127 research outputs found

    A Passivity-based Control Combined with Sliding Mode Control for a DC-DC Boost Power Converter

    Get PDF
    In this paper, a passivity-based control combined with sliding mode control for a DC-DC boost power converter is proposed. Moreover, a passivity-based control for a DC-DC boost power converter is also proposed. Using a co-ordinate transformation of state variables and control input, a DC-DC boost power converter is passive. A new plant is zero-state observable and the equilibrium point at origin of this plant is asymptotically stable. Then, a passivity-based control is applied to this plant such that the capacitor voltage is equal to the desired voltage. Additionally, the sliding mode control law is chosen such that the derivative of Lyapunov function is negative semidefinite. Finally, a passivity-based control combined with sliding mode control law is applied to this plant such that the capacitor voltage is equal to the desired voltage. The simulation results of the passivity-based control, the sliding mode control and the passivity-based control combined with sliding mode control demonstrate the effectiveness and show that the capacitor voltage is kept at the desired voltage when the desired voltage, the input voltage E and the load resistor R are changed. The results show that compared with the passivity-based control, the passivity-based control combined with sliding mode control has better performance such as shorter settling time, 8.5 ms when R changes and it has smaller steady-state error, which is indicated by the value of integral absolute error (IAE), 0.0679 when the desired voltage changes. The paper has limitations such as the assumed circuit parameters

    Contributions to impedance shaping control techniques for power electronic converters

    Get PDF
    El conformado de la impedancia o admitancia mediante control para convertidores electrónicos de potencia permite alcanzar entre otros objetivos: mejora de la robustez de los controles diseñados, amortiguación de la dinámica de la tensión en caso de cambios de carga, y optimización del filtro de red y del controlador en un solo paso (co-diseño). La conformación de la impedancia debe ir siempre acompañada de un buen seguimiento de referencias. Por tanto, la idea principal es diseñar controladores con una estructura sencilla que equilibren la consecución de los objetivos marcados en cada caso. Este diseño se realiza mediante técnicas modernas, cuya resolución (síntesis del controlador) requiere de herramientas de optimización. La principal ventaja de estas técnicas sobre las clásicas, es decir, las basadas en soluciones algebraicas, es su capacidad para tratar problemas de control complejos (plantas de alto orden y/o varios objetivos) de una forma considerablemente sistemática. El primer problema de control por conformación de la impedancia consiste en reducir el sobreimpulso de tensión ante cambios de carga y minimizar el tamaño de los componentes del filtro pasivo en los convertidores DC-DC. Posteriormente, se diseñan controladores de corriente y tensión para un inversor DC-AC trifásico que logren una estabilidad robusta del sistema para una amplia variedad de filtros. La condición de estabilidad robusta menos conservadora, siendo la impedancia de la red la principal fuente de incertidumbre, es el índice de pasividad. En el caso de los controladores de corriente, el impacto de los lazos superiores en la estabilidad basada en la impedancia también se analiza mediante un índice adicional: máximo valor singular. Cada uno de los índices se aplica a un rango de frecuencias determinado. Finalmente, estas condiciones se incluyen en el diseño en un solo paso del controlador de un convertidor back-to-back utilizado para operar generadores de inducción doblemente alimentados (aerogeneradores tipo 3) presentes en algunos parques eólicos. Esta solución evita los problemas de oscilación subsíncrona, derivados de las líneas de transmisión con condensadores de compensación en serie, a los que se enfrentan estos parques eólicos. Los resultados de simulación y experimentales demuestran la eficacia y versatilidad de la propuesta.Impedance or admittance shaping by control for power electronic converters allows to achieve among other objectives: robustness enhancement of the designed controls, damped voltage dynamics in case of load changes, and grid filter and controller optimization in a single step (co-design). Impedance shaping must always be accompanied by a correct reference tracking performance. Therefore, the main idea is to design controllers with a simple structure that balance the achievement of the objectives set in each case. This design is carried out using modern techniques, whose resolution (controller synthesis) requires optimization tools. The main advantage of these techniques over the classical ones, i.e. those based on algebraic solutions, is their ability to deal with complex control problems (high order plants and/or several objectives) in a considerably systematic way. The first impedance shaping control problem is to reduce voltage overshoot under load changes and minimize the size of passive filter components in DC-DC converters. Subsequently, current and voltage controllers for a three-phase DC-AC inverter are designed to achieve robust system stability for a wide variety of filters. The least conservative robust stability condition, with grid impedance being the main source of uncertainty, is the passivity index. In the case of current controllers, the impact of higher loops on impedance-based stability is also analyzed by an additional index: maximum singular value. Each of the indices is applied to a given frequency range. Finally, these conditions are included in the one-step design of the controller of a back-to-back converter used to operate doubly fed induction generators (type-3 wind turbines) present in some wind farms. This solution avoids the sub-synchronous oscillation problems, derived from transmission lines with series compensation capacitors, faced by these wind farms. Simulation and experimental results demonstrate the effectiveness and versatility of the proposa

    Virtual inertia for suppressing voltage oscillations and stability mechanisms in DC microgrids

    Get PDF
    Renewable energy sources (RES) are gradually penetrating power systems through power electronic converters (PECs), which greatly change the structure and operation characteristics of traditional power systems. The maturation of PECs has also laid a technical foundation for the development of DC microgrids (DC-MGs). The advantages of DC-MGs over AC systems make them an important access target for RES. Due to the multi-timescale characteristics and fast response of power electronics, the dynamic coupling of PEC control systems and the transient interaction between the PEC and the passive network are inevitable, which threatens the stable operation of DC-MGs. Therefore, this dissertation focuses on the study of stabilization control methods, the low-frequency oscillation (LFO) mechanism analysis of DC-MGs and the state-of-charge (SoC) imbalance problem of multi-parallel energy storage systems (ESS). Firstly, a virtual inertia and damping control (VIDC) strategy is proposed to enable bidirectional DC converters (BiCs) to damp voltage oscillations by using the energy stored in ESS to emulate inertia without modifications to system hardware. Both the inertia part and the damping part are modeled in the VIDC controller by analogy with DC machines. Simulation results verify that the proposed VIDC can improve the dynamic characteristics and stability in islanded DC-MG. Then, inertia droop control (IDC) strategies are proposed for BiC of ESS based on the comparison between conventional droop control and VIDC. A feedback analytical method is presented to comprehend stability mechanisms from multi-viewpoints and observe the interaction between variables intuitively. A hardware in the loop (HIL) experiment verifies that IDC can simplify the control structure of VIDC in the promise of ensuring similar control performances. Subsequently, a multi-timescale impedance model is established to clarify the control principle of VIDC and the LFO mechanisms of VIDC-controlled DC-MG. Control loops of different timescales are visualized as independent loop virtual impedances (LVIs) to form an impedance circuit. The instability factors are revealed and a dynamic stability enhancement method is proposed to compensate for the negative damping caused by VIDC and CPL. Experimental results have validated the LFO mechanism analysis and stability enhancement method. Finally, an inertia-emulation-based cooperative control strategy for multi-parallel ESS is proposed to address the SoC imbalance and voltage deviation problem in steady-state operation and the voltage stability problem. The contradiction between SoC balancing speed and maintaining system stability is solved by a redefined SoC-based droop resistance function. HIL experiments prove that the proposed control performs better dynamics and static characteristics without modifying the hardware and can balance the SoC in both charge and discharge modes

    Cooperative Strategies for Management of Power Quality Problems in Voltage-Source Converter-based Microgrids

    Get PDF
    The development of cooperative control strategies for microgrids has become an area of increasing research interest in recent years, often a result of advances in other areas of control theory such as multi-agent systems and enabled by emerging wireless communications technology, machine learning techniques, and power electronics. While some possible applications of the cooperative control theory to microgrids have been described in the research literature, a comprehensive survey of this approach with respect to its limitations and wide-ranging potential applications has not yet been provided. In this regard, an important area of research into microgrids is developing intelligent cooperative operating strategies within and between microgrids which implement and allocate tasks at the local level, and do not rely on centralized command and control structures. Multi-agent techniques are one focus of this research, but have not been applied to the full range of power quality problems in microgrids. The ability for microgrid control systems to manage harmonics, unbalance, flicker, and black start capability are some examples of applications yet to be fully exploited. During islanded operation, the normal buffer against disturbances and power imbalances provided by the main grid coupling is removed, this together with the reduced inertia of the microgrid (MG), makes power quality (PQ) management a critical control function. This research will investigate new cooperative control techniques for solving power quality problems in voltage source converter (VSC)-based AC microgrids. A set of specific power quality problems have been selected for the application focus, based on a survey of relevant published literature, international standards, and electricity utility regulations. The control problems which will be addressed are voltage regulation, unbalance load sharing, and flicker mitigation. The thesis introduces novel approaches based on multi-agent consensus problems and differential games. It was decided to exclude the management of harmonics, which is a more challenging issue, and is the focus of future research. Rather than using model-based engineering design for optimization of controller parameters, the thesis describes a novel technique for controller synthesis using off-policy reinforcement learning. The thesis also addresses the topic of communication and control system co-design. In this regard, stability of secondary voltage control considering communication time-delays will be addressed, while a performance-oriented approach to rate allocation using a novel solution method is described based on convex optimization

    Control Strategies of DC–DC Converter in Fuel Cell Electric Vehicle

    Get PDF
    There is a significant need to research and develop a compatible controller for the DC–DC converter used in fuel cells electric vehicles (EVs). Research has shown that fuel cells (FC) EVs have the potential of providing a far more promising performance in comparison to conventional combustion engine vehicles. This study aims to present a universal sliding mode control (SMC) technique to control the DC bus voltage under varying load conditions. Additionally, this research will utilize improved DC–DC converter topologies to boost the output voltage of the FCs. A DC–DC converter with a properly incorporated control scheme can be utilized to regulate the DC bus voltage–. A conventional linear controller, like a PID controller, is not suitable to be used as a controller to regulate the output voltage in the proposed application. This is due to the nonlinearity of the converter. Furthermore, this thesis will explore the use of a secondary power source which will be utilized during the start–up and transient condition of the FCEV. However, in this instance, a simple boost converter can be used as a reference to step–up the fuel cell output voltage. In terms of application, an FCEV requires stepping –up of the voltage through the use of a high power DC–DC converter or chopper. A control scheme must be developed to adjust the DC bus or load voltage to meet the vehicle requirements as well as to improve the overall efficiency of the FCEV. A simple SMC structure can be utilized to handle these issues and stabilize the output voltage of the DC–DC converter to maintain and establish a constant DC–link voltage during the load variations. To address the aforementioned issues, this thesis presents a sliding mode control technique to control the DC bus voltage under varying load conditions using improved DC–DC converter topologies to boost and stabilize the output voltage of the FCs

    Analysis of instability causes in the bi-dc converter and enhancing its performance by improving the damping in the IDA-PBC control

    Get PDF
    The poor damping of bidirectional dc (bi-dc) converter caused by constant power load makes power system prone to oscillation, and non-minimum phase characteristic also jeopardises voltage stability. To solve these challenges, the interconnection and damping assignment passivity-based control (IDA-PBC) is utilised to improve transient response. The influences of the right-half-plane (RHP) zero on the stability margin and controller design are illustrated by zero dynamics analysis. Then the port-controlled Hamiltonian modelling is used to obtain the IDA-PBC control law, which is suitable to the bi-dc converter and independent of the operation mode. The system dissipation property is modified, and thus the desired damping is injected to smooth the transient voltage. To remove the voltage error caused by RHP zero and adjust the damping ratio, an energy controller with an adjustment factor is introduced. Besides, a virtual circuit is established to explain the physical meaning of the control parameter, and the parameter design method is given. Passivity analysis assesses the controller performance. Simulation results are analysed and compared with other control strategies to test the proposed IDA-PBC strategy

    CONTROL STRATEGIES OF DC MICROGRID TO ENABLE A MORE WIDE-SCALE ADOPTION

    Get PDF
    Microgrids are gaining popularity in part for their ability to support increased penetration of distributed renewable energy sources, aiming to meet energy demand and overcome global warming concerns. DC microgrid, though appears promising, introduces many challenges in the design of control systems in order to ensure a reliable, secure and economical operation. To enable a wider adoption of DC microgrid, this dissertation examines to combine the characteristics and advantages of model predictive control (MPC) and distributed droop control into a hierarchy and fully autonomous control of the DC microgrid. In addition, new maximum power point tracking technique (MPPT) for solar power and active power decoupling technique for the inverter are presented to improve the efficiency and reliability of the DC microgrid. With the purpose of eliminating the oscillation around the maximum power point (MPP), an improved MPPT technique was proposed by adding a steady state MPP determination algorithm after the adaptive perturb and observe method. This control method is proved independent with the environmental conditions and has much smaller oscillations around the MPP compared to existing ones. Therefore, it helps increase the energy harvest efficiency of the DC microgrid with less continuous DC power ripple. A novel hierarchy strategy consisting of two control loops is proposed to the DC microgrid in study, which is composed of two PV boost converters, two battery bi-directional converters and one multi-level packed-u-cell inverter with grid connected. The primary loop task is the control of each energy unit in the DC microgrid based on model predictive current control. Compared with traditional PI controllers, MPC speeds up the control loop since it predicts error before the switching signal is applied to the converter. It is also free of tuning through the minimization of a flexible user-defined cost function. Thus, the proposed primary loop enables the system to be expandable by adding additional energy generation units without affecting the existing ones. Moreover, the maximum power point tracking and battery energy management of each energy unit are included in this loop. The proposed MPC also achieves unity power factor, low grid current total harmonics distortion. The secondary loop based on the proposed autonomous droop control identifies the operation modes for each converter: current source converter (CSC) or voltage source converter (VSC). To reduce the dependence on the high bandwidth communication line, the DC bus voltage is utilized as the trigger signal to the change of operation modes. With the sacrifice of small variations of bus voltage, a fully autonomous control can be realized. The proposed distributed droop control of different unit converters also eliminates the potential conflicts when more than two converters compete for the VSC mode. Single-phase inverter systems in the DC microgrid have low frequency power ripple, which adversely affects the system reliability and performance. A power decoupling circuit based on the proposed dual buck converters are proposed to address the challenges. The topology is free of shoot-through and deadtime concern and the control is independent with that of the main power stage circuit, which makes the design simpler and more reliable. Moreover, the design of both PI and MPC controllers are discussed and compared. While, both methods present satisfied decoupling performances on the system, the proposed MPC is simpler to be implemented. In conclusion, the DC microgrid may be more widely adopted in the future with the proposed control strategies to address the current challenges that hinder its further development

    Fuzzy control of synchronous buck converters utilizing fuzzy inference system for renewable energy applications

    Get PDF
    In the present research, an innovative fuzzy control approach is developed specifically for synchronous buck converters utilized in renewable energy applications. The proposed control strategy effectively manages load changes, nonlinear loads, and input voltage variations while improving both stability and transient response. The method employs a fuzzy inference system (FIS) that integrates adaptive control, feedforward control, and multivariable control to guarantee optimal performance under a wide range of operating conditions. The design of the control scheme involves formulating a rule base connecting input variables to an output variable, which signifies the duty cycle of the switching signal. The rule base is configured to dynamically modify control rules and membership functions in accordance with load conditions, input voltage fluctuations, and other contributing factors. The performance of the control scheme is evaluated in comparison to conventional techniques, such as proportional integral derivative (PID) control. Results indicate that the advanced fuzzy control approach surpasses traditional methods in terms of voltage regulation, stability, and transient response, particularly when faced with variable load conditions and input voltage changes. As a result, this control scheme is highly compatible with renewable energy systems, encompassing solar and wind power installations where input voltage and load conditions may experience considerable fluctuations. This research highlights the potential of the proposed fuzzy control approach to significantly enhance the performance and reliability of renewable energy systems

    Large-Signal Stability Improvement of DC-DC Converters in DC Microgrid

    Get PDF
    corecore