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ABSTRACT

Acoustic and elastic wave models are often encountered in engi-
neering. Examples include seismic imaging, medical applications
and the automotive industry. Such wave models are challenging to
solve and sometimes require a great deal of computer resources.
Therefore, efficient, robust and accurate numerical methods are
needed to attack these problems.

This thesis focuses on simulating time-harmonic wave propaga-
tion problems occuring in acoustics and elasticity. A non-polynomial
numerical method called the ultra weak variational formulation
(UWVF) will be extended in several directions. The UWVF is a vol-
ume based method and it traditionally uses a finite element mesh of
triangles or tetrahedra. Unlike the standard polynomial basis func-
tions of the finite element method (FEM), the original UWVF uses
propagating plane wave basis functions. The main drawback of
the plane wave basis is ill-conditioning that occurs when too many
plane waves are used on an element. Part of this thesis will focus
on improving the performance of the UWVF in situations where
the plane wave basis does not approximate the solution efficiently.
These problems include cases where singular or rapidly decaying
fields are present. A particular concern is the choice of basis func-
tions in the acoustic UWVF.

The UWVF is a discontinuous method (DGM) and therefore
techniques from the theory of the discontinuous Galerkin schemes
can be applied to derive error estimates. In particular, new error
estimates for the elastic UWVF will be presented.

Finally, a new UWVF will be introduced to solve vibration prob-
lems in thin elastic plates. Numerical results and basic error esti-
mate will show that the UWVF can be used to solve thin clamped
plate problems.

Universal Decimal Classification: 534, 534.8, 534.2, 534.12 519.6
INSPEC Thesaurus: acoustic waves; elastic waves; wave propaga-
tion; vibrations; acoustics; elasticity; numerical analysis; harmonics;



harmonic analysis; simulation; modeling; Galerkin method; error
analysis
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ABBREVIATIONS

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
ABC Absorbing boundary condition
AVM Adjoint variable method
BEM Boundary element method
DD Domain decomposition
DDM Direct differentiation method
DEM Discontinuous enrichment method
DG Discontinuous Galerkin
DGM Discontinuous Galerkin method
DPG Discontinuous Petrov-Galerkin
DSA Design sensitivity analysis
EW Evanescent wave
FDTD Finite difference time domain
FEM Finite element method
FMM Fast multipole method
FOSLS First order system of least squares
GFEM Generalized finite element method
GLS Galerkin least squares
GMRES Generalized minimum residual method
HIFU High intensity focused ultrasound
HRTF Head-related transfer function
IFT Inverse Fourier transform
ILU Incomplete Lower-Upper
imDGM Improved discontinuous Galerkin method
LDGM Local discontinuous Galerkin method
LED Light emitting diode
LSM Least-squares method
mDGM Modified discontinuous Galerkin method
MFMM Multilevel fast multipole method
MFS Methods of fundamental solution
nnz Number of non-zeros



PDE Partial differential equation
PML Perfectly matched layer
PUFEM Partition of unity finite element method
PW Plane wave
SDGM Stable discontinuous Galerkin method
SEA Statistical energy analysis
SEM Spectral element method
TDG Trefftz discontinuous Galerkin
TMM Transfer matrix method
UWVF Ultra weak variational formulation
VTCR Variational theory of complex rays
WBM Wave based method
WVF Weighted variational formulation



NOMENCLATURE

A scalar, satisfies the Helmholtz equation, Section 4.1.3
A orthogonal matrix, Section 4.3.1
Ak

j unknown coefficient in PUFEM, Section 3.1
a, b vectors, Section 4.1.1
aKk

p unknown coefficient in LSM, Section 3.2
B vector field satisfying Maxwell equation, Section 4.1.3
b data vector, Section 4.1.2
C sparse matrix, Section 4.1.2
C arbitrary constant, Section 4.1.3
C complex numbers, Section 4.1
c speed of sound (in fluids), Section 2.3
cP speed of pressure wave (P-wave), Section 2.1
cS speed of shear wave (S-wave), Section 2.1
D plate bending stiffness, Section 2.2
D sparse block diagonal matrix, Section 4.1.2
dk direction of propagation (unit vector), Section 3.1
dinc incident direction of propagation (unit vector), Section 5.3.1
E Young’s modulus, Section 2.1
Fk operator of the UWVF, Section 4.1.1
f body force, Section 2.1
f frequency, Section 5.2.1
g source term on the boundary, Section 4.1
g1, g2 source terms on the boundary, Section 4.2
g acoustic source term on the boundary, Section 3.1
H Sobolev space, Section 4.1.3
h element size, Section 4.1.3
I identity matrix, Section 2.1
i imaginary unit, Section 2.1
j integer, Section 3.1
K1, K2 wave numbers, 5.3.2
Kk element k in the domain, Section 3.2
k integer, Section 3.1
L2

h

weighted space, Section 4.1.1



(Lx, Ly) dimensions (rectangle) bounding the cavity, Section 3.4
l integer, Section 4.1.3
` integer, Section 3.5.1
˜̀ integer, Section 4.3.1

rational number (modified Bessel basis), Section 4.3.1
Mx bending moment, Section 2.2
My bending moment, Section 2.2
Mxy, Myx twisting moments, Section 2.2
m integer, Section 4.1.3
N number of elements, Section 4.1.1
N natural numbers, Section 3.3
NE integer, Section 3.3
Nk unknown coefficient, Section 3.1
Nj solution of a governing PDE, Section 3.1
Np integer, Np � 1 is the number of basis functions, Section 3.2
n outward unit normal, Section 3.1
n index of refraction, Section 3.5.1
n integer, Section 5.2.1
ne integer, Section 3.3
nk refraction index of medium, Section 3.5.1
nn number of nodes, Section 3.1
P vector, (P · P)2 = r4, Section 3.3
P time-dependent pressure, Section 2.3
P0 static state pressure, Section 2.3
Ph best approximation operator, Section 4.1.3
Pn mapping, Section 3.3
Pt mapping, Section 3.3
p number of basis functions, Section 3.1
pa acoustic (time-harmonic) pressure, Section 2.3
ph

a approximation for acoustic pressure, Section 3.1
pex

a exact solution, Section 5.1.1
pinc incident wave field, Section 4.3.1
pk number of basis functions in element Kk, Section 3.5.1
pP, pS number of basis functions, Section 4.1.2
pR reflected field, Section 4.3.1



pT transmitted field, Section 4.3.1
Q defines the type of the boundary condition, Section 4.1
Q1, Q2 defines the type of the boundary condition, Section 4.2
Qx shear force, Section 2.2
Qy shear force, Section 2.2
q time-harmonic volume source (loading), Section 2.2
qP, qS integer, Section 4.1.3
qa integer, Section 4.3.2
qb time-dependent volume source (loading), Section 2.2
qp integer, Section 3.5.2
R reflection coefficient, Section 5.3.2
< real part, Section 2.1
r distance (polar coordinates), Section 3.1

radius, Section 3.3
r1, r2 radius, Section 5.3.3
rP, rS integer, Section 4.1.3
r̃1 integer, Section 3.4
S entropy, Section 2.3
S0 static state entropy, Section 2.3
s tangential unit vector, Section 3.3

auxiliary variable (in DG scheme), Section 4.2.1
s1, s2 unit vectors (polarization), Section 5.2.1
s integer, Section 4.3.1
s̃1 integer, Section 3.4
ŝ numerical flux, Section 4.2.1
T denotes the transpose operator, Section 2.1
Th consists of the elements (mesh), Section 4.1.1
t auxiliary variable (in DG scheme), Section 4.2.1
t̂ numerical flux, Section 4.2.1
t thickness of the plate, Section 2.2
U time-dependent displacement (Ux, Uy, Uz), Section 2.1
u time-harmonic displacement (ux, uy, uz), Section 2.1
u

P pressure (or dilatational) P-wave, Section 2.1
u

SH horizontal component of shear wave SH-wave, Section 2.1
u

SV vertical component of shear wave SV-wave, Section 2.1



uh approximation for u, Section 4.1.3
uk, u|Kk displacement field on the element Kk
uj, u|Kj displacement field on the element Kj

û f fundamental solution, Section 3.4
û numerical flux, Section 4.1.1
u general fields satisfying governing PDE, Section 3.1

auxiliary variable (in DG scheme), Section 4.2.1
ũ approximation for u (WBM), Section 3.4
û numerical flux, Section 4.2.1
uc amplitude of an corner mode, Section 3.3
uE enrichment part in the DEM, Section 3.5.3
ue amplitude of an edge mode, Section 3.3
uP polynomial part in the DEM, Section 3.5.3
V time-dependent particle velocity, Section 2.3
V0 static state particle velocity, Section 2.3
v time-harmonic velocity field, Section 2.3
v test function, Section 3.1
W time-dependent displacement (Uz), Section 2.2
w time-harmonic displacement (uz), Section 2.2
ŵ numerical flux, Section 4.2.1
wsmth solution of homogeneous PDE, Section 5.4.1
wfund fundamental solution, Section 5.4.1
X unknown coefficients to be determined, Section 4.1.2
X unknown function in the UWVF, Section 4.1.1
X weighted space, Section 4.1.1
x coordinate vector x = (x, y, z), Section 3.3
x0,k centroid of the element, Section 4.3.1
x0, y0 scaling coordinates, Section 4.3.1
Y functional in the UWVF on ∂Kk, Section 4.1.1
a integer, Section 4.1.3
a

P
k,`, a

SH
k,` , a

SV
k,` amplitudes of basis functions, Section 4.1.2

ak, ˜̀ variable in the evanescent wave basis, Section 4.3.1
b j unknown coefficient, Section 3.1
bk, ˜̀ variable in the evanescent wave basis, Section 4.3.1
G boundary, Section 3.1



d stress tensor (test function), Section 4.1.1
bounded variable, Section 4.2.3

d(·) Dirac’s distribution, Section 5.4.1
e(·) the strain tensor, Section 2.1
h numerical flux (coupling) parameter, Section 4.1
h1, h2 numerical flux (coupling) parameter, Section 4.2
z test function in acoustics, Section 4.3
q angle, Section 3.1
q

EW angle in the evanescent wave basis, Section 4.3.1
qcrit critical angle, Section 4.3.1
qinc incident angle of propagation, Section 4.3.1
qR reflection angle, Section 4.3.1
qT transmission angle, Section 4.3.1
∂Kk faces (edges) of the element, Section 4.1.1
k acoustic wave number
kb plate bending wave number, Section 2.2
kP pressure wave number (P-wave number), Section 2.1
kS shear wave number (S-wave number), Section 2.1
(kxr, kyr) wave numbers in WBM (r-set), Section 3.4
(kxs, kys) wave numbers in WBM (s-set), Section 3.4
{ (auxiliary) variable refers to weighting, Section 4.1.3
L depends on the shape of the element, Section 4.1.3
Ll Lagrange polynomial, Section 3.5.3
l Lamé constant, Section 2.1
lb plate bending wavelength, Section 2.2
µ Lamé constant, Section 2.1
nA unit vector, Section 5.3.3
n Poisson ration, Section 2.1
x test function, (in DG scheme), Section 4.2.1
Sk,j common interface of Kk and Kj, Section 4.1.1
s

t

time-dependent stress tensor, Section 2.1
s time-harmonic stress tensor, Section 2.1
ŝ numerical flux, Section 4.1.1
r density of medium, Section 2.1
r0 static state density of medium, Section 2.3



t auxiliary variable (cf. test function velocity), Section 4.3
tA unit vector, Section 5.3.3
t time variable, Section 2.3
Fk wave functions in WBM, Section 3.4
Fr r-set wave functions in WBM, Section 3.4
Fs s-set wave functions in WBM, Section 3.4
f smooth vector test function, Section 4.1.1
f

P
k,`, f

SH
k,` , f

SV
k,` P-, SH- and SV-wave basis functions, Section 4.1.2

f piecewise linear nodal basis function 3.1
f test function, (in DG scheme), Section 4.2.1
j angle, Section 3.3
jk,` basis functions in the UWVF, Section 3.5.1
j

PW
k,` , j

EW
k,` PW and EW basis functions, Section 4.2.2

j test function, (in DG scheme), Section 4.2.1
y test function, (in DG scheme), Section 4.2.1
W computational domain, Section 3.1
w angular frequency, Section 2.1
{{·}} the average across common interface, Section 4.1.1
[[·]] the jump across common interface, Section 4.1.1
⌦ outer product i.e. a ⌦ b = ab

T, Section 4.1.1
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1 Introduction

Simulation of propagating acoustic or elastic waves is needed in
various fields of industry ranging from remote sensing to noise
control. These involve frequencies across the broad spectrum of
sounds. For instance, high frequency sound is used in medical
applications, audible frequencies in automotive industries and low
frequencies are used in seismology. Not only the frequency range
but also geometrical properties of the computational domain such
as fine detailed structures, big computational regions or multiscale
structures generate challenges and impose limitations on modeling.
Therefore, it is important to improve current solvers and develop
new efficient numerical modeling methods. Even though, comput-
ing power has increased over the years, numerical wave simulation
often remains a challenging and time intensive task.

Polynomial methods such as the finite element method (FEM) or
the boundary element method (BEM) are commonly used to solve
wave problems in acoustics and elasticity. In the FEM, the compu-
tational domain is divided into small elements, a weak form of the
problem is discretized and locally supported polynomial test and
basis functions are used to approximate the problem. As a result,
the FEM is a flexible method that can be applied to complex ge-
ometries and a wide variety of physical problems. In the BEM, an
integral representation of the solution is used and only the bound-
ary of the domain is discretized. Low order FEM or BEM need at
least 10 degrees of freedom per wavelength in order to achieve a
tolerable accuracy. At higher wave numbers the number of degrees
of freedom per wavelength needed is even larger due to pollution
error [1] (or for BEM [2]). At very high frequencies statistical en-
ergy analysis (SEA) [3] is widely used, but statistical methods will
not be considered here.

In order to overcome the disadvantages of low order FEM, other
polynomial based methods have been developed such as the Galer-
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kin/least-squares method (GLS) [4], very high order finite element
method called the spectral element method (SEM) [5], the hp finite
element method (hp FEM) [6–8] and the discontinuous Galerkin
method (DGM) [9]. Recently, the focus has been on developing
a stable polynomial method suitable for large wave numbers [10–
14] or optimizing the test functions to obtain better stability [15–
17]. In particular, the discontinuous Petrov-Galerkin (DPG) method
with optimal test functions has been developed by Demkowicz and
Gopalakrishnan et al. [15–17]. In acoustics, numerical tests show
that the DPG method with optimal test functions has no pollution
error in 1D and small pollution error in 2D [16, 17]. At the same
time, Melenk and Sauter [7, 8] have shown that the hp FEM can
control pollution error provided that the polynomial degree is al-
lowed to grow slowly with frequency.

In acoustics and elasticity, solutions may have singularities. For
example, singular solutions are generated near sharp corners, edges,
change in boundary condition, or point sources. Polynomial meth-
ods, such as the traditional FEM, are not the most suitable to ap-
proximate singular problem efficiently. Strategies to improve the
accuracy of FEM include mesh refinement (h-version) near the sin-
gularity, the use of higher order polynomials (p-version) or the use
of both strategies (hp-version). Another natural direction beyond
the polynomial based methods is the use of specially chosen non-
polynomial basis functions. The idea of using specially designed
basis functions is not new. In 1973 [18], non-polynomial basis func-
tions in the FEM were tailored to cope with singularities. In the
case of elastic cracks, the accuracy of the FEM was enhanced by us-
ing enriched singular functions in [19]. In [20], “cracked elements”
were used in order to decrease the error in elastic plate problems.
A large literature now exists in this direction.

Another challenge arising from computational wave propaga-
tion is that the problem is often posed on an unbounded computa-
tional domain. Then the solution needs to satisfy a suitable radia-
tion condition. Although non-polynomial basis functions can help
with this aspect of wave propagation (e.g. infinite elements [21, 22]
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and wave envelope method [23]), we do not focus on this problem
in our studies.

Physical basis functions, in addition to polynomials, can be
used on a bounded domain to approximate oscillatory solutions.
One of the first such methods is the partition of unity finite ele-
ment method (PUFEM) developed by Babuška and Melenk [24,25].
The PUFEM is based on the standard weak formulation of FEM
for acoustic problems but instead of using polynomial basis func-
tions, it uses plane waves that are multiplied by piecewise poly-
nomial partition of unity functions. Methods similar to PUFEM
have been investigated under different names such as the finite
ray element method [26], microlocal discretization [27, 28] and spe-
cial wave boundary element method [29]. More general approx-
imations have been introduced in the generalized finite element
method (GFEM) [30] where piecewise polynomial finite elements
and PUFEM are added (leaving out the FEM part the method re-
duces to the PUFEM).

Many methods have been developed using physical basis func-
tions alone. These methods which use sums of known solutions of
the partial differential equation belong to the class of Trefftz meth-
ods [31,32]. To be more specific, in the Trefftz method, the functions
which are used in the approximation satisfy the governing partial
differential equation (cf. plane waves satisfy the Helmholtz equa-
tion) but may violate the boundary conditions. Hence, sums of
these functions are then adjusted to satisfy the boundary condition.
For example, the method of fundamental solution (MFS) [33] is a
Trefftz method using sums of fundamental solutions corresponding
to source points outside the computational domain.

In 1994, the ultra weak variational formulation (UWVF) of De-
sprés [34] was introduced. Two years later in 1996, both theoretical
and the numerical results for acoustics and electromagnetism were
considered in Cessenat’s thesis [35] (supervised by Després). Orig-
inally it uses discontinuous piecewise plane wave basis functions.

Concurrently, in 1996, Ladevèze [36] introduced the variational
theory of complex rays (VTCR) to solve elasticity problems. Here
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the “complex rays” are solutions of the governing partial differen-
tial equation (cf. plane waves, corner and edge evanescent waves).
In 1998, Desmet introduced a wave based method (WBM) [37] which
uses a weighted residual formulation and sums of wave functions
that satisfy the governing equation. The WBM was applied to vibro-
acoustic problems in various fields of engineering [37]. In the same
year 1998, the least-squares method (LSM) by Stojek [38] was intro-
duced and Bessel and Hankel functions were used in acoustic wave
modeling. One year later, Monk and Wang [39] used plane wave
and Bessel functions in the LSM for acoustic problems and proved
error estimates.

More recently, in 2001, the discontinuous enrichment method
(DEM) [40] was introduced. It uses discontinuous basis functions
that consist of a polynomial part enriched by non-polynomial func-
tions such as plane waves. The DEM uses a hybrid discontinuous
Galerkin formulation and weak continuity between elements is en-
forced using Lagrange multipliers. Without the polynomial part,
the DEM reduces to the DGM with Lagrange multipliers and non-
polynomial basis functions.

The aim of this thesis is to investigate and further develop the
UWVF. One of the main focuses is on the choice of basis functions of
the acoustic UWVF. In particular, it is well-known that plane wave
based methods suffer from ill-conditioning when too many basis
functions are used on a single element. The UWVF with Bessel
basis functions will be studied in order to try to stabilize the method
(obtaining a lower condition number and as good accuracy as plane
waves).

As in the case of FEM [18], the performance of the UWVF de-
teriorates in the presence of singular solutions [41]. Therefore, we
investigate the use of fractional order Bessel basis functions near
corner singularities. Similar kinds of singular problems have also
been investigated for other non-polynomial methods such as the
non-polynomial FEM [42] and the WBM [43–46].

Another case where accuracy can deteriorate occurs because
rapidly decaying interface waves are challenging to approximate
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with plane waves [47–50]. Motivated by studies using the DEM
[49, 50], the use of evanescent wave basis functions in the UWVF
will be examined for a fluid-fluid interface problem with straight
or curved interfaces. The focus will be on the cases when rapidly
decaying waves are present.

The UWVF will also be developed for linear elasticity in three
dimensions. In particular, error estimates for the elastic UWVF will
be derived using the equivalence of the UWVF with an upwind
discontinuous Galerkin (DG) scheme. The derivation of error esti-
mates for the elastic-UWVF is motivated by [39, 51] and uses new
approximation properties of plane waves proved in [52, 53].

Finally, the UWVF will be extended to clamped thin plate prob-
lems. This can be considered as a first step towards applications
to more general plate problems with free and simply supported
boundary conditions. Similar problems have been studied using
the WBM [54], DEM [55] and VTCR [56].

The outline of this thesis is as follows: first the governing phys-
ical equations are given for linear elasticity, vibration of plates and
acoustics. Second, an overview of non-polynomial methods ap-
plied to acoustics, electromagnetism, elasticity and vibro-acoustics
will be given. We shall discuss aspects of the PUFEM, LSM, UWVF,
VTCR, WBM, DEM and DGM. Many of the non-polynomial meth-
ods that will be reviewed were introduced in the mid 1990’s. Com-
monly used basis functions, application fields and a summary of
the main novelties of each method will be considered. In the third
chapter, the UWVFs for linear elasticity, plate vibration and acoustic
problems are derived, error estimates are considered and new basis
function choices are described. Then the main numerical results are
presented based on the contents of the original publications I-IV.
Finally, we draw some conclusions and discuss possible future ap-
plications of the UWVF.
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2 Governing equations

In this chapter we shall give a short outline of the governing equa-
tions in linear elasticity, plate vibration and acoustics. For linear
elasticity and acoustics we focus on first order systems because the
upcoming derivation of the UWVF follows from the upwind DG
scheme applied to an appropriate first order system. For the vibra-
tion of plates a simpler first order system will be written in Section
4.

2.1 LINEAR ELASTICITY

Elastic waves are mechanical vibrations that propagate in solid ma-
terials. In linear elasticity, the basic goal is to approximate the time-
dependent displacement fields U = (Ux, Uy, Uz) in solids. The up-
coming derivation of the equations of linear elasticity follows refer-
ences [57, 58]. The stress tensor can be written as

s

t

= (lr · U)I + 2µe(U) (2.1)

where I is the identity matrix, l and µ are the Lamé constants of
the form

µ =
E

2(1 � n)
and l =

En

(1 + n)(1 � 2n)
.

Here E is the Young’s modulus and n is the Poisson ratio of the
solid. In this thesis all these constants are assumed to be real and
positive.

The strain tensor e(U) in (2.1) is

e(U) =
1
2
(rU + (rU)T) (2.2)

where the superscript T denotes the transpose operator.
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The time-dependent momentum equation is then defined to be

r · s

t

+ r f = r

∂

2
U

∂t

2 (2.3)

where r is the density of the medium, f is the body force and t

denotes time.
Equations (2.3) and (2.1) form the time-dependent first order

system in linear elasticity. Assuming now that f = 0 (no body
forces) and that the displacement field and stress tensor are time-
harmonic: U = < {u exp(�iwt)}, s

t

= < {s exp(�iwt)} where
<{·} denotes the real part, the angular frequency of the field is
w, the spatially dependent displacement vector is u = (ux, uy, uz)
and strain tensor is s. Then the time-harmonic stress tensor and
momentum equation can be written as a first order system

s = (lr · u)I + 2µe(u),

r · s + w

2
ru = 0.

Alternatively, combining (2.3), (2.1) and (2.2) and choosing f =
0, yields the well-known second order equation, known as the Navier
equation

µDU + (l + µ)r(r · U) = r

∂

2
U

∂t

2 .

Then, the lossless time-harmonic Navier problem is to find the
displacement u such that

µDu + (l + µ)r(r · u) + w

2
ru = 0. (2.4)

In a homogeneous medium, the displacement field u can be
decomposed into three wave components: the pressure (or dilata-
tional) P-wave u

P, the horizontal component of shear SH-wave u

SH

and the vertical component of shear SV-wave u

SV as follows

u = u

P + u

SH + u

SV
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such that

Du

P + k

2
Pu

P = 0,

Du

SH + k

2
Su

SH = 0,

Du

SV + k

2
Su

SV = 0,

where the wave number for P-waves is kP = w/cP, the wave num-
ber for S-waves is kS = w/cS and the following identities hold
r ⇥ u

P = 0 and r · u

SH = r · u

SV = 0. Wave speeds for the
pressure wave (P-wave) and shear waves (S-waves) are

cP =

s

l + 2µ

r

and cS =
r

µ

r

,

respectively.

2.2 PLATE VIBRATION

Many elastic structures (e.g. airplanes, cars) are constructed from
thin plates. In plate theory the idea is to take the advantage of
the thinness of the plate to reduce the problem from 3D to 2D.
We can then investigate deformations/stresses of thin 2D plates.
When elastic wave motion is investigated in thin plates, the un-
known time dependent out-of-plane displacement is denoted by
W := W(x, y, t). This is just the z-component of the displacement
field U appearing in the previous section. Suppose the plate is at
rest and lies in the (x, y) plane. Then the problem can be formu-
lated using a fourth order Kirchhoff’s thin plate partial differential
equation. Next we give a short derivation of Kirchhoff’s thin plate
equations following [57, 59–61], see also the Ph.D. theses [54, 62].
For plate elasticity, the equations of motion are given by

∂Qx

∂x
+

∂Qy

∂y
+ qb = rt

∂

2W
∂t

2 , (2.5)

∂My

∂y
� ∂Mxy

∂x
� Qy = 0, (2.6)

∂Mx

∂x
� ∂Mxy

∂y
� Qx = 0, (2.7)
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where Qx, Qy are shear forces, Mx and My are bending moments,
Mxy is the twisting moment, qb is the volume source term (loading),
r is the density, t is the thickness of the plate and t refers to time.
As discussed in [61], equation (2.5) refers to forces acting along the
z-axis, equation (2.6) refers to forces and moments acting on the x-
axis and equation (2.7) refers to forces and moments with respect
to the y-axis. Due to the fact that the changes in forces Qy and Qx

and higher order contributions of qb are small those are neglected
in (2.6) and (2.7) [57, 61]. Following [57, 61], a schematic figure of
the governing forces and moments is shown in Figure 2.1.

qbdxdy

dxdy

Myx

Qy

My

Myx +
∂Myx

∂y dy Qy +
∂Qy
∂y dy

My +
∂My
∂y dy

Mxy

Qx

Mx

Mxy +
∂Mxy

∂x dx

Qx +
∂Qx
∂x dx

Mx +
∂Mx
∂x dx

y
x

z

Figure 2.1: Infinitesimal thin elastic plate. Forces acting on the thin elastic plate following
[57, 61] (see also [62]).

For the thin plate, the bending moments and twisting moments
are given by, (for more details see [57, 59–61]),

Mx = �D
✓

∂

2W
∂x2 + n

∂

2W
∂y2

◆

, (2.8)

My = �D
✓

∂

2W
∂y2 + n

∂

2W
∂x2

◆

, (2.9)

Mxy = �Myx = D(1 � n)
∂

2W
∂x∂y

, (2.10)
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where D = Et3/(12(1� n

2)) is called the plate bending stiffness (or
stiffness coefficient of the plate [60]), E is the Young’s modulus, t
is the thickness of the plate and n is the Poisson ratio. Combining
equations (2.5), (2.6), (2.7), (2.8), (2.9) and (2.10) assuming a time-
harmonic displacement W = < {w(x, y) exp(�iwt)} and a force
term qb = < {q(x, y) exp(�iwt)}, the time independent biharmonic
(fourth order) problem based on Kirchhoff’s thin plate theory in 2D
is given by

D2w � k

4
bw = q, (2.11)

where D2 is the bi-Laplacian and kb = (rtw2/D)1/4 is the plate
bending wave number. The function q is the source term or load-
ing. The Kirchhoff theory is valid for cases when the plate bending
wavelength lb =

2p

kb
> 6t, see [54, 63].

2.3 ACOUSTICS

In acoustics, we want to predict the acoustic pressure P in the fluid.
Taking into account viscous effects, the equations for acoustic pres-
sure in a fluid reduce to the Navier equation with a special choice
of Lamé constants (see for example [58]). If viscous effects are so
small that they can be neglected, we obtain the Helmholtz equation.
We now give a brief derivation of the wave equation and Helmholtz
equation for an inviscid fluid following mainly the books [64, 65],
see also [58].

The continuity equation (conservation of mass) in linear acous-
tics can be written as

∂r

∂t

+r · (rV) = 0, (2.12)

where r is the density, t is time and V is the time-dependent parti-
cle velocity vector.

Let now P be the time-dependent pressure that satisfies the state
equation P = P(r, S) where S denotes the entropy. We assume that
the changes for the velocity, pressure, entropy and density around
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the equilibrium (static state) are small and the static state values
can be written as V0 = 0 and P0, S0 and r0 are constant. Then the
equation of motion (also known as the linearized Euler equation)
can be written as

r0
∂V

∂t

= �rP. (2.13)

Using the linear material law P = c2
r, where c is the speed of

sound in the continuity equation (2.12), one obtains

1
c2

∂P
∂t

+r · (r0V) = 0. (2.14)

In the time-harmonic case, the velocity field is written as V =
< {v exp(�iwt)} and the pressure P = < {pa exp(�iwt)} where
the velocity field v and acoustic pressure field pa are time-independent.
Then equations (2.13) and (2.14) can be written as

iw
c2 pa = �r · (r0v), (2.15)

iwr0v = �rpa. (2.16)

Combining now (2.15) and (2.16), a homogeneous Helmholtz equa-
tion is obtained as follows

Dpa + k

2 pa = 0, (2.17)

where k = w/c is the acoustic wave number.
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3 Non-polynomial approxi-
mation

This chapter is devoted to a short review of several non-polynomial
methods used for the numerical approximation of wave problems.
First the main characteristics and applications of non-polynomial
methods are discussed. Then the development of these methods
is summarized. Emphasizing the physical nature of the non-poly-
nomial methods, the focus is on the basis functions. Hence, the de-
tailed technicalities associated with the mathematical formulation
of each method are not considered.

3.1 PARTITION OF UNITY METHOD

The partition of unity finite element method (PUFEM) is due to Me-
lenk and Babuška [24]. The PUFEM uses continuous basis functions
and the variational formulation of PUFEM is based on the standard
bilinear form of the FEM. To aid the upcoming discussion, we shall
write the weak form for the Helmholtz problem (with Neumann
boundary condition), for more details see e.g. [24, 58, 64, 66]. Let W
be a bounded open computational domain with boundary G. Then
the problem is to find the acoustic pressure pa such that

Dpa + k

2 pa = 0 in W, (3.1)
∂pa

∂n

= g on G, (3.2)

where n is the unit outward normal and g is the source term on the
boundary. This problem has a unique solution provided �k

2 is not
a Neumann eigenvalue of the Laplacian.

In the FEM, the Helmholtz equation (3.1) is multiplied by a
test function v 2 H1(W) where this Sobolev space is defined by
H1(W) = {v 2 L2(W) | krvk2 + kvk2 < •} where k · k is the L2
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norm. The equation is then integrated over the computational do-
main W and integration by parts can be used to obtain

Z

W
rpa ·rvdV �

Z

W
k

2 pavdV =
Z

G

∂pa

∂n

vdA.

The boundary condition (3.2) can then be used and the problem
becomes: Find the acoustic pressure field pa 2 H1(W) such that

Z

W
rpa ·rvdV �

Z

W
k

2 pavdV =
Z

G
gvdA,

for all v 2 H1(W). This is the weak or variational formulation of
the problem. In the FEM, the computational domain is divided into
non-overlapping elements meeting at edges and element vertices
(commonly called nodes). Then the FEM approximation for the
unknown approximate pressure field pa can be written as

ph
a =

nn

Â
j=1

b jfj

where nn is the number of nodes, b j are unknown coefficients and
fj are the piecewise linear nodal basis functions. Test functions are
chosen to be v = fl .

Unlike the traditional FEM, the PUFEM approximation for an
unknown field pa is constructed so that the piecewise linear poly-
nomial partition of unity basis functions {fj}nn

j=1 are multiplied by
functions Nj satisfying the governing partial differential equation
(PDE), i.e.

pa =
nn

Â
j=1

Njfj, (3.3)

where again fj are the piecewise linear nodal basis functions, nn is
the number of nodes and Nj is a solution of the governing PDE,
see e.g. [24]. The PUFEM was first applied to Laplace’s equa-
tion and the Helmholtz equation [24] with a basis built from har-
monic polynomials or plane waves, respectively. For example, in
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the Helmholtz problem plane waves are used so that

Nj =
pj

Â
k=1

Ak
j exp(ikdk · x), (3.4)

where Ak
j are unknown coefficients, pj is the number of basis func-

tions1 on patch j and dk = (cos(qk), sin(qk)) is the direction of prop-
agation where qk = 2pk/pj, k = 1, . . . , pj, see e.g. [24, 25, 67].

An alternative to plane wave functions are the wave-band func-
tions that have been investigated in [68]. The wave-band functions
can be written as [68, 69]

Z

qk+1

qk

exp(ikd · x)dq, (3.5)

where d = (cos(q), sin(q)), k = 0, . . . , p � 1 and qk = 2pk�p

p (p is
the number of directions). In [68], the accuracy of this approxi-
mation and p-version convergence of PUFEM was investigated. It
was shown that the accuracy of the wave-band PUFEM is similar to
plane wave PUFEM.

Recently [70], the PUFEM has been investigated in 2D acoustic
problems with Bessel basis functions. The Bessel basis functions
can be written as [70]

Jk(kr)eikq ,

where k = 0, . . . , pj � 1, r and q are polar coordinates. Numerical
tests focused on scattering from a rigid cylinder in an unbounded
domain. These results suggest that near the scatterer the plane wave
basis functions give better accuracy than Bessel basis and away from
the scatterer the Bessel basis gives more accurate solutions than
plane waves.

The PUFEM has been successfully used to approximate 2D and
3D time-harmonic problems in acoustics and elasticity, see for in-
stance [24, 25, 67, 71–79]. In [71, 72] square elements were used,

1In this thesis p refers to the number of basis functions (since it is common in
numerical methods to consider p-convergence) and pa refers to acoustic pressure.
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in [67] quadrilateral elements were used and triangular elements
have also been used in the PUFEM, e.g. [80–82]. In the case of jumps
in the wave speeds between different subdomains of the compu-
tational domain, the continuity conditions can be enforced using
Lagrange multipliers, see [83–85].

The PUFEM is a more accurate method (e.g. in terms of the
number of degrees of freedom needed for a given accuracy [72])
than the piecewise linear FEM when solving oscillatory problems
but it suffers from ill-conditioning when too many plane wave func-
tions are used on a patch [74]. The ill-conditioning is a well-known
and common drawback of plane wave methods. A strategy for
controlling the ill-conditioning was introduced in [41] where the
number of basis functions varies from element to element based
on heuristic formulae using local wave number and element size
information (cf. equation (5.2)).

Another drawback of PUFEM is the requirement to use high-
order numerical quadratures (integration) in the assembly of sys-
tem matrices [67]. This has been the focus of much recent work
and many improvements are available: nearly analytical integra-
tion [73], fast integration [86] and analytical integration [87,88] tech-
niques.

Beyond acoustic and elasticity problems, the PUFEM has been
studied to solve 1D convection/diffusion problems in [89] and time
dependent diffusion problems in [90]. In [89] the performance of
the PUFEM with exponential and polynomial local bases was in-
vestigated. The results show that the exponential basis functions
give more accurate results than polynomial based schemes.

The PUFEM belongs to the class of generalized finite ele-
ment methods (GFEM). The GFEM was introduced by Strouboulis,
Babuška and Copps in [30] and uses the bilinear form of the FEM.
However, in the GFEM the approximation includes the PUFEM part
and polynomial FEM part so that

u =
nn

Â
j=1

Njfj +
nn

Â
k=1

bkfk, (3.6)
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where the second term on the right hand side is the traditional
FEM part (f is a polynomial basis function) and the first term is
the PUFEM. Obviously, when the second sum in (3.6) is zero the
PUFEM is recovered. In [91], the PUFEM and Trefftz methods are
called “knowledge-based FEM” because they use functions which
satisfy the PDE.

A similar method to PUFEM is the “finite ray element method”
by Mayer and Mandel [26]. In [26] the Galerkin FEM and the first
order system of least squares (FOSLS) with the plane wave basis
functions were investigated. Later, the idea of PUFEM with local
plane wave basis has also been applied to BEM [29]. The BEM with
plane waves has been successfully used to model wave problems
in acoustics and elasticity, see for example, [29, 77, 92–95]. Further-
more, theoretical studies of the boundary integral method (related
to BEM with plane waves) were presented in [27, 28] where the
method was termed microlocal discretization.

3.2 LEAST-SQUARES METHOD

The non-polynomial least-squares method (LSM) was introduced in
the late 90s by Stojek [38] and Monk and Wang [39]. The LSM uses
a finite element mesh and it belongs to the class of Trefftz methods.
In the LSM [39] weak continuity over the element edges is enforced
by minimizing a quadratic functional defined on element edges and
on the boundary. The LSM can also be derived via a DG scheme
with different choices of numerical fluxes [96].

In [38], T-elements (Trefftz elements) consisting of Bessel and
Hankel basis functions that satisfy the Helmholtz equation were
used. Numerical tests included p-convergence and h-convergence
studies. In [39], an error estimate for the LSM was derived and
both plane waves and Bessel basis functions were investigated for
2D acoustic problems. The results suggest that plane waves are
more practical to use than the Bessel functions (in the case of Bessel
functions quadrature needs to be used whereas using plane waves
integrals can be analytically derived). In the LSM [39], the approxi-
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mation for the solution is written as

u = Â
Kk

Np

Â
p=0

aKk
p f

Kk
p ,

where Kk is an element in the domain W, aKk
p are the unknowns

and {f

Kk}Np
p=0 are functions satisfying the PDE locally on Kk, for

example, plane wave or Bessel functions.
The LSM has been extended to diffraction problems using T-

elements that satisfy the Sommerfeld radiation condition and in
the same study vertex singularities were also approximated with T-
elements [97]. Barnett and Betcke [42] developed a non-polynomial
FEM to tackle singular solutions using fractional order Fourier-
Bessel functions in acoustic problems. This method belongs to the
general class of LSM. Motivated by the work of [39, 42], fractional
order Fourier-Bessel functions were used in the LSM for polygonal-
line grating problems and an L2 error estimate for the method was
provided in [98].

3.3 VARIATIONAL THEORY OF COMPLEX RAYS

The variational theory of complex rays (VTCR) was first imple-
mented for elasticity problems [36] in the mid 90s. The variational
formulation of the VTCR is based on satisfying the boundary con-
ditions and interface conditions and leads to a non-symmetric vari-
ational formulation. The VTCR uses a finite element mesh and inte-
grals in the variational form are then defined along the boundaries
and element interfaces.

In elasticity [99, 100] use of VTCR over a range of frequencies is
investigated and in [101] the VTCR was extended to 3D curved
shells. For elasticity problems, the VTCR uses plane waves (cf.
(3.15)), evanescent corner waves and evanescent edge waves basis
functions. These are termed “complex rays”. For example, fol-
lowing [56, 100], for the dynamic Kirchhoff plate equation (2.11)
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without damping, an edge mode could be written as

ue exp(
p

wPnn · x + i
p

wPss · x), (3.7)

where ue is an unknown amplitude, n and s refer to the normal
vector and tangential vector, respectively on the edge and

Pn = r
q

1 + sin2(q) and Pt = r sin(q),

where r is a radius and q is an angle. The corner modes can be
written, see again [56, 100], as

uc exp(
p

wP · x), (3.8)

where uc is an amplitude, (P · P)2 = r4 and r4 = 12r(1� n

2)/(t2E).
Both edge mode (3.7) and corner mode (3.8) satisfy the dynamic
Kirchhoff’s equation (D2u � k

4
bu = 0 where k

4
b = (rtw2/D)).

Recently, the VTCR has been extended to wave modeling prob-
lems in time-harmonic acoustics. In 2008, the VTCR was intro-
duced for the 2D time-harmonic acoustic problems [69] using the
plane wave and wave band (cf. (3.5)) basis functions. Numeri-
cal tests include modeling car cavity noise, scattering and acoustic
cavity problem in an L-shaped domain. The results show that the
VTCR error converges more rapidly as a function of the number of
degrees of freedom than linear or quadratic finite elements (using
square elements).

Basis functions obtained using Fourier series were used in [102,
103] for solving 2D acoustic wave problems. The Fourier series
functions in [102, 103] are defined by

Z

p

�p

exp(ineq) exp(ikd · x)dq, (3.9)

where ne = �NE, . . . , NE, ne 2 N. Fourier series basis functions
are related via the Jacobi-Anger expansion to Bessel functions cf.
[103, 104]. In [102] the results show that the Fourier based VTCR
has slightly smaller errors than the wave band based VTCR. Fur-
thermore, the condition number was slightly greater using wave
bands than Fourier series.
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Unbounded 2D acoustic problems were considered in [103] so
that in the unbounded part of the domain the basis functions were
of the form

exp(ineq)H(2)
|ne|(kr), (3.10)

where ne = �NE, . . . , NE, H(2)
|ne|(·) is the Hankel function of sec-

ond kind and order |ne| and r is the distance apart of source and
measurement points. These basis functions satisfy the Sommerfeld
radiation condition. In bounded cavities Fourier basis functions
were used. It was shown that the convergence rate of the VTCR
is better than that of a fixed order BEM. Spherical harmonics ex-
pansion (Herglotz) wave functions were used in 3D acoustic prob-
lems in [104]. A strategy beyond the static choice of different basis
function is the adaptive approach of choosing the number of basis
functions based on estimates of local error. The adaptive version of
the VTCR was introduced in [105].

A new technique for solving time domain elasticity problems
was introduced in [106,107]. The FEM was used at low frequencies
and the VTCR at medium frequencies and then the inverse Fourier
transform (IFT) was computed to obtain a time dependent solu-
tion. It was suggested that this is a more efficient strategy than
computation in the time domain only. In addition to elasticity and
acoustic problems, the VTCR with exponential functions has been
successfully used in 2D advection-diffusion problems at high Péclet
numbers with constant parameters in [108], cf. [109]. Both h- and
p-convergences was investigated.

3.4 WAVE BASED METHOD

Unlike the FEM, where the computational domain is divided into
a large number of small elements, the computational domain of
the wave based method (WBM), is split into large convex subdo-
mains [37]. The WBM uses a weighted residual formulation de-
fined on the boundary and along the subdomain interfaces and its
basis functions are chosen to be of Trefftz type [37]. As discussed
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in [110], the WBM is similar in spirit to the LSM but differs in the
choice of basis functions and variational form.

In [37,111,112], the WBM has been used to solve vibro-acoustics
and generally problems that arise from automotive engineering ap-
plications. The WBM has been successfully applied to both homo-
geneous and inhomogeneous PDEs. In the case of inhomogeneous
PDEs, a particular solution is taken into account in the WBM ap-
proximation. Considering the inhomogeneous case with a point
source, see [37,113], let W denote the domain, then the field u is ap-
proximated (herein for the sake of simplicity on the whole domain
W) by ũ given as follows

u ⇡ ũ =
Nk

Â
k=1

ukFk + û f , (3.11)

where Nk is the number of wave functions, Fk are the wave func-
tions and û f is the particular solution of the inhomogeneous PDE.
It is suggested that for 2D acoustic problems, two sets of functions
should be considered (r and s sets) as follows

Nk

Â
k=1

ukFk =
Nr

Â
r=1

urFr +
Ns

Â
s=1

usFs, (3.12)

where Nk = Nr + Ns is the number of wave functions [37], see
also [110]. The wave functions in (3.12), that satisfy the Helmholtz
equation, are defined as follows

Fr = cos(kxrx) exp(�ikyry), (3.13)

Fs = exp(�ikxsx) cos(kysy). (3.14)

The wave number components in wave functions (3.13) and (3.14)
are [37]

(kxr, kyr) =

✓

r̃1p

Lx
,±

q

k

2 � (kxr)2
◆

,

(kxs, kys) =

✓

±
q

k

2 � (kys)2,
s̃1p

Ly

◆

,
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where k

2
xr + k

2
yr = k

2
xs + k

2
ys = k

2, r̃1 = 0, 1, . . ., s̃1 = 0, 1, . . .. The pa-
rameters Lx and Ly give the dimensions of the smallest rectangular
domain (bounding the cavity).

The convexity of the domain is a sufficient condition for the
convergence of the WBM and non-convex domains are split into
convex subdomains [37]. However, the convexity assumption sets a
limit for the use of WBM decreasing its geometric flexibility. Hence,
the WBM is coupled with the FEM, in order to cope with complex
domains in acoustics [114, 115]. The WBM is used in simpler and
larger regions and FEM elements are used in order to handle com-
plex shapes of the domain. This approach has better convergence
and is more efficient than using the FEM alone. The hybrid FEM-
WBM was applied for 2D structural-acoustics [116], for 3D vibro-
acoustics [117] and 3D acoustics [118]. Furthermore, the WBM has
been coupled with the statistical energy analysis (SEA) approach in
vibro-acoustics in [119]. The WBM was used in the acoustic domain
and SEA was used in the (plate) elasticity domain.

Unbounded (fluid) problems in 2D vibro-acoustics were consid-
ered in [120]. In the unbounded fluid, functions which satisfy the
Sommerfeld radiation condition were used. The WBM has been ex-
tended to unbounded 2D scattering acoustics [113]. In addition,
3D semi-infinite acoustics radiation problems have been consid-
ered in [121] and unbounded 3D problems have been investigated
in [122].

The WBM has been applied to Kirchhoff thin elastic plate prob-
lems [123] where the clamped, free and simply supported plate
boundary conditions were used. However, it was observed that the
stress singularities hamper the accuracy of WBM. For corner stress
singularities a new approach was introduced using specially chosen
corner functions [43]. In particular, the corner functions are derived
as the solutions of an infinite wedge domain problem. These new
corner functions improve the accuracy of the WBM in the presence
of corner singularities. This approach, introduced in [43], has been
adapted to singular problems in 2D elasticity [44], in acoustics [45]
and in poroelasticity [46].
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Finally, the WBM has also been used to approximate the poroe-
lastic Biot models in [46, 124]. The Biot equation was written as
three decoupled Helmholtz equations in order to derive the wave
functions used in the WBM.

3.5 DISCONTINUOUS GALERKIN METHODS

The discontinuous Galerkin methods (DGM) include a wide class
of finite element type methods. Unlike the FEM, the basis functions
in the DGM are discontinuous and the required continuity across
the element interfaces is enforced weakly using numerical fluxes or
Lagrange multipliers. We next give an overview of non-polynomial
discontinuous Galerkin methods including the ultra weak varia-
tional formulation, the discontinuous Galerkin method (with and
without Lagrange multipliers) and the discontinuous enrichment
method.

3.5.1 The ultra weak variational formulation

The ultra weak variational formulation (UWVF) [34, 35, 125] is a
method tailored to linear elliptic wave problems. The computa-
tional domain is divided into non-overlapping finite elements. In
the original UWVF coupling between elements is based on the
“Isometry lemma”. The UWVF then gives a sesquilinear form and
the integrals are defined along the boundary and element edges
in 2D (or faces in 3D). Because local solutions are used on each
element, the UWVF belongs to the class of Trefftz methods, see
e.g. [126]. On the other hand, the UWVF can be derived via a DG
scheme [51, 127, 128] using different choices of fluxes.

The traditional acoustic UWVF uses plane wave basis functions
[35, 125] , i.e.

jk,` =

(

exp (iknkdk,` · x) in an element Kk
0 elsewhere

(3.15)

where overline denotes complex conjugation, Kk is the element in
the domain W = [N

k=1Kk, nk is the index of refraction in Kk and the
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direction of propagation is given by

dk,` =

✓

cos
✓

2p

`� 1
pk

◆

, sin
✓

2p

`� 1
pk

◆◆

, 1  `  pk,

where pk is the number of basis functions. It can be seen that
the plane wave basis (3.15) satisfies the adjoint Helmholtz equation
Dj + n2

k

2
j = 0. However, any other basis functions that satisfy

the adjoint of the governing equation can be used in the UWVF. For
example, wave-band functions (3.5) and the basis functions in (3.10)
could also be used in the UWVF (but have not been to date).

The UWVF with Bessel basis functions was considered for time-
harmonic electromagnetic and elastic wave equations in [129]. In
the article I, Bessel functions were investigated in the acoustic UWVF.
The UWVF with generalized plane waves is introduced in order
to handle (smoothly) varying coefficients in the governing PDE
in [130]. Recently, the use of Hankel function basis functions in
the UWVF has been investigated in [131].

Originally [35, 125], the acoustic UWVF used a fixed number of
basis functions per element. However, this is neither the most effi-
cient nor robust strategy when the element size is not constant in
the computational domain. Ill-conditioning may occur if too many
plane waves are used in a small element. The UWVF was improved
by varying the number of basis functions from element to element
(based on the condition number) to improve the stability of the
method [132]. In [41] the number of basis functions per element
was derived efficiently based on a simple ad hoc formula using in-
formation on the local wave number and element size (see equation
(5.2) below).

Another strategy to reduce the computational burden and mem-
ory requirements associated with unbounded problems was dis-
cussed in [133, 134] where the UWVF was coupled with the fast
multipole method (FMM) and multilevel fast multipole method
(MFMM). Numerical tests focused on electromagnetic scattering
problems and the results showed that the use of FMM and MFMM
reduces memory requirements.
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In [41,126] it was shown that the performance of the UWVF was
hampered in the case of problems with singular solutions. The re-
sults suggest that mesh refinement near the singularity instead of
increasing the number of basis functions improves the accuracy. In
practice, away from the singularity, it is generally more efficient
to increase the number of basis functions rather than refine the
mesh. Based on the numerical results in [41, 126], the plane wave
basis does not approximate singular solutions efficiently. In a dif-
ferent approach to improving the accuracy for singular problems,
the acoustic UWVF was coupled with classical Raviart-Thomas fi-
nite elements in [135]. In the original publication I, fractional order
Bessel basis functions were used to improve the accuracy of the
UWVF when singular solution is present.

The UWVF was examined for 2D linear elasticity in [48]. The
(P-wave and S-wave) basis functions used in the 2D linear elas-
ticity problem were obtained using the Helmholtz decomposition.
Hence, the P-wave and S-wave basis functions satisfy vectorial
Helmholtz equations. Numerical tests included the investigation
of the effects of varying the number of P-wave and S-wave ba-
sis functions and also the modeling of Rayleigh waves that decay
rapidly away from a free surface. It was observed [48] that it is
more challenging to approximate rapidly decaying Rayleigh waves
than propagating plane waves using the UWVF. In addition, numer-
ical results suggest that the “optimal” ratio for P- and S-wave basis
functions is roughly the ratio of P-wave number to S-wave number.
In 2008 [136], the UWVF was extended to 2D fluid-solid problems.
Subsequently, the UWVF was applied extensively to medical ultra-
sound problems [48, 132, 137, 138].

In addition to ultrasound problems, the UWVF has been suc-
cessfully applied to model the head-related transfer function (HRTF)
on audible frequencies [139] and modeling of porous traffic noise
barriers in [140]. Modeling of light emitting diode (LED) in op-
toelectronics was considered in [141]. The UWVF has also been
used to investigate inverse problems arising in electromagnetism
[142, 143], fluid-solid interface problems [144] and in particular, ul-
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trasound control problems [145–148].
The UWVF has also been investigated for different scattering

problems where the unbounded computational domain is trun-
cated by using a suitable absorbing boundary condition or artificial
layer. The perfectly matched layer (PML) was adapted to 3D acous-
tic UWVF in [137]. The numerical results show that the UWVF
with PML had smaller errors compared to the case when a simple
absorbing boundary condition (ABC) is used. The low order ABC
and PML were compared in 3D electromagnetism in [127]. The
electromagnetic UWVF with PML has also been extended to 2D
anisotropic problems in [149].

More details concerning the UWVF such as its derivation via
DG schemes, error estimates and new choices for basis functions
will be given in the next chapter.

3.5.2 Discontinuous Galerkin method

The UWVF can be derived as an upwind DG scheme [51, 127, 128]
and therefore the UWVF shares similar properties with the DGM.
Once the UWVF has been shown to be an upwind DGM [51, 127,
128], the error analysis of the traditional DGM can be used to obtain
results for the UWVF as well. We now focus on the non-polynomial
discontinuous Galerkin methods without Lagrange multipliers and
enforce weak continuity across element interfaces using numerical
fluxes.

It was shown in [150] that the acoustic DGM includes the UWVF
with a suitable choice of numerical fluxes (cf. below the elastic
UWVF fluxes in (4.6) and (4.7)). The theoretical properties of the
general DGM (and also of the UWVF) have been investigated re-
cently very actively by Gittelson, Hiptmair, Moiola and Perugia
[53, 150–155].

For the acoustic UWVF a global error estimate was derived
in [51]. Error estimates for the acoustic DGM h-version were de-
veloped in [150] and for the p-version in [53]. The theory of the
DGM (as well as the UWVF) in acoustics has been further extended
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by taking into account the approximation properties of plane waves
[151,152]. An error estimate for the p-version of DGM for Maxwell’s
equation was developed in [153]. A recent study [154] reported the
dispersion analysis of the acoustic DGM (as well as the UWVF)
with numerical results. Results suggest that in 2D relative disper-
sion grows as O(k2qp) for k ! 0 where qp := b p�1

2 c (p is the number
of basis functions and b·c is the floor function). In addition, in [155]
the error analysis of a numerical scheme for approximating scatter-
ing by a sound soft scatterer with locally refined meshes was con-
sidered. The DGM with plane wave basis is sometimes called the
Trefftz discontinuous Galerkin method (TDG method) [151, 155].

In [128], the DGM (with numerical fluxes) was studied for 2D
aero-acoustics and the UWVF was shown to be a special form of
the DGM (concurrently with [127]). Numerical tests include an in-
vestigation of the condition number and convergence studies for
aero-acoustic problems. In the case of an inhomogeneous PDE, a
modified variational formulation was presented (the volume source
was imposed on element interfaces). This improves the robustness
of the DGM.

The DGM and the local discontinuous Galerkin method
(LDGM) with the non-polynomial basis functions for time-
dependent and steady-state problems were introduced by Yuan
and Shu [156]. Their formulations of DGM and LDGM followed
from [157, 158] but they chose exponential and trigonometric ba-
sis functions. Numerical tests included 1D and 2D problems with
hyperbolic, parabolic and elliptic partial differential equations such
as Burgers equation, boundary layer problems and the Helmholtz
equation. The DGM with non-polynomial approximation basis has
been used to approximate 1D elliptic partial differential equations
in [159] and in particular for 1D Schrödinger equation in [160]. The
latest research in [161] investigates the use of Trefftz basis functions
in the DGM and gives results for the time-dependent 1D Maxwell
equation. The performance was compared with the finite differ-
ence time domain (FDTD) method and DGM with leapfrog time
stepping.
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3.5.3 Discontinuous enrichment method

In the previous section, the weak continuity between elements was
enforced using numerical fluxes. In the discontinuous enrichment
method (DEM), weak continuity across the element edges (or faces)
is enforced via Lagrange multipliers. Although, the variational for-
mulation of DEM differs from the FEM, the DEM uses finite element
meshes (commonly quadrilaterals and hexahedra).

In the DEM, the piecewise polynomial basis is enriched by func-
tions (generally plane waves or exponentials) that satisfy the gov-
erning homogeneous PDE. Unlike PUFEM, the enriched basis is
added to the polynomial part so that

u = uP + uE, (3.16)

where uP is the polynomial part (cf. FEM) and uE is the enriched
part (e.g. plane waves) [40]. Clearly, the representation of the solu-
tion in (3.16) is the same as that used in the GFEM (3.6). Without
the polynomial part uP, the DEM is the DGM with Lagrange mul-
tipliers [162, 163]. Therefore, we include the DGM with Lagrange
multipliers under the DEM category.

The DEM was first introduced to solve acoustic and advection-
diffusion problems [40]. The DEM/DGM has been successfully
used in 2D and 3D acoustic problems in [162–166]. In the acous-
tic case, error estimates and the well-posedness of the DGM with
Lagrange multipliers was analyzed in [167]. In 2006, Gabard [168]
extended the DGM for displacement based acoustics (that is the
vector valued Helmholtz equation). The results included compar-
isons of DGM and the mixed finite element method. The DGM
needs less degrees of freedom to have more accurate results than
the mixed finite element method. The DEM was introduced for 2D
elasticity problems in [169] where both DEM and DGM elements
were used and the results were compared with FEM. The disper-
sion analysis of the DEM has been investigated in [162, 170] for
acoustics and in elasticity in [171].

In acoustics [162–166] and elasticity [169] plane waves have been
used in the enrichment function uE. However, as shown in [47] it is
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challenging to capture rapidly decaying waves using plane waves.
Hence, the plane wave and new evanescent wave basis functions
were used [49, 50] for fluid-fluid and fluid-solid interface problems
in cases when the rapidly decaying evanescent fields were present
(when total internal reflection occurs). The new evanescent wave
enrichment in addition to plane waves improved the accuracy of
DEM. In addition, in [49, 50] non-matching meshes with quadrilat-
eral and hexahedral elements were used.

Traditionally the DEM uses quadrilateral elements in 2D [40]
and hexahedral elements in 3D [166]. However, Grosu and Harari
implemented the DEM with new triangular 2D elements [172] and
new 3D tetrahedral elements (in addition to new hexahedral ele-
ments) [173]. Both dispersion and conditioning issues were investi-
gated. The results in [172,173] show that the new elements in DEM
have little dispersion at higher order.

The DEM was studied for the Kirchhoff plate problem in [174].
Numerical tests included homogeneous and inhomogeneous prob-
lems using DEM and DGM elements. The DEM was formulated so
that free, clamped and simply supported plate boundary conditions
can be imposed. In addition, additional Lagrange multipliers were
used at element corners. The non-polynomial basis was chosen to
be plane wave and evanescent wave functions.

Beyond acoustics and elasticity, the DEM for the 1D advection-
diffusion problem has been investigated in [40, 162]. In [109], the
DEM was extended to 2D advection-diffusion problems with high
Péclet number (advection dominated) with constant parameters
and structured meshes. In [175], the DEM for diffusion-advection
equation were considered with unstructured meshes and in [176]
with non-constant parameters in the advection-diffusion equation.
In these problems the enrichment functions are exponentials (that
satisfy the homogeneous advection-diffusion equation). Recently,
the DGM has been applied to 3D advection-diffusion problems
[177]. An unusual application was introduced in [178] where the
DEM was applied to solve 3D Bose-Einstein condensation problems
(Gross-Pitaevskii equation). In this study, the enrichment functions
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were plane waves.
Different variational formulations for the DGM have been in-

vestigated in [179–182]. A very similar method to DGM with La-
grange multipliers is a mixed hybrid formulation by Gillman, Djel-
louli and Amara [179]. Their method uses Lagrange multipliers
and oscillated polynomials (the shape functions are of the form
exp(�ikhlLl) where hl is the length of the element edge, Ll is
the Lagrange polynomial on the vertex and 1  l  3 (triangu-
lar element)). In [181] the modified discontinuous Galerkin method
(mDGM) with discontinuous Lagrange multipliers was developed
aiming to a more robust method. The mDGM was improved fur-
ther in [182] and is called the stable discontinuous Galerkin method
(SDGM). The SDGM shares similarities with the LSM and the DGM
(with Lagrange multipliers). Both mDGM and SDGM (or improved
modified discontinuous Galerkin method (imDGM)) were first in-
troduced in the Ph.D. thesis by Grigoroscuta-Strugaru [180].

3.6 COMPARISON STUDIES

In general, the performance of new modeling methods is usu-
ally compared to traditional low order FEM or BEM approxima-
tions that are computed using commercial software, for example,
Nastran R�, Ansys R� or Comsol Multiphysics R�. However, due to
the popularity and attractive features of non-polynomial methods,
some of these methods have also been compared with each other.

Equations (3.4)-(3.16) show that the methods share similar strate-
gies in choosing the non-polynomial approximation functions but
the methods use different variational formulations.

In 2D acoustics, the LSM and the UWVF were compared in
[126], the UWVF, DGM (without Lagrange multipliers) and LSM
in [96] and the UWVF and PUFEM were investigated in [41]. These
studies show that all methods perform similarly at lower frequen-
cies but at higher frequencies the UWVF and DGM perform better
(having better accuracy). The recent study in [183] compared the
performances of the DEM, UWVF and PUFEM at mid-frequencies.
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The comparison highlights the DEM and investigates error conver-
gence with respect to the number of degrees of freedom, the condi-
tion numbers, the number of non-zeros in LU decomposition and
time for the LU decomposition of the global matrix. The results
show more differences between the UWVF and PUFEM than found
in the article by Huttunen et al. [41].

The difference between the DGM (without Lagrange multipli-
ers) and UWVF is in the definitions of fluxes [150]. The h-version
of the DGM and UWVF were investigated in [150] for 2D acoustics.
The numerical results showed similar behavior for both methods,
and the choice of numerical flux does not drastically affect the ac-
curacy. In [53], the UWVF and the DGM were compared in 2D
acoustic problems increasing the number of basis functions per el-
emenet (p-version). The results showed that both methods behave
rather similarly from the point of view of convergence. Generally,
the DGM has slightly smaller errors compared to the UWVF. The
(theoretical) stability properties of PUFEM, LSM, UWVF and DGM
are reviewed in [184].

In [162] condition number comparisons between the DEM and
PUFEM were investigated and the results showed that the DEM has
significantly smaller condition numbers. In [81] the performance
of the PUFEM in 1D was compared with DEM (and GFEM). The
results show that all methods perform similarly. For 2D duct flow
(rigid walls) the PUFEM was compared with FEM. The PUFEM
error converges more rapidly as a function of the number of degrees
of freedom per square wavelength than the low order FEM.

The mDGM and DGM (with Lagrange multipliers) were com-
pared in [181] and the results suggested the mDGM to be a more
accurate and stable method. Furthermore, the SDGM, LSM and
DGM (with Lagrange multipliers) were investigated in [182] and
the results suggest that the SDGM is more robust than the DGM
and it has better convergence behavior than the LSM.

The weighted variational formulation (WVF) was developed in
[185] and is similar to the VTCR. The performance of the WVF was
compared with the UWVF and the VTCR. The results suggest that
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the WVF performed better than the VTCR but similar to the UWVF.
Even though there have been several comparison studies it is

difficult to declare a clear winner amongst the non-polynomial meth-
ods because different model problems have been considered.

3.7 SUMMARY OF NON-POLYNOMIAL METHODS

An overview of non-polynomial methods is given in Table 3.1 that
consists mainly of journal articles. In Table 3.1, the DEM category
includes the DGM with Lagrange multipliers but the UWVF and
the DGM (without Lagrange multipliers) are shown separately.
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Teemu Luostari: Non-polynomial approximation methods in acoustics
and elasticity
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Non-polynomial approximation
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Teemu Luostari: Non-polynomial approximation methods in acoustics
and elasticity
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Non-polynomial approximation
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4 The ultra weak variational
formulation

In this chapter we shall discuss the UWVF applied to linear elastic-
ity, vibration of plates and acoustics. In particular, in the first two
cases the UWVF will be derived via a DG scheme. For acoustics,
only the final form of the UWVF will be given due to the fact that
it is better known than the elastic UWVF. We also summarize error
estimates for each problem.

4.1 THE UWVF IN LINEAR ELASTICITY

The derivation of the elastic UWVF will follow the strategy shown
in the original publication II.

Let W ⇢ R3 denote the bounded open computational domain.
The boundary of the domain W is denoted by G and the unit out-
ward normal is n. For convenience, we recall the time-harmonic
stress tensor

s = (lr · u)I + 2µe(u) in W (4.1)

where the strain tensor e(u) in (4.1) is

e(u) =
1
2
(ru + (ru)T).

Then the time-harmonic momentum equation is

r · s + w

2
ru = 0 in W. (4.2)

For the UWVF we assume that the parameters l, µ and r are piece-
wise constant and real.

The boundary condition is assumed to be

(sn � ihu) = Q (�sn � ihu) + g on G (4.3)
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where h is a real positive definite numerical flux matrix, Q 2 C with
|Q|  1 gives the boundary conditions and g is the source term on
the boundary G. Note in particular Q = �1 gives a standard dis-
placement boundary condition and Q = 1 gives a standard traction
boundary condition. In the article II, Q = 0 was considered.

In linear elasticity, the problem is to find the displacement field
u that satisfies equations (4.1), (4.2) and (4.3).

4.1.1 Derivation of the UWVF via a DG scheme

The computational domain W is divided into non-overlapping reg-
ular elements W = [N

k=1Kk where N is the number of elements. The
element face is denoted by ∂Kk and the unit outward normal is nk.
The derivation of the elastic UWVF starts by applying Betti’s third
identity, e.g. [48, 224, 225]. For sufficiently smooth vector functions
u and f which satisfy equations (4.1) and (4.2), the volume integral
in Betti’s identity vanishes, so that

Z

∂Kk

[snk · f � dnk · u]dS

=
Z

Kk

[(r · s) · f � (r · d) · u]dV
| {z }

=0

(4.4)

where the stress tensor s is given by (4.1) and d = (lr · f)I +
2µe(f). Following the standard approach to deriving a DG scheme
the displacement field u is replaced by a numerical flux û and the
stress tensor s is replaced a numerical flux ŝ on the faces of the
mesh, so equation (4.4) can be written as

Z

∂Kk

(û · dnk � ŝnk · f)dS = 0. (4.5)

Equation (4.5) can be split in two parts: an integral over the inte-
rior interfaces between elements and an integral over the boundary
faces. The interior interfaces will be considered first and second the
boundary faces. The common face between Kk and Kj is denoted
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by Sk,j. Obviously, it will be assumed that Sk,j 6= ∆. The following
notation will be used from now on uk = u|Kk , uj = u|Kj and the
outer product is defined so that a ⌦ b = ab

T where a and b are
column vectors. Following strategies in [226], over a common face
Sk,j the averages and jumps are defined to be

{{u}} =
uk + uj

2
, {{s}} =

sk + sj

2
,

[[u]] = uk ⌦ nk + uj ⌦ nj, [[s]] = sknk + sjnj,

where nk is the unit outward normal to Kk and nj is the unit out-
ward normal to Kj. The numerical flux functions are defined face
by face (in particular on Sk,j) as follows

û = {{u}}� ih�1

2
[[s]], (4.6)

ŝ = {{s}}+ ih
2
[[u]]. (4.7)

In order to derive the particular form of the UWVF (same form as
in [48]), equation (4.5) is multiplied by i and equations (4.6) and
(4.7) are substituted into equation (4.5). Then

Z

Âk,j

i[dknk · ûk � ŝknk · fk]dS

=
Z

Âk,j

i


1
2
(uk + uj)� ih�1

2
(sknk + sjnj)

�

· dknk dS

�
Z

Âk,j

i


1
2
(sk + sj)nk +

ih
2
(uk ⌦ nk + uj ⌦ nj)nk

�

· fk dS.

Using now the relation (see the original publication II) (uk ⌦ nk +
uj ⌦ nj)nk = uk � uj it can be deduced that

Z

Âk,j

i[dknk · ûk � ŝknk · fk]dS

=
Z

Âk,j

i


1
2
(uk + uj)� ih�1

2
(sknk + sjnj)

�

· dknk dS

�
Z

Âk,j

i


1
2
(sk + sj)nk +

ih
2
(uk � uj)

�

· fk dS. (4.8)
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Rearranging terms and taking into account the complex conjuga-
tion, equation (4.8) can be simplified to

Z

Âk,j

i[dknk · ûk � ŝknk · fk]dS

=
Z

Âk,j

h

�1

2
(�sknk � ihuk) · (�dknk � ihfk)dS

�
Z

Âk,j

h

�1

2
(�sjnj � ihuj) · (dknk � ihfk)dS. (4.9)

Furthermore, equation (4.9) can be written as
Z

Âk,j

i[dknk · ûk � ŝknk · fk]dS

=
1
2

"

Z

Âk,j

h

�1Xk · Y k dS �
Z

Âk,j

h

�1Xj · Fk(Yk)dS

#

, (4.10)

where the new functions {Xk} are given by

Xk = (�sknk � ihuk), (4.11)

Yk = (�dknk � ihfk), and Fk(Yk) = (dknk � ihfk).
Now we turn to the boundary faces. On the boundary Gk =

G \ ∂Kk the numerical fluxes ûk and ŝk are defined by

ûk = uk, (4.12)

ŝk = sk. (4.13)

Equation (4.5) can then be written using numerical fluxes (4.12) and
(4.13) as

Z

Gk

i[dknk · ûk � ŝknk · fk]dS

=
Z

Gk

h

�1[�ihsknk · fk + ihdknk · uk]dS

where h

�1 is taken as a common factor. Adding and subtracting
terms sknk · dknk/2 and h

2
uk ·fk/2 and dividing the above equation
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into two parts, and rearranging terms, it can be written as

Z

Gk

i[dknk · ûk � ŝknk · fk]dS

=
Z

Gk

1
2

h

�1⇥
sknk · dknk � ihsknk · fk

+ ihuk · dknk + h

2
uk · fk

⇤

dS

�
Z

Gk

1
2

h

�1⇥
sknk · dknk + ihsknk · fk

� ihuk · dknk + h

2
uk · fk

⇤

dS. (4.14)

Rearranging terms more and taking into account the complex con-
jugation, equation (4.14) can be simplified to obtain

Z

Gk

i[dknk · ûk � ŝknk · fk]dS

=
Z

Gk

1
2

h

�1(�sknk � ihuk) · (�dknk � ihfk)dS

�
Z

Gk

1
2

h

�1(sknk � ihuk) · (dknk � ihfk)dS. (4.15)

Taking into account the boundary condition (4.3), equation (4.15)
can now be written as

Z

Gk

i[dknk · ûk � ŝknk · fk]dS

=
Z

Gk

1
2

h

�1(�sknk � ihuk) · (�dknk � ihfk)dS

�
Z

Gk

1
2

h

�1Q (�sknk � ihuk) · (dknk � ihfk)dS

�
Z

Gk

1
2

h

�1
g · (dknk � ihfk)dS.

Using the definitions of Xk, Yk and Fk(Yk), we can obtain the iden-
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tity

Z

Gk

i[dknk · ûk � ŝknk · fk]dS

=
1
2



Z

Gk

h

�1Xk · Y k dS �
Z

Gk

Qh

�1Xk · Fk(Yk)dS

�
Z

Gk

h

�1
g · Fk(Yk)dS

�

. (4.16)

Combining now equations (4.5), (4.10) and (4.16) and summing over
all elements, we have that Xk, 1  k  N, satisfies

N

Â
k=1



Z

∂Kk

h

�1Xk · Y k dS �
N

Â
j=1,j 6=k

Z

Sk,j

h

�1Xj · Fk(Yk)dS

�
Z

Gk

Qh

�1Xk · Fk(Yk)dS
�

=
N

Â
k=1

Z

Gk

h

�1
g · Fk(Yk)dS. (4.17)

for all suitable Yk, 1  k  N. We now provide details of the
functional framework behind this equation. Following the strategy
used in [51] and in the paper II, we introduce the weighted space
L2

h

(∂Kk) with the weighted norm defined by

kuk2
L2

h

(∂Kk)
=

Z

∂Kk

(h�1
u) · u dS.

Let X = PKk2Th L2
h

(∂Kk) have the norm

kX k2
X =

N

Â
k=1

Z

∂Kk

1
2

⇣

h

�1Xk

⌘

· X k dS =
1
2

N

Â
k=1

kXkk2
L2

h

(∂Kk)
(4.18)

with the inner product

(X ,Y)X =
N

Â
k=1

Z

∂Kk

1
2

⇣

h

�1Xk

⌘

· Y k dS.

The left hand side of equation (4.17) is the sesquilinear form a(X ,Y)
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defined by

a(X ,Y) =
N

Â
k=1

Z

∂Kk

1
2

h

�1Xk · Y k dS

�
N

Â
k=1

N

Â
j=1,j 6=k

Z

Sk,j

1
2

h

�1Xj · Fk(Yk)dS

�
N

Â
k=1

Z

Gk

1
2

Qh

�1Xk · Fk(Yk)dS (4.19)

and the boundary data functional can be obtained from

b(Y) =
N

Â
k=1

Z

Gk

1
2

h

�1
g · Fk(Yk)dS. (4.20)

Combining now (4.19) and (4.20) the DG scheme becomes the prob-
lem of finding X 2 X so that

a(X ,Y) = b(Y) for all Y 2 X. (4.21)

Equation (4.21) is the UWVF for the Navier equation (see the article
II and [48]).

4.1.2 Basis functions and the discretization

In 2D linear elasticity the basis functions of the UWVF were P-
and S-waves that were obtained by using the Helmholtz decompo-
sition [48]. In 3D linear elasticity, the solution of the adjoint Navier
equation is separated into three wave components as follows

fk = f

P
k + f

SH
k + f

SV
k in Kk,

where f

P
k is a P-wave (pressure wave), f

SH is a SH-wave (horizontal
component of S-wave) and f

SV is a SV-wave (vertical component
of S-wave). On each element Kk the number of basis functions is
chosen as pP

k for P-wave and pS
k for S-waves. Each P-wave basis

function is given by

f

P
k,` =

(

a

P
k d

P
k,` exp(ikPd

P
k,` · x) in Kk

0 elsewhere
, (4.22)
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where 1  `  pP
k , a

P
k is the amplitude and the direction of prop-

agation d

P
k,` is a unit vector. In particular, the P-wave satisfies the

Helmholtz equation so that Df

P
k,` + k

2
Pf

P
k,` = 0 in Kk and r⇥ f

P
k =

0. The S-wave basis functions are given by

f

SH
k,` =

(

a

SH
k d

S?
k,` exp(ikSd

S
k,` · x) in Kk

0 elsewhere
, (4.23)

f

SV
k,` =

(

a

SV
k d

S?
k,` ⇥ d

S
k,` exp(ikSd

S
k,` · x) in Kk

0 elsewhere
, (4.24)

where 1  `  pS
k , d

S?
k,` ? d

S
k,` are unit vectors and a

SH
k , a

SV
k are the

amplitudes. Similarly to P-wave basis functions, the S-wave basis
functions satisfy the adjoint Helmholtz equations

Df

SH
k,` + k

2
Sf

SH
k,` = 0, in Kk,

Df

SV
k,` + k

2
Sf

SV
k,` = 0, in Kk,

with the following relations r · f

SH
k = r · f

SV
k = 0 and d

S
k,` ?

d

S?
k,` ? (dS?

k,` ⇥ d

S
k,`). The directions in the basis functions (4.22),

(4.23) and (4.24) are chosen following [227, 228].
Following the original article II, the subspaces can be defined as

Xh
k ⇢ L2

h

(∂Kk) with Xh = PN
k=1Xh

k and 1  k  N. Using now the
basis functions (4.22), (4.23) and (4.24) in (4.11), then X h

k 2 Xh
k can

be written as

X h
k =

pP
k

Ầ
=1

X P
k,`

⇣

�s

P
k,`nk � ihf

P
k,`

⌘

+
pS

k

Ầ
=1

X SH
k,`

⇣

�s

SH
k,` nk � ihf

SH
k,`

⌘

+
pS

k

Ầ
=1

X SV
k,`

⇣

�s

SV
k,` nk � ihf

SV
k,`

⌘

where {X P
k,`}

pP
k

`=1, {X SH
k,` }

pS
k

`=1, {X SV
k,` }

pS
k

`=1 are unknown expansion co-
efficients and s

•
k,` = (lr · f

•
k,`)I + 2µe(f•

k,`) where • =P, SH or SV.
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Similarly Y h
k 2 Xh

k is of the form

Y h
k =

pP
k

Ầ
=1

YP
k,`

⇣

�s

P
k,`nk � ihf

P
k,`

⌘

+
pS

k

Ầ
=1

YSH
k,`

⇣

�s

SH
k,` nk � ihf

SH
k,`

⌘

+
pS

k

Ầ
=1

YSV
k,`

⇣

�s

SV
k,` nk � ihf

SV
k,`

⌘

where {YP
k,`}

pP
k

`=1, {YSH
k,` }

pS
k

`=1, {YSV
k,` }

pS
k

`=1 are the expansion coefficients.
In addition Fk(Y h

k ) can be easily computed as

Fk(Y h
k ) =

pP
k

Ầ
=1

YP
k,`

⇣

s

P
k,`nk � ihf

P
k,`

⌘

+
pS

k

Ầ
=1

YSH
k,`

⇣

s

SH
k,` nk � ihf

SH
k,`

⌘

+
pS

k

Ầ
=1

YSV
k,`

⇣

s

SV
k,` nk � ihf

SV
k,`

⌘

.

Indeed one reason for choosing a basis for X h
k is that in the way

described above F is trivial to compute. In summary, the space Xh
k

is spanned by the basis functions that is

Xh
k = span

⇢

s

P
k,`nk + ihf

P
k,`, 1  `  pP

k ,

s

SH
k,` nk + ihf

SH
k,` , 1  `  pS

k ,

s

SV
k,` nk + ihf

SV
k,` , 1  `  pS

k

�

for k = 1, . . . , N and Xh = PN
k=1Xh

k . Then the discretized form of
the UWVF can be obtained by replacing X by X h and replacing Y
by Y h in (4.21): we seek X h 2 Xh such that

a(X h,Y h) = b(Y h) for all Y h 2 Xh.
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In matrix form, the discrete UWVF can be written as

(D � C)X = b (4.25)

where X = (xP
11, . . . , xP

1pP
1
, xSH

11 , . . . , xSH
1pS

1
, xSV

11 , . . . , xSV
1pS

1
, . . .)T consists

of the unknown coefficients (to be determined), D is a block diago-
nal, Hermitian positive definite matrix and the sparse matrix C has
both off-diagonal and diagonal blocks (when Q 6= 0).

The originators of the UWVF [35, 125] have suggested that the
linear system (4.25) should be solved in preconditioned form as

(I � D�1C)X = D�1
b

where I is the identity matrix. In order to reduce the computational
burden, the matrix D can be efficiently inverted blockwise as in
[132].

4.1.3 Error estimates

In this section the main error estimates for the elastic UWVF are
outlined following the paper II. Strategies for obtaining these esti-
mates follow [35, 39, 51, 52, 125, 151, 152].

The physical parameters are assumed to be real and constant
and our theory is applicable for |Q| < 1 but it cannot handle the
case |Q| = 1. Paper II considered the case Q = 0. The domain
W is assumed to be a convex polygon or smooth. For a smooth
domain the subdomains {Kk} in the mesh may need to have curvi-
linear faces. In addition, the mesh is supposed to be quasi-uniform
by which we mean that if h is the maximum diameter of all the
elements in the mesh then diameter hKk of Kk is bounded so that
h�1

Kk
 Ch�1 for some C that is independent of h and the element Kk.

Since we are interested in frequency dependent estimates, we make
the specific assumption that the numerical flux matrix is bounded
so that khk• < Cw and kh

�1k• < Cw

�1 for some C.
The basic error estimate on the boundary G, cf. [35, 125] and

Corollary 3.10 in II, can be written as

kX �X hkL2
h

(G)  2k(I � Ph)X kX
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where the X-norm is defined in (4.18),

kX �X hk2
L2

h

(G) =
N

Â
k=1

Z

Gk

1
2

⇣

h

�1(X �X h)
⌘

· (X �X h)dS,

and Ph is the orthogonal projection from X onto Xh.
The derivation of a global error estimate for the UWVF in L2(W)

uses the dual problem approach from [39], the regularity estimates
from [229] and the assumed quasi-uniformity of the mesh.

Because the elasticity parameters are assumed to be real, the
piecewise defined local solution uh approximating u can be com-
puted from X h by

uh|Kk =
pP

Ầ
=1

X P
k,`f

P
k,` +

pS

Ầ
=1
(X SH

k,` f

SH
k,` +X SV

k,` f

SV
k,` ).

Then, see Theorem 3.14 in II, assuming that the domain W is con-
vex and polyhedral and the mesh is regular and quasi-uniform, the
L2(W) norm error estimate can be written as follows

ku � uhk0,W  Ch�1/2
⇣

w

3
2 + w

� 5
2

⌘

k(I � Ph)X kX.

Using the Helmholtz decomposition, the displacement u can be
written as

u = rA +r⇥ B

so that

r · u = r2A,

r⇥ u = r⇥r⇥ B,

and we assume the regularity: A 2 HrP+1(Kk) is a scalar field and
B 2 HrS+1(Kk)3 is a vector field so that r · B = 0 and r⇥ (rA) = 0
and rP 2 N and rS 2 N. The scalar field A satisfies the Helmholtz
equation DA + k

2
P A = 0 and vector field B satisfies the Maxwell

equation r⇥r⇥ B � k

2
SB = 0.
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Following [153], we define the {-weighted norm kukr,{,Kk for
real { > 0 as follows

kukr,{,Kk :=

 

r

Â
j=0

{2(r�j)|u|2j,Kk

!

1
2

,

where the seminorm is given by

|u|2
a,Kk

= Â
j,l,m

j+l+m=a

�

�

�

�

�

∂

j

∂xj
1

∂

l

∂xl
2

∂

m

∂xm
3

u

�

�

�

�

�

2

0,Kk

where j, l, m and a 2 N0.
Let the number of P-wave basis functions be pP = (qP + 1)2

such that qP � 2rP + 1 (and qP � 2(1 + 21/Lk) where Lk depends
only on the shape of the element Kk). The number of SV-wave (and
SH-wave) basis functions is similarly defined as pS = (qS + 1)2 such
that qS � 2rS + 1 (and qS � 2(1+ 21/Lk) where Lk depends only on
the shape of the element Kk). Using the approximation properties
of plane waves (motivated by [52, 151–153]) and assuming kSh  C
for some fixed C, we obtain the global estimate

ku � uhk0,W  C
⇣

w

�1 + w

�5
⌘

(1 + w)

✓

hrP�2kr · ukrP+1,kP,W

+ hrS�2kr⇥ ukrS+1,kS,W

◆

.

(4.26)

4.2 THE UWVF IN PLATE VIBRATION PROBLEMS

The UWVF for fourth order problems will be derived using the DG
scheme following the strategies in [230]. Here W ⇢ R2 is a bounded
polygonal open set. We want to approximate the displacement of
the plate occupying W. The thin plate problem is to find the dis-
placement w such that

D2w � k

4
bw = 0 in W (4.27)
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where the plate bending wave number kb = (rtw2/D)1/4, r is the
density of the medium, w is the circular frequency, t is the plate
thickness and the plate bending stiffness is D = Et3/(12(1 � n

2)),
modulus of the elasticity E and n is the Poisson ratio. The plate
bending wave number kb is now on assumed to be real and con-
stant.

The fourth order PDE (4.27) requires that two boundary con-
ditions be imposed. We assume that the boundary conditions are
given by

∂Dw
∂n

� ih1w = Q1

✓

�∂Dw
∂n

� ih1w
◆

+ g1, on G, (4.28)

∂w
∂n

� ih2Dw = Q2

✓

�∂w
∂n

� ih2Dw
◆

+ g2, on G, (4.29)

where n is the outward normal, Q1 2 C, Q2 2 C, |Q1|  1 and
|Q2|  1 defines the boundary conditions, h1 and h2 are the flux
parameters and g1 and g2 are the source terms on the boundary
G. While h1 and h2 can be chosen arbitrarily, for simplicity and to
balance dimensions we will make the specific choice h1 = k

3
b and

h2 = k

�1
b .

In particular, the boundary conditions (4.28)-(4.29) are tailored
to clamped plate boundary conditions (when Q1 = �1 and Q2 = 1).
Unfortunately, free plate or simply supported boundary conditions
can not be obtained and so this formulation is only a first step
towards developing a UWVF for more general plate problems. The
existence and uniqueness of the solution of problem (4.27)-(4.29) is
proved in the original publication IV.

4.2.1 Derivation of the UWVF via a DG scheme

In the original publication IV the UWVF for Kirchhoff plate equa-
tion was derived following the strategies in [35, 125] using the so-
called “Isometry Lemma”. However, to be more consistent with the
linear elasticity derivations in the previous section, the UWVF for
the plate equation will now be derived via an upwind DG scheme
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cf. [230]. Therefore, the equation (4.27) will be written as a first
order system, using new variables1

s, u and t such that

ikbs = rw, (4.30)

ikbu = r · s, (4.31)

ikbt = ru, (4.32)

r · t = ikbw. (4.33)

Now the boundary conditions (4.28) and (4.29) can be written as

�ik3
bt · n � ih1w = Q1(ik3

bt · n � ih1w) + g1, on G, (4.34)

ikbs · n + ih2k

2
bu = Q2(�ikbs · n + ih2k

2
bu) + g2, on G. (4.35)

The first part of the derivation follows the strategies given in [230]
and [51]. The computational domain W is now divided into regular
non-overlapping elements so that W = [N

k=1Kk where k = 1, . . . , N
and N is the number of elements. Again, the following notation will
be used wk = w|Kk , uk = u|Kk , sk = s|Kk and tk = t|Kk . Equations
(4.30), (4.31), (4.32) and (4.33) are multiplied by test functions x, f,
j and y, respectively followed by integration over the element Kk.
Then using integration by parts, we obtain

Z

Kk

ikbsk · xk dV = �
Z

∂Kk

wkr · xk dA +
Z

∂Kk

wknk · xk dA, (4.36)
Z

Kk

ikbukfk dV = �
Z

∂Kk

sk ·rfk dA +
Z

∂Kk

fknk · sk dA, (4.37)
Z

Kk

ikbtk ·jk dV = �
Z

∂Kk

ukr ·jk dA +
Z

∂Kk

uknk ·jk dA, (4.38)
Z

Kk

ikbwkyk dV = �
Z

∂Kk

tk ·ryk dA +
Z

∂Kk

yknk · tk dA. (4.39)

Summing equations (4.36), (4.37), (4.38) and (4.39), one obtains
Z

Kk

�

sk · (ikbxk +rfk) + uk(ikbfk +r ·jk)

+ tk · (ikbjk +ryk) + wk(ikbyk +r · xk)
 

dV

=
Z

∂Kk

n

wknk · xk + sk · nkfk + uknk ·jk + tk · nkyk

o

dA. (4.40)

1The variable u is not the same variable than in Chapter 3. Variables t or s are
not tangential vectors.
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Taking into account complex conjugation, equation (4.40) simplifies
to

Z

Kk

�

sk · (�ikbxk +rfk) + uk(�ikbfk +r ·jk)

+ tk · (�ikbjk +ryk) + wk(�ikbyk +r · xk)
 

dV

=
Z

∂Kk

n

wknk · xk + sk · nkfk + uknk ·jk + tk · nkyk

o

dA. (4.41)

Similarly to [51], new variables x, f, j and y are chosen such that

ikbx = rf, (4.42)

ikbf = r ·j, (4.43)

ikbj = ry, (4.44)

ikby = r · x, (4.45)

equivalently D2
y = k

4
by. Hence, the volume integral in equation

(4.41) vanishes and it can be written as follows

Z

∂Kk

�

wknk · xk + sk · nkfk + uknk ·jk + tk · nkyk
 

dA = 0. (4.46)

As for the DG scheme w, s, u and t on ∂Kk are now replaced by
numerical fluxes ŵ, ŝ, û and t̂, respectively.

Again the equation (4.46) can be split into boundary integrals
and integrals on the element interfaces. First the boundary edges
will be investigated and then the interior interfaces. On the bound-
ary edge G, the fluxes are defined as ŵ = w, ŝ = s, û = u and
t̂ = t. In order to derive the similar form of the plate UWVF as
in the original publication IV, equation (4.46) is multiplied by k

3
b .
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Then
Z

Gk

k

3
b(wknk · xk + sk · nkfk + uknk ·jk + tk · nkyk)dA

=�
Z

Gk

1
2h1

(ik3
btk · nk � ih1wk)(ik3

bxk · nk � ih1yk)dA

+
Z

Gk

1
2h1

(�ik3
btk · nk � ih1wk)(�ik3

bxk · nk � ih1yk)dA

�
Z

Gk

1
2h2

(�ikbsk · nk + ih2k

2
buk)(�ikbjk · nk + ih2k

2
bfk)dA

+
Z

Gk

1
2h2

(ikbsk · nk + ih2k

2
buk)(ikbjk · nk + ih2k

2
bfk)dA, (4.47)

where h1 = k

3
b and h2 = k

�1
b are chosen.

Now we turn to element interfaces. Let Kk and Kj share a com-
mon face Sk,j. Then, the averages and jumps across the interface
Sk,j can be written as

{{w}} =
wk + wj

2
, [[w]] = wknk + wjnj,

{{s}} =
sk + sj

2
, [[s]] = sk · nk + sj · nj,

{{u}} =
uk + uj

2
, [[u]] = uknk + ujnj,

{{t}} =
tk + t j

2
, [[t]] = tk · nk + t j · nj,

where the lower index k refers to the element Kk and j refers to the
element Kj. Using these definitions, the fluxes on the interior faces
Sk,j are now taken to be

ŵ = {{w}}� 1
2
[[t]], t̂ = {{t}}� 1

2
[[w]], (4.48)

û = {{u}}� 1
2
[[s]], ŝ = {{s}}� 1

2
[[w]]. (4.49)

For the sake of clarity, the left hand side of equation (4.46) is divided
in two parts. Using now (4.48) the first and the last term on the left
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hand side of equation (4.46) can be written as

Z

Sk,j

k

3
b(ŵknk · xk + t̂k · nkyk)dA

=
Z

Sk,j

k

3
b

⇢✓wk + wj

2
� 1

2
(tk · nk + t j · nj)

◆

nk · xk

+

✓

tk + t j

2
� 1

2
(wknk + wjnj)

◆

· nkyk

�

dA. (4.50)

On the right hand side of equation (4.50), taking wk and tk terms
first and wj and t j terms last, one obtains

Z

Sk,j

k

3
b(ŵknk · xk + t̂k · nkyk)dA

=
Z

Sk,j

k

3
b

⇢✓

wk
2

� 1
2
(tk · nk)

◆

nk · xk +

✓

tk
2
� 1

2
(wknk)

◆

· nkyk

+

✓wj

2
� 1

2
(t j · nj)

◆

nk · xk +

✓

t j

2
� 1

2
(wjnj)

◆

· nkyk

�

dA. (4.51)

Using the fact that nk = �nj on the interface Sk,j, equation (4.51)
can be written as

Z

Sk,j

k

3
b(ŵknk · xk + t̂k · nkyk)dA

=
Z

Sk,j

k

3
b

2

✓

wknk · xk � tk · xk + tk · nkyk � wkyk

+ wjnk · xk + t j · xk � t j · njyk + wjyk

◆

dA. (4.52)
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Requiring that h1 = k

3
b , equation (4.52) is then

Z

Sk,j

k

3
b(ŵknk · xk + t̂k · nkyk)dA

= �
Z

Sk,j

1
2h1

✓

k

6
btk · nkxk · nk � k

3
bh1tk · nkyk

� h1wkxk · nk + h1wkh1yk

◆

dA

+
Z

Sk,j

1
2h1

✓

� k

6
bt j · njxk · nk � k

3
bt j · njh1yk

+ h1wjk
3
bxk · nk + h1wjh1yk

◆

dA.

Rearranging terms and taking into account the complex conjuga-
tion, gives

Z

Sk,j

k

3
b(ŵknk · xk + t̂k · nkyk)dA

= �
Z

Sk,j

1
2h1

�

ik3
btk · nk � ih1wk

� �

ik3
bxk · nk � ih1yk

�

dA

+
Z

Sk,j

1
2h1

�

ik3
bt j · nj � ih1wj

� ��ik3
bxk · nk � ih1yk

�

dA. (4.53)

Similarly, using the definitions of the fluxes in (4.49), the second
and the third term in equation (4.46) can be written as

Z

Sk,j

k

3
b(ŝk · nkfk + ûknk ·jk)dA

=
Z

Sk,j

k

3
b

⇢✓

sk + sj

2
� 1

2
(uknk + ujnj)

◆

· nkf

+

✓uk + uj

2
� 1

2
(sk · nk + sj · nj)

◆

nk ·jk

�

dA.

Rearranging terms in a similar manner as before (taking uk and sk
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terms first and uj and sj terms last), one obtains
Z

Sk,j

k

3
b(ŝk · nkfk + ûknk ·jk)dA

=
Z

Sk,j

k

3
b

⇢✓

sk
2
� 1

2
uknk

◆

· nkfk +

✓

uk
2

� 1
2

sk · nk

◆

nk ·jk

+

✓

sj

2
� 1

2
ujnj

◆

· nkfk +

✓uj

2
� 1

2
sj · nj

◆

nk ·jk

�

dA. (4.54)

Equation (4.54) can be simplified some more to get
Z

Sk,j

k

3
b(ŝk · nkfk + ûknk ·jk)dA

=
Z

Sk,j

k

3
b

2

⇢

sk · nkfk � uknk · nkfk

+ uknk ·jk � sk · nknk ·jk + sj · nkfk

� ujnj · nkfk + ujnk ·jk � sj · njnk ·jk

�

dA.

Requiring that h2 = k

�1
b and using the fact that nk = �nj on the

interface Sk,j, to have
Z

Sk,j

k

3
b(ŝk · nkfk + ûknk ·jk)dA

=
Z

Sk,j

1
2h2

⇢

kbsk · (h2k

2
bnkfk)� h2k

2
buk(h2k

2
bfk)

+h2k

2
buk(kbnk ·jk)� kbsk · nk(kbnk ·jk)

�kbsj · nk(h2k

2
bfk) + h2k

2
buj(h2k

2
bfk)

+h2k

2
buj(kbnk ·jk)� kbsj · nj(kbnk ·jk)

�

dA.

Rearranging and simplifying terms still further gives
Z

Sk,j

k

3
b(ŝk · nkfk + ûknk ·jk)dA

=�
Z

Sk,j

1
2h2

(�ikbsk · nk + ih2k

2
buk)(ikbjk · nk � ih2k

2
bfk)dA

+
Z

Sk,j

1
2h2

(�ikbsj · nj + ih2k

2
buj)(�ikbjk · nk � ih2k

2
bfk)dA.
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Taking into account the complex conjugation and rearranging terms
one can deduce that

Z

Sk,j

k

3
b(ŝk · nkfk + ûknk ·jk)dA

=�
Z

Sk,j

1
2h2

(�ikbsk · nk + ih2k

2
buk)(�ikbjk · nk + ih2k

2
bfk)dA

+
Z

Sk,j

1
2h2

(�ikbsj · nj + ih2k

2
buj)(ikbjk · nk + ih2k

2
bfk)dA. (4.55)

Combining equations (4.53) and (4.55), the integral over the element
interfaces Sk,j can be written as

Z

Sk,j

k

3
b(ŵknk · xk + t̂k · nkyk + ŝk · nkfk + ûknk ·jk)dA

=�
Z

Sk,j

1
2h1

�

ik3
btk · nk � ih1wk

� �

ik3
bxk · nk � ih1yk

�

dA

+
Z

Sk,j

1
2h1

�

ik3
bt j · nj � ih1wj

� ��ik3
bxk · nk � ih1yk

�

dA

�
Z

Sk,j

1
2h2

(�ikbsk · nk + ih2k

2
buk)(�ikbjk · nk + ih2k

2
bfk)dA

+
Z

Sk,j

1
2h2

(�ikbsj · nj + ih2k

2
buj)(ikbjk · nk + ih2k

2
bfk)dA. (4.56)

Taking into account the integral equations on the boundary (4.47)
and interior interfaces (4.56) the method can be summarized in the
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following equation

0 =
Z

∂Kk

k

3
b(ŵknk · xk + t̂k · nkyk + ŝk · nkfk + ûknk ·jk)dA

=�
Z

∂Kk

1
2h1

�

ik3
btk · nk � ih1wk

� �

ik3
bxk · nk � ih1yk

�

dA

+
Z

Sk,j

1
2h1

�

ik3
bt j · nj � ih1wj

� ��ik3
bxk · nk � ih1yk

�

dA

�
Z

∂Kk

1
2h2

(�ikbsk · nk + ih2k

2
buk)(�ikbjk · nk + ih2k

2
bfk)dA

+
Z

Sk,j

1
2h2

(�ikbsj · nj + ih2k

2
buj)(ikbjk · nk + ih2k

2
bfk)dA

+
Z

Gk

1
2h1

(�ik3
btk · nk � ih1wk)(�ik3

bxk · nk � ih1yk)dA

+
Z

Gk

1
2h2

(ikbsk · nk + ih2k

2
buk)(ikbjk · nk + ih2k

2
bfk)dA. (4.57)

Now using boundary conditions (4.34) and (4.35), equation (4.57)
can be written as

Z

∂Kk

1
2h1

�

ik3
btk · nk � ih1wk

� �

ik3
bxk · nk � ih1yk

�

dA

�
Z

Sk,j

1
2h1

�

ik3
bt j · nj � ih1wj

� ��ik3
bxk · nk � ih1yk

�

dA

+
Z

∂Kk

1
2h2

(�ikbsk · nk + ih2k

2
buk)(�ikbjk · nk + ih2k

2
bfk)dA

�
Z

Sk,j

1
2h2

(�ikbsj · nj + ih2k

2
buj)(ikbjk · nk + ih2k

2
bfk)dA

�
Z

Gk

Q1

2h1
(ik3

btk · nk � ih1wk)(�ik3
bxk · nk � ih1yk)dA

�
Z

Gk

Q2

2h2
(�ikbsk · nk + ih2k

2
buk)(ikbjk · nk + ih2k

2
bfk)dA

=
Z

Gk

1
2h1

g1(�ik3
bxk · nk � ih1yk)dA

+
Z

Gk

1
2h2

g2(ikbjk · nk + ih2kby2
fk)dA. (4.58)

Using now (4.30)-(4.33) and (4.42)-(4.45), equation (4.58) can be writ-
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ten as
Z

∂Kk

1
2h1

✓

�∂Dwk
∂nk

� ih1wk

◆✓

�∂Dyk
∂nk

� ih1yk

◆

dA

�
Z

Sk,j

1
2h1

✓

∂Dwj

∂nk
� ih1wj

◆✓

∂Dyk
∂nk

� ih1yk

◆

dA

+
Z

∂Kk

1
2h2

✓

�∂wk
∂nk

� ih2Dwk

◆✓

�∂yk
∂nk

� ih2Dyk

◆

dA

�
Z

Sk,j

1
2h2

✓

∂wj

∂nk
� ih2Dwj

◆✓

∂yk
∂nk

� ih2Dyk

◆

dA

�
Z

Gk

Q1

2h1

✓

�∂Dwk
∂nk

� ih1wk

◆✓

∂Dyk
∂nk

� ih1yk

◆

dA

�
Z

Gk

Q2

2h2

✓

�∂wk
∂nk

� ih2Dwk

◆✓

∂yk
∂nk

� ih2Dyk

◆

dA

=
Z

Gk

1
2h1

g1

✓

∂Dyk
∂nk

� ih1yk

◆

dA +
Z

Gk

1
2h2

g2

✓

∂yk
∂nk

� ih2Dyk

◆

dA.

(4.59)

Following [35, 48, 125, 132] and defining a new unknown Xk 2
(L2(∂Kk))2, k = 1, . . . , N as

Xk =

 

� ∂Dwk
∂nk

� ih1wk

� ∂wk
∂nk

� ih2Dwk

!

on ∂Kk, (4.60)

and writing Yk 2 (L2(∂Kk))2 and Fk(Yk) 2 (L2(∂Kk))2, k = 1, . . . , N
so that

if Yk =

 

� ∂Dyk
∂nk

� ih1yk

� ∂yk
∂nk

� ih2Dyk

!

then Fk(Yk) =

 

∂Dyk
∂nk

� ih1yk
∂yk
∂nk

� ih2Dyk

!

on ∂Kk.
Then the UWVF can be written as finding Xk 2 (L2(∂Wk))2,

1  k  N, such that
N

Â
k=1

Z

∂Kk

h

�1Xk · Y k dA �
N

Â
k=1

N

Â
j=1,k 6=j

Z

Sk,j

h

�1Xj · Fk(Yk)dA

�
N

Â
k=1

Z

Gk

Qh

�1Xk · Fk(Yk)dA =
N

Â
k=1

Z

Gk

h

�1
g · Fk(Yk)dA (4.61)
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for all Yk 2 (L2(∂Kk))2, 1  k  N where

h =

 

h1 0
0 h2

!

, Q =

 

Q1 0
0 Q2

!

and g =

 

g1

g2

!

.

4.2.2 Basis functions

In the original UWVF scheme in acoustics, elasticity and electro-
magnetism [35, 48, 125] propagating plane wave basis functions are
used. However, if jk satisfies the homogeneous fourth order partial
differential equation:

D2
jk � k

4
b jk = 0 in Kk

for all k = 1, . . . , N, the solution jk can be decomposed into two
parts [231] as follows

jk = j

PW
k + j

EW
k

where

Dj

PW
k + k

2
b j

PW
k = 0 in Kk,

Dj

EW
k � k

2
b j

EW
k = 0 in Kk.

Motivated by this observation, we choose the basis for the discrete
UWVF in Kk to consist of evanescent and propagating waves. The
basis j

PW
k,` consists of propagating plane waves, ` = 1, . . . , pPW

k ,
where pPW

k is the number of basis functions. The plane wave ba-
sis j

PW
k,` is thus

j

PW
k,` =

(

exp(ikb,kdk,` · x), in Kk,
0, elsewhere,

(4.62)

where the direction is given by

dk,` =

 

cos

 

2p

`� 1
pPW

k

!

, sin

 

2p

`� 1
pPW

k

!!

.
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The basis j

EW
k,` is chosen to be the evanescent wave basis, with ` =

1, . . . , pEW
k , and is given by

j

EW
k,` =

(

exp(kb,kdk,` · (x � xk,0)), in Kk,
0, elsewhere,

(4.63)

where xk,0 is the centroid of the element Kk. The scaling for the
basis provided by exp(kb,kdk,` · xk,0) in (4.63), is intended to help
the robustness of the UWVF matrix (control ill-conditioning). The
above basis (4.63) is referred to as “corner waves” by Ladevèze et
al. (cf. [56]).

After discretization the matrix form can be written as follows

(D � C)X = b,

where matrix D is Hermitian and block diagonal while block ma-
trix C consists of diagonal (Q1 6= 0 or Q2 6= 0) and off-diagonal
blocks. For example, first and third integrals on the right hand side
of (4.59):

Z

∂Kk

1
2h1

✓

�∂Dwk
∂nk

� ih1wk

◆✓

�∂Dyk
∂nk

� ih1yk

◆

dA

+
Z

∂Kk

1
2h2

✓

�∂wk
∂nk

� ih2Dwk

◆✓

�∂yk
∂nk

� ih2Dyk

◆

dA

forms the D matrix.

4.2.3 Error estimate

The estimates outlined herein are from the original paper IV fol-
lowing [35, 125]. The global solution space is X = PN

k=1(L2(Kk))2

and the X inner product is now defined by

(u, v)X =
N

Â
k=1

Z

∂Kk

h

�1u · v

with the norm kuk2
X = (u, u)X. Let the best approximation operator

be defined as Ph : X ! Xh in the X norm. Choosing |Q1|  d1 < 1
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and |Q2|  d2 < 1 such that d1  d < 1 and d2  d < 1, then on the
boundary G the following basic error estimate holds

kX �X hk(L2(G))2  2p
1 � d

2
kX � PhX kX.

For the plate UWVF, the error estimates in the domain W with re-
spect to L2 norm are not yet available. This could be the topic of
further research (in particular using the approximation properties
of plane wave and evanescent wave functions).

4.3 THE UWVF IN ACOUSTICS

The acoustic UWVF is better known than the UWVFs for linear elas-
ticity and plate vibration problems described earlier in this chapter.
Therefore, in this thesis only the final form of the acoustic UWVF
will be given. More details about the derivation of the acoustic
UWVF can be found from [35, 51, 125, 132] and see also original
publications I,III. For simplicity we only consider problems in R2.
Let again W ⇢ R2 be a bounded computational domain with the
boundary G.

To allow us to study fluid-fluid interface problems as considered
in the article III. Let the refractive index n of the media be piecewise
constant so that the material properties and the wave number k

are constant on each element in the mesh. Then, the Helmholtz
equation (2.17) can be written as

Dpa + n2
k

2 pa = 0 in W. (4.64)

The first order system for this Helmholtz equation is obtained by
introducing a vector variable v, so that

inkpa = �r · v, (4.65)

inkv = �rpa. (4.66)

The boundary condition for the first order system (4.65) and (4.66)
is

(�inkv · n � ihpa) = Q (inkv · n � ihpa) + g, on G, (4.67)
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where h is the numerical flux parameter, Q 2 C, |Q|  1 defines
the boundary conditions (Dirichlet: Q = �1, Neumann: Q = 1 or
Robin: |Q| < 1) and g is the acoustic source term on the boundary
G. In our work the numerical flux parameter is chosen to

h = nkkk on Gk and h =
nkkk + njkj

2
on Sk,j

where nk is the refractive index in Kk (and nj in Kj).
For the test functions (t, z) we assume that they satisfy the fol-

lowing equations

�inkt = rz, (4.68)

�r · t = inkz, (4.69)

in Kk, equivalently Dz + n2
k

2
z = 0. From (4.65), (4.66), (4.67), (4.68)

and (4.69), the UWVF is to find Xk 2 L2(∂Kk), k = 1, . . . , N, so that

N

Â
k=1

Z

∂Kk

1
h

XkYkdA �
N

Â
k=1

N

Â
j=1,k 6=j

Z

Âk,j

1
h

XjFk(Yk)dA

�
N

Â
k=1

Z

Gk

Q
h

XkFk(Yk)dA =
N

Â
k=1

Z

Gk

1
h

gFk(Yk)dA (4.70)

for all Yk 2 L2(∂Kk), k = 1, . . . , N where

Xk = (inkvk · nk � ihpa,k) .

Similarly, Yk can be written as

Yk = (inktk · nk � ihzk)

and Fk(Yk) as

Fk(Yk) = (�inktk · nk � ihzk) .

The discretized form of the acoustic UWVF is obtained by replacing
in (4.70) Xk by X h

k given by

X h
k =

pk

Ầ
=1

Xk

✓

�∂jk,`

∂nk
� ihjk,`

◆

,
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where pk is the number of basis functions in element Kk and jk,`

satisfies the adjoint Helmholtz equation Djk,` + n2
k

2
jk,` = 0 and

can be chosen to be plane wave as in (3.15). New basis function
choices for the acoustic UWVF are considered in the Section 4.3.1.

Similarly, Yk in (4.70) is replaced by Y h
k that is

Y h
k =

pk

Ầ
=1

Yk

✓

�∂jk,`

∂nk
� ihjk,`

◆

,

and Fk(Yk) in (4.70) is replaced by Fh
k (Y h

k ) such that

Fh
k (Y h

k ) =
pk

Ầ
=1

Yk

✓

∂jk,`

∂nk
� ihjk,`

◆

.

As for other problems, the acoustic UWVF can be written in the
matrix form

(D � C)X = b.

4.3.1 Basis functions

In this section, only the new basis functions which are used in arti-
cles I and III will be outlined. Besides the new basis functions, in
articles I and III the traditional plane wave basis (3.15) is also used
in the UWVF.

The Bessel basis has been investigated first for the UWVF in
[129] for the Maxwell and Navier equations. However, in the origi-
nal publication I the unscaled Bessel basis was introduced for acous-
tics as

jk,` =

(

J`(nkkk|xk � x0,k|)ei`q in Kk,
0 elsewhere.

(4.71)

where J`(·) is the Bessel function of first kind and order `, 1 
`  pk, the angle (using a local coordinate system centered at the
centroid of the element x0) is denoted by q and | · | is the euclidean
norm.
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We also consider a basis that is tailored to the L-shaped domain
problem and is called the modified Bessel basis. The aim is to im-
prove the accuracy of the UWVF when a singularity occurs in the
corner. The modified Bessel basis is given by

jk,` =

8

>

<

>

:

J|`|(nkkk|xk � x0,k|)ei`q in Kk and if ` = �2/3,
J`(nkkk|xk � x0,k|)ei`q in Kk and if ` 6= �2/3,
0, elsewhere,

(4.72)

where the order ` is chosen as

` =

8

>

<

>

:

s � pk�3
2 � 1, when s = 1, . . . , pk � 2,

2
3 , when s = pk � 1,
� 2

3 , when s = pk.

In the original publication III, a scaled Bessel function basis was
considered. The idea is to scale the Bessel functions to help with
conditioning. This new Bessel basis also has scaling term and it is
given by

jk,` =

8

<

:

J`(nkk|x�x0|)ei`q

nkk

p
|J0`(nkkhk)|2+|J`(nkkhk)|2

in Kk,

0 elsewhere,
(4.73)

where the order is ` = �(pk � 1)/2, . . . , (pk � 1)/2, | · | denotes the
complex modulus, x0 is the centroid of the element, q is the angle
and J0` is the first derivative of Bessel function J`. The mesh size hk
in the denominator is chosen to be the longest edge of the element.
In the case of Bessel basis functions the number of basis functions
pk needs to be odd.

In the article III, the fluid-fluid interface problem and new
evanescent wave basis functions were investigated. To motivate this
basis, we now consider two subdomains occupied by different flu-
ids. Let n1 denote the refractive index of fluid 1 in domain W1 and
n2 < n1 be the refractive index of fluid 2 in domain W2. Suppose
a wave is incident on domain W2 from W1. Total internal reflection
occurs (evanescent waves on W2) if the incidence angle qinc of the
incident plane wave on the fluid-fluid interface is smaller than the
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critical angle qcrit. When qinc > qcrit, plane waves propagates in both
domains. This can be seen from Snell’s law as

n1 cos(qinc) = n2 cos(qT),

where qT is the transmission angle from fluid-fluid interface, see
Figure 4.1. Then the critical angle is

qcrit = cos�1
✓

n2

n1

◆

.

������*

�
�

�
�
�
�✓@

@
@

@
@
@R

)
)(

W1, n1

W2, n2

pinc pR

pT

qT
qRqinc

Figure 4.1: Schematic figure of the fluid-fluid interface problem. The incident plane wave
is denoted by pinc, reflected wave field is denoted by pR and transmitted wave field is
denoted by pT. The angle of incidence wave is denoted by qinc, angle of reflected wave is
qR and angle of transmitted wave is qT. The domain W1 has refractive index n1 > n2 and
the domain W2 has refractive index n2.

In [47] it was observed that in acoustics the plane wave basis
does not capture the rapidly decaying wave fields efficiently and in
elasticity [48] the same phenomena was revealed for rapidly decay-
ing elastic Rayleigh waves. For the DEM [49, 55] new evanescent
wave basis functions were introduced for fluid-fluid and fluid-solid
interface problems in order to capture the rapidly decaying evanes-
cent wave modes efficiently. The evanescent wave (EW) basis for
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the UWVF in Kk can be written, see the article III, as

j

EW
k, ˜̀ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

exp

  

A�1

 

x � x0

y � y0

!!

·
 

iak, ˜̀

bk,˜̀

!!

˜̀ odd,

exp

  

A�1

 

x � x0

y � y0

!!

·
 

�iak, ˜̀

bk, ˜̀

!!

˜̀ even,

0 elsewhere,
(4.74)

where the centroid of the element Kk is (x0, y0), ak, ˜̀ = n1k cos(qEW
k, ˜̀ )

and bk, ˜̀ =
q

(n1k)2(cos(qEW
k, ˜̀

))2 � (n2k)2. If (x0, y0) = (0, 0) is cho-
sen on all elements the basis will be called the unscaled EW basis
and if (x0, y0) 6= (0, 0) it is called a scaled EW basis. The matrix A
will be given shortly and is tailored to the direction of evanescent
decay in fluid-fluid interface problems. The choices of angles q

EW

is used in the evanescent wave basis (4.74) are shown in Table 4.1.

Table 4.1: Angles q

EW in the evanescent wave basis functions (4.74). On the left column
is shown the number of evanescent wave basis functions.

EW-basis
q

EW,1
q

EW,2
q

EW,3
q

EW,4
functions

2 1
2 qcrit

4 1
3 qcrit

2
3 qcrit

6 1
4 qcrit

1
2 qcrit

3
4 qcrit

8 1
5 qcrit

2
5 qcrit

3
5 qcrit

4
5 qcrit

4.3.2 Error estimates

For the sake of completeness we now recall the basic error estimates
of the acoustic UWVF [35, 125]. An L2 norm estimate is borrowed
from [51]. This work has been one of the main motivations for our
derivation of the error estimates of the elastic UWVF.
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Following [35,125], the global solution space is X = PN
k=1L2(Kk)

and the X inner product is defined by

(u, v)X =
N

Â
k=1

Z

∂Kk

h

�1u · v

with the norm kuk2
X = (u, u)X. Choosing |Q|  d < 1, then on the

boundary G the following basic error estimate hold

kX �X hkL2(G) 
2p

1 � d

2
kX � PhX kX,

where Ph is the X-orthogonal projection onto Xh where Xh is the
approximation subspace (PW, EW, Bessel, etc.).

The following L2(W) error estimate in 2D is from Buffa and
Monk [51, Theorem 4.1] and can be written as

kpa � ph
akL2(W)  Ch�

1
2 k(I � Ph)X kX.

In [51, 125] it is observed that in 2D when the number of basis
functions is chosen as p = 2qa + 1, the following error estimate
holds

kX �X hkL2(G)  Chqa�1/2kpakCqa+1(W),

where Cqa+1 refers to qa + 1 continuously differentiable functions.
Then, as discussed in [51], the following estimate holds

kpa � ph
akL2(W)  Chqa�1kpakCqa+1(W).
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5 Numerical results

This chapter is devoted to presenting the more significant numerical
results from each original paper I-IV. The results will be given in
chronological order of appearance. Paper I discussed a new Bessel
basis function (4.71) and problems with singularities. In the second
paper II numerical results for the 3D elastic UWVF were compared
with the theoretical error estimates. The third paper III focused
on mixed element shapes (triangles and quadrilaterals), rapidly de-
caying wave fields and the use of Bessel (4.73) and evanescent wave
basis functions (4.74). The fourth paper IV concerned solving a thin
elastic plate problem using the UWVF.

5.1 PAPER I: MODIFIED BESSEL BASIS

Due to the fact that the plane wave based UWVF may suffer from
ill-conditioning, in this work we tried to improve the robustness
of the UWVF using Bessel basis functions. Bessel function bases
have been used in other non-polynomial methods such as in the
PUFEM [70], the LSM [39] and the VTCR [102–104].

It is also well-known that the presence of a singularity in the
solution hampers the accuracy of numerical approximation meth-
ods. Investigations of problems, such as the Helmholtz equation on
an L-shaped domain that result in singular solution have been con-
sidered using the hp cloud FEM [232], GFEM [30], WBM [45], MFS
[233], the UWVF [41] and the coupled FEM-UWVF [135]. Strate-
gies to improve the accuracy have included mesh refinement, use
of higher degree basis functions or the use of special basis func-
tions. For example, in the FEM the addition of certain singular
functions to the approximation spaces was considered by Fix, Gu-
lati and Wakoff [18] who found that this improved the accuracy.
Also auxiliary mapping were used by Oh and Babuška [234]. For
non-polynomial methods, problems with singular solutions were
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approximated by constructing the basis using solutions of an infi-
nite wedge problem [43, 45]. In addition, again for non-polynomial
FEM, special functions can be computed in order to improve the
accuracy near the corner singularities [42]. In another approach,
a hybrid method consisting of the UWVF and the FEM (Raviart-
Thomas elements) was introduced in [135] enhancing the approxi-
mation near a singularity. In paper I the focus was on improving
the accuracy of the UWVF using fractional order Bessel basis func-
tions.

5.1.1 Bessel basis function

The use of Bessel basis functions (4.71) for the L-shaped domain
problem for the Helmholtz equation was investigated in article I.
The performance of the Bessel basis functions (4.71) was compared
with a standard plane wave basis (3.15).

A singular solution to the homogeneous Helmholtz problem in
an L-shaped domain was considered. This is the same test case as
in references [41, 126]. The computational domain is denoted by
W. The boundary is G = G1 [ G2 where G1 denotes the two edges
that meet at the origin and the other edges are denoted by G2. The
problem is to find the acoustic pressure field pa such that

Dpa + k

2 pa = 0 in W,

pa = 0 on G1,
∂pa

∂n

� ihpa =
∂pex

a
∂n

� ihpex
a on G2,

where the Dirichlet condition was chosen by setting Q = �1 on G1,
and the exact solution is pex

a (r, q) = J 2
3
(kr) sin

� 2
3 q

�

where r = |x|.
This exact solution pa = pex

a has a singular gradient at the origin.
The uniform and non-uniform meshes which were used in the

simulations are shown in Figure 5.1. The non-uniform mesh was
heavily refined near the origin.

The results for the uniform mesh are shown in Table 5.1. The
number of basis functions was chosen so that the relative error is
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Figure 5.1: Uniform and non-uniform meshes used in the simulations.

roughly the same (1% - 3%) as the wave number k varies. Relative
errors are computed on a dense uniform point grid as follows

error(%) =
kpex

a � ph
ak`2

kpak`2
⇥ 100%, (5.1)

where ph
a is the UWVF approximation and norm is computed as the

discrete `2 norm.
In the case of Bessel functions (4.71) quadrature needs to be

used when computing the integrals in the UWVF. Of course, in
the case of a plane wave basis (3.15) integrals can be computed in
closed form. The condition numbers for the plane wave basis (3.15)
are similar to the condition numbers for the unscaled Bessel basis
(4.71). In addition, the accuracy is similar for both bases (plane
wave basis (3.15) and unscaled Bessel basis (4.71)).

5.1.2 Modified Bessel basis function

In article I the use of the modified Bessel basis (4.72) was exam-
ined on an L-shaped domain. This modified Bessel basis (4.72) was
used in elements that have a vertex at the origin. In the case of a
uniform mesh, five elements were enriched by the modified Bessel
basis (4.72). In particular, the coupling of a plane wave basis and a
modified Bessel basis was investigated. The modified Bessel basis
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Table 5.1: Results for the uniform mesh in an L-shaped domain using plane wave (PW)
basis (3.15) and unscaled Bessel basis (4.71). The maximum of condition number of block
matrix Dk is denoted by max(Dcond).

Uniform mesh
Basis k p error(%) max(Dcond)

PW

0.05 5 1.52 1.32e6
0.5 5 1.06 1.31e4
5 7 1.88 4.78e3
50 25 2.90 3.35e5

Bessel (4.71)

0.05 5 1.52 1.05e6
0.5 5 1.06 1.07e4
5 7 1.85 4.26e3
50 25 2.89 2.65e5

(4.72) was used again in elements that share an element vertex at
the origin and elsewhere the plane wave basis (3.15) was used. This
is a practical choice since it speeds up the computations because
the use of Bessel basis functions require quadrature to compute the
integrals. Results are shown in Table 5.2.

The results in Table 5.2 show that the modified Bessel basis
(4.72) improves the accuracy of the UWVF compared to plane wave
basis (3.15), especially at higher wave numbers. In addition, the
results imply that the coupling of a plane wave basis (3.15) and the
modified Bessel basis (4.72) causes no problems and the accuracy
is similar to the case when only the modified Bessel basis (4.72) is
used.

The results in Tables 5.1 and 5.2 are for a uniform mesh. The
unstructured (non-uniform) mesh using the plane wave basis (3.15)
and coupled plane wave (3.15) and modified Bessel basis (4.72) was
also investigated. The number of basis functions per element was
computed using the strategy shown in [41] (see also [235]) as fol-
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Table 5.2: Results using uniform mesh in an L-shaped domain. The basis functions are
plane wave basis functions (3.15), modified Bessel basis (4.72) and coupled strategy of
using plane wave basis functions (3.15) and modified Bessel basis functions (4.72).

Uniform mesh
Basis k p error(%) max(Dcond)

PW
0.05 5 1.52 1.32e6
0.5 5 1.06 1.31e4
5 7 1.88 4.78e3
50 25 2.90 3.35e5

modified Bessel
0.05 5 1.08 1.05e6
0.5 5 0.25 1.07e4
5 7 0.09 4.26e3
50 25 0.02 2.66e7

PW+modified Bessel
0.05 5 1.08 1.32e6
0.5 5 0.25 1.31e4
5 7 0.12 4.78e3
50 25 0.02 2.66e7

lows

pk = round(kkhk + C(kkhk)
1/3) (5.2)

where hk is the length of the longest edge of the element, C is a
constant to be chosen C = 8 and if pk was even then the number of
basis functions was reduced by one to obtain an odd number. Again
the modified Bessel basis (4.72) was used in elements that share a
vertex in the origin coupled with the plane waves used elsewhere.
The results are shown in Table 5.3.

The results suggest that at smaller element sizes the effect of the
modified Bessel basis is not significant. This seems to be natural
since the elements near the singularity are smaller so the modi-
fied Bessel basis is active on a smaller region. Therefore it can
be concluded that using refined meshes the plane wave basis ob-
tains good accuracy and the modified Bessel basis is not necessar-
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Table 5.3: Results for the unstructured mesh in an L-shaped domain using plane wave
basis (3.15) and coupling of plane wave basis (3.15) and modified Bessel basis (4.72). The
number of basis functions per element was computed using (5.2) with C = 8.

Basis k p error(%) max(Dcond)

PW

0.05 3 0.19 9.16
0.5 3 0.19 9.16
5 3...7 0.08 1.19e6
50 5...23 0.09 2.45e11

PW+modified Bessel

0.05 3 0.19 2.21e3
0.5 3 0.19 475.57
5 3...7 0.09 1.19e6
50 5...23 0.14 2.45e11

ily needed. On the other hand refining the grid size (h-version)
increases the computational burden more (having more degrees of
freedom) compared to increasing only the number of basis func-
tions (p-version).

5.2 PAPER II: LINEAR ELASTICITY

The applications of the elastic wave simulations range from medical
imaging to seismic exploration. In article II, one of the motivations
was to extend the 2D elastic UWVF [48] to 3D. In addition another
motivation for the linear elasticity article II was the derivation of
the error estimates, so there were fewer numerical results in that
paper. In particular, the aim was to test the convergence of the
UWVF numerically and compare results with the theoretical error
estimates.
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5.2.1 Elastic plane wave in a unit cube

The problem is to find the displacement u such that

s(u) = (lr · u)I + 2µe(u) in W,

r · s(u) + w

2
ru = 0 in W,

(s(u)n � ihu) = g on G (5.3)

where the boundary condition (5.3) can be obtained from (4.3) by
setting Q = 0. The source term g on the boundary G is

g = (s(u)n � ihu)

where u = d exp(ikPd · x) + d

? exp(ikSd · x) + d ⇥ d

? exp(ikSd · x)
with the incident direction d. Following the 2D elastic UWVF [48],
the numerical flux h extended to 3D in article II was taken to be

h = wr(cPn ⌦ n + cS(s1 ⌦ s1 + s2 ⌦ s2))

where n is the outward unit vector on a face, s1 and s2 are the
orthogonal tangential unit vectors and ⌦ is defined as n ⌦ n = nn

T,
similarly for s1 ⌦ s1 and s2 ⌦ s2. The following properties hold for
polarization vectors |s1| = 1, |s2| = 1 and s1 ? n, and s2 = n ⇥ s1.

In the first numerical test case we chose the frequency f =
0.8 · 104, angular frequency w = 2p f = 5.0265 · 104, Young’s modu-
lus E = 200 · 109, Poisson ratio n = 0.3 and density r = 7800. The
Young’s modulus, Poisson ratio and density are close to the mate-
rial properties of steel. Then the speed of P-wave is cP = 5.8751 · 103,
the speed for S-wave is cS = 3.1404 · 103, the P-wave number is
kP = 8.5557 and the S-wave number is kS = 16.0062.

Following [48], the optimal ratio for pP and pS was investi-
gated for 3D linear elasticity. The following ratios were consid-
ered1: pP/pS = 1, pP/pS = n2/(n + 1)2, pP/pS = n2/(n + 2)2 and
pP/pS = n2/(n + 3)2 where n 2 N. The results are shown in Fig-
ure 5.2. The relative errors were computed using an average of the

1Note that here n refers to an integer n 2 N whereas in acoustics n refers to
the index of refraction.
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errors on chosen x-, y- and z-planes as follows

error(%) =
1
3

✓ku � u

hk`2(x=0.3)

kuk`2(x=0.3)
+

ku � u

hk`2(y=0.3)

kuk`2(y=0.3)

+
ku � u

hk`2(z=0.3)

kuk`2(z=0.3)

◆

⇥ 100%, (5.4)

where u

h is the UWVF approximation, norm is computed as the
discrete `2 norm on a planes x = 0.3, y = 0.3 and z = 0.3.

The mesh consists of uniform tetrahedral elements.
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Figure 5.2: Results for elastic plane wave propagation in a unit cube with different number
of basis functions pP and pS. The P-wave number is kP = 8.5557 and the S-wave number
is kS = 16.0062.

The results shown in Figure 5.2 suggest that ratios pP/pS closer
to one give larger condition numbers. This is expected since the
P-wave and S-wave numbers are different. The results show sur-
prisingly that the errors are rather similar regardless of the ratio of
pP/pS.
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The h-convergence was also examined in the article II. In this
case the results were compared to the theoretical error estimate in
(4.26). The frequency was taken to be f = 1.2 · 104, angular fre-
quency w = 2p f = 7.5398 · 104, Young’s modulus E = 200 · 109,
Poisson ratio n = 0.3, density r = 7800, P-wave number kP =
12.8335 and S-wave number kS = 24.0093. The number of P-wave
basis functions was pP = 36 and the number of S-wave basis func-
tions was pS = 49. That is qP = 5 and qS = 6 then qP � 2rP + 1
where rP  2 and similarly qS � 2rS + 1 where rS  5/2 (i.e. rS  2
since rS 2 N).

The model problem again was elastic plane wave propagation
in a unit cube and the incident direction of propagation was chosen
as d = (�0.6838, 0.4558, 0.5698). Results are shown in Table 5.4
where the convergence rate for error is denoted by Order(error) and
growth rate for the condition number is denoted by Order(cond).

Table 5.4: The h-convergence results for the elastic plane wave propagation. The P-wave
number is kP = 12.8335 and the S-wave number is kS = 24.0093. The number of P-wave
basis functions is pP = 36 (qP = 5) and S-wave basis functions pS = 49 (qS = 6).

h error(%) Order(error) max(cond(Dk)) Order(cond)
1.0 54.1824 - 136.6296 -
0.5 25.1457 1.1075 1.4660e4 -6.7455
0.25 0.3063 6.3592 6.6385e7 -12.1448

0.125 0.0073 5.3909 1.7419e11 -11.3575

The results in Table 5.4 suggest that the order of convergence
is similar to qP or qS (instead of rP or rS). This means that the
theoretical error estimate in (4.26) could perhaps be improved. As
discussed in II, an explanation for this is that error estimate (4.26)
is derived via scalar and vector potential fields which may reduce
the predicted order of convergence. At the finest mesh size the
condition number is rather high.

Finally, in the article II, a case in which the theory does not
predict convergence was investigated (qP = 2 and qS = 4). The
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number of basis functions pP = 9 and pS = 25 were fixed and the
mesh size h varied. If qP � 2rP + 1 and qS � 2rS + 1 that means
rP  1/2 (i.e. rP = 0 since rP 2 N) and rS  3/2 (i.e. rS = 1
since rS 2 N). The P-wave number is kP = 8.5557 and the S-wave
number is kS = 16.0062. Results are shown in Table 5.5.

Table 5.5: Results for the elastic plane wave propagation when pP = 9 and pS = 25. Then
qP = 2 and rP = 0 and similarly rS  3/2 and qS = 4.

h error(%) Order(error) max(cond(Dk)) Order(cond)
1.0 90.6057 - 20.5633 -
0.5 38.8714 1.2209 200.2592 -3.3197
0.25 2.9209 3.7342 1.9154e4 -6.5796
0.125 0.1716 4.0893 2.0054e6 -6.7101

0.0625 0.0152 3.4969 1.5940e8 -6.3126

The results in Table 5.5 show convergence with pP = 9 and
pS = 25 and the order of convergence is close to order 4. At the
finest grid size, the condition number is high and growth in con-
dition number is about order 6.5. Even though, the theory does
not predict convergence, the numerical results show convergence,
again indicating that better error estimates could likely be proved.

5.3 PAPER III: IMPROVEMENTS FOR THE UWVF

Element shapes and sizes affect the approximation and the robust-
ness of the UWVF. In practice, the closer an element is to circular,
the better condition numbers are expected since the regularity pa-
rameter is closer to one, see [51, 236]. Therefore, we investigated
numerically how the element shapes affect the accuracy and con-
ditioning of the UWVF. In particular, the use of mixed element
meshes was investigated.

In addition to problems with singular solutions another chal-
lenging problem for plane wave based methods, such as the UWVF,
are rapidly decaying (or evanescent) wave fields [47, 48]. Rapidly
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decaying wave fields can be generated, for example, at fluid-fluid
interfaces or in acoustic ducts, see [41, 237]. Strategies to improve
the accuracy for the case of evanescent wave fields include, mesh
refinement (h-version), increasing the number of basis functions (p-
version), hp-version or the use of tailored basis functions. In DEM
[49, 55] evanescent wave basis functions improved the accuracy in
the fluid-fluid and fluid-solid interface problems when evanescent
wave fields were present in the solution. Motivated by that work
and results in [49, 55], the feasibility of using the evanescent wave
basis functions (4.74) in the UWVF was tested numerically. The nu-
merical results were for the fluid-fluid interface problems (straight
interface and curved interface). Only the main numerical results in
article III, will be outlined here.

5.3.1 Mixed element mesh

In practice the choice of basis functions, the element shapes and
element sizes all affect the accuracy and conditioning of the UWVF.
Therefore, our numerical tests included investigations of the effect
of element shapes. The perfomance of the new scaled Bessel basis
(4.73) was also examined.

First a very simple model problem, plane wave propagation in
2D, was considered. Let W be a computational domain with bound-
ary G. The homogeneous Helmholtz problem is to find the time-
harmonic pressure field pa such that

Dpa + k

2 pa = 0 in W,
∂pa

∂n

� ihpa = g on G,

where the Robin type boundary condition was used (Q = 0). The
exact solution is

pa = exp(ikdinc · x),

where the incident direction dinc = (cos(p/p), sin(p/p)) was not
parallel to any of the directions used in the plane wave basis (3.15).
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The wave number was chosen to be k = 40. Relative errors were
computed using equation (5.1).

The triangular mesh is shown in Figure 5.3 and results using
this triangular mesh with 434 elements are shown in Table 5.6.
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Figure 5.3: Triangular mesh with 434 elements.

Table 5.6: Results using triangular mesh with 434 elements and plane wave basis (3.15)
and scaled Bessel basis (4.73).

Basis p error(%) max(Dcond) nnz(D � C)

PW

7 70.40 60 8.3e4
9 15.62 8.9e2 1.4e5

11 1.74 2.7e4 2.0e5
13 0.20 1.5e6 2.9e5

Bessel

7 36.20 68 8.3e4
9 5.19 4.6e2 1.4e5

11 0.71 4.4e3 2.0e5
13 0.10 3.7e4 2.9e5

Results shown in Table 5.6 indicate that the accuracy is better
when the scaled Bessel basis (4.73) is used compared with the re-
sults using the same number of plane wave basis functions (3.15).
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In addition the condition number for the scaled Bessel basis (4.73)
is smaller than for the plane wave basis (3.15). This implies that the
scaling in the Bessel basis (4.73) has been a successful choice.

The mixed element mesh is shown in Figure 5.4 consisting of
226 triangular and 208 quadrilateral elements. The motivation for
this study is that quadrilaterals can be used to fill the domain away
from the boundary and triangles can be used to generate a mesh to
approximate the complex details. However, the savings in time and
the number of unknowns depends also on meshing strategies. In
this particular example, the number of elements was chosen to be
the same in the purely triangular mesh and in the mixed element
mesh (that consists of triangles and quadrilaterals).
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Figure 5.4: Mixed element mesh with 434 elements using 226 triangles and 208 quadri-
laterals.

The results using the mixed element mesh are shown in Ta-
ble 5.7, and suggest that the scaled Bessel (4.73) based UWVF has
slightly better accuracy than the plane wave (3.15) based UWVF.
The results in Table 5.7 are slightly better than those in Table 5.6
but this can partly be explained by the fact that the elements near
the boundary are smaller in the mixed element case. The matrix
filling is denser when using mixed elements due to the fact that the
quadrilaterals have more edges than triangles and thus more neigh-
boring elements. Therefore, the improvement in time and memory
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Table 5.7: Results using mixed element mesh with 226 triangles and 208 quadrilaterals.
Plane wave basis (3.15) and scaled Bessel basis (4.73) is used.

Basis pt pq error(%) max(Dcond) nnz(D � C)

PW

7 7 52.92 3.4e2 9.2e4
9 9 6.56 8.1e3 1.5e5
11 11 0.51 4.3e5 2.3e5
13 13 0.08 4.6e7 3.2e5

Bessel

7 7 39.46 1.7e2 9.5e4
9 9 3.84 1.7e3 1.5e5
11 11 0.33 1.6e4 2.3e5
13 13 0.06 1.4e5 3.2e5

requirements depend on the meshing strategy (and the choice of the
number of basis functions per element which is not shown here).
The results show that mixed elements can be successfully used in
the UWVF but that improvements are less pronounced than we ex-
pected before the study.

5.3.2 Fluid-fluid interface problem with straight interface

Let W be divided into two subdomains W = W1 [ W2. Suppose the
domain W1 has refractive index n1 and W2 has refractive index n2.
The boundary of the domain W is denoted by G. The boundary of
W1 is denoted by ∂W1 and the boundary of W2 is denoted by ∂W2.
The 2D fluid-fluid interface problem is to find the pressure field pa
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such that

Dp1
a + n2

1k

2 p1
a = 0 in W1, (5.5)

Dp2
a + n2

2k

2 p2
a = 0 in W2, (5.6)

∂p1
a

∂n

� ihp1
a = g on G \ ∂W1,

∂p2
a

∂n

� ihp2
a = g on G \ ∂W2,

p1
a = p2

a on ∂W1 \ ∂W2, (5.7)

∂p1
a

∂n

=
∂p2

a
∂n

on ∂W1 \ ∂W2, (5.8)

where ni is the refractive index in domain Wi (i = 1, 2), h is an
acoustic flux parameter and g is the source term on the boundary.
The Robin type boundary condition Q = 0 was chosen.

The source term on the boundary G is

g =
∂pa

∂n

� inkpa

where n is either n1 or n2 and

pa =

(

pinc + pR if y < 0,
pT if y > 0.

(5.9)

In equation (5.9) the incident plane wave field was chosen pinc =
exp(ikn1(dxx + dyy)) in W1 where the incident direction

d = (dx, dy) = (cos(qinc), sin(qinc))

with incident angle qinc. The reflected field can be written as pR =
R exp(ikn1(dxx � dyy)) where the reflection coefficient is given by

R = �K2�kn1dy
K2+kn1dy

, where K1 = kn1dx and K2 = k

q

1 � n2
1d2

x with
Im(K2) � 0. The transmitted field in W2 is pT = T exp(i(K1x +

K2y)) where the transmission coefficient is T = 1+R = 1� K2�kn1dy
K2+kn1dy

.
In our first tests, the enriched evanescent wave basis was only

used on a one element layer in the domain W2 where the evanescent
wave fields were expected. In particular, only two evanescent wave
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basis functions were used (pew = 2) since it has been shown to be
an adequate choice for fluid-fluid interface problem in the original
publication III. The matrix A in the evanescent wave basis (4.74)
was chosen to be the 2 ⇥ 2 identity matrix. The wave number was
chosen k = 25 and the refractive indices n1 = 2 and n2 = 1. First,
the h-convergence was investigated. The number of basis functions
was chosen as p1 = 13 in W1, p2 = 7 in W2 and p3 = 9 or p3 =
p2 + pEW with pEW = 2 in W3. One of the meshes is represented in
Figure 5.5.
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Figure 5.5: One of the meshes used in the simulation. The domain W3 refers to the layer
where the enriched evanescent wave basis functions (4.74) were used.

The results when the plane wave basis (3.15) is enriched with
evanescent wave basis functions (4.74) are shown in Figure 5.6.

Figure 5.6 suggests that the evanescent wave basis (4.74) im-
proves the accuracy and the condition numbers with enrichment
and without enrichement are rather similar. The effect of the evanes-
cent wave basis (4.74) is diminished at the finest element sizes. In
this case the thickness of the layer where the evanescent wave basis
(4.74) was used was the element size and hence this degeneration
as h decreases is plausible (cf. the case in singularity studies earlier
with highly refined non-uniform mesh).

The Bessel basis functions (4.73) with the enriched evanescent
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Figure 5.6: Results for h-convergence in the 2D fluid-fluid interface problem with fixed
number of basis functions p1 = 13 in W1, p2 = 7 in W2 and p3 = 9 or p3 = p2 + pEW
with pEW = 2 in W3. The plane wave basis (3.15) was used and the plane wave basis (3.15)
was enriched with the evanescent wave basis functions (4.74). Three different incident
angles were considered qinc = 11�, qinc = 29� and qinc = 46�. On the left figure is
shown the results for the mesh size h versus the relative error (%). On the right figure is
shown the condition number of matrix Dk versus the mesh size h.

wave basis (4.74) were also studied in the article III. The results are
shown in Figure 5.7.

These results show that the Bessel based UWVF without en-
riched evanescent wave functions has the smallest condition num-
bers. However, when the Bessel basis (4.73) is enriched with the
evanescent wave functions (4.74) the accuracy is improved but on
the other hand the condition number is increased. The unscaled
evanescent wave basis with Bessel basis has smaller condition num-
bers than Bessel basis with scaled enrichment. However, we see
that the highest condition numbers in Figure 5.7 are smaller than
the highest condition numbers in Figure 5.6.
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Figure 5.7: Results for h-convergence in the 2D fluid-fluid interface problem with fixed
number of basis functions p1 = 13 in W1, p2 = 7 in W2 and p3 = 9 or p3 = p2 + pEW
with pEW = 2 in W3. The Bessel basis (4.73) was used and the Bessel basis (4.73) was
enriched with the evanescent wave basis functions (4.74). Three different incident angles
were considered qinc = 11�, qinc = 29� and qinc = 46�. On the left figure is shown the
results for the mesh size h versus the relative error (%). On the right figure is shown the
condition number of matrix Dk versus the mesh size h.

In the final numerical test case for a straight fluid-fluid interface
in the article III, the number of basis functions was chosen based
on the condition number. This strategy was originally introduced
in [132] and was tailored in III to take into account the evanescent
wave basis functions (4.74), for more details see the paper III. The
strategy was to choose the number of plane wave basis functions
so that the condition number does not exceed the set limit (1 · 106).
Then, for the elements in the domain W2 an enriched basis was ac-
cepted with pk � 2+ pew basis functions and pew = 2 if the resulting
element condition number did not exceed the limit (1 · 106). In this
case the thickness of the layer W3 was based on the condition num-
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ber and it could be less, equal or greater than one element. The
results in Figure 5.7 imply that the evanescent wave basis (4.74) is
not that well coupled (produces high condition number) with Bessel
basis functions (4.73) (compared with the enriched plane wave basis
(3.15) in Figure 5.6).
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Figure 5.8: Results for the 2D fluid-fluid interface problem using plane wave basis func-
tions (3.15) and plane wave basis (3.15) enriched with the evanescent wave basis functions
(4.74).

The results shown in Figure 5.8 indicate that the effect of the
evanescent wave basis (4.74) on improving accuracy is now more
visible (compared to Figures 5.6 and 5.7). Our results show that a
careful use of an evanescent wave basis improves the accuracy of
the UWVF.
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5.3.3 Transmission problem with curved interface

The transmission problem considered next is the model problem
used in [132]. Again the behavior of the UWVF using plane wave
basis (3.15) and plane wave basis (3.15) enriched with the evanes-
cent wave basis functions (4.74) were in focus because this problem
has regions with total internal reflection. The governing equations
are shown in (5.5), (5.6), (5.7) and (5.8) and the following boundary
condition was chosen

∂p1
a

∂r
� ikp1

a =

✓

∂pinc
a

∂r
� ikpinc

a

◆

on G, (5.10)

where the incident field is pinc
a = exp(ikx).

Triangles with curved edges can easily be implemented in the
UWVF. In particular, the contribution of integrals on the curved
edge was computed as in [132] using quadrature.

The matrix A in the evanescent wave basis (4.74) was chosen to
allow the direction of evanescence to change. In particular, we used

A =

 

t1 n1

t2 n2

!

(5.11)

where nA = (n1, n2) was chosen to be the unit normal for the circle
pointing at the origin so nA = ((0, 0)� x0)/(k(0, 0)� x0k2) with x0

denoting the centroid of the element. The tangential unit vector was
chosen as tA = (t1, t2) = (n2,�n1). The plane wave basis (3.15) was
enriched with the evanescent wave basis (4.74) in the interior circle
(r2 = 0.6) and in 0.6 < r  1.0 pure plane wave basis functions
(3.15) were used.

The triangular mesh and a schematic figure for choosing the
evanescent wave basis functions are shown in Figure 5.9. The wave
number was chosen to be k = 15. The refractive indices were chosen
to be n1 = 4 and n2 = 1. The results using pure plane wave basis
functions (3.15) in the UWVF are shown in Table 5.8.

The results using plane wave basis functions (3.15) enriched
with the evanescent wave basis functions (4.74) are shown in Ta-
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Figure 5.9: On the left is shown a mesh used in the simulations. The inner radius is
r2 = 0.6 and the outer radius is r1 = 1. The mesh consists of 298 elements. On the right
is a schematic figure where the enriched evanescent wave basis functions were used.

Table 5.8: Results for the transmission problem using pure plane wave basis functions
(3.15). In the domain W1 the number of basis functions is denoted by p1 and in W2 by p2.

p1 p2 error (%) max(Dcond) length(b)
15 7 28.49 1.6e4 3.7e3
15 9 22.13 2.0e5 3.9e3
15 11 12.30 2.9e7 4.1e3
15 13 4.60 8.1e9 4.3e3
15 15 1.52 2.2e12 4.5e3

17 7 28.80 2.8e5 4.0e3
17 9 22.45 2.8e5 4.3e3
17 11 13.09 2.9e7 4.5e3
17 13 5.13 8.1e9 4.7e3

ble 5.9. In addition, the use of a different number of evanescent
wave basis functions (4.74) is tested for a curved interface problem.

Results in Tables 5.8 and 5.9 imply that the evanescent wave
basis functions (4.74) improves the accuracy. The results show that
it is possible to use different numbers of evanescent wave basis
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Table 5.9: Results for the transmission problem using plane wave basis (3.15) enriched
with the evanescent wave basis functions (4.74). In the domain W1 the number of plane
wave basis functions is denoted by p1 and in W2 by p2 and in W2 the number of evanescent
wave basis functions is denoted by pEW.

p1 p2 pEW error (%) max(Dcond) length(b)
15 5 2 14.12 8.6e4 3.7e3
15 7 2 5.53 2.0e5 3.9e3
15 9 2 1.65 8.4e7 4.1e3
15 11 2 0.87 1.0e10 4.3e3

17 5 2 14.15 2.8e5 4.0e3
17 7 2 5.71 2.0e6 4.3e3
17 9 2 1.57 8.4e7 4.5e3
17 11 2 0.53 1.0e10 4.7e3

17 7 4 0.55 3.0e7 4.5e3
17 9 4 0.35 2.2e9 4.7e3

17 5 8 0.41 1.4e8 4.7e3

functions and interestingly the condition numbers are slightly lower
when pEW = 4 or pEW = 8 are used. Perhaps, due to the rather
general form of the evanescent wave basis in (4.74) with (5.11), it
can be applied to other type of problems where evanescent wave
fields are present.

5.4 PAPER IV: VIBRATION OF A THIN CLAMPED PLATE

Thin plate problems (and vibro-acoustic problems) occur in various
fields in industry, for example, in the car industry. To date, the
UWVF has been applied to second order elliptic PDEs (see Table
3.1). However, the WBM [123], VTCR [56] and DEM [174] have
been successfully applied to Kirchhoff’s thin plate problems. The
dynamic Kirchhoff thin plate equation (4.27) is a fourth order PDE
and two boundary conditions (4.28) and (4.29) are needed in order
to solve the problem uniquely. This motivated us to investigate
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the feasibility of the UWVF for thin clamped plate problems. The
UWVF presented in the original publication IV and in this thesis is
restricted to clamped plate type boundary conditions. This is the
first attempt to approximate fourth order elliptic problems using
the UWVF. In this section we give a review of the main numerical
results of the paper IV.

5.4.1 Thin clamped plate problem

The inhomogeneous Kirchhoff plate equation with the clamped
plate boundary conditions can be written as finding the displace-
ment field w such that

D2w � k

4
bw = d(x � x0) in W, (5.12)

w = 0 on the boundary G, (5.13)
∂w
∂n

= 0 on the boundary G, (5.14)

where d(x � x0) is Dirac’s d-function. The location of the volume
source was chosen at the origin i.e. x0 = (0, 0).

The derivation of the exact solution for the circular thin clamped
plate problem is given in the original publication IV. The exact so-
lution is

w = � i
8k

2 (H(1)
0 (ikbr) + H(2)

0 (kr)) + a0 J0(kbr) + b0 I0(kbr) (5.15)

where H(1)
0 (·) is the Hankel function of first kind and order zero,

H(2)
0 (·) is the Hankel function of second kind and order zero, and

the unknown coefficients a0 and b0 can be solved so that the exact
solution satisfies the boundary conditions (5.13) and (5.14)) that is

 

J0(kbr1) J0(ikbr1)
�kb J1(kbr1) �ikb J1(ikbr1)

! 

a0

b0

!

=
i

8k

2
b

 

H(1)
0 (ikbr1) + H(2)

0 (kbr1)

�ikbH(1)
1 (ikbr1)� kH(2)

1 (kbr1)

!

where the radius of the computational domain is denoted by r1.
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It has been reported in [35, 125] that the UWVF approxima-
tion (or expected convergence rate) is not good for inhomogeneous
problems compared to homogeneous problems when the inhomo-
geneous problem is approximated directly. Therefore, in the article
IV, the solution w was first divided in two parts such that

w = wsmth + wfund, (5.16)

where wsmth = a0 J0(kbr)+ b0 I0(kbr) satisfies the homogeneous equa-
tion

D2wsmth � k

4
bwsmth = 0 in W.

and wfund = � i
8k

2 (H(1)
0 (ikbr) + H(2)

0 (kbr)) satisfies the inhomoge-
neous equation

D2wfund � k

4
bwfund = d(x � x0) in W.

We treated the field wsmth as unknown and sought to approximate it
using the UWVF. Using the thin plate equation (5.12), the clamped
plate boundary conditions (5.13), (5.14) and equation (5.16), we ob-
tained the problem of finding the field wsmth so that

D2wsmth � k

4
bwsmth = 0 in W,

wsmth = �wfund on G,
∂wsmth

∂n

= �∂wfund
∂n

on G.

In the UWVF the boundary conditions were implemented by setting
Q1 = �1, Q2 = 1 and g1 = 2is1wfund and g2 = �2 ∂wfund

∂n

in (4.28)
and (4.29). Again, the strategy introduced in [132] was used to
model the curved boundary using quadrature. When the unknown
field wsmth was solved using the UWVF, the total field w could be
easily recovered using equation (5.16).

The plate bending wave number was kb = 20 and meshes are
shown in Figure 5.10.

The basis functions in the UWVF were chosen to be the plane
wave basis (4.62) together with the evanescent wave basis (4.63).
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Figure 5.10: Meshes used in the clamped plate simulations. The number of triangular
elements on the top left mesh is 548, on the top right mesh is 928. On the bottom row
mesh consists of 1940 triangular elements.

The element sizes are roughly the same and a uniform number
of basis functions per element was used. For the results shown
here, the number of plane wave (4.62) and evanescent wave (4.63)
basis functions was chosen to be equal. However, in the submitted
conference paper [238] we investigated the thin plate problem using
different numbers of basis functions per element. The results for p-
convergence of the UWVF are shown in Figure 5.11. Relative errors
were computed by applying equation (5.1).

The results in Figure 5.11 imply that the UWVF can accurately
model the thin clamped plate problems. The results demonstrate
p-convergence and suggest also h-convergence as expected. It is
also shown that the accuracy plateaus for large p due to higher
condition numbers.
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Figure 5.11: Results for thin circular clamped plate problem using three different meshes.
The number of plane wave basis is p (as well as the number of evanescent wave basis
functions). The plate bending wave number was kb = 20.
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6 Conclusions

In this thesis the UWVF has been developed starting from first order
systems of the PDEs and using an upwind DG scheme. The goal of
the Ph.D. project was to improve the accuracy and stability of the
UWVF in acoustics and further develop the method in mechanics
applications including elasticty. In linear elasticity the main aim
was to derive error estimate for the UWVF and extend the code
for 3D problems. Finally, the first step of the UWVF towards the
elastic thin plate problems was considered. In particular, the focus
was to investigate the behavior of the UWVF with different basis
functions.

For the acoustic UWVF, the Bessel basis improves the condition
number and shows similar performance in convergence to plane
waves. In particular, the accuracy of results using the Bessel ba-
sis tends to be better at the point when the plane wave basis suf-
fers from ill-conditioning. The results indicate that Bessel bases are
more stable than the plane wave basis. In addition, more general
corner functions (similar to WBM [43]) can be applied in future in
the UWVF in order to improve the accuracy near singularities in
2D.

In the case of fluid-fluid interface problems tailored evanescent
wave bases are able to capture rapidly decaying wave fields. The
plane wave and evanescent wave basis functions are more practical
to use compared to the Bessel basis due to the fact that the integrals
in the UWVF can be computed efficiently in closed form. In general,
different basis function choices improved the accuracy of the UWVF
in the presence of corner singularities and rapidly decaying waves.
However, we still need to find a balance between the robustness
of the method and the use of a priori information of the problem
when choosing the basis.

The elastic UWVF was extended to 3D. The basis functions were
chosen to be plane waves: P-wave, SH-wave (horizontal S-wave)
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and SV-wave (vertical S-wave). To derive the UWVF, the Navier
equation was written as a first order system and the UWVF was
derived via a DG scheme. The error estimates were motivated by
the work in [35, 39, 51, 52, 125, 152, 153]. The preliminary numerical
results show that the UWVF is a feasible method to solve 3D elastic
wave problems. In addition, based on numerical results, the error
estimate of the elastic-UWVF could perhaps be improved.

The UWVF was tailored to thin clamped plate problems and
thus the formulation is fairly simple and no “additional corner
modes” are needed in the formulation (cf. twisting moments, see
[55, 56, 123]). Numerical results show that the UWVF can cope
with fourth order PDEs. The boundary conditions are written as
“impedance type” and motivated by the integration by parts for-
mula (see details in IV). In particular, the UWVF is derived from
a first order system of equations via a DG scheme. In the UWVF,
a plane wave basis and a decaying evanescent wave basis (simi-
lar to corner wave) need to be combined. This is consistent with
theoretical work by Vekua [231], who showed that the solution of
the fourth order Kirchhoff thin plate equation can be written as a
sum of a solution of the Helmholtz equation and solution of the
modified Helmholtz equation. Other basis functions that satisfy
the Helmholtz equation or the modified Helmholtz equation could
also be used.

Further research on applications of the UWVF could include
general plate problems with free plate and simply supported bound-
ary conditions. In this case the formulation most likely needs to
have corner moments (twisting moments) and the UWVF becomes
more complex. One option is to follow the DEM approach [50] by
using Lagrange multipliers (but only at the vertices). In addition,
error estimates for the plate-UWVF could be investigated (using the
approximation of plane waves and evanescent waves). It might also
be interesting to investigate the use of evanescent (edge) basis func-
tions for plate vibration problems. In addition, as in [68], perhaps
wave-bands could be studied in determine conditioning and inves-
tigate theoretical error estimates, for example, in acoustic problems.

98 Dissertations in Forestry and Natural Sciences No 125



Conclusions

Motivated by Table 3.1, the advection-diffusion or poroelastic prob-
lems could also be investigated using the UWVF with tailored ba-
sis functions. Now it is also possible to extend, the 2D fluid-solid
code [48] to a 3D fluid-solid problem with the evanescent wave ba-
sis, which could provide a useful solver for high intensity focused
ultrasound (HIFU) applications.
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[6] F. Ihlenburg and I. Babuška, “Finite Element Solution of the
Helmholtz Equation with High Wave Number Part II: The h-
p Version of the FEM,” SIAM Journal on Numerical Analysis 34,
315–358 (1997).

[7] J. Melenk and S. Sauter, “Convergence analysis for fi-
nite element discretizations of the Helmholtz equation with
Dirichlet-to-Neumann boundary conditions,” Mathematics of
Computation 79, 1871–1914 (2010).

[8] J. Melenk and S. Sauter, “Wavenumber Explicit Conver-
gence Analysis for Galerkin Discretizations of the Helmholtz

Dissertations in Forestry and Natural Sciences No 125 101



Teemu Luostari: Non-polynomial approximation methods in acoustics
and elasticity

Equation,” SIAM Journal on Numerical Analysis 49, 1210–1243
(2011).

[9] W. H. Reed and T. R. Hill, “Triangular Mesh Methods for the
Neutron Transport Equation,” Los Alamos Report LA-UR-73-
479 (1973).

[10] X. Feng and H. Wu, “Discontinuous Galerkin Methods for
the Helmholtz Equation with Large Wave Number,” SIAM
Journal on Numerical Analysis 47, 2872–2896 (2009).

[11] X. Feng and H. Wu, “hp-discontinuous Galerkin methods for
the Helmholtz equation with large wave number,” Mathemat-
ics of Computation 80, 1997–2024 (2011).

[12] X. Feng and Y. Xing, “Absolutely stable local discontin-
uous Galerkin methods for the Helmholtz equation with
large wave number,” Mathematics of Computation 82, 1269–
1296 (2013).

[13] H. Wu, “Pre-asymptotic error analysis of CIP-FEM and FEM
for Helmholtz equation with high wave number. Part I: Linear
version,” IMA Journal of Numerical Analysis (2013), To appear.

[14] L. Zhu and H. Wu, “Pre-asymptotic Error Analysis of CIP-
FEM and FEM for Helmholtz Equation with High Wave
Number. Part II: hp version,” SIAM Journal on Numerical Anal-
ysis (2013), To appear.

[15] L. Demkowicz and J. Gopalakrishnan, “A class of discontinu-
ous Petrov-Galerkin methods. Part II: Optimal test functions,”
Numerical Methods for Partial Differential Equations 27, 70–105
(2011).

[16] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan,
D. Pardo, and V. Galo, “A class of discontinuous Petrov-
Galerkin methods. The optimal test norm and time-harmonic
wave propagation in 1D ,” Journal of Computational Physics 230,
2406–2432 (2011).

102 Dissertations in Forestry and Natural Sciences No 125



Bibliography

[17] L. Demkowicz, J. Gopalakrishnan, I. Muga, and J. Zitelli,
“Wavenumber explicit analysis of a DPG method for the mul-
tidimensional Helmholtz equation,” Computer Methods in Ap-
plied Mechanics and Engineering 213-216, 126 – 138 (2012).

[18] G. Fix, S. Gulati, and G. Wakoff, “On the use of singular func-
tions with finite element approximations,” Journal of Compu-
tational Physics 13, 209 – 228 (1973).

[19] S. E. Benzley, “Representation of singularities with isopara-
metric finite elements,” International Journal for Numerical
Methods in Engineering 8, 537–545 (1974).

[20] E. Byskov, “The calculation of stress intensity factors using
the finite element method with cracked elements,” Interna-
tional Journal of Fracture Mechanics 6, 159–167 (1970).

[21] P. Bettess and O. C. Zienkiewicz, “Diffraction and refraction
of surface waves using finite and infinite elements,” Interna-
tional Journal for Numerical Methods in Engineering 11, 1271–
1290 (1977).

[22] K. Gerdes and L. Demkowicz, “Solution of 3D-Laplace and
Helmholtz equations in exterior domains using hp-infinite el-
ements,” Computer Methods in Applied Mechanics and Engineer-
ing 137, 239 – 273 (1996).

[23] R. J. Astley, “Wave envelope and infinite elements for acous-
tical radiation,” International Journal for Numerical Methods in
Fluids 3, 507–526 (1983).

[24] J. M. Melenk, On Generalized Finite Element Methods, PhD
thesis (University of Maryland, 1995).
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[56] P. Ladevèze, L. Arnaud, P. Rouch, and C. Blanzé, “The varia-
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[104] L. Kovalevsky, P. Ladevèze, H. Riou, and M. Bonnet, “The
variational theory of complez rays for three-dimensional
Helmholtz problems,” Journal of Computational Acoustics 20,
1250021 (2012).
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Acoustic and elastic wave models are 

often encountered in engineering. 

This thesis focuses on simulating 

time-harmonic wave propagation 

problems in acoustic and elastic 

media using a non-polynomial 

method called the ultra weak 

variational formulation (UWVF). 

A particular concern is the choice of 

basis functions in the acoustic UWVF. 

In addition, new error estimates for 

the elastic UWVF are presented and 

a new UWVF is introduced to solve 

vibration problems in thin elastic 

plates.
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