224 research outputs found

    Comparison of super-resolution algorithms applied to retinal images

    Get PDF
    A critical challenge in biomedical imaging is to optimally balance the trade-off among image resolution, signal-to-noise ratio, and acquisition time. Acquiring a high-resolution image is possible; however, it is either expensive or time consuming or both. Resolution is also limited by the physical properties of the imaging device, such as the nature and size of the input source radiation and the optics of the device. Super-resolution (SR), which is an off-line approach for improving the resolution of an image, is free of these trade-offs. Several methodologies, such as interpolation, frequency domain, regularization, and learning-based approaches, have been developed over the past several years for SR of natural images. We review some of these methods and demonstrate the positive impact expected from SR of retinal images and investigate the performance of various SR techniques. We use a fundus image as an example for simulations

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF

    Super-resolution:A comprehensive survey

    Get PDF

    Multiresolution image models and estimation techniques

    Get PDF

    A Computer Vision Story on Video Sequences::From Face Detection to Face Super- Resolution using Face Quality Assessment

    Get PDF

    Large-Scale Light Field Capture and Reconstruction

    Get PDF
    This thesis discusses approaches and techniques to convert Sparsely-Sampled Light Fields (SSLFs) into Densely-Sampled Light Fields (DSLFs), which can be used for visualization on 3DTV and Virtual Reality (VR) devices. Exemplarily, a movable 1D large-scale light field acquisition system for capturing SSLFs in real-world environments is evaluated. This system consists of 24 sparsely placed RGB cameras and two Kinect V2 sensors. The real-world SSLF data captured with this setup can be leveraged to reconstruct real-world DSLFs. To this end, three challenging problems require to be solved for this system: (i) how to estimate the rigid transformation from the coordinate system of a Kinect V2 to the coordinate system of an RGB camera; (ii) how to register the two Kinect V2 sensors with a large displacement; (iii) how to reconstruct a DSLF from a SSLF with moderate and large disparity ranges. To overcome these three challenges, we propose: (i) a novel self-calibration method, which takes advantage of the geometric constraints from the scene and the cameras, for estimating the rigid transformations from the camera coordinate frame of one Kinect V2 to the camera coordinate frames of 12-nearest RGB cameras; (ii) a novel coarse-to-fine approach for recovering the rigid transformation from the coordinate system of one Kinect to the coordinate system of the other by means of local color and geometry information; (iii) several novel algorithms that can be categorized into two groups for reconstructing a DSLF from an input SSLF, including novel view synthesis methods, which are inspired by the state-of-the-art video frame interpolation algorithms, and Epipolar-Plane Image (EPI) inpainting methods, which are inspired by the Shearlet Transform (ST)-based DSLF reconstruction approaches

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    Space-time sampling strategies for electronically steerable incoherent scatter radar

    Full text link
    Incoherent scatter radar (ISR) systems allow researchers to peer into the ionosphere via remote sensing of intrinsic plasma parameters. ISR sensors have been used since the 1950s and until the past decade were mainly equipped with a single mechanically steerable antenna. As such, the ability to develop a two or three dimensional picture of the plasma parameters in the ionosphere has been constrained by the relatively slow mechanical steering of the antennas. A newer class of systems using electronically steerable array (ESA) antennas have broken the chains of this constraint, allowing researchers to create 3-D reconstructions of plasma parameters. There have been many studies associated with reconstructing 3-D fields of plasma parameters, but there has not been a systematic analysis into the sampling issues that arise. Also, there has not been a systematic study as to how to reconstruct these plasma parameters in an optimum sense as opposed to just using different forms of interpolation. The research presented here forms a framework that scientists and engineers can use to plan experiments with ESA ISR capabilities and to better analyze the resulting data. This framework attacks the problem of space-time sampling by ESA ISR systems from the point of view of signal processing, simulation and inverse theoretic image reconstruction. We first describe a physics based model of incoherent scatter from the ionospheric plasma, along with processing methods needed to create the plasma parameter measurements. Our approach leads to development of the space-time ambiguity function, forming a theoretical foundation of the forward model for ISR. This forward model is novel in that it takes into account the shape of the antenna beam and scanning method along with integration time to develop the proper statistics for a desired measurement precision. Once the forward model is developed, we present the simulation method behind the Simulator for ISR (SimISR). SimISR uses input plasma parameters over space and time and creates complex voltage samples in a form similar to that produced by a real ISR system. SimISR allows researchers to evaluate different experiment configurations in order to efficiently and accurately sample specific phenomena. We present example simulations using input conditions derived from a multi-fluid ionosphere model and reconstructions using standard interpolation techniques. Lastly, methods are presented to invert the space-time ambiguity function using techniques from image reconstruction literature. These methods are tested using SimISR to quantify accurate plasma parameter reconstruction over a simulated ionospheric region
    • …
    corecore