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1
I N T RO D U C T I O N

1.1 L E A R N I N G T O S O LV E

While mathematics is beautiful by itself, it allows us to come up with elegant solutions to
the most sophisticated problems. What once started as a dream of flying later combined
with mathematics, advances in engineering, and electronics to give us planes and rockets.
We developed control theory to use planes safely, launch rockets to the most distant
places, and protect ourselves from various threats. The derivative disciplines of control
theory such as pattern recognition, machine learning and reinforcement learning, allow us
to diagnose diseases, entertain us, meet new people, save money, draw, and invent. With
the rise of computers, what was previously seen as an unsolvable problem, nowadays
is just a matter of compute power. What previously required a concrete and specific
algorithm, can now be derived by a computer from data, derived in a similar way as we
have learned the concepts of the world ourselves. And this is the focus of our research.

In the end, the Artificial Neural Network is a mathematical model, inspired by the
way human brains work. It takes input in the form of a table of numbers and applies
simple linear and non-linear functions many times one after another until an answer is
calculated. Then the answer is compared to the label data indicating what is to be the
correct outcome. The parameters of neural networks are adjusted by the discrepancy to
make it come closer to the ground truth. After repeating such an operation a sufficient
number of times for all given examples, the neural network will hopefully produce the
correct output. Neural networks are among the most powerful algorithms of the day.
With them, we can build an image classifier, a music synthesizer, a text translator and
even an autopilot. It can be hard to reach a formal solution for a given task. However,
software libraries are now so efficient that a program that will train a neural network for
this task can sometimes be written even in a day.

Training of a model depends on many factors and may take days or even months.
One of the most important factors which affect the final result is the training data.
Groundbreaking research which resulted in the Turing Award of 2018 [119] required Dr.
Yann LeCun to collect a dataset of handwritten digits [97]. Nowadays, this dataset can be
downloaded within a fraction of a second. Modern devices acquire tons of information
from various modalities every minute. Such an enormous amount of data allows us to
train models which are woven into our daily routine to make it more comfortable.

We can go even further, we can build models which will analyze information that
was either limited or even absent in the past. Living in society, raised by generations
of educated people, we are able to predict facts even without experiencing them again
and again. A basic concern for everyday life is a drive to safety. We learn how to live
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I N T RO D U C T I O N

safely, and how to interact with the world without too much risk. In fact, in our human
life, we learn a lot about security and safety not from our own experience, but from
education. Therefore, we aim to bring into neural networks experience which captures the
knowledge handed down over generations. Here we do not consider rules of knowledge
as documented since ancient times in law or in encyclopedias since Comenius or Diderot
and d’Alembert [40], but experience captured in ways to handle the generalities in the
data.

A significant part of our education takes the form of rules. Rules help us to choose
the best option fast, they serve as guidelines. A significant part of our education is
physical laws. Such laws act as constraints. The constraints tell us what outcomes are
possible and what are impossible at all. With just a few physical laws in mind, we can
readily predict where the cars around us will be next, and how they slow down. For
example, while driving, we are able to turn to both sides, but some actions are highly
not recommended for the sake of safety. We do not have to try all possible options and
check their outcomes. Instead, we can follow the rules, guidelines and best practices to
make driving as effective as possible without spending too much time. Guidelines and
constraints are a part of every education, after which, with some practice, you can learn
new things in various domains: be it skydiving, photography, snowboarding, cooking,
Uruguayan tango or Rubik’s cube.

While neural networks are ultimate learners when it comes to large amounts of data,
they lack the knowledge of physical laws. Current neural networks make no distinction
between instructional rules and physical laws. They treat them the same: all rules are
learned implicitly as much as they appear from the data. When physical impossibilities
would be available to the network, such knowledge would allow neural networks to
learn from fewer examples. It will make trained models more reliable and safer, as the
constraints of our world are part of their constraints as well.

1.2 S Y M M E T R I E S

Rather than focusing on physical laws themselves we focus on their key ingredient —
symmetries. Symmetries of the observed world are the foundations of Special Relativity
Theory and Field Theory [12].

Symmetries are transformations of the space that map it to itself unchanged [13]. For
example, a ball can be rotated by an arbitrary angle and it will still be a ball that looks
exactly the same. A square can be rotated by 90

�. A palindrome can be read left-to-right
and right-to-left. They are the symmetries of the objects. If we know all admissible
symmetries, we do not need to learn all variations in appearance but simply specify
one example and say “et cetera” by specifying all other admissible appearances from
there. Ideally, in the absence of variations in the recording, to cover all variation of
one object it suffices to specify one example if we were certain we have covered all
the symmetries. Firstly, the appearance effect of all symmetries is not fully predictable.
Hence, one cannot rely on one observation. When the light comes from the right,
rotating a square object will cause unknown changes in appearance also depending on
the paint of the object. Secondly, symmetries may be too wide a class and hence reduce
discriminability. Pictures of humans are almost exclusively standing up vertically or
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1.3 R E S E A R C H Q U E S T I O N S

lying down horizontally. When we assume the full rotational symmetry, we effectively
insert pictures which are physically possible but rare in practice as the intermediate
rotation poses are not stable. We will study the effectiveness of symmetry classes in
classification distinction and effectiveness throughout this research

Symmetries set important constraints on how the information about the object can be
retrieved and interpreted. In this research, we focus on two constraints: invariance and
equivariance. An invariant measure or a function is one that does not change when the
input is changed [13]. For example, the mass of an object is invariant under its orientation
or illuminations, so is its class. A function is equivariant if it changes accordingly with
the input [13]. For instance, the mass of a balloon increases proportional to the additional
air we pump in it. Combinations of invariant and equivariant functions are of high interest
to us as they allow for strong and flexible reasoning about the observed world.

1.3 R E S E A R C H Q U E S T I O N S

1.3.1 Scale-Equivariant Networks

There are very frequent transformations, which occur in real life and we are very well
aware of them. However, neural networks do not consider them as simple as we do.
Objects may rotate and move in all possible directions which results in a significant
variation in the way they are represented in a video or in an image. For an object
classifier, the correct answer should not depend on the position of the target object, on
its orientation, and ideally also not on the illumination nor on minor occlusions. For an
object-segmentation network or an object detector, the prediction should change with
the position of the object changes. Such behaviors can be learned from large training
datasets. This is not an option for extreme yet very important problems: uncommon car
accidents, personalized treatment of diseases or analysis of traumas. A reliable network
should tackle the principle transformations in a predictable manner regardless of the
amount of training data.

Can we build neural networks which are aware of the principle geometric

symmetries without learning them?

There are just three symmetry transformations of the plane that keep shape unchanged:
translation, rotation and scaling [13]. Equipping neural networks with translation equiv-
ariance was a groundbreaking result [97]. After years of subsequent improvements and
modifications of the original idea, what once was available to big companies and only
for document classification. Nowadays, it allows billions of users to search for any
visual information they require. In 2016 Cohen and Welling [25] extended the symmetry
property of neural networks to rotation. This idea allowed for more accurate image
classifiers [25, 156] and object trackers [63], it also demonstrated that it is possible
to learn effectively from less when it comes to medical data [152]. Last but not least
transformation, scaling, is one of the key focuses of this research.

Scale transformations occur in various image and video analysis tasks. They are
frequent as a result of the varying distances between the camera and the object. It s an
example of transformations that allow us to better understand the geometry of the world:
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I N T RO D U C T I O N

smaller otherwise similarly looking objects tell us that they are farther from us than
their larger counterparts. However, for Convolutional Neural Networks such differences
due to transformations over scale cause confusion and lead to incorrect predictions. In
image classification it is usually sufficient to make the prediction independent, in other
words invariant, to scale transformations. Be it a scan of a document, a group photo or a
satellite image, the target object may vary in size, but its class should stay the same. If
we consider videos from a dashcam, recordings of sports events, and streams of visual
data from drones’ sensors, the objects of interests may move very fast with respect to
the camera. Thus, they rapidly change their retinal size, sometimes by a factor of 10 or
even more [138]. In all of these cases, the visual analysis system should be equivariant
to such transformations. Both the predicted information about the size and the distance
to the object should be updated accordingly when the input changes.

To answer the research question we develop a theory of scale-equivariant convolutional
neural networks. We demonstrate the idea of filter reparametrization and an algorithm for
fast change of filter scales without back-and-forth resizing of 2-dimensional tensors. We
demonstrate how the most common building blocks of neural networks can be extended
to scale equivariance: convolution, batch normalization, nonlinearities, spatial pooling.
We also demonstrate how one can transform a scale-equivariant neural network into
a scale-invariant function. We present a recipe for how to make an arbitrary CNN-
based model scale equivariant, by simply drop-in replacing its building blocks with the
proposed ones. In our experiments, we demonstrate, that by using our recipe, one can
train more accurate image classifiers which set new state-of-the-art results on several
benchmarks. We also demonstrate, that in visual object tracking, one can achieve much
more accurate results when it comes to significant size variations and keep it real-time.
We demonstrate that scale-equivariant neural networks consider scale variations as a
valuable source of information and not as a disturbing factor. As a result, they learn from
less data and learn to be more robust.

1.3.2 Accurate Discrete Symmetry-Based Neural Networks

While transformation equivariance and invariance serve as very essential inductive biases,
help to learn from less data, and be better interpretable and reliable, these properties are
mathematical abstractions. The core of scale-equivariant convolutional neural networks
is rooted in symmetries of continuous algebraic functions. Although the observed world
can be described with continuous functions, they are not mathematically identical to the
latter [88, 157], which already demonstrates a gap between the theory and the observed
world. In addition, we do not analyze the analog world directly. Instead, we digitize
the world first either with a digital camera or by performing discretization later in the
computer. Thus, the signals from the world come in the form of arrays, and discrete
tables with discrete numbers. It results in a discrepancy between the symmetries of the
real world and the symmetries we assume while building the models.

How to match the scale symmetries of the observed world with the scale

symmetries of mathematical structures?

Starting from the first principles, we derive general constraints, under which scale-
equivariant neural networks are indeed equivariant under scale transformations of input,
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1.3 R E S E A R C H Q U E S T I O N S

parametrized as images or frames of a video. We find that there are two distinct cases.
For integer scale factors, which transform the original image into another one that lies
on exactly the same grid, the exact solution exists. It causes no extra error, and it
matches with what is also called dilated convolution. For all other cases, there is no exact
solution. However, we demonstrate that it is possible to learn an approximate solution by
minimizing the discrepancy between the theoretical and real output of the layer when
it’s calculated on real data. After analyzing the solutions we conclude that the optimal
convolutional filter is very sparse and thus allows for faster operations.

In our experiments, we compare various scale-equivariant and scale-invariant models
in terms of their accuracy and performance in image classification and video object
tracking. We demonstrate that by simply replacing one set of filters with another set we
improve the model. After comparing several models side-by-side we conclude that the
lower the discrepancy between the real symmetries and the mathematical symmetries
are, the better the model performs. And the best-performing model is the model which
uses the filter of two folds: learned and integer-scaled. Thus this model is a solution to
the research question.

1.3.3 Functional Variations in Neural Networks

Although scale-equivariant neural networks do not cover the whole set of possible
transformations, they have a very important property to the end-user of the technology—
robustness. Scale-equivariant networks process scale transformations of the input in
a predictable, pre-defined, theoretically justified way. Thus, they allow for building a
robust CNN-based model. If we develop an autopilot for an autonomous vehicle, ideally
we would like to know what the scenarios to be processed are. This is impossible mostly
because of the complexity of the world. However, we know, that if our scale-equivariant
model is effective at classifying traffic signs and it is accurate at tracking pedestrians
and other vehicles, it will also be accurate on these tasks when the objects change in
size because of the increased or decreased distance to them. Thus, we can rely on this
technology, because this predictable behavior serves as a constraint built into the models
and it minimizes the risk of incorrect outcomes due to distance.

In the same way, we can robustify our models with respect to other well-grounded
symmetry transformations: translation, rotation, horizontal and vertical flips. But is our
model robust to more often, yet subtle variations such as snow, frosted glass, rain of
various severity, a combination of fog and insufficient illumination or partial occlusion?
We can train the autopilot by providing more and more data from many extreme scenarios,
but it increases the cost of the technology significantly and making it less accessible to a
wider audience.

Scale, rotation or translation symmetries can be baked into neural networks for more
robust behavior mostly because these transformations are well-defined mathematical
structures, a part of the group of affine transformations. These transformations are the
most studied and the most frequent. However, even transformations which slightly differ
from affine transformations are hard to put into neural networks from the start. Thus, the
models have to learn them from the data, which raises the question, whether they are
reliable enough to be deployed.
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I N T RO D U C T I O N

How to make models robust to subtle variations that go beyond affine

transformations?

To answer this question, we start with the simple idea that the usual way of making
neural networks robust to unseen variations, is to train them using sophisticated data
augmentation. The output of a convolutional layer will, however, stay the same if we
transform the filter instead of the input image. A rotation in the input image can be
compensated by a reverse rotation of the filter. For a flipped input, there is a filter
with a corresponding flip. If we simulate a snow effect on the input, there is a special
augmentation of the filter which generates the same output. The plethora of possible
transformations of the filter lies in the vicinity of the original filter in the functional space.
Indeed, we can represent the filter as a function of some hidden parameters, perform a
Taylor expansion of the filter in functional space with respect to these parameters, slightly
vary them, and take only the linear part of this series. Thus, for every set of subtle input
transformations, there is a set of linear transformations of the filter.

We introduce a new class of convolutional neural networks, which consist not only of
trainable convolutional filters but also involve a wide set of filter transformations, which
are all utilized during training. We also propose an algorithm for fast implementation of
these new models, which allows for a reasonable trade-off between the training speed and
the resulting robustness. We demonstrate that by using our algorithm, one can take any
convolutional model, replace the standard convolutional layers with the proposed ones,
retrain the model, and gain a significant boost in accuracy on unseen transformations.
Our models demonstrate increased robustness to a wide set of real-life transformations:
occlusion, scale, blur, noise, viewpoint variations and some natural phenomena.

1.3.4 Unsupervised Learning With Symmetries

So far, we considered the cases when the model processes something after deployment
which was unseen at the training stage. We demonstrated that if the unseen image can be
transformed back to a sample from the training subset with some symmetry, our models
can still process it correctly. It allows us to build complex yet reliable models. This
approach resembles how students solve problems, having learned how to solve similar
problems during the course. When we, students of the past, start working with the world
of problems, we no longer see equations, we no longer solve the tasks we were shown
in the classroom. Instead, we have a feeling, an intuition, some common sense, that if
there is a problem, the solution will have some structure. It will have some symmetry.
Sometimes, this symmetry is not absolute. Sometimes, the problem can be solved even
sooner than we can understand that there is some underlying beautiful law. However,
after observing a lot of data, solving many problems, finding thousands of previously
unseen solutions, we distill this knowledge to a new law, to a new method, to a new
best practice. And finally, the next generations of students will learn about it in their
classrooms.

With this process, we see that there are at least two distinct cases of learning. In
the supervised learning task [97], we compare new data to what was already learned
prior to the task. In tasks such as unsupervised [58], self-supervised [83] or zero short
learning [167], the direct comparison to previously seen data is not feasible. We saw that
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1.4 C O - AU T H O R S H I P A N D RO L E S

for supervised learning a very effective tool for performing accurate and robust learning
is to assume that the unseen data will be related to the previously seen data via some
symmetry transformation. We can also assume that once we are given some data for the
second case of learning, its data also has internal symmetries with respect to itself.

How to make models learn from unlabeled data by assuming symmetries?

As this research question is general, we consider a special case. We focus on video
summarization. The task of video summarization is to select a subset of the video
which serves as a summary of the source. How to summarize? What to highlight?
What information seems more important than the other? These questions cannot be
answered by comparing the data to the previously seen dataset. Instead, we consider
every video as a set of short clips. We project each clip to some hidden space where we
assume that they form symmetric clusters, such as circles, and then select a subset that
shares the same structure. The model learns how to project clips and how to select from
symmetric structures, by comparing clips one to one another, from one video to clips
from another video. We suggest an effective implementation of the proposed approach.
In our experiments, we demonstrate that our approach allows for improving a wide range
of video sumamrizers just by changing the way they learn.

1.4 C O - AU T H O R S H I P A N D RO L E S

The thesis is composed of the following original contributions.

C H A P T E R 2 This chapter is based on “Scale-Equivariant Steerable Networks”, pub-
lished in International Conference on Learning Representations (ICLR), 2020 [144], by
Ivan Sosnovik, Michał Szmaja and Arnold W. M. Smeulders.
Contribution of authors

• Ivan Sosnovik: all aspects

• Michał Szmaja: technical implementation

• Arnold W. M. Smeulders: supervision and insights

C H A P T E R 3 This chapter is based on “Scale Equivariance Improves Siamese Track-
ing ”, published in Winter Conference on Applications of Computer Vision (WACV),
2021 [142], by Ivan Sosnovik, Artem Moskalev and Arnold W. M. Smeulders.
Contribution of authors

• Ivan Sosnovik: all aspects

• Artem Moskalev: theoretical and technical implementation

• Arnold W. M. Smeulders: supervision and insights
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I N T RO D U C T I O N

C H A P T E R 4 This chapter is based on “DISCO: Accurate Discrete Scale Convolu-
tions”, published in The British Machine Vision Conference (BMVC), 2021 [140], by
Ivan Sosnovik, Artem Moskalev and Arnold W. M. Smeulders. (Best Paper Award)
and “How To Transform Kernels for Scale-Convolutions”, published in International
Conference on Computer Vision (ICCV), 2nd Visual Inductive Priors for Data-Efficient
Deep Learning Workshop, 2021 [141], by Ivan Sosnovik, Artem Moskalev and Arnold
W. M. Smeulders.
Contribution of authors

• Ivan Sosnovik: theoretical implementation

• Artem Moskalev: technical implementation

• Arnold W. M. Smeulders: supervision and insights

C H A P T E R 5 This chapter is based on “Wiggling Weights to Improve the Robustness
of Classifiers”, by Sadaf Gulshad, Ivan Sosnovik and Arnold W. M. Smeulders.

Contribution of authors

• Sadaf Gulshad: all aspects

• Ivan Sosnovik: theoretical and technical implementation

• Arnold W. M. Smeulders: supervision and insights

C H A P T E R 6 This chapter is based on “Learning to Summarize Videos by Contrasting
Clips”, by Ivan Sosnovik, Artem Moskalev, Cees Kaandorp and Arnold W. M. Smeulders.
Contribution of authors

• Ivan Sosnovik: all aspects

• Artem Moskalev: theoretical implementation

• Cees Kaandorp: technical implementation

• Arnold W. M. Smeulders: supervision and insights

During our research we published other papers which are not a part of this thesis but
influenced our broader understanding of the problems of Artificial Intelligence.

• “Semi-conditional normalizing flows for semi-supervised learning”, published in
First workshop on Invertible Neural Networks and Normalizing Flows at Inter-
national Conference on Machine Learning (ICML), 2019 [2], by Andrei Atanov,
Alexandra Volokhova, Arsenii Ashukha, Ivan Sosnovik, Dmitry Vetrov
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• “Relational Prior for Multi-Object Tracking”, published in International Confer-
ence on Computer Vision (ICCV), 2nd Visual Inductive Priors for Data-Efficient
Deep Learning Workshop, 2021 [112], by Artem Moskalev, Ivan Sosnovik and
Arnold W. M. Smeulders.

• “Built-in Elastic Transformations for Improved Robustness”, preprint 2021 [61],
by Sadaf Gulshad, Ivan Sosnovik, Arnold W. M. Smeulders.

• “Two is a crowd: tracking relations in videos”, preprint 2021 [113], by Artem
Moskalev, Ivan Sosnovik and Arnold W. M. Smeulders.

• “PIE: Pseudo-Invertible Encoder”, preprint 2021 [7], by Jan Jetze Beitler, Ivan
Sosnovik and Arnold W. M. Smeulders.

• “Contrasting quadratic assignments for set-based representation learning”, pub-
lished in European Conference on Computer Vision (ECCV), 2022 [114], by Artem
Moskalev, Ivan Sosnovik, Volker Fischer and Arnold W. M. Smeulders.

• “LieGG: Studying Learned Lie Group Generators”, published in Conference on
Neural Information Processing Systems (NeurIPS), 2022, by Artem Moskalev,
Ivan Sosnovik, Volker Fischer, Arnold W. M. Smeulders
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S C A L E - E Q U I VA R I A N T S T E E R A B L E N E T W O R K S

2.1 I N T RO D U C T I O N

Scale transformations occur in many image and video analysis tasks. They are a natural
consequence of the variable distances among objects, or between objects and the camera.
Such transformations result in significant changes in the input space which are often
difficult for models to handle appropriately without careful consideration. At a high
level, there are two modeling paradigms which allow a model to deal with scale changes:
models can be endowed with an internal notion of scale and transform their predictions
accordingly, or instead, models can be designed to be specifically invariant to scale
changes. In image classification, when scale changes are commonly a factor of 2, it is
often sufficient to make class prediction independent of scale. However, in tasks such
as image segmentation, visual tracking, or object detection, scale changes can reach
factors of 10 or more. In these cases, it is intuitive that the ideal prediction should scale
proportionally to the input. For example, the segmentation map of a nearby pedestrian
should be easily converted to that of a distant person simply by downscaling.

Convolutional Neural Networks (CNNs) demonstrate state-of-the-art performance in
a wide range of tasks. Yet, despite their built-in translation equivariance, they do not
have a particular mechanism for dealing with scale changes. One way to make CNNs
account for scale is to train them with data augmentation [6]. This is, however, suitable
only for global transformations. As an alternative, [72] and [146] use the canonical
coordinates of scale transformations to reduce scaling to well-studied translations. While
these approaches do allow for scale equivariance, they consequently break translation
equivariance.

Several attempts have thus been made to extend CNNs to both scale and translation
symmetry simultaneously. Some works use input or filter resizing to account for scaling
in deep layers [84, 171]. Such methods are suboptimal due to the time complexity of
tensor resizing and the need for interpolation. In [54] the authors pre-calculate filters
defined on several scales to build scale-invariant networks, while ignoring the important
case of scale equivariance. In contrast, [163] employ the theory of semigroup equivariant
networks with scale-space as an example; however, this method is only suitable for
integer downscale factors and therefore limited.

In this paper we develop a theory of scale-equivariant networks. We demonstrate the
concept of steerable filter parametrization which allows for scaling without the need for
tensor resizing. Then we derive scale-equivariant convolution and demonstrate a fast
algorithm for its implementation. Furthermore, we experiment to determine to what
degree the mathematical properties actually hold true. Finally, we conduct a set of
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experiments comparing our model with other methods for scale equivariance and local
scale invariance.

The proposed model has the following advantages compared to other scale-equivariant
models:

1. It is equivariant to scale transformations with arbitrary discrete scale factors and is
not limited to either integer scales or scales tailored by the image pixel grid.

2. It does not rely on any image resampling techniques during training, and therefore,
produces deep scale-equivariant representations free of any interpolation artifacts.

3. The algorithm is based on the combination of tensor expansion and 2-dimensional
convolution, and demonstrates the same computation time as the general CNN
with a comparable filter bank.

2.2 P R E L I M I NA R I E S

Before we move into scale-equivariant mappings, we discuss some aspects of equivari-
ance, scaling transformations, symmetry groups, and the functions defined on them. For
simplicity, in this section, we consider only 1-dimensional functions. The generalization
to higher-dimensional cases is straightforward.

E Q U I VA R I A N C E Let us consider some mapping 6. It is equivariant under !\ if and
only if there exists !0

\
such that 6 � !\ = !0

\
� 6. In case !0

\
is the identity mapping, the

function 6 is invariant.
In this paper we consider scaling transformations. In order to guarantee the equivari-

ance of the predictions to such transformations, and to improve the performance of the
model, we seek to incorporate this property directly inside CNNs.

S C A L I N G Given a function 5 : ' ! ', a scale transformation is defined as follows:

!B [ 5 ] (G) = 5 (B�1
G), 8B > 0 (2.1)

We refer to cases with B > 1 as upscale and to cases with B < 1 as downscale. If we
convolve the downscaled function with an arbitrary filter k and perform a simple change
of variables inside the integral, we get the following property:

[!B [ 5 ] ¢k] (G) =
π
'

!B [ 5 ] (G0)k(G0 � G)3G0

=
π
'

5 (B�1
G
0)k(G0 � G)3G0

= B
π
'

5 (B�1
G
0)k(B(B�1

G
0 � B�1

G))3 (B�1
G
0)

= B!B [ 5 ¢ !B�1 [k]] (G)

(2.2)

In other words, convolution of the downscaled function with a filter can be expressed
through a convolution of the function with the correspondingly upscaled filter where
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2.2 P R E L I M I NA R I E S

downscaling is performed afterwards. Equation 2.2 shows us that the standard convolu-
tion is not scale-equivariant.

S T E E R A B L E FI LT E R S In order to make computations simpler, we reparametrize
kf (G) = f�1

k(f�1
G), which has the following property:

!
B
�1 [kf] (G) = kf (BG) = B�1

k
B
�1
f
(G) (2.3)

It gives a shorter version of Equation 2.2:

!B [ 5 ] ¢kf = !B [ 5 ¢kB�1
f
] (2.4)

We will refer to such a parameterization of filters as Steerable Filters because the
scaling of these filters is the transformation of its parameters. Note that we may construct
steerable filters from any function. This has the important consequence that it does not
restrict our approach. Rather it will make the analysis easier for discrete data. Moreover,
note that any linear combination of steerable filters is still steerable.

S C A L E - T R A N S L AT I O N G RO U P All possible scales form the scaling group (. Here
we consider the discrete scale group, i.e. scales of the form . . . 0

�2
, 0

�1
, 1, 0, 0

2
, . . .

with base 0 as a parameter of our method. Analysis of this group by itself breaks the
translation equivariance of CNNs. Thus we seek to incorporate scale and translation
symmetries into CNNs, and, therefore consider the Scale-Translation Group �. It is a
semidirect product of the scaling group ( and the group of translations ) � '. In other
words: � = {(B, C) |B 2 (, C 2 )}. For multiplication of group elements, we have (B2, C2) ·
(B1, C1) = (B2B1, B2C1 + C2) and for the inverse (B2, C2)�1 · (B1, C1) = (B�1

2
B1, B

�1

2
(C1 � C2)).

Additionally, for the corresponding scaling and translation transformations, we have
!BC = !B!C < !C!B, which means that the order of the operations matters.

From now on, we will work with functions defined on groups, i.e. mappings � ! '.
Note, that simple function 5 : ' ! ' may be considered as a function on � with
constant value along the ( axis. Therefore, Equation 2.4 holds true for functions on �
as well. One thing we should keep in mind is that when we apply !B to functions on �
and ' we use different notations. For example !B [ 5 ] (G0) = 5 (B�1

G
0) and !B [ 5 ] (B0, C0) =

5 ((B, 0)�1(B0, C0)) = 5 (B�1
B
0
, B

�1
C
0)

G RO U P - E Q U I VA R I A N T C O N VO L U T I O N Given group ⌧ and two functions 5 and
k defined on it, ⌧-equivariant convolution is given by

[ 5 ¢⌧ k] (6) =
π
⌧

5 (60)!6 [k] (60)3`(60) =
π
⌧

5 (60)k(6�1
6
0)3`(60) (2.5)

Here `(60) is the Haar measure also known as invariant measure [49]. For ) � ' we
have 3`(60) = 36

0. For discrete groups, the Haar measure is the counting measure,
and integration becomes a discrete sum. This formula tells us that the output of the
convolution evaluated at point 6 is the inner product between the function 5 and the
transformed filter !6 [k].
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2.3 S C A L E - E Q U I VA R I A N T M A P P I N G S

Now we define the main building blocks of scale-equivariant models.

S C A L E C O N VO L U T I O N In order to derive scale convolution, we start from group
equivariant convolution with ⌧ = �. We first use the property of semidirect product of
groups which splits the integral, then choose the appropriate Haar measures, and finally
use the properties of steerable filters. Given the function 5 (B, C) and a steerable filter
kf (B, C) defined on �, a scale convolution is given by:

[ 5 ¢� kf] (B, C) =
π
(

π
)

5 (B0, C0)!BC [kf] (B0, C0)3`(B0)3`(C0)

=
’
B
0

π
)

5 (B0, C0)kBf (B�1
B
0
, C

0 � C)3C0

=
’
B
0
[ 5 (B0, ·) ¢kBf (B�1

B
0
, ·)] (C)

(2.6)

And for the case of ⇠in input and ⇠out output channels we have:

[ 5 ¢� kf]< (B, C) =
⇠in’
==1

’
B
0
[ 5= (B0, ·) ¢k=,<,Bf (B�1

B
0
, ·)] (C), < = 1 . . .⇠out (2.7)

Let us proof its equivariance.

Proof. Let us first show that scale-convolution is equivariant to translations.

[!
Ĉ
[ 5 ] ¢� kf] (B, C) =

’
B
0
[!

Ĉ
[ 5 ] (B0, ·) ¢kBf (B�1

B
0
, ·)] (C)

=
’
B
0
!
Ĉ
[ 5 (B0, ·) ¢kBf (B�1

B
0
, ·)] (C)

= !
Ĉ

n’
B
0
[ 5 (B0, ·) ¢kBf (B�1

B
0
, ·)]

o
(C)

= !
Ĉ
[ 5 ¢� kf] (B, C)

(2.8)

Now we show that scale convolution is equivariant to scale transformations:

[!B̂ [ 5 ] ¢� kf] (B, C) =
’
B
0
[!B̂ [ 5 ] (B0, ·) ¢kBf (B�1

B
0
, ·)] (C)

=
’
B
0
!B̂ [ 5 ( B̂�1

B
0
, ·) ¢k

B̂
�1
Bf
(B�1

B
0
, ·)] (C)

=
’
B
00
[ 5 (B00, ·) ¢k

B̂
�1
Bf
( B̂B�1

B
00
, ·)] ( B̂�1

C)

= [ 5 ¢� kf] ( B̂�1
B, B̂

�1
C)

= !B̂ [ 5 ¢� kf] (B, C)

(2.9)
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Finally, we can use the property of semidirect product of groups

!
B̂Ĉ
[ 5 ] ¢� kf = !B̂!Ĉ [ 5 ] ¢� kf = !B̂ [!Ĉ [ 5 ] ¢� kf]

= !B̂!Ĉ [ 5 ¢� kf] = !B̂Ĉ [ 5 ¢� kf]
(2.10)

⇤

In [90] the authors prove that a feed-forward neural network is equivariant to transfor-
mations from ⌧ if and only if it is constructed from G-equivariant convolutional layers.
Thus Equation 2.7 shows the most general form of scale-equivariant layers which allows
for building scale-equivariant convolutional networks with such choice of (. We will
refer to models using scale-equivariant layers with steerable filters as Scale-Equivariant
Steerable Networks, or shortly SESN1

N O N L I N E A R I T I E S In order to guarantee the equivariance of the network to scale
transformations, we use scale equivariant nonlinearities. We are free to use simple
point-wise nonlinearities. Indeed, point-wise nonlinearities a, like ReLU, commute with
scaling transformations:

[a � !B [ 5 ]] (B0, G0) = a(!B [ 5 ] (B0, G0)) = a( 5 (B�1
B
0
, B

�1
G
0))

= a[ 5 ] (B�1
B
0
, B

�1
G
0) = [!B � a[ 5 ]] (B0, G0)

(2.11)

P O O L I N G Until now we did not discuss how to convert an equivariant mapping to an
invariant one. One way to do this is to calculate the invariant measure of the signal. In
case of translation, such a measure could be the maximum value for example.

First, we propose the maximum scale projection defined as 5 (B, G) ! maxB 5 (B, G).
This transformation projects the function 5 from � to ) . Therefore, the representation
stays equivariant to scaling, but loses all information about the scale itself.

Second, we are free to use spatial max-pooling with a moving window or global max
pooling. Transformation 5 (B, G) ! maxG 5 (B, G) projects the function 5 from � to (.
The obtained representation is invariant to scaling in the spatial domain, however, it
stores the information about scale.

Finally, we can combine both of these pooling mechanisms in any order. The obtained
transformation produces a scale invariant function. It is useful to utilize this transforma-
tion closer to the end of the network, when the deep representation must be invariant to
nuisance input variations, but already has very rich semantic meaning.

2.4 I M P L E M E N TAT I O N

In this paragraph we discuss an efficient implementation of Scale-Equivariant Steerable
Networks. We illustrate all algorithms in Figure 1. For simplicity we assume that zero
padding is applied when it is needed for both the spatial axes and the scale axis.

FI LT E R BA S I S A direct implementation of Equation 2.7 is impossible due to several
limitations. First, the infinite number of scales in ( calls for a discrete approximation.

1 pronounced ‘season’
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We truncate the scale group and limit ourselves to #( scales and use discrete translations
instead of continuous ones. Training of SESN involves searching for the optimal filter in
functional space which is a problem by itself. Rather than solving it directly, we choose a
complete basis of #1 steerable functions  = {k

B
�1
f,8
}#1
8=1

and represent the convolutional
filter as a linear combination of basis functions with trainable parameters F = {F8}#1

8=1
.

In other words, we do the following substitution in Equation 2.7: kf ! ^ =
Õ
8
F8 8

In our experiments we use a basis of 2D Hermite polynomials with 2D Gaussian
envelope, as it demonstrates good results. Assuming that the center of the filter is the
point (0, 0) in coordinates (G, H), we use the filters of the following form:

kf (G, H) = �
1

f
2

�=

⇣
G

f

⌘
�<

⇣
H

f

⌘
exp

h
� G

2 + H2

2f
2

i
(2.12)

Here � is a constant independent on f, �= — Hermite polynomial of the =-th order.
We iterate over increasing pairs of =,< to generate the required number of functions.
The basis is pre-calculated for all scales and fixed. For filters of size + ⇥+ , the basis is
stored as an array of shape [#1, (,+ ,+].

C O N V T!H If the input signal is just a function on ) with spatial size* ⇥*, stored
as an array of shape [⇠in,*,*], then Equation 2.7 can be simplified. The summation
over ( degenerates, and the final result can be written in the following form:

convTH( 5 ,F, ) = squeeze(conv2d( 5 , expand(F ⇥ ))) (2.13)

Here F is an array of shape [⇠out,⇠in, #1]. We compute filter F ⇥  of shape
[⇠out,⇠in, (,+ ,+] and expand it to shape [⇠out,⇠in(,+ ,+]. Then we use standard
2D convolution to produce the output with ⇠out( channels and squeeze it to shape
[⇠out, (,*,*]. Note that the output can be viewed as a stack of feature maps, where all
the features in each spatial position are vectors of ( components instead of being scalars
as in standard CNNs.

C O N V H!H The function on � has a scale axis and therefore there are two options
for choosing weights of the convolutional filter. The filter may have just one scale and,
therefore, does not capture the correlations between different scales of the input function;
or, it may have a non-unitary extent  ( in the scale axis and capture the correlation
between  ( neighboring scales. We refer to the second case as interscale interaction.

It the first case F has shape [⇠out,⇠in, #1] and Equation 2.7 degenerates in the same
way as before

convHH( 5 ,F, ) = squeeze(conv2d(expand( 5 ), expand(F ⇥ ))) (2.14)

We expand 5 to an array of shape [⇠in(,*,*] and expand F ⇥  to have shape
[⇠out(,⇠in(,+ ,+]. The result of the convolution is then squeezed in the same way as
before.

In the case of interscale interaction, F has shape [⇠out,⇠in, (, #1]. We iterate over
all scales in interaction, shift 5 for each scale, choose a corresponding part of F, and
apply convHH to them. We sum the obtained  ( results afterwards.

24



2.5 R E L AT E D W O R K

Figure 1: Left: the way steerable filters are computed using a steerable filter basis. Middle
and right: a representation of scale-convolution using Equation 2.13 and Equation 2.14.
As an example we use input signal 5 with 3 channels. It has 1 scale on ) and 4 scales
on �. It is convolved with filter ^ = F ⇥ without scale interaction, which produces
the output with 2 channels and 4 scales as well. Here we represent only channels of the
signals and the filter. Spatial components are hidden for simplicity.

2.5 R E L AT E D W O R K

Various works on group-equivariant convolutional networks have been published recently.
These works have considered roto-translation groups in 2D [25, 76, 154, 161] and 3D [89,
149,160] and rotation equivariant networks in 3D [23,26,44]. In [50] authors describe the
algorithm for designing steerable filters for rotations. Rotation steerable filters are used
in [27,155,156] for building equivariant networks. In [79] the authors build convolutional
blocks locally equivariant to arbitrary :-parameter Lie group transformation by using
a steerable basis. And in [116] the authors discuss the approach for learning steerable
filters from data. To date, the majority of papers on group equivariant networks have
considered rotations in 2D and 3D, but have not payed attention to scale symmetry. As
we have argued above, it is a fundamentally different case.

Many papers and even conferences have been dedicated to image scale-space — a
concept where the image is analyzed together with all its downscaled versions. Initially
introduced in [78] and later developed by [105, 121, 158] scale space relies on the scale
symmetry of images. The differential structure of the image [88] allows one to make
a connection between image formation mechanisms and the space of solutions of the
2-dimensional heat equation, which significantly improved the image analysis models in
the pre-deep learning era.

One of the first works on scale equivariance and local scale invariance in the frame-
work of CNNs was proposed by [171] named SiCNN. The authors describe the model
with siamese CNNs, where the filters of each instance are rescaled using interpolation
techniques. This is the simplest case of equivariance where no interaction between
different scales is done in intermediate layers. In SI-ConvNet by [84] the original net-
work is modified such that, in each layer, the input is first rescaled, then convolved and
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Method Equivariance Admissible Scales Approach Interscale

SiCNN 3 Grid Filter Rescaling 7
SI-ConvNet 7 Grid Input Rescaling 7
SEVF 3 Grid Input Rescaling 3
DSS 3 Integer Filter Dilation 3
SS-CNN 7 Any Steerable Filters 7

SESN, Ours 3 Any Steerable Filters 3

Table 1: Comparing SESN to SiCNN [171], SI-ConvNet [84], SEVF [110], DSS [163]
and SS-CNN [54]. “Interscale” refers to the ability of capturing interscale interactions
with kernels of non-unitary scale extent. “Grid” stands for the scales which generate
images which lie exactly on the initial pixel grid.

rescaled back to the original size. Finally, the response with the maximum values is
chosen between the scales. Thus, the model is locally scale-invariant. In [110], in the
SEVF model, the input of the layers is rescaled and convolved multiple times to form
vector features instead of scalar ones. The length of the vector in each position is the
maximum magnitude of the convolution, while the direction of the angle encodes the
scale of the image which gave this response. These scale-equivariant networks rely on
image rescaling which is quite slow. [163] (DSS) generalize the concept of scale-space to
deep networks. They use filter dilation to analyze the images on different scales. While
this approach is as fast as the standard CNN, it is restricted only to integer downscale
factors 2, 4, 8 . . . . In [54], while discussing SS-CNN the authors use scale-steerable
filters to deal with scale changes. The paper does not discuss equivariance, which is an
important aspect for scale.

We summarize the information about these models in Table 1. In contrast to other scale-
equivariant models, SESN uses steerable filters which allows for fast scale-convolution
with no limitation of flexibility. With the framework of Scale-Equivariant Convolutional
Networks we are free to build both equivariant and invariant models of different kinds.

2.6 E X P E R I M E N T S

In this section we conduct the experiments and compare various methods for working
with scale variations in input data. Alongside SESN, we test local scale invariant SI-
ConvNet and SS-CNN, scale equivariant SiCNN, SEVF and DSS. For SEVF, DSS and
SS-CNN we use the code provided by authors, while for others we reimplement the main
buildings blocks.

SESN allows for training several times faster than other methods which rely on image
rescaling.

2.6.1 Equivariance error

We have presented scale-convolution which is equivariant to scale transformation and
translation for continuous signals. While translation equivariance holds true even for dis-
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Figure 2: Equivariance error � as a function of the number of layers (left), downscaling
applied to the input image (middle), and as a function of number of scales in interscale
interactions (right). The bars indicate standard deviation.

cretized signals and filters, scale equivariance may not be exact. Therefore, before starting
any experiments, we check to which degree the predicted properties of scale-convolution
hold true. We do so by measuring the difference � = k [!B�( 5 ) ��!B ( 5 )k2

2
/k!B�( 5 )k2

2
,

where � is scale-convolution with randomly initialized weights.
In case of perfect equivariance the difference is equal to zero. We calculate the error

on randomly sampled images from the STL-10 dataset [22]. The results are represented
in Figure 2. The networks on the left and on the middle plots do not have interscale
interactions. The networks on the middle and on the right plots consist of just one layer.
We use #( = 5, 13, 5 scales for the networks on the left, the middle, and the right plots
respectively. While discretization introduces some error, it stays very low, and is not
much higher than 6% for the networks with 50 layers. The difference, however, increases
if the input image is downscaled more than 16 times. Therefore, we are free to use deep
networks. However, we should pay extra attention to extreme cases where scale changes
are of very big magnitude. These are quite rare but still appear in practice. Finally, we
see that using SESN with interscale interaction introduces extra equivariance error due
to the truncation of (. We will build the networks with either no scale interaction or
interaction of 2 scales.

2.6.2 MNIST-scale

Following [54, 84, 110] we conduct experiments on the MNIST-scale dataset. We rescale
the images of the MNIST dataset [97] to 0.3 � 1.0 of the original size and pad them
with zeros to retain the initial resolution. The scaling factors are sampled uniformly and
independently for each image. The obtained dataset is then split into 10,000 for training,
2,000 for evaluation and 50,000 for testing. We generate 6 different realizations and fix
them for all experiments.

As a baseline model we use the model described in [54], which currently holds the state-
of-the-art result on this dataset. It consists of 3 convolutional and 2 fully-connected layers.
Each layer has filters of size 7 ⇥ 7. We keep the number of trainable parameters almost
the same for all tested methods. This is achieved by varying the number of channels. For
scale equivariant models we add scale projection at the end of the convolutional block.
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Method (28 ⇥ 28) (28 ⇥ 28) + (56 ⇥ 56) (56 ⇥ 56) + # Params

CNN 2.56 ± 0.04 1.96 ± 0.07 2.02 ± 0.07 1.60 ± 0.09 495 K
SiCNN 2.40 ± 0.03 1.86 ± 0.10 2.02 ± 0.14 1.59 ± 0.03 497 K
SI-ConvNet 2.40 ± 0.12 1.94 ± 0.07 1.82 ± 0.11 1.59 ± 0.10 495 K
SEVF Scalar 2.30 ± 0.06 1.96 ± 0.07 1.87 ± 0.09 1.62 ± 0.07 494 K
SEVF Vector 2.63 ± 0.09 2.23 ± 0.09 2.12 ± 0.13 1.81 ± 0.09 475 K
DSS Scalar 2.53 ± 0.10 2.04 ± 0.08 1.92 ± 0.08 1.57 ± 0.08 494 K
DSS Vector 2.58 ± 0.11 1.95 ± 0.07 1.97 ± 0.08 1.57 ± 0.09 494 K
SS-CNN 2.32 ± 0.15 2.10 ± 0.15 1.84 ± 0.10 1.76 ± 0.07 494 K

SESN Scalar 2.10 ± 0.10 1.79 ± 0.09 1.74 ± 0.09 1.50 ± 0.07 495 K
SESN Vector 2.08± 0.09 1.76± 0.08 1.68± 0.06 1.42± 0.07 495 K

Table 2: Classification error of different methods on MNIST-scale dataset, lower is better.
In experiment we use image resolution of 28 ⇥ 28 and 56 ⇥ 56. We test both the regime
without data augmentation, and the regime with scaling data augmentation, denoted
with “+”. All results are reported as mean ± std over 6 different fixed realizations of the
dataset. The best results are bold.

For SiCNN, DSS, SEVF and our model, we additionally train counterparts where
after each convolution, an extra projection layer is inserted. Projection layers transform
vector features in each spatial position of each channel into scalar ones. All of the layers
have now scalar inputs instead of vector inputs. Therefore, we denote these models with
“Scalar”. The original models are denoted as “Vector”. The exact type of projection
depends on the way the vector features are constructed. For SiCNN, DSS, and SESN,
we use maximum pooling along the scale dimension, while for SEVF, it is a calculation
of the !2-norm of the vector. We report hyperparameters of the used architectures in
Table 3.

All models are trained with the Adam optimizer [87] for 60 epochs with a batch size
of 128. Initial learning rate is set to 0.01 and divided by 10 after 20 and 40 epochs. We
conduct the experiments with 4 different settings. Following the idea discussed in [54],
in addition to the standard setting we train the networks with input images upscaled to
56 ⇥ 56 using bilinear interpolation. This results in all image transformations performed
by the network becoming more stable, which produces less interpolation artifacts. For
both input sizes we conduct the experiments without data augmentation and with scaling
augmentation, which results in 4 setups in total. We run the experiments on 6 different
realizations of MNIST-scale and report mean ± std calculated over these runs.

The obtained results are summarized in Table 2. The reported errors may differ a bit
from the ones in the original paper because of the variations in generated datasets and
slightly different training procedure. Nevertheless, we try to keep our configuration as
close as possible to [54] which currently demonstrated the best classification accuracy
on MNIST-scale. For example, SS-CNN reports error of 1.91 ± 0.04 in [54] while it has
1.84 ± 0.10 in our experiments.

SESN significantly outperforms other methods in all 4 regimes. “Scalar” versions of
it already outperform all previous methods, and “Vector” versions make the gain even
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Method Conv 1 Conv 2 Conv 3 FC 1 # Scales

CNN 32 63 95

256

1

SiCNN 32 63 95 7

SI-ConvNet 32 63 95 7

SEVF Scalar 32 63 95 8

SEVF Vector 23 45 68 8

DSS 32 63 95 4

SS-CNN 30 60 90 6

SESN 32 63 95 4

Table 3: Number of channels in convolutional layers, number of units in fully-connected
layers and number of scales used by different models.

Method Error, % # Params

WRN 11.48 11.0 M
SiCNN 11.62 11.0 M
SI-ConvNet 12.48 11.0 M
DSS 11.28 11.0 M
SS-CNN 25.47 10.8 M

SESN-A 10.83 11.0 M
SESN-B 8.51 11.0 M
SESN-C 14.08 11.0 M

Harm WRN 9.55 11.0 M

Table 4: Classification error on STL-10. The best results are bold. We additionally report
the current best result achieved by Harm WRN from [151].

more significant. The global architectures of all models are the same for all rows, which
indicates that the way scale convolution is done plays an important role.

2.6.3 STL-10

In order to evaluate the role of scale equivariance in natural image classification, we
conduct the experiments on STL-10 dataset [22]. This dataset consists of 8,000 training
and 5,000 testing labeled images. Additionally, it includes 100,000 unlabeled images.
The images have a resolution of 96 ⇥ 96 pixels and RGB channels. Labeled images
belong to 10 classes such as bird, horse or car. We use only the labeled subset to
demonstrate the performance of the models in the low data regime.

The dataset is normalized by subtracting the per-channel mean and dividing by the
per-channel standard deviation. During training, we augment the dataset by applying
12 pixel zero padding and randomly cropping the images to size 96 ⇥ 96. Additionally,
random horizontal flips with probability 50% and Cutout [37] with 1 hole of 32 pixels
are used.
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Method Block 1 Block 2 Block 3 # Scales

CNN 16 32 64 1

SiCNN 16 32 64 3

SI-ConvNet 16 32 64 3

SEVF 11 23 45 3

DSS 16 32 64 4

SS-CNN 11 22 44 3

SESN 16 32 64 3

Table 5: Number of channels in convolutional blocks and number of scales used by
different models in Section 2.6.2. We report the number of channels up to the widening
factor.

As a baseline we choose WideResNet [173] with 16 layers and a widening factor of 8.
We set dropout probability to 0.3 in all blocks. We train SESN-A with just vector features.
For SESN-B we use maximum scalar projection several times in the intermediate layers,
and for SESN-C we use interscale interaction.

All models are trained for 1000 epochs with a batch size of 128. We use SGD optimizer
with Nesterov momentum of 0.9 and weight decay of 5 · 10

�4. The initial learning rate is
set to 0.1 and divided by 5 after 300, 400, 600 and 800 epochs. We report configurations
of the models in Table 5.

The results are summarized in Table 4. We found SEVF training unstable and therefore
do not include it in the table. Pure scale-invariant SI-ConvNet and SS-CNN demonstrate
significantly worse results than the baseline. We note the importance of equivariance for
deep networks. We also find that SESN-C performs significantly worse than SESN-A
and SESN-B due to high equivariance error caused by interscale interaction. SESN-B
significantly improves the results of both WRN and DSS due to the projection between
scales. The maximum scale projection makes the weights of the next layer to have a
maximum receptive field in the space of scales. This is an easy yet effective method
for capturing the correlations between different scales. This experiment shows that
scale-equivariance is a very useful inductive bias for natural image classification with
deep neural networks.

To the best of our knowledge, the proposed method achieves a new state-of-the-art
result on the STL-10 dataset in the supervised learning setting. The previous lowest
error is demonstrated in [151]. The authors propose Harm WRN — a network where
the convolutional kernels are represented as a linear combination of Discrete Cosine
Transform filters.

2.7 T I M E P E R F O R M A N C E

We report the average time per epoch of different methods for scale equivariance and
local scale invariance in Table 6. Experimental setups from Section 2.6.2 are used. We
used 1 Nvidia GeForce GTX 1080Ti GPU for training the models.
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The methods relying on image rescaling techniques during training (SiCNN, SI-
ConvNet, SEVF) demonstrate significantly worse time performance that the ones, using
either steerable filters or filter dilation. Additionally, we see that our method outperforms
SS-CNN by a wide margin. Despite the similar filter sizes and comparable number of
parameters between SS-CNN and SESN Scalar, the second one demonstrates significantly
better results due to the algorithm proposed in Section 2.4. Finally, DSS performs slightly
faster in some cases than our method as each convolution involves less FLOPs. Dilated
filters are sparse, while steerable filters are dense.

Method 28 ⇥ 28, s 56 ⇥ 56, s

CNN 3.8 3.8

SiCNN Scalar 13.5 18.9

SiCNN Vector 15.3 22.8

SI-ConvNet 18.4 33.1

SEVF Scalar 21.0 38.4

SEVF Vector 25.4 46.0

DSS Scalar 3.9 5.0

DSS Vector 3.9 4.8

SS-CNN 14.8 16.6

SESN Scalar 3.8 5.1

SESN Vector 3.8 6.8

Table 6: Average time per epoch during training on input data with resolution 28 ⇥ 28

and 56 ⇥ 56.

2.8 D I S C U S S I O N

In this paper, we have presented the theory of Scale-Equivariant Steerable Networks. We
started from the scaling transformation and its application to continuous functions. We
have obtained the exact formula for scale-equivariant mappings and demonstrated how it
can be implemented for discretized signals. We have demonstrated that this approach
outperforms other methods for scale-equivariant and local scale-invariant CNNs. It
demonstrated new state-of-the-art results on MNIST-scale and on the STL-10 dataset in
the supervised learning setting.

We suppose that the most exciting possible application of SESN is in computer
vision for autonomous vehicles. Rapidly changing distances between the objects cause
significant scale variations which makes this well suited for our work. We especially
highlight the direction of siamese visual tracking where the equivariance to principle
transformations plays an important role.
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3.1 I N T RO D U C T I O N

Siamese trackers turn tracking into similarity estimation between a template and the
candidate regions in the frame. The Siamese networks are successful because the
similarity function is powerful: it can learn the variances of appearance very effectively,
to the degree that even the association of the frontside of an unknown object to its
backside is usually successful. And, once the similarity is effective, the location of the
candidate region is reduced to simply selecting the most similar candidate.

Mathematically, one of the key ingredients of success of the similarity function is
translation equivariance, i.e. a translation in the input image is to result in the proportional
translation in feature space. Non-translation-equivariant architectures will induce a
positional bias during training, so the location of the target will be hard to recover
from the feature space [98, 177]. In real life scenarios, the target will undergo more
transformations than just translation, and unless the network has an internal mechanism
to handle them, the similarity may degrade. We start from the position that equivariance
to common transformations should be the guiding principle in designing conceptually
simple yet robust trackers. To that end, we focus on scale equivariance for trackers in
this paper.

Measuring scale precisely is crucial when the camera zooms its lens or when the target
moves into depth. However, scale is also important in distinguishing among objects in
general. In following a marching band or in analysing a soccer game, or, in general,
when many objects in the video have a similar appearance (a crowd, a heard, team
sports), the similarity power of Siamese trackers has a hard time locating the right target.
In such circumstances spatial-scale equivariance will provide a richer and hence more
discriminative descriptor, which is essential to differentiate among several but similar
candidates in an image. And, even, as we will show, when the sequence does not show
variation over scale, proper scale measurement is important to keep the target bounding
box stable in size.

The common way to implement scale into a tracker is to train the network on a large
dataset where scale variations occur naturally. However, as was noted in [96], such
training procedures may lead to learning groups of re-scaled duplicates of almost the
same filters. And, as a consequence, inter-scale similarity estimation becomes unreliable,
see Figure 3 top. Scale-equivariant models have an internal notion of scale and a built-in
weight sharing among different filter scales. Thus, scale equivariance aims to produce
the same distinction for all sizes, see Figure 3 bottom.
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Figure 3: The standard version (top) and the scale-equivariant version (bottom) of a
basic tracker. The scale-equivariant tracker has an internal notion of scale which allows
for the distinction between similar objects which only differ in scale.

In this paper, we aim to equip the Siamese network with spatial and scale equivariance
built-in from the start to capture the natural variations of the target a priori. We aim to
improve a broad class of tracking algorithms by enhancing their capacity of candidate
distinction. We adopt recent advances [144] in convolutional neural networks (CNNs)
which handle scale variations explicitly and efficiently.

While scale-equivariant convolutional models have led to success in image classi-
fication [144, 161], we focus on their usefulness in object localization. Where scale
estimation has been used in the localization for tracking, it typically relies on brute-force
multi-scale detection with an obvious computational burden [10, 33], or on a separate
network to estimate the scale [31, 100]. Both approaches, will require attention to avoid
bias and the propagation thereof through the network. Our new method treats scale
and scale equivariance as a desirable fundamental property, which makes the algorithm
conceptually easier. Hence, scale equivariance should be easy to merge into an existing
network for tracking. Then, scale equivariance will enhance the performance of the
tracker without further modification of the network or extensive data augmentation during
the learning phase.

We make the following contributions:

• We propose the theory for scale-equivariant Siamese trackers, and we provide a
simple recipe of how to make a wide range of existing trackers scale-equivariant.

• We implement a scale-equivariant variant of a popular Siamese tracker — extending
SiamFC [10] to scale-equivariant behaviour.
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3.2 R E L AT E D W O R K

Figure 4: Left: convolutional kernels use a fixed kernel basis on multiple scales, each
with a set of trainable weights. Middle: a representation of scale-convolution using
Equation 3.6 for the first and all subsequent layers. Right: a scheme of scale max-pooling,
which transforms a 3D-signal into a 2D one without loosing scale equivariance. As an
example we use a basis of 4 functions and 3 scales with a step of

p
2. Only one channel

of each convolutional layer is demonstrated for simplicity.

• We demonstrate the advantage of scale-equivariant Siamese trackers over their
conventional counterparts on popular benchmarks.

3.2 R E L AT E D W O R K

S I A M E S E T R AC K I N G The challenge of learning to track arbitrary objects can be
addressed by deep similarity learning [10]. The common approach is to employ Siamese
networks to compute the embeddings of the original patches. The embeddings are
then fused to obtain a location estimate. Such a formulation is general, allowing for
a favourable flexibility in the design of the tracker. The pioneering works of Tao et
al. [148] and of Bertinetto et al. [10] employ off-line trained CNNs as feature extractors.
They compare dot-product similarities between the feature map of the template with
the maps coming from the current frame. Bertinetto et al. [10] additionally measures
similarities on multiple scales. Li et al. [100] considers tracking as a one-shot detection
problem to design Siamese region-proposal-networks [125] by fusing the features from a
fully-convolutional backbone. The recent ATOM [31] and DIMP [11] trackers employ
a multi-stage tracking framework, where an object is coarsely localized by the online
classification branch, and subsequently refined in its position by the estimation branch.
From a Siamese perspective, in both [11, 31] the object embeddings are first fused to
produce an initial location and subsequently processed by the IoU-Net [82] to enhance
the precision of the bounding box.

The aforementioned references have laid the foundation for most of the state-of-
the-art trackers. These methods share an implicit or explicit attention to translation
equivariance for feature extraction. The decisive role of translation equivariance is noted
in [10, 98, 177]. Bertinetto et al. [10] utilize fully-convolutional networks where the
output directly commutes with a shift in the input image as a function of the total stride.
Li et al. [98] suggest a training strategy to eliminate the spatial bias introduced in non-
fully-convolutional backbones. Along the same line, Zhang and Peng [177] demonstrated
that deep state-of-the-art models developed for classification are not directly applicable
for localization. And hence these models are not directly applicable to tracking as
they induce positional bias, which breaks strict translation equivariance. We argue that
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transformations, other then translation, such as rotation may be equally important for
certain classes of videos like sports and following objects in the sea or in the sky. And
we argue that scale transformation is common in the majority of sequences due to the
changing distances between objects and the camera. In this paper, we take on the latter
class of transformations for tracking.

E Q U I VA R I A N T C N N S Various works on transformation-equivariant convolutional
networks have been published recently. They extend the built-in property of translation-
equivariance of conventional CNNs to a broader set of transformations. Mostly consid-
ered was roto-translation, as demonstrated on image classification [25, 27, 76, 129, 131,
154], image segmentation [156] and edge detection [161].

One of the first works on scale-translation-equivariant convolutional networks was by
Marcos et al. [110]. In order to process images on multiple scales, the authors resize
and convolve the input of each layer multiple times, forming a stack of features which
corresponds to variety of scales. The output of such a convolutional layer is a vector
whose length encodes the maximum response in each position among different scales.
The direction of the vector is derived from the scale, which gave the maximum. The
method has almost no restrictions in the choice of admissible scales. As this approach
relies on rescaling the image, the obtained models are significantly slower compared to
conventional CNNs. Thus, this approach is not suitable for being applied effectively in
visual object tracking.

Worrall & Welling [163] propose Deep Scale-Spaces, an equivariant model which
generalizes the concept of scale-space to deep networks. The approach uses filter dilation
to analyze the images on different scales. It is almost as fast as a conventional CNN
with the same width and depth. As the method is restricted to integer scale factors it is
unsuited to applications in tracking where the scene dictates arbitrary scale factors.

Almost simultaneously, three papers [8, 144, 181] were proposed to implement scale-
translation-equivariant networks with arbitrary scales. What they have in common is
that they use a pre-calculated and fixed basis defined on multiple scales. All filters are
then calculated as a linear combination of the basis and trainable weights. As a result,
no rescaling is used. We prefer to use [144], as Sosnovik et al. propose an approach for
building general scale-translation-equivariant networks with an algorithm for the fast
implementation of the scale-convolution.

To date, the application of scale-equivariant networks was mostly demonstrated in
image classification. Almost no attention was paid to tasks that involve object localization,
such as visual object tracking. As we have noted above, it is a fundamentally different
case. To the best of our knowledge, we demonstrate the first application of transformation-
equivariant CNNs to visual object tracking.

3.3 S C A L E - E Q U I VA R I A N T T R AC K I N G

In this work, we consider a wide range of modern trackers which can be described by the
following formula:

⌘(I, G) = q- (G) ¢q/ (I) (3.1)
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where I, G are the template and the input frame, and q- , q/ are the functions which
process them, and ¢ is the convolution operator. The resulting value ⌘(I, G) is a heatmap
that can be converted into a prediction by relatively simple calculations. Functions q- , q/

here can be parametrized as feed-forward neural networks. For our analysis, it is both
suitable if the weights of these networks are fixed or updated during training or inference.
This pipeline describes the majority of siamese trackers such as [10, 98, 100, 148] or the
trackers based on correlation filters [32, 33].

3.3.1 Convolution is all you need

Let us consider some mapping 6. It is equivariant under a transformation ! if and only if
there exists !0 such that 6 � ! = !0 � 6. If !0 is the identity mapping, then the function
6 is invariant under this transformation. A function of multiple variables is equivariant
when it is equivariant with respect to each of the variables. In our analysis, we consider
only transformations that form a transformation group, in other words, ! 2 ⌧.

Theorem 1. A function given by Equation 3.1 is equivariant under a transformation !
from group ⌧ if and only if q- and q/ are constructed from ⌧-equivariant convolutional
layers and ¢ is the ⌧-convolution.

Proof. Let us fix I = I0 and introduce a function ⌘- (G) = ⌘(G, I0) = q- (G) ¢ q/ (I0).
This function is a feed-forward neural network. All its layers but the last one are contained
in q- and the last layer is a convolution with q/ (I0). According to [90] a feed-forward
neural network is equivariant under transformations from⌧ if and only if it is constructed
from ⌧-equivariant convolutional layers. Thus, the function ⌘- is equivariant under
transformations from ⌧ if and only if

• The function q- is constructed from ⌧-equivariant convolutional layers

• The convolution ¢ is the ⌧-convolution

If we then fix G = G0, we can show that a function ⌘/ (I) = ⌘(G0, I) = q- (G0) ¢q/ (I) is
equivariant under transformations from ⌧ if and only if

• The function q/ is constructed from ⌧-equivariant convolutional layers

• The convolution ¢ is the ⌧-convolution

The function ⌘ is equivariant under ⌧ if and only if both the function ⌘- and the
function ⌘/ are equivariant. ⇤

A simple interpretation of this theorem is that a tracker is equivariant to transforma-
tions from⌧ if and only if it is fully⌧-convolutional. The necessity of fully-convolutional
trackers is well-known in tracking community and is related to the ability of the tracker
to capture the main variations in the video — the translation. In this paper, we seek to
extend this ability to scale variations as well. Which, due to Theorem 1 boils down to
using scale-convolution and building fully scale-translation convolutional trackers.
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3.3.2 Scale Modules

Given a function 5 : ' ! ', a scale transformation is defined as follows:

!B [ 5 ] (C) = 5 (B�1
C), 8B � 0 (3.2)

where cases with B > 1 are refered to as upscale and with B < 1 as downscale. Standard
convolutional layers and convolutional networks are translation equivariant but not
scale-equivariant [144].

PA R A M E T R I C S C A L E - C O N VO L U T I O N In order to build scale-equivariant convo-
lutional networks, we follow the method proposed by Sosnovik et al. [144]. We begin
by choosing a complete basis of functions defined on multiple scales. Choosing the
center of the function to be the point (0, 0) in coordinates (D, E), we use functions of the
following form:

kf=< (D, E) = � 1

f
2

�=

⇣
D

f

⌘
�<

⇣
E

f

⌘
4
� D2+E2

2f2 (3.3)

Here �= — Hermite polynomial of the =-th order. � is a constant used for normalization.
In order to build a basis of # functions, we iterate over increasing pairs of = and <. We
build such a basis for a chosen set of equidistant scales f and fix it:

 f =
n
kf00, kf01, kf10, kf11 . . .

o
(3.4)

Kernels of convolutional layers are parametrized by trainable weights F in the follow-
ing way:

^f =
’
8

 f8F8 (3.5)

As a result, each kernel is defined on multiple scales and no image interpolation is used.
Given a function of scale and translation 5 (B, C) and a kernel ^f (B, C), a scale convolution
is defined as:

[ 5 ¢� ^f] (B, C) =
’
B
0
[ 5 (B0, ·) ¢ ^B·f (B�1

B
0
, ·)] (C) (3.6)

The result of this operation is a stack of features each of which corresponds to a different
scale. We end up with a 3-dimensional representation of the signal — 2-dimensional
translation + scale. We follow [144] and denote scale-convolution as ¢� in order to
distinguish it from the standard one. Figure 4 demonstrates how a kernel basis is formed
and how scale-convolutional layers work.

FA S T 1 ⇥ 1 S C A L E - C O N VO L U T I O N An essential building block of many back-
bone deep networks such as ResNets [67] and Wide ResNets [173] is a 1⇥1 convolutional
layer. We follow the interpretation of these layers proposed in [102] — it is a linear
combination of channels. Thus, it has no spatial resolution. In order to build a scale-
equivariant counterpart of 1 ⇥ 1 convolution, we do not utilize a kernel basis. As we
pointed out before, the signal is stored as a 3 dimensional tensor for each channel. There-
fore, for a kernel defined on #( scales, the convolution of the signal with this kernel is
just a 3-dimensional convolution with a kernel of size 1 ⇥ 1 in spatial dimension, and

38



3.3 S C A L E - E Q U I VA R I A N T T R AC K I N G

Figure 5: Left: two samples from the simulated sequence. The input image is a translated
and cropped version of the source image. The output is the heatmap produced by the
proposed model. The red color represents the place where the object is detected. Right:
correspondence between the input and the output shifts.

with #( values in depth. This approach for 1 ⇥ 1 scale-convolution is faster than the
special case of the algorithm proposed in [144].

PA D D I N G Although zero padding is a standard approach in image classification
for saving the spatial resolution of the image, it worsens the localization properties
of convolutional trackers [98, 177]. Nevertheless, a simple replacement of standard
convolutional layers with scale-equivariant ones in very deep models is not possible
without padding. Scale-equivariant convolutional layers have kernels of a bigger spatial
extent because they are defined on multiple scales. We use circular padding during
training and zero padding during testing in our models.

The introduced padding does not affect the feature maps which are obtained with
kernels defined on small scales. In Figure 5 we demonstrate that it does not violate the
translation equivariance of a network. We choose an image and select a sequence of
translated and cropped windows inside of it. We process this sequence with a deep model
that consists of the proposed convolutional layers and follows the inference procedure
described in [177]. We derive the predicted location of the object and compare its value
to the input shift. The input and the output translations have almost identical values.

S C A L E - P O O L I N G In order to capture correlations between different scales and to
transform a 3-dimensional signal into a 2-dimensional one, we utilize global max pooling
along the scale axis. This operation does not eliminate the scale-equivariant properties
of the network. We found that it is useful to additionally incorporate this module in the
places where conventional CNNs have spatial max pooling or strides. The mechanism of
scale-pooling is illustrated in Figure 4.

N O N - PA R A M E T R I C S C A L E - C O N VO L U T I O N The convolutional operation which
results in the heatmap of a tracker is non-parametric. Both the input and the kernel come
from neural networks. Thus, the approach described in Equation 3.6 is not suitable for
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this case. Given two functions 51, 52 of scale and translation the non-paramteric scale
convolution is defined as follows:

[ 51¢� 52] (B, C) = !B�1 [!B [ 51] ¢ 52] (C) (3.7)

Here !B is rescaling implemented as bicubic interpolation. Although it is a relatively slow
operation, it is used only once in the tracker and does not heavily affect the inference time.
Let us prove that non-parametric scale convolution is equivariant under scale-translation.

Proof. A function given by Equation 3.7 is equivariant under scale transformations of
51, indeed

[!B̂ [ 51] ¢� 52] (B, C) = !B�1 [!BB̂ [ 51] ¢ 52] (C)
= !B̂! (BB̂)�1 [!BB̂ [ 51] ¢ 52] (C)
= !B̂ [ 51¢� 52] (BB̂, C)

(3.8)

For a pair of scale and translation B, Ĉ we have the following property of the joint
transformation !B)Ĉ = )ĈB!B from [144], where )

Ĉ
is the translation operator defined as

)
Ĉ
[ 5 ] (C) = 5 (C � Ĉ). Now we can show the following:

[)
Ĉ
[ 51] ¢� 52] (B, C) = !B�1 [!B [)Ĉ [ 51]] ¢ 52] (C)

= !
B
�1 [)

ĈB
!B [ 51] ¢ 52] (C)

= !
B
�1)

ĈB
[!B [ 51] ¢ 52] (C)

= )
Ĉ
!
B
�1 [!B [ 51] ¢ 52] (C)

= )
Ĉ
[ 51¢� 52] (C)

(3.9)

Therefore, a function given by Equation 3.7 is also equivariant under translations of 51.
The equivariance of the function with respect to a joint transformation follows from the
equivariance to each of the transformations separately [144].

We proved the equivariance with respect to 51. The proof with respect to 52 is
analogous. ⇤

3.3.3 Extending a Tracker to Scale Equivariance

We present a recipe to extend a tracker into scale equivariance.

1. The first step is to estimate to what degree objects change in size in this domain,
and then to select a set of scales f1,f2, . . .f# . This is a domain-specific hyperpa-
rameter. For example, a domain with significant scale variations requires a broader
span of scales, while for more smooth sequences the set may consist of just 3
scales around 1.

2. For a tracker which can be described by Equation 3.1, derive q- and q/ .

3. For the networks represented by q- and q/ all convolutional layers need to be
replaced with scale-convolutional ones. The basis for these layers is based on the
chosen scales f1,f2, . . .f# .
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4. (Optional) Scale-pooling can be included to additionally capture inter-scale corre-
lations between all scales.

5. The connection operation ¢ needs to be replaced with a non-parametric scale-
convolution.

6. (Optional) If the tracker only searches over spatial locations, scale-pooling needs
to be included at the very end.

The obtained tracker produces a heatmap ⌘(I, G) defined on scale and translation.
Therefore, each position is assigned with a vector of features that has both the measure
of similarity and the scale relation between the candidate and the template. If additional
scale-pooling is included, then all scale information is just aggregated in the similarity
score

Note that the overall structure of the tracker, as well as the training and inference
procedures are not changed. Thus, the recipe allows for a simple extension of a tracker
with little cost of modification.

3.4 S C A L E - E Q U I VA R I A N T S I A M F C

While the proposed algorithm is applicable to a wide range of trackers, in this work, we
focus on Siamese trackers. As a baseline we choose SiamFC [10]. This model serves as
a starting point for modifications for the many of the modern high-performance Siamese
trackers.

3.4.1 Architecture

Given the recipe, here we discuss the actual implementation of scale-equivariant SiamFC
tracker (SE-SiamFC). In the first step of the recipe we assess the range of scales in the
domain (dataset). In sequences presented in most of the tracking benchmarks, like OTB
or VOT, objects change their size relatively slowly from one frame to the other. The
maximum scale change usually does not exceed a factor of 1.5 � 2. Therefore, we use
3 scales with a step of

p
2, as the basis for the scale-convolutions. The next step in the

recipe is to represent the tracker as it is done in Equation 3.1. SiamFC localizes the object
as the coordinate argmax of the heatmap ⌘(I, G) = q/ (I) ¢q- (G), where q/ = q- are
convolutional Siamese backbones. Next, in step number 3, we modify the backbones by
replacing standard convolutions by scale-equivariant ones. We follow step 4 and utilize
scale-pooling in the backbones in order to capture additional scale correlations between
features of various scales. According to step 5 the connecting correlation is replaced
with non-parameteric scale-convolution. SiamFC computes its similarity function as a
2-dimensional map, therefore, we follow step 6 and add extra scale-pooling in order to
transform a 3-dimensional heatmap into a 2-dimensional one. Now, we can use exactly
the same inference algorithm as in the original paper [10]. We use the standard approach
of scale estimation, based on greedy selection of the best similarity for 3 different scales.
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Figure 6: Top: examples of simulated T-MNIST and S-MNIST sequences. Bottom:
scale estimation for equivariant and non-equivariant models. In S-MNIST example
SE-SiamFC can estimate the scale more accurately. In T-MNIST example, our model
better preserves the scale of the target unchanged, while non-scale-equivariant model is
prone to oscillations in its scale estimate.

Figure 7: The visualization of the weight initialization scheme from a pretrained model.
Dashed connections are initialized with 0.

3.4.2 Weight Initialization

An important ingredient of a successful model training is the initialization of its weights.
A common approach is to use weights from an Imagenet [36] pre-trained model [98, 100,
177]. In our case, however, it requires additional steps, as there are no available scale-
equivariant models pre-trained on the Imagenet. We present a method for initializing a
scale-equivariant model with weights from a pre-trained conventional CNN. The key idea
is that a scale-equivariant network built according to Section 3.3.3 contains a sub-network
that is identical to the one of the non-scale-equivariant counterpart. As the kernels of
scale-equivariant models are parameterized with a fixed basis and trainable weights, our
task is to initialize these weights.

We begin by initializing the inter-scale correlations by setting to 0 all weights respon-
sible for these connections. At this moment, up to scale-pooling, the scale-equivariant
model consists of several networks parallel but yet disconnect to one another where the
only difference is the size of their filters. For the convolutional layers with a non-unitary
spatial extent, we initialize the weights such that the kernels of the smallest scale match
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Tracker T/T T/S S/T S/S # Params

SiamFC 0.64 0.62 0.64 0.63 999 K
SE-SiamFC 0.76 0.69 0.77 0.70 999 K

Table 7: AUC for models trained on T-MNIST and S-MNIST. T/S indicates that the model
was trained on T-MNIST and tested on S-MNIST datasets. Bold numbers represent the
best result for each of the training/testing scenarios.

those of the source model. Given a source kernel ^0(D, E) and a basis  f8 (D, E) with
f = 1 weights F8 are chosen to satisfy the linear system derived from Equation 3.5:

^1(D, E) =
’
8

 18 (D, E)F8 = ^0(D, E), 8D, E (3.10)

As the basis is complete by construction, its matrix form is invertible. The system has a
unique solution with respect to F8:

F8 =
’
D,E

 �1

18
(D, E)^0(D, E) (3.11)

All 1 ⇥ 1 scale-convolutional layers are identical to standard 1 ⇥ 1 convolutions after
zeroing out inter-scale correlations. We copy these weights from the source model. See
Figure 7 for more details.

3.5 E X P E R I M E N T S A N D R E S U LT S

Tracker Year OTB-2013 OTB-2015

AUC Prec. AUC Prec.

SINT [148] 2016 0.64 0.85 - -
SiamFC [10] 2016 0.61 0.81 0.58 0.77
DSiam [62] 2017 0.64 0.81 - -
StructSiam [176] 2018 0.64 0.88 0.62 0.85
TriSiam [42] 2018 0.62 0.82 0.59 0.78
SiamRPN [100] 2018 - - 0.64 0.85
SiamFC+ [177] 2019 0.67 0.88 0.64 0.85

SE-SiamFC Ours 0.68 0.90 0.66 0.88

Table 8: Performance comparisons on OTB-2013, OTB-2015. Bold numbers represent
the best result for each of the benchmarks.
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Tracker Year VOT16 VOT17

EAO A R EAO A R

SINT [148] 2016 - - - - - -
SiamFC [10] 2016 0.24 0.53 0.46 0.19 0.50 0.59
DSiam [62] 2017 - - - - - -
StructSiam [176] 2018 0.26 - - - - -
TriSiam [42] 2018 - - - 0.20 - -
SiamRPN [100] 2018 0.34 0.56 0.26 0.24 0.49 0.46
SiamFC+ [177] 2019 0.30 0.54 0.38 0.23 0.50 0.49

SE-SiamFC Ours 0.36 0.59 0.24 0.27 0.54 0.38

Table 9: Performance comparisons on VOT16 and VOT17 benchmarks. Bold numbers
represent the best result for each of the benchmarks.

3.5.1 Translation-Scaling MNIST

To test the ability of a tracker to cope with translation and scaling, we conduct an
experiment on a simulated dataset with controlled factors of variation. We construct the
datasets of translating (T-MNIST) and translating-scaling (S-MNIST) digits. In particular,
to form a sequence we randomly sample up to 8 MNIST digits with backgrounds from
the GOT10k dataset [77]. Then, on each of the digits in the sequence independently, a
smoothed Brownian motion model induces a random translation. Simultaneously, for
S-MNIST, a smooth scale change in the range [0.67, 1.5] is induced by the sine rule:

B8 (C) =
(⌘ � ;)

2

h
sin( C

4

+ V8) + 1)
i
+ ; (3.12)

where B8 (C) is the scale factor of 8-th digit in the C-th frame, ⌘, ; are upper and lower
bounds for scaling, and V8 2 [0, 100] is a phase, sampled randomly for each of the digits.
In total, we simulate 1000 sequences for training, and 100 for validation. Each sequence
has a length of 100 frames.

We compare two configurations of the tracker: (i) SiamFC with a shallow backbone
and (ii) its scale-equivariant version SE-SiamFC. We conduct the experiments according
to 2⇥ 2 scenarios: the models are trained on either S-MNIST or T-MNIST and are tested
on either of them. The results are listed in Table 7.

For both T-MNIST and S-MNIST, we use architectures described in Table 10. 2D
BatchNorm and ReLU are inserted after each of the convolutional layers except the last
one. We do not use max pooling to preserve strict translation-equivariance.

We train both models for 50 epochs using SGD with a mini-batch of 8 images and
exponentially decay the learning rate from 10

�2 to 10
�5. We set the momentum to 0.9

and the weight decay to 5 · 10
�4. A binary cross-entropy loss as in [10] is used. The

inference algorithm is the same for both SiamFC and SE-SiamFC and follows the original
implementation [10].

As can be seen from Table 7, the equivariant version outperforms its non-equivariant
counterpart in all four scenarios. The experiment on S-MNIST varying the scale of an
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Stage SiamFC SE-SiamFC

Conv1
⇥
3 ⇥ 3, 96, B = 2

⇤

Conv2
⇥
3 ⇥ 3, 128, B = 2

⇤

Conv3
⇥
3 ⇥ 3, 256, B = 2

⇤

Conv4
⇥
3 ⇥ 3, 256, B = 1

⇤

Connect Cross-correlation Non-parametric
scale-convolution

# Params 999 K 999 K

Table 10: Architectures used in T/S-MNIST experiment. All convolutions in SE-SiamFC
are scale-convolutions.

artificial object, shows that the scale-equivariant model has superior ability to precisely
follow the change in scale compared to the conventional one. The experiment on T-
MNIST shows that (proper) measurement of scale is important even in the case when
the sequence does not show change in scale, where the observed scale in SE-SiamFC
fluctuates much less than it does in the baseline (see Figure 6).

3.5.2 Benchmarking

We compare the scale-equivariant tracker against a non-equivariant baseline on popular
tracking benchmarks. We test SE-SiamFC with a backbone from [177] against other pop-
ular Siamese trackers on OTB-2013, OTB-2015, VOT16 and VOT17. The benchmarks
are chosen to allow direct comparison with the baseline [177].

I M P L E M E N TAT I O N D E TA I L S The parameters of our model are initialized with
weights pre-trained on Imagenet by a method described in Section 3.4.2. We use the
same training procedure as in the baseline.

For OTB and VOT experiments we used architectures described in Table 11. We use
the baseline [177] with Cropping Inside Residual (CIR) units. SE-SiamFC is constructed
directly from the baseline as described in the paper. In Table 11 the kernel size refers to
the smallest scale f = 1 in the network. The sizes of the kernels, which correspond to
bigger scales are 9 ⇥ 9 for Conv1 and 5 ⇥ 5 for other layers. Figure 9 gives a qualitative
comparison of the proposed method and the baseline.

The pairs for training are collected from the GOT10k [77] dataset. We adopt the same
prepossessing and augmentation techniques as in [177]. The inference procedure remains
unchanged compared to the baseline.

OT B We test on the OTB-2013 [164] and OTB-2015 [165] benchmarks. Each of the
sequences in the OTB datasets carries labels from 11 categories of difficulty in tracking
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Stage SiamFC+ SE-SiamFC

Conv1
⇥
7 ⇥ 7, 64, B = 2

⇤ ⇥
7 ⇥ 7, 64, B = 2

⇤

max pool
⇥
2 ⇥ 2, B = 2

⇤

Conv2
266664

1 ⇥ 1, 64

3 ⇥ 3, 64

1 ⇥ 1, 256

377775
⇥ 3

266664
1 ⇥ 1, 64, 8 = 2

3 ⇥ 3, 64

1 ⇥ 1, 256

377775
⇥ 3

Conv3
266664
1 ⇥ 1, 128

3 ⇥ 3, 128

1 ⇥ 1, 512

377775
⇥ 3

266664
1 ⇥ 1, 128, sp

3 ⇥ 3, 128

1 ⇥ 1, 512

377775
⇥ 3

Connect Cross-correlation Non-parametric
scale-convolution

# Params 1.44 M 1.45 M

Table 11: Architectures used in OTB/VOT experiments. All convolutions in SE-SiamFC
are scale-convolutions. s refers to stride, sp denotes scale pooling, i — is the size of the
kernel in a scale dimension.

the sequence like: occlusion, scale variation, in-pane rotation, etc. We employ a standard
one-pass evaluation (OPE) protocol to compare our method with other trackers by area
under the success curve (AUC) and precision.

The results are reported in Table 8. Our scale-equivariant tracker outperforms its
non-equivariant counterpart by more than 3% on OTB-2015 in both AUC and precision,
and by 1.4% on OTB-2013. When summarized per different label of difficulty (see
Figure 8), the proposed scale-equivariant tracker will improve all sequence types, not
just the ones labeled with “scale variation”.

We attribute this to the fact that “scale variation” tag in OTB benchmark only indicates
the sequences with a relatively big change in scale factors, while up to a certain degree,
scaling is present in almost any video sequence. Moreover, scaling may be present
implicitly, in the form of the same patterns being observed on multiple scales. An ability
of our model to exploit this leads to a better utilization of trainable parameters and a
more discriminative Siamese similarity as a result.

VOT We next evaluate our tracker on VOT2016 and VOT2017 datasets [91]. The
performance is evaluated in terms of average bounding box overlap ratio (A), and the
robustness (R). These two metrics are combined into the Expected Average Overlap
(EAO), which is used to rank the overall performance.

The results are reported in Table 9. On VOT2016 our scale-equivariant model shows
an improvement from 0.30 to 0.36 in terms of EAO, which is a 20% gain compared to
the non-equivariant baseline. On VOT2017, the increase in EAO is 17%.
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Figure 8: Comparison of AUC on OTB-2013 with different factors of variations. The red
polygon corresponds to the baseline SiamFC+ and the green polygon — to SE-SiamFC.

Figure 9: Qualitative comparison of the proposed SE-SiamFC with the baseline SiamFC+
on 3 sequences (bag, fish2, octopus) from VOT2016. Our method handles rapid scale
change better and accurately models an object’s size.

We qualitatively investigate the sequences with the largest performance gain (see
Figure 9). We observed that the most challenging factor for our baseline is the rapid
scaling of the object. Even when the target is not completely lost, an imprecise bounding
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box heavily influences the overlap with the ground truth and the final EAO. Our scale-
equivariant model better adapts to the fast scaling and delivers tighter bounding boxes.

3.6 D I S C U S S I O N

In this work, we argue about the usefulness of additional scale equivariance in visual
object tracking for the purpose of enhancing Siamese similarity estimation. We present
a general theory that applies to a wide range of modern Siamese trackers, as well as
all the components to turn a tracker into a scale-equivariant one. Moreover, we prove
that the presented components are both necessary and sufficient to achieve built-in
scale-translation equivariance. We sum up the theory by developing a simple recipe for
extending existing trackers to scale equivariance. We apply it to develop SE-SiamFC —
a scale-equivariant modification of the popular SiamFC tracker.

We experimentally demonstrate that our scale-equivariant tracker outperforms its con-
ventional counterpart on OTB and VOT benchmarks and on the synthetically generated
T-MNIST and S-MNIST datasets, where T-MNIST is designed to keep the object at
constant scale, and S-MNIST varies the scale in known manner.

The experiments on T-MNIST and S-MNIST show the importance of proper scale
measurement for all sequences, regardless whether they have scale change or not. For the
standard OTB and VOT benchmarks, our tracker proves the power of scale equivariance.
It not only improves the tracking in case of scaling, but also when other factors of
variations are present (see Figure 8). It affects the performance in two ways: it prevents
erroneous jumps to similar objects at a different size and it provides a better consistent
estimate of the scale.
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4.1 I N T RO D U C T I O N

Scale is a natural attribute of every object, as basic property as location and appearance.
And hence it is a factor in almost every task in computer vision. In image classification,
global scale invariance plays an important role in achieving accurate results [84]. In
image segmentation, scale equivariance is important as the output map should scale
proportionally to the input [1]. And in object detection or object tracking, it is important
to be scale-agnostic [126], which implies the availability of both scale invariance as
well as scale equivariance as the property of the method. Where scale invariance or
equivariance is usually left as a property to learn in the training of these computer vision
methods by providing a good variety of examples [103], we aim for accurate scale
analysis for the purpose of needing less data to learn from.

Scale of the object can be derived externally from the size of its silhouette, e.g [166],
or internally from the scale of its details, e.g [18]. External scale estimation requires
the full object to be visible. It will easily fail when the object is occluded and/or when
the object is amidst a cluttered background, for example for people in a crowd [138],
when proper detection is hard. In contrast, internal scale estimation is build on the scale
of common details [135], for example deriving the scale of a person from the scale of
a sweater or a face. Where internal scale has better chances of being reliable, it poses
heavier demands on the accuracy of assessment than external scale estimation. We focus
on improvement of the accuracy of internal scale analysis.

We focus on accurate scale analysis on the generally applicable scale-equivariant
convolutional neural networks [8, 144, 163]. A scale-equivariant network extends the
equivariant property of conventional convolutions to the scale-translation group. It is
achieved by rescaling the kernel basis and sharing weights between scales. While the
weight sharing is defined by the structure of the group [25], the proper way to rescale
kernels is an open problem. In [8, 144], the authors propose to rescale kernels in the
continuous domain to project them later on a pixel grid. This permits the use of arbitrary
scales, which is important to many application problems, but the procedure may cause
a significant equivariance error [144]. Therefore, Worrall and Welling [163] model
rescaling as a dilation, which guarantees a low equivariance error at the expense of
permitting only integer scale factors. Due to the continuous nature of observed scale
in segmentation, tracking or classification alike, integer scale factors may not cover the
range of variations in the best possible way.

In the chapter, we show how the equivariance error affects the performance of SE-
CNNs. We make the following contributions:
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Figure 10: Left: the necessary constraint for scale-equivariance. When it is not satisfied
an equivariance error appears. Right: Equivariance error vs. Classification error for
scale-equivariant models on MNIST-scale. DISCO achieves the lowest equivariance
error and this leads to the best classification accuracy. Alongside DISCO, we test SESN
models with Hermite [144], Fourier [181], Radial [54] and B-Spline [8] bases.

• From first principles we derive the best kernels, which minimize the equivariance
error.

• We find the conditions when the solution exists and find a good approximation
when it does not exist.

• We demonstrate that an SE-CNN with the proposed kernels outperforms recent
SE-CNNs in classification and tracking in both accuracy and compute time. We
set new state-of-the-art results on MNIST-scale and STL-10.

The proposed approach contains [163] as a special case. Moreover, the proposed
kernels can’t be derived from [144] and vice versa. The union of our approach and the
approach presented in [144] covers the whole set of possible SE-CNNs for a finite set of
scales.

4.2 R E L AT E D W O R K

G RO U P E Q U I VA R I A N T N E T W O R K S . In recent years, various works on group-
equivariant convolution neural networks have appeared. In majority, they consider the
roto-translation group in 2D [25, 27, 76, 154, 156, 161], the roto-translation group in
3D [23, 89, 149, 155, 160], the compactified rotation-scaling group in 2D [72] and the
rotation group 3D [23, 26, 44]. In [24, 90, 95] the authors demonstrate how to build
convolution networks equivariant to arbitrary compact groups. All these papers cover
group-equivariant networks for compact groups. In this chapter, we focus the scale-
translation group which is an example of a non-compact group.

D I S C R E T E O P E R AT O R S . Minimization of the discrepancies between the theoretical
properties of continuous models and their discrete realizations has been studied for a
variety of computer vision tasks. Lindeberg [104, 105] proposed a method for building
a scale-space for discrete signals. The approach relied on the connection between the
discretized version of the diffusion equation and the structure of images. While this
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method considered the scale symmetry of images and significantly improved computer
vision models in the pre-deep-learning era, it is not directly applicable to our case of
scale-equivariant convolutional networks.

In [39], Diaconu and Worrall demonstrate how to construct rotation-equivariant CNNs
on the pixel grid for arbitrary rotations. The authors propose to learn the kernels which
minimize the equivariance error of rotation-equivariant convolutional layers. The method
relies on the properties of the rotation group and cannot be generalized to the scale-
translation group. In this chapter, we show how to minimize the equivariance error for
scale-convolution without the use of extensive learning.

S C A L E - E Q U I VA R I A N T C N N S . An early work of [84] introduced SI-ConvNet, a
model where the input image is rescaled into a multi-scale pyramid. Alternatively, Xu
et al. [171] proposed SiCNN, where a multi-scale representation is built from rescaling
the network filters. While these modified convolutional networks significantly improve
image classification, they require run-time interpolation. As a result they are several
orders slower than standard CNNs.

In [8, 144, 181] the authors propose to parameterize the filters by a trainable linear
combination of a pre-calculated, fixed multi-scale basis. Such a basis is defined in the
continuous scale domain and projected on a pixel grid for the set of scale factors. The
models do not involve interpolation during training nor inference. As a consequence,
they operate within reasonable time. The continuous nature of the bases allows for the
use of arbitrary scale factors, but it suffers from a reduced accuracy as the projection on
the discrete grid causes an equivariance error.

Worral and Welling [163] propose to model filter rescaling by dilation. This solves
the equivariance error of the previous method at the price of permitting only integer
scale factors. That makes the method less suited for object tracking, depth analysis and
fine-grained image classification, where subtle changes in the image scale are important
in the performance. Our approach combines the best of the both worlds as it guarantees
a low equivariance error for arbitrary scale factors.

AC C U R AT E S C A L E A NA LY S I S . Approaches based on feature pyramids are applied
in many tasks [66,103,124,153]. Their implementation require a significant specialisation
of the network architecture. Models based on direct scale regression [21, 99, 126]
have proved to be accurate in scale analysis, but they rely on a complicated training
procedure. Scale-equivariant networks require only a drop-in replacement of the standard
convolutions by scale-convolutions, while keeping the training procedure unchanged
[8,142,144,163]. We appreciate the universal applicability of scale-equivariant networks.
We focus on this particular use in our implementation while the method we set out in this
chapter will also apply to other ways of using scale in computer vision.

Existing models for scale-equivariant networks bring computational overhead, which
significantly slows down the training and the inference. In this chapter, we present
scale-equivariant models which allow for the accurate analysis of scale with a minimum
computational overhead while retaining the advantage of being an easy replacement of
convolutional layers to improve.
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4.3 M E T H O D

E Q U I VA R I A N C E . A mapping 6 is equivariant under a transformation ! if and only if
there exists !0 such that 6 � ! = !0 � 6. If the mapping !0 is identity, then 6 is invariant
under transformation !.

S C A L E T R A N S F O R M AT I O N S . Given a function 5 : ' ! ' its scale transformation
!B is defined by

!B [ 5 ] (C) = 5 (B�1
C), 8B > 0 (4.1)

We refer to cases with B > 1 as up-scalings and to cases with B < 1 as down-scalings,
where !1/2 [ 5 ] stands for a function down-scaled by a factor of 2.

T H E S C A L E - T R A N S L AT I O N G RO U P. We are interested in equivariance under the
scale-translation group � and its subgroups. It consists of the translations C and scale
transformations B which preserve the position of the center. � = {(B, C)} = (o) is a semi-
direct product of a multiplicative group ( = ('+

,+) and an additive group ) = (',+).
For the multiplication of its elements we have (B2, C2) · (B1, C1) = (B1B2, B2C1 + C2). Scale
transformation of a function defined on group � consists of a scale transformation of
its spatial part as it is defined in the Equation 4.1 and a corresponding multiplicative
transformation of its scale part. In other words

!B̂ [ 5 ] (B, C) = 5 (BB̂�1
, B̂

�1
C) (4.2)

4.3.1 Scale-Convolution

A scale-convolution of 5 and a kernel ^ both defined on scale B and translation C is given
by: [144]:

[ 5 ¢� ^] (B, C) =
’
B
0
[ 5 (B0, ·) ¢ ^B (B�1

B
0
, ·)] (·, C) (4.3)

where ^B stands for an B-times up-scaled kernel ^, ¢ and ¢� are convolution and scale-
convolution. The exact way the up-scaling is performed depends on how the down-scaling
of the input signal works.

Scale-convolution is equivariant to transformations !B̂ from the group �, therefore the
following holds true by definition:

[!B̂ [ 5 ] ¢� ^] = !B̂ [ 5 ¢� ^] (4.4)

Expanding the left-hand side of this relation by using Equation 4.3, choosing B = 1

and replacing B0 ! B
0
B̂ we find:

[!B̂ [ 5 ] ¢� ^] (B, C) =
’
B
0
[!B̂ [ 5 (B0, ·)] ¢ ^( B̂B0, ·)] (·, C) (4.5)

For the right-hand side we have:

!B̂ [ 5 ¢� ^] (B, C) =
’
B
0
!B̂ [ 5 (B0, ·) ¢ ^B̂�1 ( B̂B0, ·)] (·, C) (4.6)

52



4.3 M E T H O D

Equating the two sides and choosing 5 to be zero on all scales but B = 1, we obtain the
equivariance constraint for the kernels

!B [ 5 ] ¢ ^ = !B [ 5 ¢ ^B�1], 8 5 , B (4.7)

We have found that the mapping defined by Equation 4.3 is scale-equivariant only if a
kernel and its up-scaled versions satisfy Equation 4.7. Thus, it proves to be the necessary
condition for scale-equivariant convolutions. In [8, 144, 181] the opposite, sufficient
condition was proved. As a whole it defines the relation between scale convolution and
the constraints of its kernels.

4.3.2 Exact Solution

In the continuous domain, convolution is defined as an integral over the spatial coordi-
nates. [8, 144, 181] derives a solution for Equation 4.7:

^B (C) = B�1
^(B�1

C) (4.8)

However, when such kernels are calculated and projected on the pixel grid, a discrepancy
between the left-hand side and the right-hand side of Equation 4.7 will appear. We refer
to such inequality as the equivariance error.

We aim at directly solving Equation 4.7 in the discrete domain. In general, for discrete
signals down-scaling is a non-invertible operation. Thus !B is well-defined only for
B < 1. We start by solving Equation 4.7 for 1-dimensional discrete signals. We then
prove its generalization to the 2-dimensional case. Figure 11 illustrates the approach.

Let us consider a discrete signal 5 represented as a vector f of length #in. It is
down-scaled to length #out < #in by !B, which is represented as a rectangular inter-
polation matrix R of size #out ⇥ #in. A convolution with a kernel ^ is represented as
a multiplication with a matrix Q of size #out ⇥ #out, and with a kernel ^

B
�1 written as

a matrix Q
B
�1 of size #in ⇥ #in. Then Equation 4.7 can be rewritten in matrix form as

follows:
QR f = RQ

B
�1 f , 8 f () QR = RQ

B
�1 (4.9)

Without loss of generality we assume circular boundary conditions. Then the matrix
representations Q and Q

B
�1 are both circulant and their eigenvectors are the column-

vectors of the Discrete Fourier Transform L [5, 17, 71]:

Q
B
�1 = Ldiag(L+

B
�1)L⇤ (4.10)

where +
B
�1 is a vector representation of ^

B
�1 padded with zeros. After substituting

Equation 4.10 into Equation 4.9 and multiplying both sides by L from the right, we get:

QRL = RLdiag(L+
B
�1) (4.11)

The left-hand side of the equation is obtained from RL by multiplying it with a diagonal
matrix from the right. Thus, each column of the matrix QRL is proportional to the
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Figure 11: Left: a matrix representation of the 1-dimensional case of the equivariance
constraint for #in = 8 and #out = 4. Right: a multi-scale kernel initialization.

p
2

is the smallest non-integer scale, for which the kernel is approximated by minimizing
Equation 4.23, the rest of the kernels can be obtained with dilation.

corresponding column of the matrix RL. In Section 4.3.3 we prove that such a relation
is possible if and only if the matrix R performs a down-scaling by an integer scale factor.

When the requirement is satisfied, the solution with respect to +
B
�1 is the dilation of +

by factor B. Such a solution is also known as the à trous algorithm [74]:

(+
B
�1)8B =

’
8

L⇤
8 9
(QRL)1 9/(RL)1 9 = +8 (4.12)

4.3.3 Solutions in 1D

Lemma 1. Equation 4.7 has non-trivial solutions with respect to Q
B
�1 only if ! performs

downscaling by an integer factor.

Proof. Let us consider Vin and Vout, matrices of circular shift of rows of sizes #in ⇥ #in
and #out ⇥ #out correspondingly. With no loss of generality we assume circular boundary
conditions for convolutions. Thus, matrices Q, Q

B
�1 are circulant, and therefore Q =

VoutQV)out and Q
B
�1 = VinQB

�1V)in [107]. If we substitute it into Equation 4.7 we have
the following:

V8outQ (V)out)8R = RV 9inQB
�1 (V)in) 9 , 88, 9 2 / (4.13)

If we multiply it from the left by (V)out)8 and from the right by V 9in we get the following
equation:

Q (V)out)8RV
9

in = (V)out)8RV
9

inQB
�1 (4.14)

We can now multiply Equation 4.14 by a coefficient U8 9 and then the following holds
true:

Q
#out’
8=1

#in’
9=1

U8 9W8 9
=
#out’
8=1

#in’
9=1

U8 9W8 9
Q
B
�1 ,8U8 9 (4.15)
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where W
8 9

= (V)out)8RV
9

in. Equation 4.15 holds true for all U8 9 . Which gives us the
following system of equations:

8>>>>>>>><
>>>>>>>>:

Q (W
00
�W

#out#in
) = (W

00
�W

#out#in
)Q

B
�1

Q (W
01
�W

#out,#in+1
) = (W

01
�W

#out,#in+1
)Q

B
�1

. . .

Q (W
10
�W

#out+1,#in
) = (W

10
�W

#out+1,#in
)Q

B
�1

. . .

(4.16)

Which has non-trivial solutions if the expressions in all brackets are equal to zero. Thus,
W

00
= W

#out#in
. In other words, R is a row-circulant matrix and #in is divisible by #out.

Therefore, the downscaling is performed by an integer factor #in/#out ⇤

In order to obtain the solution of Equation 4.7 we represent convolutional matrices by
using their eigendecompositions.

Q = Loutdiag(Lout+)L⇤
out

Q
B
�1 = Lindiag(Lin+B�1)L⇤

in
(4.17)

where Lin, Lout are matrices of the Discrete Fourier Transform of appropriate sizes and
+, +

B
�1 are vector representations of convolutional kernels. After substituting the second

part of Equation 4.17 into Equation 4.7 we obtain:

QR = RLindiag(Lin+B�1)L⇤
in (4.18)

We then multiply both sides of the equation with Lin from the right.

(QRLin)8 9 =
’
:

(RLin)8:diag(Lin+B�1): 9 (4.19)

As the left hand side is per-column proportional to RLin, we can calculate the solution
just by using the first row of each matrix.

(Lin+B�1) 9 =
(QRLin)1 9
(RLin)1 9

(4.20)

The first row of Lin consists of ones so as the first row of RLin. Additionally, (QRLin)1 9 =
B
�1 [+, +] 9 . As the discrete Fourier image of the solution is a scaled concatenated image

of the source, the solution is just a dilation of the original kernel [107].

4.3.4 Solutions in 2D

We are interested in solving Equation 4.7 with respect to ^
B
�1 for any set of ^’s which

forms a complete basis in the space of square matrices of a certain, fixed size. If the
solution exists for any basis, then it exists for a basis of 2-dimensional separable kernels.
As the rank of the set of solutions is less or equal to the rank of the initial basis, the
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solution is separable as well. Let us consider an image L of size #in ⇥ #in. Taking into
account that its rescaling is a separable operation, the matrix form of Equation 4.7 is:

Q0RLR)Q) = RQ0
B
�1
LQ)

B
�1
R) , 8L (4.21)

where Q0 and Q are matrix representations of 1-dimensional components of a separable
kernel. As Equation 4.21 holds true for all images, it satisfies L = f c) and L = c f)

where c is a vector of constants and f is an arbitrary vector. After substituting these
functions into Equation 4.21 it degenerates into a system of two independent equations
up to a multiplication constant:

(
QR = RQ

B
�1

Q0R = RQ0
B
�1

(4.22)

Thus, if a solution exists for 2-dimensional discrete signals it also exists for the 1-
dimensional case.

4.3.5 Approximate solution

Let us consider a scale-convolutional layer. One of its hyper-parameters is the set of
scales it operates on. For the cases of non-integer scale factors any kernel will introduce
an equivariance error into the network. Thus, it is reasonable to use integer scales as
reference points and add intermediate scales to cover the required range of scale factors
best. Let us choose a set of scales {1,

p
2, 2, 2

p
2, 4, 4

p
2, . . . }. The set of corresponding

kernels is {^1, ^
p

2
, ^2, ^

2

p
2
, . . . }. As the smallest kernel is known, all kernels defined on

integer scales can be calculated as its dilated versions. And, when kernel ^p
2

is defined,
all intermediate kernels ^

2

p
2
, ^

4

p
2
, . . . can be calculated by using dilation as well. Thus,

the only kernel yet unknown is kernel ^p
2
.

The kernel ^p
2

can be calculated as a minimizer of the equivariance error based on
the Equation 4.7 as follows:

^
p

2
= arg min ⇢ 5 k! [ 5 ] ¢ ^1 � ! [ 5 ¢ ^p

2
]k2

�
+ k! [ 5 ] ¢ ^p

2
� ! [ 5 ¢ ^2]k2

�
(4.23)

where ! = !
1/

p
2

is a down-scaling by a factor
p

2.

4.3.6 Implementation

To construct a scale-equivariant convolution we parametrize the kernels as a linear
combination of a fixed multi-scale basis. The basis is then fixed and only corresponding
coefficients are trained. The coefficients are shared for all scales.

We utilize the standard pixel basis on the smallest integer scale. The bases for the rest
of the integer scales are computed as a dilation. The basis on the smallest non-integer
scale is approximated by applying gradient descent to Equation 4.23. We note that it takes
negligible time to compute all of the basis functions before training. See supplementary
materials for more details. We refer to scale-convolutions with the proposed bases as
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Figure 12: Left: kernels are computed via multiplying a fixed multi-scale basis with
trainable weights. Right: images and their scale fields produced by the DISCO model
trained to contrast scales.

Discrete Scale Convolutions or shortly DISCO. As DISCO kernels are sparse, they allow
for lower computational complexity.

Let us consider a scale-convolutional layer defined on scales {1,

p
2, 2, 2

p
2, 4, }. The

kernel on the smallest scale is of size 3 ⇥ 3. As it was noted, as soon as the kernel on the
intermediate

p
2 scale is defined, all other kernel can be calculated via dilation.

In scale-convolutional layer the kernels ^ are parametrized as follows:

^B =
’
9

kB, 9F 9 (4.24)

where kB, 9 is a 9-th basis function defined on scale B, and F 9 is the corresponding
trainable coefficient.

As the basis is fixed during the training, it needs to be defined a priori. On the smallest
scale all basis functions are just elements of the standard basis, i.e. if k1,8 is the i-th basis
function for the 3 ⇥ 3 filters on the first scale, then k1,0 is a 3 ⇥ 3 matrix where the only
non-zero element is a 1 in the top-left corner, and k1,4 is a 3 ⇥ 3 matrix with 1 in the
center. On the next integer scale 2, the basis is obtained according to Equation 12 of the
main paper and computed as a dilation of k1,8. To obtain non-integer scale bases we start
by approximating the first intermediate

p
2 scale basis kp

2, 9
functions by minimizing

the following objective function:

k! [ 5 ] ¢k1, 9 � ! [ 5 ¢kp
2, 9
]k2

�
+ k! [ 5 ] ¢kp

2, 9
� ! [ 5 ¢k2, 9 ]k2

�
(4.25)

where 5 is a random sample from N(0, 1) and ! is an operation of downsampling by a
factor of

p
2 by using bicubic interpolation. The basis for the scale 2

p
2 is calculated as

a dilation of the approximated
p

2 basis. See Figure 12 for more details.
After all basis functions are calculated, the basis is packed into a tensor of size:

num functions ⇥ num scales ⇥ height ⇥ width

and used for runtime kernel calculations with the algorithm provided by [144].
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4.3.7 Computational Complexity

Let us consider a scale-convolutional layer with a set of #B scales with step f > 1. The
smallest kernel size is, ⇥, . The computational complexity for calculating the output
for one spatial position for the state-of-the-art method from [144] can be estimated as
follows:

$ (SESN) ⇠ $ (,2(1 + f2 + · · · + f2#B�2)) ⇠ $
⇣
,

2
f

2#B � 1

f
2 � 1

⌘
⇠ $ (,2

f
2#B ) (4.26)

In contrast, for DISCO we arrive the following complexity:

$ (DISCO) ⇠ $ (#B,2) (4.27)

Thus, where the state of the art SESN convolution grows exponentially in computational
complexity with the number of scales, DISCO allows for linear growth.

When using a scale step of
p

2 we achieve a speedup of:

$ ((⇢(#)
$ (⇡�(⇠$) ⇠ 2

#B

#B

. (4.28)

The main reason for the acceleration is that in SESN the filters are dense, as they are
rescaled in the continuous domain by using Equation 4 of the main paper, while DISCO
filters are sparse as the rescaling is performed by using dilation for the majority of scales.
The actual speedup depends on the particular implementation of scale-convolution with
such kernels. The current implementation is limited by the functionality of modern deep
learning software which is not optimized for sparse filters of a big spatial extent.

4.3.8 General Solution

While in many models which consider scale the scale-step is a root of some integer
number, it is possible to build a DISCO model with arbitrary scale-steps. Let us consider
a scale-convolutional layer defined on scales {B0, 0B0, 0

2
B0, . . . 0

#
B0} where 0 > 1.

In order to construct kernels for such a layer it is first required to calculate a basis
{kB0, 9 ,k0B0, 9 , . . .k0# B0, 9

} for all 9 . The basis can be calculated as a minimizer of the
following objective:

L(kB0, 9 ,k0B0, 9 , . . .k0# B0, 9
) = ⇢ 5

: ,;=#’
: ,;=0

:>;

k!
0
;�: [ 5 ] ¢k

0
;
B0, 9

� !
0
;�: [ 5 ¢k

0
:
B0, 9

]k2

�

(4.29)
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Model Basis MNIST MNIST+ Equi. error # Params.

CNN - 2.02 ± 0.07 1.60 ± 0.09 - 495 K
SiCNN - 2.02 ± 0.14 1.59 ± 0.03 - 497 K
SI-ConvNet - 1.82 ± 0.11 1.59 ± 0.10 - 495 K
SEVF - 2.12 ± 0.13 1.81 ± 0.09 - 475 K
DSS Dilation 1.97 ± 0.08 1.57 ± 0.09 0.0 494 K
SS-CNN Radial 1.84 ± 0.10 1.76 ± 0.07 - 494 K

SESN Hermite 1.68 ± 0.06 1.42 ± 0.07 0.107 495 K
SESN B-Spline 1.74 ± 0.08 1.49 ± 0.05 0.163 495 K
SESN Fourier 1.88 ± 0.07 1.55 ± 0.07 0.170 495 K
SESN Radial 1.74 ± 0.07 1.55 ± 0.10 0.200 495 K

DISCO Discrete 1.52 ± 0.06 1.35 ± 0.05 0.004 495 K

Table 12: The classification error of various methods on the MNIST-scale dataset, lower
is better. We test both the regime with and without data augmentation, where scaling
data augmentation is denoted by “+”. All results are reported as mean ± std over 6
different, fixed realizations of the dataset. The best results are bold.

4.4 E X P E R I M E N T S

4.4.1 Equivariance Error

To quantitatively evaluate the equivariance error of DISCO versus other methods for
scale-convolution [8, 144, 181], we follow the approach proposed in [144]. In particular,
we randomly sample images from the MNIST-Scale dataset [144] and pass in through
the scale-convolution layer. Then, the equivariance error is calculated as follows:

� =
’
B

k!B�( 5 ) ��(!B 5 )k2

2
/k!B�( 5 )k2

2
(4.30)

where � is scale-convolution with weights initialized randomly.
The equivariance error for each model is reported in Table 12 and in Figure 10. Note

that we can not directly compare against [163] as it only permits integer scale factors. As
can be seen, there exists a correlation between an equivariance error and classification
accuracy. DISCO model attains the lowest equivariance error.

4.4.2 Image Classification

We conduct several experiments to compare various methods for scale analysis in image
classification. Alongside DISCO, we test SI-ConvNet [84], SS-CNN [54], SiCNN [171],
SEVF [110], DSS [163] and SESN [144]. By relying on the code provided by the authors
we additionally reimplement SESN models with other bases such as B-Splines [8],
Fourier-Bessel Functions [181] and Log-Radial Harmonics [54, 117].
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Interpolation Nearest Bilinear Bicubic

Error 1.36 ± 0.06 1.37 ± 0.05 1.35 ± 0.05

Table 13: Classification accuracy on MNIST-scale for different interpolation methods
which are used for approximate basis calculations.

Model WRN SiCNN SI-ConvNet DSS SS-CNN SESN DISCO

Basis - - - Dilation Radial Hermite Discrete
Time, s 10 110 55 40 15 165 50
Error 11.48 11.62 12.48 11.28 25.47 8.51 8.07

Table 14: The classification error on STL-10. The best results are in bold. The average
compute time per epoch is reported in seconds. DISCO sets a new state-of-the-art result
in the supervised learning setting.

M N I S T- S C A L E . Following [144] we conduct experiments on the MNIST-scale
dataset. The dataset consists of 6 splits, each of which contains 10,000 images for
training, 2,000 for validation and 50,000 for testing. Each image is a randomly rescaled
version of the original from MNIST [97]. The scaling factors are uniformly sampled
from the range of 0.3 � 1.0.

As a baseline model we use the SESN model [144]. It consists of 3 convolutional and
2 fully-connected layers. Each layer has filters of size 7 ⇥ 7. We keep the number of
parameters the same for all SESN models and for DISCO. The main difference between
the SESN and DISCO models is in the basis for scale-convolutions. We also discovered
that average-pooling works slightly better for the DISCO, while for all other methods it
either has no effect or worsens the performance. Both SESN and DISCO use the same
set of scales in scale convolutions: {1, 2

1/3
, 2

2/3
, 2}

All models are trained with the Adam optimizer [87] for 60 epochs with a batch size
of 128. We set the initial learning rate at 0.01 and divide it by 10 after 20 and once
more after 40 epochs. We conduct the experiments with 2 different settings: without
data augmentation and with scaling augmentation. We run the experiments on 6 different
realizations of the MNIST-scale. We report the mean ± standard deviation over these
runs.

As can be seen from Table 12, our DISCO model outperforms other scale equivariant
networks in accuracy and equivariance error and sets a new state-of-the-art result.

We found in our experiments that the interpolation method which is used to calculate a
basis by using equation 4.25 does not affect the final solution. The relative mean squared
error between bases is less than one percent. Moreover, DISCO model demonstrates
almost the same results on MNIST-scale while various interpolation methods are used.
See Table 13 for more results.

S T L -10 . To demonstrate how accurate scale equivariance helps when the training
data is limited, we conduct experiments on the STL-10 [22] dataset. This dataset consists
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Equi. Error STL-10 Error

0.240 8.63

0.082 8.25

0.003 8.07

Table 15: Classification accuracy on STL-10 and the equivariance error for the DISCO
model with different filters. The first and the second rows correspond to the cases when
the basis for the intermediate scale is not optimized.

Model SiamFC [10] TriSiam [42] SiamFC+ [177] SE-SiamFC+ [142] DISCO

FPS - - 56 14 28
AUC 0.61 0.62 0.67 0.68 0.68

Table 16: Performance comparisons on the OTB-13 tracking benchmark. The best results
are bold. We report the average number of framer per second (FPS) per sequence.
Higher FPS and AUC are better.

of just 8,000 training and 5,000 testing images, divided into 10 classes. Each image has
a resolution of 96 ⇥ 96 pixels.

As a baseline we use WideResNet [174] with 16 layers and a widening factor of 8.
Scale-equivariant models are constructed according to [144]. All models have the same
number of parameters, the same set of scales {1,

p
2, 2} and are trained for the same

number of steps. For testing the disco model we use exactly the same setup as described
by the authors of [144]. All the models are trained on NVidia GTX 1080 Ti.

The models are trained for 1000 epochs using the SGD optimizer with a Nesterov mo-
mentum of 0.9 and a weight decay of 5 · 10

�4. For DISCO, we increase the weight decay
to 1 · 10

�4. Tuning weight decay for the other models did not bring any improvement.
The learning rate is set to 0.1 at the start and decreased by a factor of 0.2 after the epochs
300, 400, 600 and 800. The batch size is set to 128. During training, we additionally
augment the dataset with random crops, horizontal flips and cutout [38].

As can be seen from Table 14, the proposed DISCO model outperforms the other
scale-equivariant networks and sets a new state-of-the-art result in the supervised learning
setting. Moreover, DISCO is more than 3 times faster than the second-best SESN-model.

We additionally check how accuracy degrades if the basis for the scale of
p

2 is
not correctly calculated. While the optimal basis is a minimizer of Equation 4.23, it
is possible to stop the stop optimization procedure before convergence and generate
then a non-optimal basis. We generated two non-optimal bases which correspond to
different moments of the optimization procedure. We report the equivariance error and
the classification error on the STL-10 dataset for DISCO with such bases functions in
Table 15. It can be seen that lower equivariance errors correspond to lower classification
errors.
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4.4.3 Tracking

To test the ability of DISCO to deliver accurate scale estimation, we choose the task of
visual object tracking. We take the recent SE-SiamFC+ [177] tracker and follow the
recipe provided in [142] to make it scale-equivariant. We employ the standard one-pass
evaluation protocol to compare our method with conventional Siamese trackers and
SE-SiamFC+ [142] with a Hermite basis for the scale convolutions. The trackers are
evaluated by the usual area-under-the-success-curve (AUC).

The scale-equivariant tracker with DISCO matches the performance of the state-of-
the-art SE-SiamFC+, but twice faster as can be seen in Table 16. FPS is measured on
Nvidia GTX 1080 Ti for all models.

4.4.4 Scene Geometry by Contrasting Scales

We demonstrate the ability of DISCO to propagate scale information through the layers
of the network, by presenting a simple approach for geometry estimation of a scene
through the use of the intrinsic scale. This is possible because in the DISCO model, we
can use high granularity of scale factors and process them more accurately and faster
compared to other scale-equivariant models.

We construct a scale-equivariant network with DISCO layers. The weights are ini-
tialized from an ImageNet-pretrained network [36] following the approach described
in [142]. Next, we strip the classification head of the network and apply global spatial
average-pooling. The resulting feature map thus has a dimension ⌫ ⇥ ⇠ ⇥ ( ⇥ 1 ⇥ 1,
where ⌫,⇠, ( are the batch, channel and scale dimensions respectively. To decode the
scale information, we sample the argmax along the scale dimension. Such a tensor has
shape ⌫ ⇥ ⇠ where each element is a scalar that encodes the argmax for each of the
objects on each of the channels. Then the tensor is passed to a shallow network, which
produces a scale estimate for the input image. The feature extraction network followed
by the shallow scale estimator network is denoted as �\ , where \ is the parameters of the
shallow scale estimator, so we do not train the parameters of the feature extractor.

At the core of the method is the scale-contrastive learning algorithm. The model is
trained to predict how much one image should be interpolated to match the other. Such
an approach does not require any dedicated depth or scale labels. The algorithm is
illustrated in Figure 13. First, we sample randomly two scale factors W1, W2 ⇠ * [0.5, 2.0]
and apply interpolations !W1

, !W2
to the image I. The transformed images are fed into

the network �\ , which predicts scale estimates W̃1, W̃2 (Figure 13). Then, we minimize
the following loss by using the Adam optimizer:

Lscale = ⇢I
h
W2

W1

� W̃2

W̃1

i
2

= ⇢I
h
W2

W1

�
�\ (!W2

(I))
�\ (!W1

(I))
i

2

�! min

\

(4.31)

We train the model on the STL-10 dataset [22] and evaluate it on random images
found on the Internet. To infer the scene geometry of the image, we split the image
into overlapping patches. For each of them we predict the scale. We provide qualitative
results in Figure 13. While the proposed methods was never trained on whole images, it
captures the global geometry of the scenes, be it a road or a supermarket.
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Figure 13: Left: the network is trained to predict the scale difference between an object
and its resized version. Right: images and their scale fields produced by the DISCO
model trained to contrast scales.

For clarity we provide a PyTorch pseudo-code for DISCO scene geometry estimation
(Listing 4.1). We utilize scale-equivariant ResNet as a backbone feature extractor. The
produced feature map is reduced in a spatial domain. Then argmax along the scale
dimension is extracted and passed to the scale MLP regressor to produce a scale estimate.
Additional qualitative results are presented in Figure 12.

Listing 4.1: PyTorch pseudo-code for DISCO scene geometry estimation.
import torch.nn as nn

import SE_ResNet

class ScaleEstimator(nn.Module):

def __init__(self):

super().__init__()
self.backbone = SE_ResNet(pretrained=True)

self.regressor = nn.Sequetial(

nn.Linear(512, 256),

nn.ReLU(),

nn.Linear(256, 1),

nn.ReLU()

)

def forward(self, x):

# x.shape = B, 3, 64, 64
y = self.backbone(x)

# y.shape = B, 512, 9, 1, 1
y = y.mean(-1).mean(-1)

# y.shape = B, 512, 9
y = y.argmax(-1)

scale = self.regressor(y)

return scale
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4.5 D I S C U S S I O N

In this work, we demonstrate that the equivariance error affects the performance of
equivariant networks. We introduce DISCO, a new class of kernels for scale-convolution,
so the equivariance error is minimized. We develop a theory to derive an optimal
rescaling to be used in DISCO and analyze under what conditions an optimal rescaling
is possible and how to find a good approximation if these conditions do not hold. We
also demonstrate how to efficiently incorporate DISCO into an existing scale-equivariant
network.

We experimentally demonstrate that DISCO scale-equivariant networks outperform
conventional and other scale-equivariant models, setting the new state-of-the-art on the
MNIST-Scale and STL-10 datasets. In the visual object tracking experiment, DISCO
matches the state-of-the-art performance of SE-SiamFC+ on OTB-13, however, works 2
times faster.

We suppose that the DISCO would be the most useful in problems, where an accurate
scale analysis is required, such as multi-object tracking for autonomous vehicles, where
the scale of objects can rapidly change due to the relative motion. We additionally
want to highlight that the approach presented in this paper can be used to construct
scale-equivariant self-attention models with reduced complexity [130].
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5.1 I N T RO D U C T I O N

Consider a network represented by a function �, taking the input image 5 to produce
�( 5 ) = �(K ⇥ f), where the weights collected in K are the main parameters of the
classification function. In this paper, we aim to make � more reliable by introducing
small, linear, stochastic variations of �, the First order Functional variations, into
the function. Including the variations is like considering the Taylor expansion in the
functional space where � resides. In this way, we aim to improve the stability of the
network without changing the data: we do not use new data nor do we modify existing
data.

Variations in the functional space of � have been used in [25, 30, 47, 81] with great
success. These papers have built-in transformations into the network to achieve geometri-
cal equivariance. As a consequence, these expanded networks are equivariant against the
global transformations of rotation and scaling. For our purpose, we also apply multiple
variations in the network. Rather than implementing global transformation of rotation
and scale as the references do, we opt for stochastic, local, linear transformations. These
stochastic local transformations are independent of the global geometric variations cited
above and could be implemented on top of them, but in this paper, we have not explored
that possibility. Our transformations aim to make the network more reliable in general.

We evaluate the reliability of the enhanced network on its classification performance.
We do so for a low-resolution CIFAR-10, a small STL-10 [22] and the fine-grained
Stanford dog dataset (subset of ImageNet) [86]. We choose the ResNet-network archi-
tecture to evaluate the new cell architecture of the network. In addition, we evaluate
the reliability of the network by testing it on data with perturbations (rotation-scaling,
occlusion, snow, Gaussian noise, Gaussian blur) as presented in [70] benchmark. We
evaluate them both on classification while the perturbations were seen during training as
well as for the more important case when perturbations are not seen during the training.
In summary

• We propose a new cell architecture, First-order Functional variations, to make the
resulting network more reliable and solid in its classification performance.

• We demonstrate state-of-the-art performance on a small STL-10 dataset, 95.45%,
on CIFAR-10, 94.97% and on the fine-grained Stanford dogs dataset 56.46%.

• We show robustness on seen but also general robustness on perturbations unseen
during training, our network also shows better performance than data augmentation.
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Figure 14: A standard neural network (left) and our First-order Functional varied net-
work (right) at test time for classification. The FoF-network integrates small, stochastic,
linear variations in the functional space of classifiers to achieve a more reliable classifi-
cation without expanding or touching the data.

5.2 R E L AT E D W O R K

B U I LT- I N I M AG E T R A N S F O R M S . One of the first methods, suggesting trans-
formations as small units in the network that locally transform their inputs for esti-
mating geometric changes, is in the capsule network architecture [73]. In contrast,
in [136] the network is not modified, but rather the update rule of the gradient descent
is adapted to learn transformation-invariant weights. Later, both directions evolved
to [14, 25, 30, 140, 141, 144, 156, 162, 163], where neural networks are equipped with a
rotation or scale-equivariance. In [81, 84, 96] neural network modifications are proposed
to make them invariant under input transformations. While these methods consider spe-
cific geometric transformations, we focus on small, stochastic, and linear perturbations
of the network. We demonstrate how they can be incorporated into a CNN for improved
reliability.

T H E R E L I A B I L I T Y O F C L A S S I FI E R S . Recent work focusing on the reliability of
classifiers shows that neural networks are not robust to translations and rotations [46, 85].
The performance of networks [51] drops when the signal-to-noise ratio in the image
increases. They fail to perform well in the presence of Gaussian noise or blur, which
humans can easily handle [41]. We aim to improve the reliability and solidity of networks
in general by considering the network as a function and including small functional
variations in the network.

A few carefully composed benchmarks are available to evaluate the performance of
classifiers under less ideal circumstances [51, 69, 70]. We select six of perturbations
covering the breadth of styles from [70]. In [70] the authors have defined five levels
of visual severity for each type of perturbation. In this work, we tune the parameters
of perturbation such that the drop in the performance for each perturbation is the same
for quantitative comparison of the ability of networks to handle perturbations. Table 17
shows the significance of the standardization for quantitative comparison of robustness
compared to standardizing the visual effect therein by the mean square error among
images. The MSE shows a large variation in classification performance for different
types of perturbations.

DATA - D R I V E N A P P ROAC H E S To improve the robustness against natural perturba-
tions, [134] and [147] propose to use batch normalization performed on perturbed images
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Metric Adversarial Elastic Occlusion Gaussian Noise Blur

Standardized Drop, % 10.22 10.60 10.24 10.10 10.51
MSE 0.02 54.31 199.73 11.79 18.20

Table 17: Motivation for the method of standardization. To permit a quantitative
comparison, the perturbation is iteratively applied to images until the classification
performance by the classifier has dropped by 10% with a margin of 0.5%. Data shown
on the CIFAR-10, but the iterative procedure was applied to all datasets. In comparison,
the standardized drop in accuracy is fair to compare classification performance in
contrast to comparison on the basis of the mean square error between the clean and
the perturbed image, bottom row, which is suited for visual closeness but unsuited for
comparing classification performances.

instead of clean ones. [9] propose to rectify batch-normalization statistics for enhancing
the robustness of neural networks against perturbations. Simultaneously, [133] intro-
duces a noise generator that learns uncorrelated noise distributions, demonstrating that
training on noisy images enhances the performance against natural perturbations. [60]
trains on images with natural perturbations like occlusions or elastic deformations while
achieving good generalization for many unseen perturbations. [127] and [159] note the
impossibility to capture all possible natural perturbations in one expression. Therefore,
they use generative models to generate images with perturbations to train the network.
Adversarial training [15,43,57,57,94] is yet another direction for improving the reliability
of networks.

O U R A P P ROAC H . In this work, rather than modifying the data we focus on the
reliability of the classification function itself. We do not employ synthetic or real
perturbations of images, which is sensible to employ when available for a specific
application, we first focus on the stability of the network as a function. Therefore we
include the functional variations of the classifier as a general mechanism to achieve
robustness against small, stochastic, linear variation of any kind. The new network
improves the performance of standard classifiers especially when the dataset size and
image resolution are small. For perturbed data, our approach is independent of the
application of data augmentation, which could be added on top of our method, as we will
demonstrate in an experiment.

5.3 M E T H O D

5.3.1 Image Transformations

Consider an image 5 as a vector f. For small deviations from the classifier, a Taylor
expansion in functional space can be used to cover many small variations by the principle

67



FI R S T O R D E R F U N C T I O NA L VA R I AT I O N S N E T W O R K S

First-order Functional Varied CNN

Standard CNN
     Standard 
         Basis

Output

Output
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Fixed Basis Trainable 
Weights

Trainable 
Weights

Figure 15: First-order Functional cell architecture. Top: A standard CNN with three
convolutional layers. Bottom: The first-order functional variation. By multiplying the
fixed basis with trainable weights, a single network is transformed into a network with
multiple paths, each path with a slightly different basis. In the end, the maximum is
selected. This is aimed to provide relaiability to the local variation of any kind.

of coherence: when data are close they should be classified in the same class. The small
linear deviation likely covers many image transformations of practical use. Consider

) [ 5 ] (n) ⇡ ) [ 5 ] (0) + n m) [ 5 ]
mn

����
n=0

= f + nL) ⇥ f = (I + nL) ) ⇥ f = T ⇥ f
(5.1)

where ) is a transformation, n is the parameter of the transformation and T is a linear
approximation of ) for small values of the parameter and L) is a matrix representation
of an infinitesimal generator of ) .

An image 5 can be viewed as a real-value function of its coordinates 5 : G ! 5 (G).
We focus here on smooth linear displacements g in the space of coordinates. Equation
5.1 can then be rewritten as follows:

) [ 5 (G)] (n) ⇡ 5 (G + ng(G)) (5.2)

We will refer to such transformations as elastic transformations. We will consider them
as a linear approximation of a wide range of complex (camera) transformations. All
other perturbations could be derived similarly, up to an additive noise.

5.3.2 First-order Functional Convolutions

Let us consider a convolutional layer � parameterized by a filter ^. It takes input image
5 . The output is:

�( 5 , ^) = 5 ¢ ^ = K ⇥ f (5.3)

where K is a matrix representation of the filter.

�() [ 5 ], ^) = ) [ 5 ] ¢ ^ = K ⇥ (T ⇥ f) = (K ⇥T) ⇥ f = �( 5 ,) 0[^]) (5.4)
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Figure 16: Row 1: Smooth perturbations for the local FoF elastic transforms. Row 2:
an original filter and its transformed versions.

In the most general case, KT is a matrix representation of a zero padding, followed by
a convolution with a kernel and a cropping afterwards. The size of the kernel ) 0[^]
depends on the nature of the transformation ) . If the transformation is global, the kernel
can be of a size bigger than the input image. We will consider only the cases when ) 0[^]
is of the same or of a slightly bigger size than the original one.

We propose First-order Functional convolutions, shortly FoFConv, as follows:

FoFConv = max

266666664

V0�( 5 , ^)
V1�( 5 ,)1 [^])

.

.

.

V=�( 5 ,)= [^])

377777775
(5.5)

where V8 are trainable coefficients. We initialize them such that V0 = 1, and the rest
are zeros. The maximum is calculated per pixel among different transformations of
the kernel. At the beginning of training, the operation is thus identical to the original
convolution with the same filter. If it is required during training, the other coefficients
will activate the corresponding transformations.

5.3.3 Transformations of a Complete Basis

In order to apply transformations to filters, we parameterize each filter as a linear
combination of basis functions:

^ =
’
8

F8k8 (5.6)

where k8 are functions of a complete fixed basis and F8 are trainable parameters. We
follow [80] and choose a basis of 2-dimensional Gaussian derivatives.

The transformations when applied to the basis form a transformed basis. Thus, for
every transformation from the set, there is a corresponding transform basis. Weights F8
are shared among all bases. We propose elastic transformation here, and test it on global
rotation-scaling, local occlusions, local snow, Gaussian noise, and Gaussian blur.

Let us assume that the center of a filter is a point with coordinates (0, 0). For every
function from the basis, we first generate a grid of coordinates (G, H). Then we evaluate
the value of the function in the coordinates when projected on the pixel grid.

F O F E L A S T I C T R A N S F O R M . In order to transform functions, we add a small
displacement to the coordinates. Given a grid of coordinates (G, H), U the elasticity
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coefficient and f be the scaling factor we define the elastically transformed filter as
following (See Figure 16), i) we take a 2D-affine transform �\ and map the coordinates
(G, H) to the target coordinates (GT

, H
T):

©≠
´
G

T

H
T

1

™Æ
¨
= �\

©≠
´
G

H

1

™Æ
¨
=
266664
\11 \12 \13

\21 \22 \23

\31 \23 \33

377775
©≠
´
G

H

1

™Æ
¨

(5.7)

In order to find the \-parameters we select three points in the input grid (G, H) and map
them to the output (GT

, H
T) = (G + XG , H + XH), where, XG , XH ⇠ * [�U,U]. ii) We get

another set of displaced coordinates (G0, H0) by mapping the coordinates of the kernel as
follows:

G
0 = G + U ·

⇣
1p

2cf
2

exp

h
� G

2

2f
2

i ⌘
H
0 = H + U ·

⇣
1p

2cf
2

exp

h
� H

2

2f
2

i ⌘
(5.8)

iii) Finally, we map the target coordinates (GT
, H

T) to (G0, H0) using bi-linear interpolation.
We follow [144] and use a basis of 2D Hermite polynomials with the Gaussian

envelope for the transform:

kf (G0, H0) = �
1

f
2

�=

✓
G
0

f

◆
�<

✓
H
0

f

◆
exp


�G

02 + H02
2f

2

�
(5.9)

where, � is the normalization constant, �= is the Hermite polynomial of =�th order and
f is the scaling factor. We iterate over =,<-pairs to generate functions.

5.3.4 First-order Functional Residual Blocks

In order to transform residual networks, we propose a straightforward generalization of
the proposed convolution. The standard residual block can be formulated as follows:

ResBlock = 5 +⌧ ( 5 , ^1, ^2, . . . ) (5.10)

The FoF block is then formulated as follows:

FoFResBlock = 5 +max

266666664

V0⌧ ( 5 , ^1, ^2, . . . )
V1⌧ ( 5 ,)1 [^1],)1 [^2], . . . )

.

.

.

V=⌧ ( 5 ,)= [^1],)= [^2], . . . )

377777775
(5.11)

Transformed kernels in the network architecture are shown in the Figure 15.

5.3.5 Weight Transfer

To train neural networks successfully, initializing neural networks with Imagenet pre-
trained model weights is common. In our case, it is not straight forward to transfer the
weights of a standard network to our FoFconv-network because the network is composed
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Network CIFAR-10 STL-10 Stanford Dogs

Baseline 92.53 84.40 48.66
FoF-network 94.97 95.45 56.46

Table 18: Classification Accuracy. The FoF-network improves the performance for
CIFAR-10 and significantly for fine-grained Stanford dogs ⇡ 8%, and STL-10 ⇡ 11%.

of fixed bases and trainable weights, i.e. multiple parallel networks connected to one
another, see Figure 15. Inspired by [143] we assume that in FoFConv there is a sub-
network which is identical to the standard network, permitting the transfer of weights
from the standard to the FoFConv sub-network. We initialize all weights responsible for
inter correlations to zero. Now, the FoF-network until the FoFConv max pooling layer
(equation 5.11) consists of several parallel networks disconnected to one another. As the
filter sizes of the convolutional layers of FoFConv match with the sizes of the standard
network, we initialize them with the corresponding Imagenet weights in the standard
network. 1 ⇥ 1 convolutions of the standard network and the FoF-network are identical,
and therefore, we copy the weights from the standard to the FoF-network.

5.4 E X P E R I M E N T S A N D R E S U LT S

DATA . Three datasets, CIFAR-10 [92] containing 10 classes (50,000 training and
10,000 test images of size 32⇥32), small STL-10 [22] containing 10 categories (5,000
training and 8,000 test images of size 96⇥96) and a fine-grained subset of ImageNet,
the Stanford Dogs datset [86], consisting of 120 categories (12,000 training, 8,580 test
images of size 224⇥224) are used in our experiments.

I M P L E M E N TAT I O N D E TA I L S . We use Resnet-152 as the baseline network, trained
with SGD-optimizer and cyclic learning rate scheduler at a rate of 0.05. For all datasets,
we experimented with the first-order stochastic variation of multiple Resnet blocks.
Restricting the variation to the first block of multiple non-linear layers [67] delivers good
results. We begin our training by pre-trained Imagenet initialization and fine tune them
on each dataset.

BA S E L I N E P E R F O R M A N C E . Our baseline model achieves 92.53%, 84.40%, 48.66%

for CIFAR-10, STL-10 and Stanford dogs test sets respectively, see Table 18. An FoF
modification of the baseline significantly improves these results.

5.4.1 Evaluating the FoF-Network for Reliability

S TA N DA R D I Z I N G N E T W O R K RO B U S T N E S S . While considering standard net-
works as the baseline, we standardize the comparison in robustness of different networks
by tuning the parameters of perturbations which lead to a fixed drop, i.e., 10% in our
experiments, shown in Table 19, within a maximum deviation of 0.44. Hence, the stan-
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Network Roto-Scaling Elastic Occlusion Blur Noise Snow

STL-10

Baseline 73.98 73.88 73.28 73.86 73.60 73.49
FoF-network 92.29 90.94 81.90 91.01 92.60 85.63

Stanford Dogs

Baseline 39.20 38.81 38.75 39.87 38.62 38.51
FoF-network 48.62 47.61 46.76 47.02 43.80 47.40

CIFAR-10

Baseline 82.81 82.61 81.90 82.60 81.47 82.81
FoF-network 86.59 87.12 80.18 90.03 89.38 85.23

Elastic Aug. 81.61 90.79 83.62 90.10 2.51 82.51
FoF + Aug. 88.04 89.68 75.32 91.61 85.74 83.41

Table 19: Classification Accuracy on Perturbed Images. FoFConv for seen (elastic) and
unseen naturally perturbed images. For a standard network, we drop the performance
to a standardized level by tuning the perturbations. FoFConv recovers the drop in
the performance for all the perturbations on CIFAR-10 except Occlusion. For STL-10
and Stanford dogs, we recover the classification accuracy on all perturbations. Hence,
FoFConv significantly enhances the robustness against natural perturbations.

dardization enables quantitative comparison of the classification performance among the
various versions of the network.

T R A I N I N G . We initialize the weights of our FoFConv Resnet-152 with Imagenet
weights and fine-tune it. We evaluate our method by adding FoFConv with four stochastic
versions of the transform, as shown in Figure 15.

Clean Images

On clean CIFAR-10 test set, FoFConv showed an improvement in the performance
of 2.44%, see Table 18. For STL-10, the improvement in the performance with FoF
convolutions is significant, leading to an improvement of 11.05%, see Table 18. We
contend that the reason behind the significant improvement in the performance for STL-
10 dataset is that STL-10 is a small dataset, and our FoF convolutions provide variations
in the network, which leads to an improvement in the performance, especially for small
datasets. Similarly, for Stanford dogs dataset, our FoFConv showed an improvement of
7.80%.
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Seen Naturally Perturbed Images.

Table 19 compares the performance of the standard versus the FoF-network on perturbed
images. We observe in the elastic column in Table 19, that for CIFAR-10 and Stanford
dogs, our FoF-convolutions recover the drop due to elastic perturbations. On the other
hand, on STL-10, our modified convolutions recover the drop even leading to an im-
provement in the original performance. Hence, the FoF-convolutions are generally robust
against natural perturbations.

Unseen Naturally Perturbed Images.

We consider the occlusion, Gaussian blur, Gaussian noise, rotation-scaling and snow
perturbations not explicitly covered by an elastic transformation, hence “unseen during
training”, for evaluating our new model.

On the CIFAR-10, we observe that the FoF-network recovers the drop in the perfor-
mance for all the perturbed unseen inputs except occlusions, see Table 19. For instance,
for Gaussian Blur it recovers the drop of 9.43%, for Gaussian noise 7.91% and for snow
occlusions 2.24%. Thus, the FoF convolutions show robustness against unseen natural
perturbations, with the one exception for occlusions for the CIFAR-10 dataset. The lack
in recovery due to occlusions is ascribed to the size of the CIFAR-10 images, making it
difficult for the networks to recover the information lost in occlusion.

On the STL-10, in Table 19 we also test the FoF-network on five different natural
unseen perturbations. We observe that the network recovers the induced drop in the
performance on unseen perturbations. Dissimilar to CIFAR-10, the network shows a
better recovery on unseen occlusions (8.62%), Gaussian blur (17.15%) and Gaussian
noise (19.00%) perturbations. Similarly, for Stanford dogs dataset with a large input size,
the new network shows recovery in the drop. In contrast with CIFAR-10, on STL-10
the proposed model shows significant recovery in the drop for occlusion perturbations.
We conclude that FoF convolutions show a much better general robustness on unseen
naturally perturbed images.

The last two rows of Table 19 contrast FoFConv with data augmentation and data
augmentation combined with FoFConv. We observe that FoFConv shows better general
robustness and when combined with data augmentation enhances further generalization.

5.4.2 Comparing Computational Resources

In Table 20 we compare the computational complexity of FoF-network with a standard
network. While delivering a much better robustness, our network requires no processing
of the data for augmentation, the same disk space as the baseline network, only double
the time to train, and GPU memory proportional to the number of transforms.

5.5 C O N C L U S I O N

We formulate a method to enhance the robustness of networks for classification against
common perturbations such as occlusion, Gaussian noise, Gaussian blur, and snow.
The method transforms the network’s weights by four different stochastic instantiations
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Network Training Time, s GPU Usage, Gb Network Size, Gb

ResNet-152 0.14 1.9 221.9
FoFConv-ResNet-152 0.32 9.1 221.9

Table 20: Comparing resources on an Nvidia 1080Ti. Our network requires the same
disk space as the baseline network and only double the time to train per batch.

of small, stochastic, linear transformation to cover the local neighborhood by Taylor
expansion in the functional space of all classifiers. In the evaluation, we note that the
new method enhances the network classification accuracy on CIFAR-10, and especially
for the fine-grained Stanford dogs and small STL-10 dataset by a considerable margin.

To permit a quantitative comparison in the performance of perturbed images, we first
tune the perturbation parameters to the same drop in performance. In this standardized
setting, we demonstrate the effectiveness of our method by improving the reliability
of the network by considering classification in spite of perturbations in comparison to
how baseline networks perform. FoF convolutions generally show robustness. The
results show improved network reliability for perturbations unseen during training. The
improvement in robustness is usually by a large margin, even compared to training with
data augmentation by the same transform, seen perturbations. FoFConv is independent
of data techniques like data augmentation, as application of both results in a further
improvement. We conclude that our First order Functional approach improves the
reliability of the network especially when the dataset size is small, STL-10 or when it
faces perturbations in the data not seen during training, while the costs of implementing
it into the network and the extra compute time remain modest.
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C L I P S

6.1 I N T RO D U C T I O N

Video summarization aims at choosing parts of a video that narrate a story as close as
possible to the original one. In this day and age, video streaming without personalized
recommendations is almost gone. Current recommendations select a fixed preview
provided by the distributor on the basis of past preferences. We aim to go one step further
and to provide personalized previews. Apart from better video selection for streaming, it
also opens possibilities for better video editing, ad creation, and edge-device software
development.

Existing approaches for video summarization focus on supervised summarization
[55,101,128,175,178,180]. With a growing number of videos, supervised summarization
may still be somewhat affordable for the distributor. When the number of videos grows
exponentially, the supervised model is not sustainable. And, from the standpoint of
the user labeling can be applied only in very moderate amounts. In this paper, we
aim to maximally exploit unsupervised video summarization while concentrating the
supervision on a few personalized labels as an add-on.

Unsupervised video summarization techniques were developed in the pre-deep-learning
era, when no large labeled datasets were available [56]. They are still being used these
days as labeling the full spectrum of possible videos is no longer possible [108]. Re-
gardless of the method of video analysis, with deep learning or not, the main reasoning
for selecting a good summary is left unchanged. The summary must be a compressed
representation of the original video while being closer in content to the source than to
other videos [52, 115]. Two core questions remain: how to summarize a video while
preserving most information in the video, and how to measure distances between two
videos on the basis of their content? Formulating the video summarization in this way,
in this paper, we propose contrastive learning [19] as the answer to both questions.
Contrastive learning was designed to handle compression and metric learning in one
go. We propose that neural networks can be trained to optimize a contrastive loss which
represents the core requirements of a good summary.

Contrastive learning has been successfully applied in image and video classifica-
tion [19, 34, 132]. In classification, the contrastive loss is evaluated by comparing
descriptive feature vectors of equal size [83]. In video summarization, the comparison
is between a vector describing the full video and a vector describing the summary. As
a consequence, the vectors will not be equal in size, and hence cannot be compared
directly by common contrastive losses. To overcome the inequality in size, the common

75



L E A R N I N G T O S U M M A R I Z E V I D E O S B Y C O N T R A S T I N G C L I P S

Figure 17: The t-SNE of the features space of example clips and the learned summaries
(black circles) for these clips. Finding a good summary in the feature space does not
boil down to the centroids of corresponding feature distributions, but rather consists of
finding samples that informatively describe the whole input sequence.

approach for comparing vector representations of videos and their summaries is to use
their time-averaged representations [4]. In this work, we note that such an approach is
invariant to a wide range of transformations and does not account for important moments
of high information in the video. When taking an average, the summary is adequate when
the video develops slowly like a game of snooker or a sit-com interview but expected
to be less adequate when there are short moments of great significance. While various
architectural solutions were proposed to improve over quality by average [128], we
propose that a combination of a well-chosen loss function and training approach suffices
to avoid the unwanted invariances for a wide range of backbones.

In this paper, we focus on developing a simple, flexible, yet efficient recipe for con-
trastive training of deep-learning-based video summarizers. We start from the principle
of maximum information preservation. We demonstrate that the ensuing loss function
and maximization process preserves important information while avoiding undesired
invariances. Our main contributions are the following:

• From the requirements of video summaries we propose a method for contrastive
learning of video summaries with no need for labeling.

• We propose implementations of the main building blocks which are required to
convert any video-analysis network into a summarizer.

• We demonstrate the advantage of contrastive video summarizers on popular bench-
marks for a set of backbone architectures over their original training methods. We
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Figure 18: The main building blocks of our framework for video summarization. Feature
extractor 5 transforms an arbitrary-length sequence of frames into a sequence of features.
They are then used to predict a set of scores by using a function 6. The summary extractor
block uses both sequences to extract a set of : frames with the highest scores.

also demonstrate how it can be used for video highlight selection with a slight
modification.

6.2 R E L AT E D W O R K

S U P E RV I S E D M E T H O D S With the rise of deep learning, a wide range of papers has
considered video summarization as a regression problem. In such a paradigm a neural
network is used to take frames of the video and predict their importance scores so that
the top-scored frames form the summary. In [175] the authors use Recurrent Neural
Networks (RNNs) to combine the temporal information from the video with the content
of each frame to successfully predict frames’ scores. Alternatively, in [128] and [45]
convolutional and attention-based architectures were proposed to improve the quality
of predictions. To effectively combine information about videos from multiple scales,
hierarchical models were proposed [178, 179]. By using hierarchical RNNs, models
benefit from considering the video as a whole, as a set of short clips and as a sequence
of individual frames at the same time. It allows to create summaries of less-contract
granularity than before. While these methods demonstrated the great success of deep
neural networks for video summarization, manually labeled annotations are required for
their training. It makes it impossible to scale such methods to long videos, movies and
streams of videos that are constantly being uploaded on the major video services. For
these reasons, we focus on methods that do not rely on human-annotated labels.

U N S U P E RV I S E D M E T H O D S Early-day methods for video summarization relied
on heuristics designed by a human. The heuristics were designed to satisfy the main
requirements for video summaries such as representativeness and diversity, justified
in [35, 118]. In [35, 93, 115] the authors clustered frames and use the centroids to form a
summary. The authors of [28, 111] formulate video summarization as a sparse dictionary
selection problem. Later, in the deep-learning era, video summarization was approached
from the perspective of adversarial training [68, 109] or in the reinforcement learning
paradigm [180]. We draw inspiration from the pre-deep-learning era methods. By starting
from the reasoning of video summarization, we demonstrate that we can satisfy the main
requirements by formulating it as a contrastive learning problem that we can easily solve.
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Figure 19: An illustration of the proposed contrastive training pipeline. Given two
videos, the features are first calculated for them and then a summary is extracted. Both
summaries and original videos are projected by a neural network ⌘ to a hidden space
afterward. The whole pipeline is trained to attract the projections of summaries to the
projections of the original videos and to repel them from other summaries and videos.

C O N T R A S T I V E L E A R N I N G Contrastive learning is an approach for performing
self-supervised pretraining of a model by using a pre-text task. The model learns to
attract representations that are meant to be close, and are thus called positive, and repel
them from negative representations which are meant to be distant enough to distinguish
between different objects [19, 65, 114, 150]. Various methods have been proposed
for learning image-level [16, 20] and spatio-temporal models [4, 48, 58]. The current
application of contrastive learning methods for video summarization is rather limited due
to special architectural solutions dictated by the domain. In this work, we demonstrate
an approach for contrastive learning for video summarization that does not rely on any
specific backbones and allows one to use any model and framework of their choice.

V I D E O H I G H L I G H T S E L E C T I O N Another popular approach for creating a com-
pressed visual representation of videos is video highlight selection. While the summary
has a fixed length, the highlights are not bounded in length but have a lower bound for
the importance scores. Various methods have been proposed for solving this problem
both from the supervised perspective [3, 75, 106, 145, 169, 170, 172], as well as in the
unsupervised manner [4]. In this paper, we demonstrate that with a slight modification
of our video summarization framework, we can outperform modern video highlight
selection models without significant transformations of the original pipeline.

6.3 M E T H O D

6.3.1 Summary Requirements

Video summarization is a very subjective task, as a manually labeled summary is biased
towards the personal preferences of the annotator, assessor [139]. However, it is possible
to select several properties of a good summary that we would consider as summary
requirements. They also give us hints on how to build an efficient model for video
summarization.

R E P R E S E N TAT I V E N E S S The composed summary should deliver the same message
as the original video. As the summary is a compressed representation of the source, the

78



6.3 M E T H O D

loss of the original information is inevitable. However, we require a good summary to
contain all the information necessary to distinguish between the original video and all
other videos [109]. With no loss of generality, we can assume that each video contains
a finite set of sub-videos each of which tells a separate narrative. Thus, the desired
summary is a combination of sub-videos that is as close as possible to all of them at the
same time, as well as distant enough from all sub-videos of other original videos. We
suggest to learn summaries by selecting a set of sub-videos which we call clips which
once they are projected to some hidden space minimize a variant of the triplet loss. As
we want to develop a model for unsupervised summarization, it leads us to the framework
of contrastive learning [19].

S PA R S I T Y The original videos may come from various sources: be it video news, a
video blog, several-hours-long online streams or a TV show. For all cases, the desired
summary would be just several seconds long as it is the average amount of time a user
can spend before deciding whether to watch it or to skip it. It leads us to the requirement
of the sparsity of the resulting summary. While for short videos the desired summary
may be around 15% of the length [64], this ratio may drop significantly for longer videos.
Thus, our model should be capable of choosing the very top segments of the video with
a significant distinction from the rest. The problem of ranking items and selecting the
top of them cannot be overestimated as it has significant limitations in the realm of deep
learning especially when it comes to a very sparse output [59, 122, 168]. In our approach,
we should not directly rely on any heuristics for performing such an operation and should
seek an as accurate as possible algorithmic implementation of it.

D I V E R S I T Y Another important property of a video summary is the diversity among
its frames. We may assume that for some videos and for some datasets it is possible to
create a summary that will contain a lot of very similar frames and clips. Although it
is possible for a user to understand what the video is about just by taking a look at one
frame, it is still desired to have a summary with a higher diversity of visual information.
If we consider two models which satisfy the above-mentioned requirements, we want to
select the model which selects diverse summaries over uniform summaries. It shows us
that the function which we will use to measure the distance between videos should not
be invariant to the spread of the frames. In other words, it should take into account not
only a single frame and the general content of videos but also the variations inside them.

6.3.2 Contrastive Summarization

A wide range of trainable video summarizers can be decomposed into the following
three blocks: features extractor 5 , score predictor 6 and summary extractor (see Figure
18). From the summary requirement, we generated several requirements for the video
summarization pipeline. And none of them are related to the feature extractor or the
score predictor. Thus, we assume that these two blocks are the free parameters of our
framework. Once a feature extractor and a score predictor are chosen, we train their
parameters by performing a variant of contrastive learning.
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Figure 20: Illustration of frame selection based on the scores B1 and B2. Left: the original
step function Gmax = G1 if B1 > B2 and Gmax = G2 otherwise. Right: a relaxed version with
a smooth replacement for the step function.

Figure 21: Left: a sample video as a set of short clips forms a circle in some hidden space.
Right: Three sets of summaries that yield the same distance function when they are
time-averaged. However, these summaries have different distances from the whole video
if the distance function is given as in Equation 6.4 which leads to a uniform distribution
of clips.

During training, we consider two videos (see Figure 19). Each of the videos is
processed with the feature extractor and the score predictor functions. After that, for
each of the videos a summary is generated. We choose the parameters of the networks
5 and 6 by training them to generate video and summary embeddings s.t. the summary
attracted to its source video is repelled from any other videos and summaries. It is done
by minimizing the following loss [19]:

L =
’
I,I+

� log

exp(dist(I, I+)/g)Õ
I� exp(dist(I, I�)/g)

(6.1)

where I, I�, I+ are embeddings for the anchor video, its negative and positive pairs. We
calculate this loss by iterating over all possible sets of such videos and their summaries.
The parameter g is the smoothing factor of the loss functions. It is a hyperparameter of
our approach. In order to perform the training of such a pipeline successfully, we need to
define the distance function dist(·, ·)
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6.3.3 Clip-Contrastive Distance Function

Let us consider two sequences of ⇡-dimensional vectors represented as matrices:

^ = {-8 9 }⇡,C

8, 9=1
_ = {.8 9 }⇡,)

8, 9=1
(6.2)

where C and ) and the lengths of the sequences. In our case, these matrices are clip
features for the summary and the original video and thus we assume C < ) . A common
approach for calculating the distance between two sequences [4] is to compare their
features averaged it time: x̄ =

Õ
9
-8 9/C0 and ȳ =

Õ
:
.8:/) . It can be done for example

by calculating the scalar product of these vectors:

dist(^,_) =
D’

9

-8 9/C0,
’
:

.8:/)
E
=

1

) · C
’
8 9 :

-8 9.8: (6.3)

The main drawback of such a distance function is that it compares the videos just by
calculating the discrepancy between the average value of their clips. Thus, it does not
take into account the diversity of clips within the video.

We suggest the following procedure for calculating the distance between two videos.
Let us consider a parameter = which we call the length of a sub-video. We consider each
of the videos as a distribution of all possible sub-videos of the lengths =. And then we
calculate the mathematical expectation of the distance calculated between a sub-video
from the first video and a sub-video from the second video as follows:

dist= (^,_) = ⇢x0⇠@= (^)⇢y0⇠@= (_) < x0, y0 >= ⇢x0⇠@= (^)⇢y0⇠@= (_)

=⇥⇡’
9=1

G
0
9
H
0
9

(6.4)

where @(^) is distribution of all possible sub-videos from ^ which have = clips inside.
Such a distance function will degrade to Equation 6.3 if we consider = = 1. For all other
cases, it will take into account not only the difference between the mean values of the
video embeddings but also their distributions.

6.3.4 Differentiable Summary Selection

In order to perform end-to-end training of the proposed pipeline, we must make all of
the steps differentiable. The feature extractor, the score predictor and the projector are
parametrized with neural networks and are thus differentiable. A more sophisticated
part of the pipeline is the module, which selects clips with the highest scores, the top-:
frame selector. Given a set of frames {G1, G2, . . . , G# } and a set of corresponding scores
{B1, B2, . . . B# , } the top-: selector outputs a set of : frames which have the highest
scores.

Ranking a set of frames according to their scores is equivalent to choosing the frame
with the highest score, then removing it from the set and repeating the operation again
and again. Choosing the maximum, or the top-1 frame can be formalized as follows:

Gmax =
’
9

G 91[B 9 > B8, 88 < 9] (6.5)
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Model Source Supervised TVSum SumMe
�1 g d �1 g d

vsLSTM [175] 3 54.2 - - 37.6 - -
dppLSTM [175] 3 54.7 - - 38.6 - -
VASNet [45] 7 61.4 0.16 0.17 49.7 0.16 0.17
MSVA [53] 3 62.8 0.19 0.21 54.4 0.20 0.23

CSUM vsLSTM, Ours 7 59.0 - - 41.0 - -
CSUM dppLSTM Ours 7 60.5 - - 44.2 - -
CSUM VASNet Ours 7 62.7 0.17 0.17 52.1 0.16 0.17
CSUM MSVA Ours 7 63.9 0.19 0.20 58.2 0.22 0.23

Table 21: Experimental results on the TVSum and SumMe dataset. The reported metrics
are F1-score, Spearman and Kendall correlation coefficients. We compare various
backbone models with default training regimes and the same model trained with our
contrastive approach. The best results are in bold.

where 1[. . . ] is the indicator function. The value of Gmax changes with jumps from G1 to
G2 and so on when the corresponding scores dominate the other scores. If we fix all the
scores but just one, and then vary it from �1 to 1, the value of Gmax will change just once
and this change will be a jump (see Figure 20). Thus, the gradient of Gmax with respect to
the varying score will remain 0 everywhere except for the point of the jump, where the
gradient is undefined. Therefore, using this gradient value for back-propagation is not
possible.

By following [59] we use a relaxation of this step function. Equation 6.5 can be
approximated as follows

Gmax ⇡
’
9

G 9

exp(UB 9 )Õ
8
exp(UB8)

=
’
9

G 9 · SoftMax(UB) 9 (6.6)

The parameter U can be interpreted as the inverse of the width of the transition region
and if U ! 1, then SoftMax(UB) ! 1[. . . ].

To rank the set of frames, we step-by-step select the maximum element by using
Equation 6.6 and then subtract from the maximum score a large number, so that the
same frame will not be selected on the next step. In order to minimize the computational
complexity of such an operation, we follow the approach proposed in [123] and compare
pairs of frames. Thus, the processing time growth logarithmically with the number of
frames.

6.4 E X P E R I M E N T S

In this section, we evaluate the quality of video summarizations learned with the proposed
method. We conduct experiments on several datasets and with several backbone models to
demonstrate that the proposed method generalizes well for various video summarization
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setups. Next, we present qualitative examples of extracted video summarizations. Finally,
we provide an ablation study on the hyper-parameters of our method.

DATA S E T S We conduct experiments with 3 datasets: TVSum [139], SumMe [64]
and YouTube Highlights [145] datasets. The TVSum dataset consists of 50 videos from
10 categories from [137]. In TVSum each video has frame-level importance scores
annotated by 20 users. Importance scores range from 1 to 5, where 5 denotes the highest
importance. The SumMe dataset includes 25 short videos of various events such as
cooking or sports. Each video is attributed with frame-level importance scores. The
YouTube Highlights dataset contains videos divided into 6 categories with around 1000
videos of various lengths available for each domain. For each video, there is a ground
truth highlight in a form of a sequence of consecutive frames summarizing the content of
the video in the best way.

E VA L UAT I O N To quantitatively evaluate the quality of extracted summaries we
employ 5-fold cross-validation with an average F1-score across the splits. The cross-
validation splits are the same as in [53]. The average F1-score over videos in the
dataset is reported. As noted in [120] F1-score has certain limitations. We thus also
adopt Spearman’s correlation (d) and Kendall correlation (g) coefficients between the
summaries predicted by the models and ground truth summaries. For the YouTube
Highlights dataset we perform a summary evaluation as a task of highlight detection in
time. We thus employ mean average precision (mAP) as a known detection metric. The
final mAP score is computed over [0.5:0.05:0.95] IoU thresholds.

BAC K B O N E M O D E L S To demonstrate that our method generalizes for various setups,
we conduct experiments with several known backbone models: Video-LSTM and bi-
directional Video-LSTM [175], LSTM with attention [45], Multi-Source Visual Attention
model [53] and multi-modal Transformers [106]. For our experiments, we leave the
backbone architecture unchanged and only modify the training pipeline of the models.

6.4.1 Summarization performance

We start with summarization experiments on the TVSum and SumMe datasets. Here
we evaluate the proposed contrastive learning approach with various feature extraction
backbone models. We use the proposed differentiable top-k summary extractor during
training. During the inference stage, we simply select # frames with the highest predicted
scores. The results are reported in Table 21.

As can be seen from Table 21, using the proposed approach results in significant
improvement for all of the baseline models. Notably, video LSTM (v-LSTM) enjoys a
4.8% improvement in F1-score on the TVSum dataset, given that the proposed contrastive
training does not use labels compared to its default supervised training regime. Also, our
approach outperforms the previous best-performing unsupervised method VASNet [45]
by 1.1% on TVSum and by up to 2.4% on SumMe, when the performance is measured
with the F1-score. In terms of Spearman and Kendall correlation coefficients, our
unsupervised method performs on par with the supervised models.
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Top-: method �1-score

Sinkhorn [168] 63.1 ± 0.4

Perturbed [29] 62.9 ± 0.5

Successive Halving [123] 63.4 ± 0.3

Table 22: �1-score of the MSVA model [53] with different top-k selection mechanism on
the TVSum dataset. A Successive Halving algorithm performs the best.

This experiment demonstrates that our contrastive learning approach generalizes well
for various backbone architectures and for various datasets. Without using any labels, we
are able either to match or to outperform existing supervised methods.

Figure 22: �1-score of the MSVA backbone [53] on the TVSum dataset for various values
of = used in Equation 6.4.

6.4.2 Ablation studies

In this section, we ablate the top-k selection algorithm and the window parameter = in
Equation 6.4. We also investigate if our top-k selector can robustly distribute importance
scores regardless of the number of input frames.

For top-k differentiable selection ablation, we compare Sinkhorn [168], Perturbed
top-k [29] and Successive Halving [123] algorithms. As can be seen from Table 22 the
choice of top-k influences the final performance with Successive Halving delivering the
best results for the MSVA backbone [53] on the TVSum dataset. We thus chose to use
Successive Halving in all of the experiments.

We next ablate the window parameter = in Equation 6.4. Intuitively, = is responsible
for the granularity of the resulting video summarization, where lower values of = result
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Figure 23: Normalized !2-error between the feature maps of top-10 frames selected with
the proposed method and ground truth feature maps. On the x-axis is the total number of
frames to extract the summary from.

in higher granularity. As can be seen in Figure 22, the summarization quality benefits
from higher values of =. That indicates that good video summaries should not be of the
highest granularity. Thus, we use = = 10 in all of the experiments.

Finally, we investigate if our differentiable top-k selector is robust with respect to the
number of input frames. In Figure 23 we report how the normalized !2-error between
the feature maps of top-10 frames selected with our method and ground truth feature
maps depends on the number of input frames. The results suggest that even when the
number of input frames is huge, the error does not exceed 0.06. It indicates that the used
differentiable top-k selector is robust with respect to the number of input frames.

6.4.3 Highlight detection

We view highlight detection as a special case of the summarization task, i.e. the highlight
is a top-1 summary extraction coupled with surrounding context frames. Practically, to
detect a highlight from a full-video, we prepossess summarization scores with Gaussian
smoothing to enforce temporal continuity. After that, we extract a top-score frame with
the surrounding frames with high enough scores to serve as one highlight.

We conduct experiments in both supervised and unsupervised scenarios. For super-
vised highlight detection, we first pre-train the models with the proposed contrastive
approach for 20 epochs and then fine-tune it for 50 epochs using the loss described
in [106]. Evaluating fine-tuned representation is a standard procedure in contrastive
learning [19, 20]. For unsupervised highlight detection, we directly use the scores after
20 epochs of contrastive training.
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Model Sup. Audio Dog Gym. Park. Skat. Ski. Surf. Avg

LSVM [145] 3 7 60.0 41.0 61.0 62.0 36.0 61.0 53.6
LIM-S [169] 3 7 57.9 41.7 67.0 57.8 48.6 65.1 56.4
SL-Module [170] 3 7 70.8 53.2 77.2 72.5 66.1 76.2 69.3
CHD [4] 7 7 60.6 71.1 74.2 49.8 68.2 68.5 65.4
CSUM UMT, Ours 7 7 60.9 70.2 73.8 63.2 70.0 71.4 68.3
CSUM UMT, Ours 3 7 64.8 73.6 79.9 70.5 71.5 80.0 73.3

MINI-Net [75] 3 3 58.2 61.7 70.2 72.2 58.7 65.1 64.4
TCG [172] 3 3 55.4 62.7 70.9 69.1 60.1 59.8 63.0
Joint-VA [3] 3 3 64.5 71.9 80.8 62.0 73.2 78.3 71.8
UMT [106] 3 3 65.9 75.2 81.6 71.8 72.3 82.7 74.9
CSUM UMT, Ours 3 3 66.1 75.1 81.6 71.9 73.0 82.8 75.1

Table 23: Experimental results on the YouTube Highlights benchmark. The reported
metric is mAP in percentages. We compare both the methods which use the audio
information from the video and the methods which rely on the visual features only. We
additionally compare supervised (Sup) and unsupervised methods. The best performing
models are in bold.

Figure 24: Top row: A visual example of the video summary extracted with our method.
Bottom row: human-annotated ground truth importance scores and the importance
scores trained with our contrastive learning method.

We present the results for the cases when audio features are available and when they
are not. In the supervised scenario, as can be seen from Table 23, our method (CSUM
UMT) outperforms the competitive approaches or performs on par. In particular, for
the no-audio case our method delivers more than 5% improvement relative to the best-
performing non-contrastive method [170]. With the audio information included, our
method slightly outperforms the baseline UMT model, when the only modification being
made is the contrastive pre-training used. In the unsupervised case, our method delivers
more than 4% increase in mAP score with respect to the previous best performing
unsupervised method from [4]. Also, the mAP score of our unsupervised model is only
1% behind [170], which fully relies on training with labels.

We conclude that our contrastive approach is very competitive with existing methods,
even when comparing our unsupervised with previous supervised results.
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6.4.4 Qualitative evaluation

In Figure 24 we present an example of the video summarization of a sequence from the
SumMe dataset trained with our contrastive framework and differentiable top-k. We
can see that the predicted importance score can detect the regions of both low and high
significance.

6.5 D I S C U S S I O N

In this work, we propose a novel approach for unsupervised video summarization. We
start by formulating the requirements for a good video summary: representatives, sparsity,
and diversity. We observe that the contrastive learning framework naturally includes
representatives and diversity. For sparsity, we propose a differentiable top-k selector
based on predicted frame-level scores, where the importance is inherently distributed
only among top-k input frames. This allows stepping away from comparing mean feature
vectors, which may result in sub-optimal solution space, during the contrastive learning
stage. Our approach does not rely on a specific kind of backbone; we experimentally
show that it generalizes well for various architectures and summarization scenarios.
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In this thesis we considered the problem of learning from limited data by using the power
of symmetries. We started with the following question:

Can we build neural networks which are aware of the principle geometric

symmetries without learning them?

In Chapter 2 we developed a theory of scale-equivariant convolutional neural networks.
We demonstrated the idea of filter reparametrization for the rescaling of convolutional
kernels. We presented an algorithm for fast filter rescaling without using tensor inter-
polations. We demonstrated how the most common building blocks of neural networks
such as convolution, batch normalization and nonlinearities can be extended to scale
equivariance. We also demonstrated how one can transform a scale-equivariant neural
network into a scale-invariant function. We presented a recipe for how to make an
arbitrary CNN-based model scale equivariant, by simply drop-in replacing its building
blocks with the proposed ones.

In Chapter 3 we considered Siamese trackers, for which principle transformations such
as scale-variations are considered as significant disturbing factors. We proposed a recipe
for how to extend any CNN-based Siamese visual object tracker to scale equivariance.
We also proposed a method for model initialization to reuse weights from an already
pre-trained model.

In our experiments in Chapter 2 and Chapter 3 we demonstrated that the proposed
simple modifications of CNN-based models significantly outperform their conventional
counterparts. By making the networks aware of scale variations by design we allowed
them to benefit when less training data is available.

In order to improve the results even further, we considered the discrepancy between
the symmetries we assume in the data and the symmetries the data actually contains.
Thus, we posed the next question:

How to match the scale symmetries of the observed world with the scale

symmetries of mathematical structures?

In Chapter 4 from the first principles, we derived general constraints, under which
scale-equivariant neural networks are indeed equivariant under scale transformations of
input. We found that for integer scale factors, which transform the original image into
another one that lies on exactly the same grid, the exact solution exists. In this case, there
is no discrepancy between symmetries. For all other cases, there is no exact solution.
We demonstrated that it is possible to learn an approximate solution by minimizing the
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discrepancy between the theoretical and real output of the layer when it’s calculated
on real data. In our experiments, we demonstrate that by simply replacing one set of
filters with another set we improve the model. After comparing several models side-by-
side we concluded that the lower the discrepancy between the real symmetries and the
mathematical symmetries are the better model performs. And the best-performing model
is the proposed model.

In Chapter 5 we focused on model robustness. Scale-equivariant convolutional neural
networks are robust with respect to scale variations in the input. We sought a method
to extend this property to small variations of the input, be it blur, partial occlusion,
view-point variations or fog.

How to make models robust to subtle variations that go beyond affine

transformations?

With this question in mind, we introduced a new class of convolutional neural net-
works. At the core of our method is the idea that for any transformation of the input,
there exists a coupled transformation of the filter to produce the same result after convo-
lution. We demonstrated that learned data augmentation can be implemented in every
layer of a convolutional neural network by extending the filter bank with a set of filter
transformations. We proposed an algorithm for an efficient implementation of these new
models. We demonstrated that by using our algorithm, one can improve a wide range of
convolutional models just by drop-in replacement of the standard convolutional layers
with the proposed ones.

In Chapter 6 we considered unsupervised video summarization. The task of video
summarization is select a part of the video which delivers the same message as the original
video. How to summarize? What to highlight? What information seems more important
than the other? As we sought to solve it in an unsupervised manner, we couldn’t derive
the answers from some previously-seen data. Thus, we posed the following question.

How to make models learn from unlabeled data by assuming symmetries?

To answer this question, we considered every video as a set of short clips. We proposed
a method for learning how clips relate to each other by mapping them to a hidden space
where closer clips organize symmetric structures. Thus, a summary is a subset of clips
that after some symmetry transformations can reconstruct the rest. We introduced an
algorithm for fast implementation of this approach. In our experiments, we demonstrated
that a wide range of models significantly improve their results if they are trained by using
our method.
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In this thesis, Symmetry-Based Learning from Limited Data, we introduced new ap-
proaches for training better machine learning models for computer vision tasks in the
absence of large labeled datasets. Our approach is based on equipping neural networks
with the notion of symmetry for the sake of better learning real-world constraints without
observing all their realizations in the training data. We started with explicit mathematical
structures such as the scale group, then we considered a wider group of non-affine trans-
formations. And finally, we demonstrated that models can learn structures themselves by
assuming symmetry in the input data.

Our contributions are the following:

• We introduced Scale-Equivariant Steerable Networks (Chapter 2), a class of
convolutional neural networks that are equipped with an extra notion of scale
variations. We presented a theory and an effective implementation for these
networks. In our experiments, the new class of models outperformed all other
models without introducing new trainable parameters.

• We introduced Scale-Equivariant Siamese Trackers (Chapter 3), a simple exten-
sion of well-known Siamese trackers, which uses the power of scale equivariance
to improve visual object tracking in scenarios when scale variations are significant.
We proposed a theory and an effective recipe for how to convert any convolu-
tional Siamese tracker into a Scale-Equivariant counterpart. In our experiments,
we demonstrated that after extending the tracker, it performs way better while
retaining real-time performance.

• We introduced Accurate Discrete Scale Convolutions (Chapter 4), a class of
scale-equivariant convolutional neural networks that are optimized for discrete
signals. We started from the first principles and derived the constraints under
which scale-equivariant convolutional neural networks demonstrate the lowest
discrepancy from the theoretical properties. We proposed a method for building
models which satisfy these constraints as close as possible. In our experiments,
we demonstrate that the models with the lowest discrepancy demonstrate the best
results in image classification and visual object tracking.

• We introduced First-order Functional Convolutions (Chapter 5), a modification
of standard convolutions, which allows one for training more robust counterparts
of the original models by simply replacing the convolutional layers. We pre-
sented a theory and an effective implementation for robust modifications. In our
experiments, the proposed approach outperformed the conventional counterparts.

• We introduced Contrastive Video Summarizers (Chapter 6), an algorithm for
video summarization that does not rely on annotations and is flexible with respect
to the backbone choices. We present a theory and demonstrate that with just
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several building blocks any video summarizer can be used in our framework. In
our experiments, the proposed framework improves the results for several popular
models on multiple benchmarks.
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S A M E N VAT T I N G

In dit proefschrift, Symmetry-Based Learning from Limited Data, hebben we nieuwe
benaderingen geı̈ntroduceerd voor het trainen van betere machine learning modellen
voor beeldherkenningstaken bij afwezigheid van grote gelabelde datasets. Onze aanpak
is gebaseerd op het uitrusten van neurale netwerken met de notie van symmetrie om de
beperkingen uit de echte wereld beter te leren kennen zonder al hun realisaties in de
trainingsdata te observeren. We zijn begonnen met expliciete wiskundige structuren zoals
de schaalgroep, vervolgens hebben we een bredere groep niet-affiene transformaties
overwogen. En tot slot hebben we aangetoond dat modellen zelf structuren kunnen leren
door uit te gaan van symmetrie in de invoerdata.

Onze bijdragen zijn als volgt:

• We introduceerden Scale-Equivariant Steerable Networks (Hoofdstuk 2), een
klasse van convolutionele neurale netwerken die zijn uitgerust met een extra notie
van schaalvariaties. We presenteerden een theorie en een effectieve implementatie
voor deze netwerken. In onze experimenten presteerde de nieuwe klasse modellen
beter dan alle andere modellen zonder nieuwe trainbare parameters te introduceren.

• We introduceerden Scale-Equivariant Siamese Trackers (Hoofdstuk 3), een een-
voudige uitbreiding van bekende Siamese trackers, die de kracht van schaalequiv-
ariantie gebruiken om het visueel volgen van objecten te verbeteren in scenario’s
waarin schaalvariaties aanzienlijk zijn. We hebben een theorie en een effectief
recept voorgesteld voor het omzetten van elke convolutionele Siamese tracker in
een schaal-equivariante tegenhanger. In onze experimenten hebben we aangetoond
dat na uitbreiding van de tracker deze veel beter presteert met behoud van real-time
prestaties

• We introduceerden Accurate Discrete Scale Convolutions (Hoofdstuk 4), een
klasse van schaal-equivariante convolutionele neurale netwerken die zijn geopti-
maliseerd voor discrete signalen. We zijn uitgegaan van de eerste principes en
hebben de beperkingen afgeleid waaronder schaal-equivariante convolutionele
neurale netwerken de laagste discrepantie vertonen met de theoretische eigenschap-
pen. We hebben een methode voorgesteld om modellen te bouwen die zo goed
mogelijk aan deze beperkingen voldoen. In onze experimenten laten we zien dat de
modellen met de laagste discrepantie de beste resultaten laten zien op het gebied
van beeldclassificatie en het volgen van visuele objecten.

• We introduceerden First-order Functional Convolutions (Hoofdstuk 5), een
aanpassing van standaard convoluties, die het mogelijk maakt om robuustere tegen-
hangers van de originele modellen te trainen door simpelweg de convolutionele
lagen te vervangen. We presenteerden een theorie en een effectieve implementatie
voor robuuste aanpassingen. In onze experimenten presteerde de voorgestelde
aanpak beter dan de conventionele tegenhangers.
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• We introduceerden Contrastive Video Summarizers (Hoofdstuk 6), een algoritme
voor videosamenvatting dat niet afhankelijk is van annotaties en flexibel is met
betrekking tot de backbone-keuzes. We presenteren een theorie en demonstreren
dat met slechts enkele componenten elke videosamenvatting in ons raamwerk kan
worden gebruikt. In onze experimenten verbetert het voorgestelde raamwerk de
resultaten voor verschillende populaire modellen op meerdere benchmarks.
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