53 research outputs found

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    A correlation aware algorithm for energy efficiency improvement in FiWi networks

    Get PDF
    Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014Na altura de se planear uma rede de telecomunicações um dos aspectos mais importantes é a eficiência energética da rede. Nas redes de acesso FiWi o potencial de redução do consumo energético é maior quando comparado com outras arquitecturas. A razão deste aumento de potencial é que existem vários caminhos que podem ligar um utilizador na seção sem fios à seção óptica. Esta dissertação debruça-se sobre uma abordagem para poupança de energia em redes de acesso FiWi que utiliza como base de decisão, para colocar ONUs em modo de hibernação prolongada (long sleep), as variações do fluxo de pacotes nas ONUs. É utilizada correlação cruzada para medir a similaridade entre series temporais, com informação do fluxo de pacotes ao longo do tempo, que poderá indicar a existencia de fontes de tráfego perto umas das outras. Isto acontece quando nós estão na área de transmissão uns dos outros, e a fazer TDM, ou quando os nós estão a utilizar múltiplos caminhos de igual custo (equal-cost multi-path) para aumentar a qualidade de serviço. Se for detectada similaridade entre ONUs então uma das ONUs poderá ser colocada em modo de hibernação prolongada dado que é possível alcançar uma ONU alternativa. Neste trabalho é proposta uma abordagem que utiliza a funcção de correlação cruzada para detectar similaridade nos fluxos das ONUs. É desenvolvido um modelo de simulação de eventos discretos na framework OMNeT++ para avaliar o desempenho da abordagem proposta. Os resultados das simulações mostram que a abordagem proposta permite detectar similaridades, tornando-se possível a identificaçãao de ONUs correlacionadas, podendo esta informação ser usada para poupar energia

    Enabling Optical Wired and Wireless Technologies for 5G and Beyond Networks

    Get PDF
    The emerging fifth-generation mobile communications are envisaged to support massive number of deployment scenarios based on the respective use case requirements. The requirements can be efficiently attended with ultradense small-cell cloud radio access network (C-RAN) approach. However, the C-RAN architecture imposes stringent requirements on the transport networks. This book chapter presents high-capacity and low-latency optical wired and wireless networking solutions that are capable of attending to the network demands. Meanwhile, with optical communication evolutions, there has been advent of enhanced photonic integrated circuits (PICs). The PICs are capable of offering advantages such as low-power consumption, high-mechanical stability, low footprint, small dimension, enhanced functionalities, and ease of complex system architectures. Consequently, we exploit the PICs capabilities in designing and developing the physical layer architecture of the second standard of the next-generation passive optical network (NG-PON2) system. Apart from being capable of alleviating the associated losses of the transceiver, the proposed architectures aid in increasing the system power budget. Moreover, its implementation can significantly help in reducing the optical-electrical-optical conversions issue and the required number of optical connections, which are part of the main problems being faced in the miniaturization of network elements. Additionally, we present simulation results for the model validation

    Transition technologies towards 6G networks

    Full text link
    [EN] The sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10 degrees beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.This work was partially funded by the blueSPACE and 5G-PHOS 5G-PPP phase 2 projects, which have received funding from the European Union's Horizon 2020 programme under Grant Agreements Number 762055 and 761989. D. PerezGalacho acknowledges the funding of the Spanish Science Ministry through the Juan de la Cierva programme.Raddo, TR.; Rommel, S.; Cimoli, B.; Vagionas, C.; Pérez-Galacho, D.; Pikasis, E.; Grivas, E.... (2021). Transition technologies towards 6G networks. EURASIP Journal on Wireless Communications and Networking. 2021(1):1-22. https://doi.org/10.1186/s13638-021-01973-91222021

    A Review on Provisioning Quality of Service of Wireless Telemedicine for E-Health Services

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation induces improvement in the quality and efficiency of healthcare services. All major types of current e-health applications such as ECG, X-ray, video, diagnosis images and other common applications have been included in the scope of the study. In addition, the provision of Quality of Service (QoS) for the application of specific healthcare services in e-health, the scheme of priority for e-health services and the support of QoS in wireless networks and techniques or methods for IEEE 802.11 to guarantee the provision of QoS has also been assessed. In e-health, medical services in remote locations such as rural healthcare centers, ambulances, ships as well as home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health records and the routing of text, audio, video and images. Given this, an adaptive resource allocation for a wireless network with multiple service types and multiple priorities have been proposed. For the provision of an acceptable QoS level to users of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS provisioning in wireless broadband medical networks have paved the pathway for bandwidth requirements and the real-time or live transmission of medical applications. From the study, good performance of the proposed scheme has been validated by the results obtained. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the bandwidth allocation and admission control algorithm for IEEE 802.16- based design specifically for wireless telemedicine/e-health services have also been presented in the study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine

    A bidirectional WDM-PON Free Space Optical (FSO) system for fronthaul 5G C-RAN Networks

    Get PDF
    High-speed cellular technologies require low-latency and high-capacity optical networks. The Centralized Radio Access Network (C-RAN) architecture offers a cost-effective solution for mobile network deployment. To maximize flexibility and minimize deployment costs of fronthaul networks, we propose a hybrid bidirectional fronthaul C-RAN topology based on Wavelength Division Multiplexing (WDM) passive optical networks (PONs) and free space optical communication (FSO). The wavelength reuse scheme utilized here relies on reflective semiconductor optical amplifiers (RSOAs) to reduce cost and increase capacity. The system was demonstrated for 20 Gbps 16−quadrature amplitude modulation (16-QAM) intensitymodulated orthogonal frequency-division multiplexing (OFDM) downstream signals and 5 Gbps On-off keying (OOK) upstream signals, respectively. A Gamma-Gamma channel model is used to demonstrate optical signal transmission over an FSO link. The bit error rate (BER) results indicate that the hybrid WDMPON- FSO based fronthaul architecture could achieve 320 Gbps over 20 km of single-mode fiber (SMF) and 700 m free space transmission

    Provisioning Quality of Service of Wireless Telemedicine for E-Health Services: A Review

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation and induces improvement in the quality and efficiency of healthcare services. The scope of study includes several key features of present day e-health applications such as X-ray, ECG, video, diagnosis images and other common applications. Moreover, the provision of Quality of Service (QoS) in terms of specific medical care services in e-health, the priority set for e-health services and the support of QoS in wireless networks and techniques or methods aimed at IEEE 802.11 to secure the provision of QoS has been assessed as well. In e-health, medical services in remote places which include rustic healthcare centres, ships, ambulances and home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health data and the transferring of text, video, sound and images. Given this, a proposal has been made for a multiple service wireless networking with multiple sets of priorities. In relation to the terms of an acceptable QoS level by the customers of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS in medical networking of wireless broadband has paved the way for bandwidth prerequisites and the live transmission or real-time medical applications. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the allocation of bandwidth and the system that controls admittance designed based on IEEE 802.16 especially for e-health services or wireless telemedicine will be discussed in this study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine
    corecore