54 research outputs found

    Adaptive refinement for hp-version Trefftz discontinuous Galerkin methods for the homogeneous Helmholtz problem

    Get PDF
    In this article we develop an hp-adaptive refinement procedure for Trefftz discontinuous Galerkin methods applied to the homogeneous Helmholtz problem. Our approach combines not only mesh subdivision (h-refinement) and local basis enrichment (p-refinement), but also incorporates local directional adaptivity, whereby the elementwise plane wave basis is aligned with the dominant scattering direction. Numerical experiments based on employing an empirical a posteriori error indicator clearly highlight the efficiency of the proposed approach for various examples

    A survey of Trefftz methods for the Helmholtz equation

    Get PDF
    Trefftz methods are finite element-type schemes whose test and trial functions are (locally) solutions of the targeted differential equation. They are particularly popular for time-harmonic wave problems, as their trial spaces contain oscillating basis functions and may achieve better approximation properties than classical piecewise-polynomial spaces. We review the construction and properties of several Trefftz variational formulations developed for the Helmholtz equation, including least squares, discontinuous Galerkin, ultra weak variational formulation, variational theory of complex rays and wave based methods. The most common discrete Trefftz spaces used for this equation employ generalised harmonic polynomials (circular and spherical waves), plane and evanescent waves, fundamental solutions and multipoles as basis functions; we describe theoretical and computational aspects of these spaces, focusing in particular on their approximation properties. One of the most promising, but not yet well developed, features of Trefftz methods is the use of adaptivity in the choice of the propagation directions for the basis functions. The main difficulties encountered in the implementation are the assembly and the ill-conditioning of linear systems, we briefly survey some strategies that have been proposed to cope with these problems.Comment: 41 pages, 2 figures, to appear as a chapter in Springer Lecture Notes in Computational Science and Engineering. Differences from v1: added a few sentences in Sections 2.1, 2.2.2 and 2.3.1; inserted small correction

    Discontinuous Galerkin Methods with Trefftz Approximation

    Full text link
    We present a novel Discontinuous Galerkin Finite Element Method for wave propagation problems. The method employs space-time Trefftz-type basis functions that satisfy the underlying partial differential equations and the respective interface boundary conditions exactly in an element-wise fashion. The basis functions can be of arbitrary high order, and we demonstrate spectral convergence in the \Lebesgue_2-norm. In this context, spectral convergence is obtained with respect to the approximation error in the entire space-time domain of interest, i.e. in space and time simultaneously. Formulating the approximation in terms of a space-time Trefftz basis makes high order time integration an inherent property of the method and clearly sets it apart from methods, that employ a high order approximation in space only.Comment: 14 pages, 12 figures, preprint submitted at J Comput Phy

    A Space-Time Discontinuous Galerkin Trefftz Method for time dependent Maxwell's equations

    Full text link
    We consider the discretization of electromagnetic wave propagation problems by a discontinuous Galerkin Method based on Trefftz polynomials. This method fits into an abstract framework for space-time discontinuous Galerkin methods for which we can prove consistency, stability, and energy dissipation without the need to completely specify the approximation spaces in detail. Any method of such a general form results in an implicit time-stepping scheme with some basic stability properties. For the local approximation on each space-time element, we then consider Trefftz polynomials, i.e., the subspace of polynomials that satisfy Maxwell's equations exactly on the respective element. We present an explicit construction of a basis for the local Trefftz spaces in two and three dimensions and summarize some of their basic properties. Using local properties of the Trefftz polynomials, we can establish the well-posedness of the resulting discontinuous Galerkin Trefftz method. Consistency, stability, and energy dissipation then follow immediately from the results about the abstract framework. The method proposed in this paper therefore shares many of the advantages of more standard discontinuous Galerkin methods, while at the same time, it yields a substantial reduction in the number of degrees of freedom and the cost for assembling. These benefits and the spectral convergence of the scheme are demonstrated in numerical tests

    A quasi-optimal coarse problem and an augmented Krylov solver for the Variational Theory of Complex Rays

    Full text link
    The Variational Theory of Complex Rays (VTCR) is an indirect Trefftz method designed to study systems governed by Helmholtz-like equations. It uses wave functions to represent the solution inside elements, which reduces the dispersion error compared to classical polynomial approaches but the resulting system is prone to be ill conditioned. This paper gives a simple and original presentation of the VTCR using the discontinuous Galerkin framework and it traces back the ill-conditioning to the accumulation of eigenvalues near zero for the formulation written in terms of wave amplitude. The core of this paper presents an efficient solving strategy that overcomes this issue. The key element is the construction of a search subspace where the condition number is controlled at the cost of a limited decrease of attainable precision. An augmented LSQR solver is then proposed to solve efficiently and accurately the complete system. The approach is successfully applied to different examples.Comment: International Journal for Numerical Methods in Engineering, Wiley, 201

    On stability of discretizations of the Helmholtz equation (extended version)

    Full text link
    We review the stability properties of several discretizations of the Helmholtz equation at large wavenumbers. For a model problem in a polygon, a complete kk-explicit stability (including kk-explicit stability of the continuous problem) and convergence theory for high order finite element methods is developed. In particular, quasi-optimality is shown for a fixed number of degrees of freedom per wavelength if the mesh size hh and the approximation order pp are selected such that kh/pkh/p is sufficiently small and p=O(logk)p = O(\log k), and, additionally, appropriate mesh refinement is used near the vertices. We also review the stability properties of two classes of numerical schemes that use piecewise solutions of the homogeneous Helmholtz equation, namely, Least Squares methods and Discontinuous Galerkin (DG) methods. The latter includes the Ultra Weak Variational Formulation

    Non-polynomial approximation methods in acoustics and elasticity

    Get PDF

    A space-time DG method for the Schr\"odinger equation with variable potential

    Full text link
    We present a space--time ultra-weak discontinuous Galerkin discretization of the linear Schr\"odinger equation with variable potential. The proposed method is well-posed and quasi-optimal in mesh-dependent norms for very general discrete spaces. Optimal~hh-convergence error estimates are derived for the method when test and trial spaces are chosen either as piecewise polynomials, or as a novel quasi-Trefftz polynomial space. The latter allows for a substantial reduction of the number of degrees of freedom and admits piecewise-smooth potentials. Several numerical experiments validate the accuracy and advantages of the proposed method

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering
    corecore