, a long short-term memory (LSTM) layer can model 

contextual temporal relationships. LSTM could outperform handcrafted fault detection and 

diagnosis rules because it is able to leverage patterns such as the intermittent versus persistent 

activation of the anomaly detectors that are complicated to capture with if–then rules. Further-

more, LSTM monitoring the evolution in time of the signals could detect trends rather than 

simply comparing the signals to given thresholds (which might delay detection). 

 

 

Figure 2-3 Proposed ML-based FDI architecture for a 3-equipment set 

 

The OC-SVM was implemented in Matlab exploiting the Statistics and Machine Learning Toolbox 

and the LSTM NN based fault classifier was implemented in Matlab exploiting the Deep Learning 

Toolbox to perform sequence-to-one classification. 
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For implementation in this study on the OneSat use case to detect and isolate a degrading star-tracker, 

training data (single angle) was generated for 2 orthogonal star-trackers. To speed up the training 

process, coupling among different axes was not considered. Using the nominal performance (bias, 

NEA) data from the Sodern Auriga datasheet, random output values were generated using a simple 

Simulink model. The two-stage OC-SVM/LSTM network was trained thus: 

 

 OC-SVMs were trained on simulated nominal data. 200 simulations of 500 s were performed 

for 20 values of ω (Ranging from 0 to 2°/s), where the signals are sampled at a rate of 10 Hz. 

Then, a sliding window with a window size of 1000 steps (100s) with a 50% of overlapping 

between adjacent windows was applied. 16000 sequences of 9 elements with 3 features (mean, 

variance and angular rate) were thus obtained. 

 LSTM NNs were trained using both the simulated nominal data and performing 400 more 

simulations of 500 s for 20 values of ω. In 200 simulations, different values of the standard 

deviation were used ranging from 2 to 5 times the nominal value. In the other 200 simulations, 

different values of the bias term were used ranging from 10 to 15 times the corresponding 

standard deviation. Different values of faults are injected to avoid overfitting and make the 

classifier networks more generalizable. 

 

The training of both OC-SVM and LSTM NNs was performed in a few iterations. To avoid polluting 

the training data with the test data, the GAFE simulation environment was not used for training pur-

poses. However, to ensure consistency in magnitude with the output of the “real” (GAFE-simulated) 

star-tracker, training data generated purely on the basis of the data set had to be updated with an off-

set. This offset also partly accounted for the lack of intra-sensor alignment in the training data.  

  

Finally, the results of the tests performed on ML-based FDI in the OneSat GAFE simulation are 

shown in Table 2-4, where  𝜎𝑛 = 0.0178 ∙ 10−3 rad is the standard deviation of the base noise in-

crease, and 𝑐 = 5.236 ∙ 10−6 rad is the coefficient of the base drift. 

 

Table 2-4 Test result summary of machine-learning-based FDI 

Failure Case Definition 

Manipulated parameter  STR Euler Angles 

Manipulation type Noise, drift 

Simulation duration 6000s 

Failure type  Fault Intensity ML-Based Detec-

tion Time 

Standard OneSat 

Detection time 

Noise std increase 𝜎𝑛 144.8 s 1236.0 s 

Noise std increase 2 𝜎𝑛 79.8 s 1242.9 s 

Noise std increase 3 𝜎𝑛 59.8 s 861.5 s 

Noise std increase 10 𝜎𝑛 29.8 s 849.4 s 

Drift 𝑐 74.8 s - 

Drift 2 𝑐 59.8 s - 

Drift 3 𝑐 54.8 s - 

Drift 10 𝑐 39.8 s - 

 

Note that SVM did not trigger any fault, i.e., the ML-based detection time is purely the detection time 

shown by the LSTM. This shows that the LSTM generalised much better than the SVM to new data, 

in that it detected faults at intensity levels at which the SVM does not trigger any faults. This may be 

partially due to the difference in the datasets used during training and during testing. The SVM thus 

appeared to be more sensitive to the dissimilarity between training and testing data. 

 



ESA GNC-ICATT 2023 – G. Pandey 

 

 

 

10 

The very low magnitudes of the faults that were tested for ML-based FDI showed that it was ex-

tremely sensitive to faulty behaviour and performed much better at early detection than the standard 

measurement processing and estimation algorithms. The detection times for the ML-based FDI are 

more than ten times faster for the LSTM than for the standard FDI mechanisms in OneSat. The ML-

based FDI also was able to detect drift faults with very low magnitudes that do not trigger the standard 

FDI. 

 

The absolute challenge in the implementation of ML-based algorithm in the study, and on any real 

space missions is ensuring training data representativeness of test/final application data. While dis-

crepancies are addressed in theory by the transfer learning mechanism of the proposed algorithm, it 

was found that implementation for the tested mission use case required retraining the algorithm based 

on the final simulation environment and equipment model. For example, mismatch of the intra-sensor 

alignment between training and testing data could partly be solved by applying offsets resulting from 

frame transformations, but the noise characteristics do not transform easily and are not representative. 

 

Future work could also look into applications where the current architecture SVM flagging and LSTM 

classification show clear benefits. It is recommended to apply this architecture to detection problems 

with high dimensionality (e.g., with gyro data, or direct use of raw telemetry data) and with classify-

ing faults. While processing time for the algorithm was not assessed as part of this study, it is not 

estimated to be infeasible for on-board applications, if training is done pre-flight. This assessment 

should addressed in any future work on the architecture. 

 

2.4 Adaptive Control 

The adaptive controller investigated in this study is based on an L1 adaptive control architecture [3] 

designed to maintain (within a predefined frequency range) the dynamics of the satellite with its 

baseline (PD) controller in nominal operating conditions. The key feature of such controller architec-

tures is guaranteed robustness in the presence of fast adaptation, which leads to uniform performance 

bounds both in transient and steady-state operation. These properties can be achieved by appropriate 

inclusion of a low-pass filter and by appropriate formulation of the control objective with the under-

standing that uncertainty in a feedback loop cannot be compensated outside of the control channel 

bandwidth.  

The proposed architecture comprises a baseline controller and the L1 adaptive augmentation (Figure 

2-4).  The L1 adaptive augmentation scheme can be used to compensate for uncertainties that were 

not addressed in the baseline controller design, such as actuator degradation and faults, severe exter-

nal disturbances, and/or parameter uncertainties. 

 

Figure 2-4 Scheme of the L1 adaptive augmented controller architecture [3] 

The considered baseline controller is a cascading PP control architecture where the inner loop com-

putes the torque 𝑢𝑏𝑙 needed to track the desired angular velocity 𝜔𝐵, which is fed by the outer loop 
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using a purely proportional action (Figure 2-4). The control algorithm is given by the following ex-

pression: 

 
𝜔𝐵

𝑜 =  𝐾𝑝
𝑜 𝑠𝑔𝑛(𝑞4𝑒

) 𝜌𝑒   (8) 

𝜏𝐵𝐿 =  𝐾𝑝
𝑖  (𝜔𝐵

𝑜 − 𝜔𝐵) +  𝜔 ×  𝐽𝜔  

 

(9) 

where 𝜌𝑒 ∈ ℝ 3and 𝑞4𝑒
∈ ℝ are, respectively, the vector and the scalar part of the quaternion error 

𝑞𝑒, which is computed as the Hamiltonian product between the desired quaternion 𝑞𝑑 and the conju-

gate of the measured quaternion 𝑞, i.e. , 𝑞𝑒 ≔ 𝑞𝑑 𝑞∗. Furthermore, 𝐾𝑝
𝑜 and 𝐾𝑝

𝑖  are the proportional 

gain of the outer loop and of the inner loop respectively. The term 𝜔 ×  𝐽𝜔 is the feedback gyroscopic 

compensation. 

 

Given the baseline controller, the objective of the L1 augmentation scheme is to design a state-feed-

back control signal to ensure that the body fixed angular rates track the closed-loop response given 

by the baseline controller in the nominal conditions. The L1 adaptive augmentation law (blue block 

in Figure 2 4)includes a predictor and a filter to modify the baseline controller output with the adaptive 

signal 𝑢𝑎𝑑 in order to compensate the modelled uncertainties and disturbances within the bandwidth 

of the actuators. 

 

The adaptive controller was implemented on the EarthCARE mission to account for degrading reac-

tion wheel performance, simulated as a bias or drift on the wheel’s output actuation torque. To isolate 

the effect of this algorithm, no other system characteristics were changed when compared to standard 

EarthCARE simulation with the nominal PD controller. The test parameters and results are shown in 

Table 2-5. The steady state APE for the adaptive controller compared to the nominal controller (keep-

ing all other simulation parameters unchanged) is also shown in Table 2-5. The 3-axis error profile is 

exemplarily shown for one of the test cases (injection of 0.1Nm bias) in Figure 2-5 for the nominal 

controller and the adaptive controller. 

 

Table 2-5 Test result summary of L1 adaptive controller compared to nominal mission-use-case 

controller 

Failure Case 1 Definition 

Manipulated parameter  Actuation Torque 

Manipulation type Bias 

S/C dynamics Steady State 

Coefficient 

(Nm) 

Convergence Steady State Error 

Adaptive Controller 

RPY [°] 

Steady State Error Nominal 

PD Controller RPY [°] 

1e-2 Yes 1.205e-05, 9.568e-05, 

0.427e-05 

2.077e-05, 1.301e-05, 0.329e-

06 

3e-2 Yes 10.85e-05, 13.883e-05, 

3.346e-05 

22.997e-05, 1.421e-05, 2.859e-

05 

5e-2 Yes 28.733e-05, 21.28e-05, 

7.306e-05 

92.985e-05, 2.292e-05, 

11.660e-05 

1e-1 Yes 88.41e-05, 62.059e-05, 

19.26e-05 

677.57e-5, 13.749e-05, 

78.726e-05 

Failure Case 2 Definition 

Manipulated parameter  Actuation Torque 

Manipulation type Drift 

S/C dynamics Steady State 

Coefficient 

(Nm) 

Convergence Steady State Error 

Adaptive Controller 

RPY [°] 

Steady State Error Nominal 

PD Controller RPY [°] 
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1e-4 Yes 0.719e-06, 86.921e-06, 

0.5974e-06 

1.581e-06, 14.534e-06, 0.654e-

06 

5e-4 Yes 5.331e-06, 88.879e-06, 

2.1290e-06 

6.228e-06, 14.508e-06, 1.150e-

06 

1e-3 Yes 20.245e-06, 93.295e-06, 

7.659e-06 

23.821e-05, 14.570e-06, 

2.993e-06 

2e-3 Yes 473.743e-06, 378.220e-

06, 139.342e-06 

132.805e-06, 16.016e-06, 

15.244e-06 

5e-3 Diverges 

2000s 

NA NA 

 

 

 

 

Figure 2-5  Error profile after 0.1Nm bias injection at 6000s for nominal and adaptive controllers in 

Roll (top left), pitch (top right) and yaw (bottom) 

 

Considering all other factors are the same, the adaptive controller performs comparably to or better 

in rejecting fault when tested for a loss of reaction wheel performance (step and drifting) than the 

nominal controller. The performance of the nominal controller in the standard EarthCARE (all stand-

ard equipment) implementation is demonstrably better than the adaptive controller performance with 

COTS hardware. This might be attributed to the fact that the nominal controller in the EarthCARE 

simulation is in a mature development stage, and in a simulator simulating its mission characteristics 

more closely, it is robust with optimal performance.  
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The main challenge of the adaptive controller was attaining optimal tuning for the system that was 

beyond the scope of the study. Like any controller, an extensive tuning campaign will have to be 

performed and a full V&V for robustness undertaken to mature the controller design. A further nui-

sance to adaptive control performance is the control loop running frequency which might be limited 

in spacecraft applications.  

 

2.5 Non-holonomic control 

 

This algorithm was formulated for the case of providing partial three axis control on an under actuated 

spacecraft with only two reaction wheels. The selected method for this scenario is based on a time-

varying control technique leveraging the transverse function approach [4] and directly developed on 

the set of attitude configurations (SO(3)), i.e., with no parametrisation. First, a given reference trajec-

tory is classified as either feasible or unfeasible based on whether it adheres to or violates the mo-

mentum conservation principle. Notably, the control law ensures ultimately bounded tracking errors 

for any reference trajectory. In the case of feasible reference trajectories that meet specific persistence 

of excitation conditions, asymptotic tracking is attained by establishing an asymptotically stable zero 

dynamics for the closed-loop system. The algorithm requires, as inputs, the measured attitude matrix 

𝑅 and reference attitude trajectory 𝑅𝑑(𝑡), the measured angular velocity 𝜔 and the reference angular 

velocity 𝜔𝑑(𝑡)  and knowledge of the inertia matrix. The unactuated spacecraft axis must be known 

as well, since the algorithm is formulated and tuned for a particular axis. 

 

In summary, the approach relies on constructing, using the transfer function approach, a modified 

attitude error given by Eq 10 

𝑍 = 𝑅𝑒𝐹⊤(𝛼) (10) 

 

 

where 𝑅𝑒 = 𝑅𝑑
⊤𝑅 is the attitude error matrix; 𝐹(𝛼) is an auxiliary rotation matrix (see equation 19 in 

[4]). Then, 𝑍 = 𝐼3 is made exponentially stable using a pseudo input dependent on 𝛼. A dynamic 

time-varying law for 𝛼(𝑡) is constructed to ensure 𝐹(𝛼(𝑡)) → 𝐼3 when the reference trajectory 𝑅𝑑(𝑡) 

is persistently exciting, thus achieving 𝑅𝑒 → 𝐼3. The attitude error can be made arbitrarily small (in 

the ideal setting) by properly tuning the control law at the expense of higher control effort. 

 

The tests for this algorithm on the OneSAT use case were performed within a simplified Simulink 

environment. The simplified simulation isolates the control loop problem, including the spacecraft 

rigid body dynamics, actuators and sensors noises and linear limits, and the controller. Environmental 

effects are not considered in this simulation. The unactuated axis is the Z-axis assuming failure of the 

reaction wheel along this axis. The considered algorithm allows achieving satisfactory performance 

under the following assumptions and constraints: 

 The three reaction wheels are oriented along the three spacecraft principal axes. In this specific 

case, the reaction wheels 1, 2 and 3 are oriented along the x, y and z-axis respectively.  

 The total angular momentum (spacecraft and wheels) must be compatible with the desired 

attitude trajectory (feasible reference) or be sufficiently small in case of a constant reference 

attitude and non-feasible trajectories.  

 The algorithm starts operating after the faulty reaction wheel has stopped spinning. 
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Figure 2-6 3 axis attitude error with non-holonomic control for nadir pointing profile (left); and set 

point attitude acquisition (right).  

 

As seen in Figure 2-6, within this simplified simulation, the results show very high potential of the 

control strategy. The attitude control error is maintained within mrad range in the case of keeping the 

spacecraft in Nadir pointing attitude for one full orbit in GEO. Due to the need or zero initial angular 

momentum on the spacecraft for the algorithm, in its current formulation, it cannot be seen as a solu-

tion for temporary unavailability of a reaction wheel in a fully actuated spacecraft without loss of 

mission. A mode change is required to first bring the momentum to zero. 

 

The challenge in the assessment of this algorithm was its employment in the full functional AOCS 

simulator. The operational constraints mentioned above (starting when the failed wheel has stopped 

running, having the actuators aligned with the body axes, avoiding loss of measurements due to blind-

ing), lead to simplifications that were best simulated in a simplified environment. Additional work 

needs to be performed to apply the proposed technique in a more general and representative environ-

ment of space applications. 

3 CONCLUSIONS AND RECOMMENDATIONS 

Although the focus of this work was on COTS hardware, the general implications of the results pro-

duced here are applicable to all missions and hardware types. In case of COTS hardware with higher 

rates of fault, every benefit in detection and isolation leads to enhancement of favourable statistics 

for mission availability and potential performance improvement. 

 

The FDI algorithms, adaptable estimation, model-based FDI, and ML-based FDI have shown better 

detection performance than standard threshold or inter-equipment check based methods. For the fil-

ter-based methods, the responsiveness relies greatly on the tuning of both the filter itself and the 

detection mechanism that triggers faults. Their robustness is a direct product of model fidelity for the 

filter-based methods, and of the training data representativeness for the ML-Based algorithm. The 

control algorithms have shown promising initial results. They will greatly benefit from an extensive 

tuning and robustness campaign to reveal optimum performance. Especially for adaptive control, its 

true advantage over nominal PID controller requires identification of use cases where a rightly tuned 

PID controller does not meet requirements. This may not be an equipment level fault, but a more 

complex sequence of events.  
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This paper forms a foundation of preliminary testing and comparison to standard methods for a vari-

ety of techniques. As further work, it is recommended to study each technique individually and to 

focus on its industrial use to increase its TRL, currently estimated at TRL 3. 
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