4,559 research outputs found

    Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults

    Get PDF
    The goal of this paper is to describe a novel fault tolerant tracking control (FTTC) strategy based on robust fault estimation and compensation of simultaneous actuator and sensor faults. Within the framework of fault tolerant control (FTC) the challenge is to develop an FTTC design strategy for nonlinear systems to tolerate simultaneous actuator and sensor faults that have bounded first time derivatives. The main contribution of this paper is the proposal of a new architecture based on a combination of actuator and sensor Takagi-Sugeno (T-S) proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators together with a T-S dynamic output feedback control (TSDOFC) capable of time-varying reference tracking. Within this architecture the design freedom for each of the T-S estimators and the control system are available separately with an important consequence on robust L₂ norm fault estimation and robust L₂ norm closed-loop tracking performance. The FTTC strategy is illustrated using a nonlinear inverted pendulum example with time-varying tracking of a moving linear position reference. Keyword

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Observer-based robust fault estimation for fault-tolerant control

    Get PDF
    A control system is fault-tolerant if it possesses the capability of optimizing the system stability and admissible performance subject to bounded faults, complexity and modeling uncertainty. Based on this definition this thesis is concerned with the theoretical developments of the combination of robust fault estimation (FE) and robust active fault tolerant control (AFTC) for systems with both faults and uncertainties.This thesis develops robust strategies for AFTC involving a joint problem of on-line robust FE and robust adaptive control. The disturbances and modeling uncertainty affect the FE and FTC performance. Hence, the proposed robust observer-based fault estimator schemes are combined with several control methods to achieve the desired system performance and robust active fault tolerance. The controller approaches involve concepts of output feedback control, adaptive control, robust observer-based state feedback control. A new robust FE method has been developed initially to take into account the joint effect of both fault and disturbance signals, thereby rejecting the disturbances and enhancing the accuracy of the fault estimation. This is then extended to encompass the robustness with respect to modeling uncertainty.As an extension to the robust FE and FTC scheme a further development is made for direct application to smooth non-linear systems via the use of linear parameter-varying systems (LPV) modeling.The main contributions of the research are thus:- The development of a robust observer-based FE method and integration design for the FE and AFTC systems with the bounded time derivative fault magnitudes, providing the solution based on linear matrix inequality (LMI) methodology. A stability proof for the integrated design of the robust FE within the FTC system.- An improvement is given to the proposed robust observer-based FE method and integrated design for FE and AFTC systems under the existence of different disturbance structures.- New guidance for the choice of learning rate of the robust FE algorithm.- Some improvement compared with the recent literature by considering the FTC problem in a more general way, for example by using LPV modeling

    Fault estimation and active fault tolerant control for linear parameter varying descriptor systems

    Get PDF
    Starting with the baseline controller design, this paper proposes an integrated approach of active fault tolerant control based on proportional derivative extended state observer (PDESO) for linear parameter varying descriptor systems. The PDESO can simultaneously provide the estimates of the system states, sensor faults, and actuator faults. The L₂ robust performance of the closed-loop system to bounded exogenous disturbance and bounded uncertainty is achieved by a two-step design procedure adapted from the traditional observer-based controller design. Furthermore, an LMI pole-placement region and the L₂ robustness performance are combined into a multiobjective formulation by suitably combing the appropriate LMI descriptions. A parameter-varying system example is given to illustrate the design procedure and the validity of the proposed integrated design approach

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination

    Active fault-tolerant control of nonlinear systems with wind turbine application

    Get PDF
    The thesis concerns the theoretical development of Active Fault-Tolerant Control (AFTC) methods for nonlinear system via T-S multiple-modelling approach. The thesis adopted the estimation and compensation approach to AFTC within a tracking control framework. In this framework, the thesis considers several approaches to robust T-S fuzzy control and T-S fuzzy estimation: T-S fuzzy proportional multiple integral observer (PMIO); T-S fuzzy proportional-proportional integral observer (PPIO); T-S fuzzy virtual sensor (VS) based AFTC; T-S fuzzy Dynamic Output Feedback Control TSDOFC; T-S observer-based feedback control; Sliding Mode Control (SMC). The theoretical concepts have been applied to an offshore wind turbine (OWT) application study. The key developments that present in this thesis are:• The development of three active Fault Tolerant Tracking Control (FTTC) strategies for nonlinear systems described via T-S fuzzy inference modelling. The proposals combine the use of Linear Reference Model Fuzzy Control (LRMFC) with either the estimation and compensation concept or the control reconfiguration concept.• The development of T-S fuzzy observer-based state estimate fuzzy control strategy for nonlinear systems. The developed strategy has the capability to tolerate simultaneous actuator and sensor faults within tracking and regulating control framework. Additionally, a proposal to recover the Separation Principle has also been developed via the use of TSDOFC within the FTTC framework.• The proposals of two FTTC strategies based on the estimation and compensation concept for sustainable OWTs control. The proposals have introduced a significant attribute to the literature of sustainable OWTs control via (1) Obviating the need for Fault Detection and Diagnosis (FDD) unit, (2) Providing useful information to evaluate fault severity via the fault estimation signals.• The development of FTTC architecture for OWTs that combines the use of TSDOFC and a form of cascaded observers (cascaded analytical redundancy). This architecture is proposed in order to ensure the robustness of both the TSDOFC and the EWS estimator against the generator and rotor speed sensor faults.• A sliding mode baseline controller has been proposed within three FTTC strategies for sustainable OWTs control. The proposals utilise the inherent robustness of the SMC to tolerate some matched faults without the need for analytical redundancy. Following this, the combination of SMC and estimation and compensation framework proposed to ensure the close-loop system robustness to various faults.• Within the framework of the developed T-S fuzzy based FTTC strategies, a new perspective to reduce the T-S fuzzy control design conservatism problem has been proposed via the use of different control techniques that demand less design constraints. Moreover, within the SMC based FTTC, an investigation is given to demonstrate the SMC robustness against a wider than usual set of faults is enhanced via designing the sliding surface with minimum dimension of the feedback signals

    Fault-tolerant scheme for robotic manipulator -Nonlinear robust back-stepping control with friction compensation

    Get PDF
    Emerging applications of autonomous robots requiring stability and reliability cannot afford component failure to achieve operational objectives. Hence, identification and countermeasure of a fault is of utmost importance in mechatronics community. This research proposes a Fault-tolerant control (FTC) for a robot manipulator, which is based on a hybrid control scheme that uses an observer as well as a hardware redundancy strategy to improve the performance and efficiency in the presence of actuator and sensor faults. Considering a five Degree of Freedom (DoF) robotic manipulator, a dynamic LuGre friction model is derived which forms the basis for design of control law. For actuator's and sensor's FTC, an adaptive back-stepping methodology is used for fault estimation and the nominal control law is used for the controller reconfiguration and observer is designed. Fault detection is accomplished by comparing the actual and observed states, pursued by fault tolerant method using redundant sensors. The results affirm the effectiveness of the proposed FTC strategy with model-based friction compensation. Improved tracking performance as well robustness in the presence of friction and fault demonstrate the efficiency of the proposed control approach

    Fault tolerant control for sensor fault of a single-link flexible manipulator system

    Get PDF
    This paper presents a new approach for sensor fault tolerant control (FTC) of a single-link flexible manipulator system (FMS) by using Finite Element Method (FEM). In this FTC scheme, a new control law is proposed where it is added to the nominal control. This research focuses on one element without any payload assumption in the modelling. The FTC method is designed in such way that aims to reduce fault while maintaining nominal FMS controller without any changes in both faulty and fault free cases. This proposed FTC approach is achieved by augmenting Luenberger observer that is capable of estimating faults in fault detection and isolation (FDI) analysis. From the information provided by the FDI, fault magnitude is assessed by using Singular Value Decomposition (SVD) where this information is used in the fault compensation strategy. For the nominal FMS controller, Proportional- integral- derivative (PID) controller is used to control the FMS where it follows the desired hub angle. This work proved that the FTC approach is capable of reducing fault with both incipient and abrupt signals and in two types of faulty conditions where the sensor is having loss of effectiveness and totally malfunction. All the performances are compared with FTC with Unknown Input Observer (FTC-UIO) method via the integral of the absolute magnitude of error (IAE) method

    Robust de-centralized control and estimation for inter-connected systems

    Get PDF
    The thesis is concerned with the theoretical development of the control of inter-connected systems to achieve the whole overall stability and specific performance. A special included feature is the Fault-Tolerant Control (FTC) problem for the inter-connected system in terms of local subsystem actuator fault estimation. Hence, the thesis describes the main FTC challenges of distributed control of uncertain non-linear inter-connected systems. The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control with unmatched components including uncertainties and disturbances. The second controller dealing with matched components including uncertainties and actuator faults.The main contributions of the thesis are summarised as follows:- The non-linear inter-connected systems are controlled by two controllers. The linear part via a linear matrix inequality (LMI) technique and the discontinuous part by using Integral Sliding Mode Control (ISMC) based on state feedback control.- The development of a new observer-based state estimate control strategy for non-linear inter-connected systems. The technique is applied either to every individual subsystem or to the whole as one shot system.- A new proposal of Adaptive Output Integral Sliding Mode Control (AOISMC) based only on output information plus static output feedback control is designed via an LMI formulation to control non-linear inter-connected systems. The new method is verified by application to a mathematical example representing an electrical power generator.- The development of a new method to design a dynamic control based on an LMI framework with Output Integral Sliding Mode Control (OISMC) to improve the stability and performance.- Using the above framework, making use of LMI tools and ISMC, a method of on-line actuator fault estimation has been proposed using the Proportional Multiple Integral Observer (PMIO) for fault estimation applicable to non-linear inter-connected systems

    Robust de-centralized control and estimation for inter-connected systems

    Get PDF
    The thesis is concerned with the theoretical development of the control of inter-connected systems to achieve the whole overall stability and specific performance. A special included feature is the Fault-Tolerant Control (FTC) problem for the inter-connected system in terms of local subsystem actuator fault estimation. Hence, the thesis describes the main FTC challenges of distributed control of uncertain non-linear inter-connected systems. The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control with unmatched components including uncertainties and disturbances. The second controller dealing with matched components including uncertainties and actuator faults. The main contributions of the thesis are summarised as follows: - The non-linear inter-connected systems are controlled by two controllers. The linear part via a linear matrix inequality (LMI) technique and the discontinuous part by using Integral Sliding Mode Control (ISMC) based on state feedback control. - The development of a new observer-based state estimate control strategy for non-linear inter-connected systems. The technique is applied either to every individual subsystem or to the whole as one shot system. - A new proposal of Adaptive Output Integral Sliding Mode Control (AOISMC) based only on output information plus static output feedback control is designed via an LMI formulation to control non-linear inter-connected systems. The new method is verified by application to a mathematical example representing an electrical power generator. - The development of a new method to design a dynamic control based on an LMI framework with Output Integral Sliding Mode Control (OISMC) to improve the stability and performance. - Using the above framework, making use of LMI tools and ISMC, a method of on-line actuator fault estimation has been proposed using the Proportional Multiple Integral Observer (PMIO) for fault estimation applicable to non-linear inter-connected systems
    corecore