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Abstract 

The thesis is concerned with the theoretical development of the control of inter-connected 

systems to achieve the whole overall stability and specific performance. A special included 

feature is the Fault-Tolerant Control (FTC) problem for the inter-connected system in terms 

of local subsystem actuator fault estimation. Hence, the thesis describes the main FTC 

challenges of distributed control of uncertain non-linear inter-connected systems. The basic 

principle adopted throughout the work is that the controller has two components, one 

involving the nominal control with unmatched components including uncertainties and 

disturbances. The second controller dealing with matched components including 

uncertainties and actuator faults. 

The main contributions of the thesis are summarised as follows: 

 The non-linear inter-connected systems are controlled by two controllers. The linear 

part via a linear matrix inequality (LMI) technique and the discontinuous part by 

using Integral Sliding Mode Control (ISMC) based on state feedback control. 

 The development of a new observer-based state estimate control strategy for non-

linear inter-connected systems. The technique is applied either to every individual 

subsystem or to the whole as one shot system. 

 A new proposal of Adaptive Output Integral Sliding Mode Control (AOISMC) 

based only on output information plus static output feedback control is designed via 

an LMI formulation to control non-linear inter-connected systems. The new method 

is verified by application to a mathematical example representing an electrical 

power generator. 

 The development of a new method to design a dynamic control based on an LMI 

framework with Output Integral Sliding Mode Control (OISMC) to improve the 

stability and performance. 

 Using the above framework, making use of LMI tools and ISMC, a method of on-

line actuator fault estimation has been proposed using the Proportional Multiple 

Integral Observer (PMIO) for fault estimation applicable to non-linear inter-

connected systems. 
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Chapter 1 : Introduction 
 

1.1 Introduction 

As a result of the industrial and technological progress in modern day life, systems have 

become increasingly more complex as they contain a number of subsystems which in turn 

interact with each other. This has led to the creation of inter-connected systems or large-

scale systems such as electrical grids, airports, manufacturing plants, ecological systems, 

infrastructure and computer communication systems (Boubour et al., 1997, Al-Abdullah, 

1984, Brittain,Otaduy,Rovere and Perez, 1988, Dimirovski,Jing,Yuan and Zhang, 1998, 

Chou and Cheng, 2000, Yan, Edwards and Spurgeon, 2004, Hua,Yuanwei,Siying and Lina, 

2006, Kalsi,Jianming and Zak, 2008, Batool,Horacio and Tongwen, 2009, 

Dhbaibi,Tlili,Elloumi and Benhadj Braiek, 2009, Challouf et al., 2010, Changqing,Patton 

and Zong, 2010). As a result of these interactions, the control of these systems has become 

more complicated in order to ensure stability and to achieve the required specifications 

(Vidyasagar, 1981,  Travé,Titli and Tarras, 1989, Chen and Patton, 1999). 

According to (Zecevic and Šiljak, 2010) an inter-connected system is a system that consists 

of small inter-connected systems; these interconnections may either be physical or 

geographical or be based on a mathematical concept. In order to effectively study the 

structure of large-scale systems, it is practical to divide them into several smaller systems; 

some of which are inter-connected and thus become inter-connected systems. This 

approach facilitates the development of individual subsystem controllers with desired 

stability and performance (Al-Abdullah, 1984, Changqing,Patton and Zong, 2010). 
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Large-scale systems or inter-connected systems 

Nonlinear systems Linear systems 

Weakly coupled 
systems 

Strongly coupled 
systems 

 

Weakly coupled 
systems 

Strongly coupled 
systems 

 

Continuous Systems 
Discrete Systems 

Centralized control Decentralized control 

Decentralized overlapping control 

 

Figure  1-1:  Classification of inter-connected systems and types of control 

 

Inter-connected systems consist of several subsystems which are connected to each other. 

Each subsystem is dedicated to the performance of a specific task and all systems are 

directed towards the same goal (Šiljak, 1991, Tlili and Braiek, 2011). Figure  1-1 illustrates 

the methods of designing a control strategy and the different types of inter-connected 

systems which can be represented by a mathematical model. It can be observed, from 

Figure  1-1 that some subsystems may be strongly or weakly coupled. 

In the case of weakly coupled subsystems, it is easy to design a controller for each 

subsystem as the value of interactions between them can be ignored and each subsystem is 

isolated from the other subsystems (Jamshidi, 1997). Whereas in the case of strongly 

coupled subsystems the interactions cannot be neglected and must be taken into 
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consideration when designing the control (Jamshidi, 1997, Vidyasagar, 1981). The 

approach to design depends on whether or not the interactions are known or unknown. 

Some researchers agree that the difficulty and complexity of inter-connected systems come 

from the combined complexity of each subsystem and the complexity of all the subsystems 

taken as a whole. For the local subsystem the main challenges to control design arise from 

the nature of the uncertainty, time delays, subsystem interactions as well as actuator, sensor 

or component faults. When all the subsystems are considered together the system 

dimension and the fault propagation effects are considered as the system complexity 

(Šiljak, 1991,Jamshidi, 1997,Zecevic and Šiljak,2010, Zhang and Zhang, 2012). 

 

1.2  Methods of controlling inter-connected systems 

It is generally agreed that an appropriate control design method should take into account 

the interactions between the subsystems at the analysis stage (Vidyasagar, 1981). 

The traditional method of controlling inter-connected systems is achieved through the use 

of a centralized controller as shown in Figure  1-2 where 𝑥𝑖 𝑡 ∈ ℝ𝑛  is the state vector, 

𝑢𝑖(𝑡) ∈ ℝ𝑚  are the control inputs, 𝑦𝑖 𝑡 ∈ ℝ𝑝  is the vector of system outputs and 𝑑𝑖(𝑡) are 

the bounded unknown disturbances. 
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Figure  1-2: Centralized control of inter-connected systems 

However, this method requires a large exchange of information between subsystems, 

thereby increasing both the cost and complexity (Boubour et al., 1997,Šiljak, 1996, Patton 
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et al., 2007). Also, in the event of a malfunction in the centralized controller, a loss of 

control of all subsystems may cause the system to become unstable.  

Consequently, de-centralized control is used in inter-connected systems, in order for each 

subsystem to have its own controller. In this strategy signals are taken individually from 

each subsystem to develop the appropriate control action involving the one subsystem 

alone. Figure  1-3 shows the architecture of the decentralized control system and its 

distribution (Sandell,Varaiya,Athans and Safonov, 1978,Hassan and Singh, 1980,Šiljak and 

Stipanovic,2001, Kalsi,Jianming and Zak, 2008). 
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Figure  1-3: De-centralized control of inter-connected systems 

 

In general the centralized control system requires a more complex discrete-time computer 

representation than would be required for each of the individual de-centralized control 

subsystems. The complexity arises from system order as well as numerical conditioning 

arising from widely separated  discrete-time eigenvalues (Sandell,Varaiya,Athans and 

Safonov, 1978). These issues have an impact on the complexity of the control design. 

There is also another type of control design called the de-centralised overlapping control as 

shown in Figure  1-4. This type is a combination of centralized control and de-centralized 

control, in which all local controllers are connected to each other (Özgüner,Khorrami and 

İftar, 1988, Stanković,Stipanović and Šiljak, 2007). This type of control has several 

disadvantages, similar to the centralized control. However, it provides stability to all the 

subsystems in the event of malfunctions that may occur in any one subsystem. 
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Figure  1-4: De-centralized overlapping control of inter-connected systems 

 

The last method uses the so-called multi-level control which depends on the local control 

design of every subsystem and a coordinator. The research about multilevel control started 

in the 1960s and has attracted significantly more attention since the 1970s  when the 

starting point was that each local controller should guarantee stability and performance for 

its subsystem (Singh,Hassan and Titli, 1976, Hassan and Boukas, 2007). The role of the 

coordinator is to deal with the interconnections between the subsystems to ensure global 

stability, as shown in Figure  1-5 (Singh and Titli, 1978,Brittain,Otaduy,Rovere and Perez, 

1988, Changqing,Patton and Zong, 2010).  
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Figure  1-5: Multi-level control of inter-connected systems 

 

1.2.1 Control design and faults in inter-connected systems 

Classical control methods do not provide satisfactory solutions for the study and design of 

the control of inter-connected systems, since these approaches were developed before the 

introduction of robust control theory. Robust strategies for dealing with modelling 

uncertainty as well as for achieving specific performance and stability, especially where 

systems are non-linear can be added (Trave,Titli and Tarras, 1989).Two classical 

techniques have generally been used for the study of inter-connected systems in terms of 

stability and control design; these are Lyapunov stability and input-output stability, though 

there is a considerable amount of overlap between them. The Lyapunov stability method 

has received attention from some researchers such as Miller and Michel and Šiljak 

(Vidyasagar, 1981). Consequently, it is relatively easy to obtain documents, papers or 

books for studies on this subject and the development of control using this approach 

(Vidyasagar, 1981). 

One approach to the design of controllers for inter-connected systems can be made via 

optimal control theory applied to each subsystem and also to the global system. The 

popularity of optimal control in recent years has meant that few researchers now follow this 



7 
 

subject. Nevertheless, the approach to subsystem control and fault tolerant control is 

interesting when viewed from an optimal control standpoint (Patton et al., 2007).  

One approach to fault-tolerant control is to develop a suitable control action to compensate 

for the faults within the control system within pre-defined limits. However, it is important 

to know the existence of these faults and how to avoid them, as they may cause increased 

malfunction, instability, or even prevent the closed-loop system from functioning.  

A fault prevents a system from achieving the required specifications and can arise within 

the system itself or may result from changes in the system‟s parameters or working 

environments which then have a direct impact on the functions of the system (Chen and 

Patton, 1999, Halim,Edwards and Chee, 2011) . A fault can be defined as „… a non-

permitted deviation of a characteristic property (feature), of the system from the acceptable, 

usual, standard condition…‟ (Isermann, 2011). 

Faults can develop into “failures” which are extreme cases of faults giving failed system 

function or operation  (Chen and Patton, 1999) and consequently incorrect human operator 

decisions as in the case of the “3-mile island” accident in USA (Patton,Frank and Clark, 

1989). Faults are malfunctions that cause the system to perform incorrectly. However, 

failures (Be definition) are a special class of faults that cause the system operation to fail. 

Faults often occur in systems over time. It is difficult to prevent their occurrence and, if not 

treated quickly, can result in severe damage depending on their severity.  Examples of 

systems where the faults and failures led to disastrous consequences are as follows: 

 Train wreck in the city of Buenos Aires, Argentina on February 22,2012 

This incident was the derailing of a train as it departed from one of the stations in 

Buenos Aires. Investigations revealed that the cause of the accident was a 

malfunction in the brakes, as shown in Figure 1-6. This incident resulted in the 

death of at least 49 people and an additional 600 injuries (BBC, 2012). 

 Plane crash near the city of Parañaque in the Philippines on December 10,2011 

A mechanical failure in mechanical parts of a plane caused it to crash near a school. 

Nearby houses were set on fire, which resulted in the death of 14 people and 

injuring 10. Figure 1-7 shows part of this tragedy (CBN, 2012). 
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Figure  1-6: Buenos Aires train wreck             Figure  1-7: Plane crash in Philippines 

 

 Explosion of the famous Chernobyl reactor on April 28,1986 

An explosion caused by human dereliction or disregard and inexperience caused the 

loss of control of the reactor resulting in the release of nuclear radiation. 31 workers 

were killed and 100,000 people were displaced to neighbouring cities. It led to wide 

spread injury and disease, including cancer, and the contamination of more than 1.4 

million hectares of farmland. The material losses were calculated to be $6.7 billion 

(World Nuclear Association, 2012). 

The study of faults and malfunctions or failures in systems, especially in the inter-

connected systems is a new subject established during the past few years. Understanding 

the different types of faults and where they occur makes it easier to control or to reduce 

their impact. 

 

1.2.1.1 The classification of faults in inter-connected systems 

(Chen and Patton, 1999) classifies clearly different faults in systems by the location of 

these faults (where they act in the subsystem). According to this classification, the faults 

can be distinguished as follows: 

Actuator faults: Any faults that may occur in the actuator system will hinder its 

performance of its duties. The fault may be transmitted and cause malfunction or failure, 
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for example, asymmetry due to breakdown of a winding of the stator in an electrical 

machine that is used in elevators. 

Sensor fault: This type of fault will cause reduction in the accuracy of measurements, 

resulting in incorrect readings or to a situation where readings are not even taken such as 

e.g. potentiometers, accelerometers, tachometers, strain gauges, etc, as mentioned in 

(Isermann, 2011). 

System Components fault: This will cause some changes in the components of the system, 

e.g. parametric changes or faults in sub-component like a pump. Hence, during the 

modelling of the system the faults may appear as changes in the system parameters, for 

example in a chemical process changes in concentration if not normal changes may be 

considered as component faults. 

However, in inter-connected systems, from a subsystem point of view, the interactions 

between this subsystem and other subsystems are considered as unusual signals or 

interaction faults. 
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Figure  1-8: Types of faults in inter-connected systems  

 

Figure 1-8 shows these types of systems and their components and the faults that may 

occur. The types of faults are; sensor fault (fs), actuator fault (fa) and system fault (Q). The 

systems are also affected by disturbances and interactions, which are considered to be 

important factors in inter-connected systems, because if a fault or malfunction happens in 
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one subsystem then all of the other subsystems will be affected by this fault. Consequently, 

it could lead to the instability of some of them or of the whole system. 

From a literature view point the faults are classified according to the way that the faults are 

modelled, e.g. in state space. In this way additive or multiplicative faults can be considered 

by the way they act in the system model (Patton,Frank and Clark, 1989, Chen and Patton, 

1999). The fault model can then be used as a representation of real physical faults that may 

occur at any part of the modelled system. 

 

1.2.1.2 Fault diagnosis and fault-tolerant control 

The history of fault diagnosis and fault-tolerant control have received a lot of attention in 

the literature from the 1970s from both theoretical and application-based perspectives {for 

fault diagnosis}(Patton,Frank and Clark, 1989, Gertler, 1998, Patton,Frank and Clark, 

2000, Isermann, 2011, Zhang and Zhang, 2012) and {for fault-tolerant control}  (Patton et 

al., 2007, Blanke,Kinnaert,Lunze and Staroswiecki, 2006, Zhang and Jiang, 2008). 

 

1.2.1.2.1 Fault diagnosis 

Faults and failures can occur at any time and in any part of the whole system. The effects of 

these faults or failures must be minimized and their proliferation reduced, otherwise they 

may worsen and cause disasters. Time is an important factor in the discovery of faults or 

failures in inter-connected systems and determining their location makes them easier to 

deal with as well ensuring more reliable control of the systems, e.g. by using fault-tolerant 

control.  A fault must be reliably detected very quickly after its onset, i.e. the fault must be 

detected “promptly”. As shown in Figure  1-9 the longer it takes for the fault to be detected 

the lower the possibility of taking remedial action to the fault, e.g. by using redundancy in 

hardware or analytical forms. 
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Figure  1-9: Relationship between fault detection time and possibility of dealing with faults 

 

The importance of having prompt information about control system faults is thus important. 

Some systems have a bigger margin for allowable fault detection. For example, when 

considering the functions of a mobile phone, if there is noise on the line, although an error 

has occurred it is still possible to understand the other person‟s speech. This would allow 

for a greater margin for faults. However, when this margin is very narrow any problems 

may cause damage that would lead to a disaster, and hence critical behaviour of the system 

is lowered.  For example in a nuclear reactor any faults could result in a nuclear radiation 

leak. Conclusively, the margin of possible faults is inversely proportional to the system 

integrity, as shown in Figure  1-10. 

 

0% 100% 

100% 

Fault detection margin 

System 
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Figure  1-10: Relationship between importance of the system and margin of faults 
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In general it is required to design systems to minimize their energy consumption and design 

control methods to prevent them from faults and failures. These faults may be expensive in 

terms of both economics and human resources. This is due to the high cost of energy and 

the lack of natural resources. Faults and failures have a strong relationship with the 

economy. For example, faults in the electricity supply network or energy affect all interests 

and could cripple the daily handling of all community facilities and result in economic loss 

(Blanke,Kinnaert,Lunze and Staroswiecki, 2006). 

According to (Patton,Frank and Clark, 1989) the most widely used method for diagnosing 

faults is the model-based fault diagnosis which is based on the analysis of a specific signal 

and depends on the predetermined level to make the right decision. An important benefit of 

using the model-based method is that it is implemented purely using software and does not 

require any hardware (Patton,Frank and Clark, 1989, Chen and Patton, 1999, Patton,Frank 

and Clark, 2000). This is the so-called “analytical redundancy” which is also used for the 

fault diagnosis function. 

The majority of the methods used in  fault detection are based on the so-called model-based 

fault detection which uses a mathematical model equivalent to the system itself to see faults 

(Patton,Frank and Clark, 1989, Gertler, 1995).An easy and simple method of studying 

faults is to analyse the output signal of the system (Zhang and Jiang, 2008). The detection 

and isolation of faults should not be impaired by changes in system parameters, in other 

words the FDI function should be robust against modelling uncertainty and some 

parametric variations. The FDI function should also be insensitive to disturbances in the 

system that can affect the detection performance (Chen and Patton, 1999). 

According to Isermann (2011) a failure is a permanent disability in a system meaning that a 

certain role of a system ceases to be varied, i.e. part of the system fails, possibly a 

permanent disability of one or more functions of the system, imparting on system 

performance during a defined period.  A system may fail with single or multiple failures, 

often these failures evolve from faults.  On the other hand malfunction is a temporary 

breakdown in the system which causes it to stop working and which may cause the system 

to enter into a failed state.  If the system continues to work even when there are certain 

faults, the system is said to be tolerant of those faults (or even failures). 
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The relationship between faults failures and malfunction is shown in Figure  1-11. If a 

failure continues to enter the system then full failure will occur, or if the failure changes to 

become a malfunction.  Hence, the system will continue to function in the malfunctioned 

state as the faulty system. This process can be vice-versa; switching between failure and 

malfunction. 

 

Failure 

Malfunction 

Fault 

 

Figure  1-11: Relationship between fault, failure and malfunction in systems 

 

This leads to the actual subject of Fault Detection and Isolation (FDI). The fault detection 

part is defined as the procedure for detecting that a fault has occurred. The fault isolation 

procedure is used to determine the location of the fault, i.e. where the fault acts in the 

system. 

However, as mentioned in (Patton,Frank and Clark, 1989, Chen and Patton, 1999, 

Isermann, 2011), fault diagnosis can be divided into several sub-parts: 

 Fault detection: detection presents two cases of logic or which indicates whether 

there is a fault or not. 

 Fault isolation: determine the place where the fault or faults occurred, for example 

in the actuator or sensor. 

 Fault identification and fault estimation: determine the type, properties and the 

nature of the specific fault; one method is the estimation of this fault. 
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A set of general steps for achieving good FDI in control systems can be given as: 

1- Treat the fault using any method of FDI, regardless of its size, because if left 

untreated, small faults may turn into malfunction or failure. 

2- Locate the fault in any part of the system accurately; this will make it easier and 

quicker to deal with. 

3- Know the specifications of this fault, its shape, its size and its type by FDI. 

4- Take appropriate action to deal with the fault accurately and quickly as determined 

by the operator. 

 

1.2.1.2.2 Fault-tolerant control 

According to Patton (1997) Fault tolerant Control (FTC) is a very important concept in 

control systems theory “...the main task to be tackled in achieving fault tolerance is the 

design of a controller with suitable structure to guarantee stability and satisfactory 

performance, not only when all control components are operational, but also in the case 

when sensors, actuators (or other components e.g. the control computer hardware or 

software) malfunction. This has sometimes been referred to as a control system which 

possesses integrity or which has control loops which possess loop integrity.”  

In the field of FTC, there are two main principles which determine how to study and 

control faults.  In the first principle, for each element where a fault may occur there is an 

alternative; this is for reasons such as security, economy and human safety, for example, in 

aircrafts and spacecrafts. The second principle is based on changes in the controller or 

through the estimation of some signals, such as state estimation in the case of sensor faults. 

This principle is less costly and involves lower maintenance costs than the first one. 

However, it cannot be used in all cases, for example, in the event of complete failure in the 

actuator (Blanke,Kinnaert,Lunze and Staroswiecki, 2006, Gertler, 1998).  

According to Patton (1997) FTC methods are classified into Passive fault-tolerant control 

(PFTC) and Active fault-tolerant control (AFTC).Whereas the main difference between 

these two methods is whether or not a reconfiguration or adaption of the control design is 

used. In the passive FTC, from limited to minor fault effects on the system can be tolerated 

by designing robust control with a best choosing design method. On the other hand, active 
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FTC methods depend on obtaining online fault information to reconfigure or reconstruct 

the structure of the controller according to this fault. 

According to the method which is used to obtain the fault information Active FTC methods 

are classified to two branches whether or not there is a dependence on the use of FDI 

residual signals or a dependence on using fault estimation to overcome the effect of 

bounded faults.  FTC methods can certainly deal with practical faults arising in real 

systems (Patton, 1997). 

Figure  1-12 shows a general overview of the main classification of FTC and the used 

methods to achieve PFTC or AFTC. 
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Figure  1-12 : General classification of FTC methods (adapted from Patton, 1997) 

 

1.3 Thesis structure and contributions 

This thesis is primarily concerned with the challenges of designing various approaches to 

robust de-centralized control systems to handle the joint problem of robust local controller 
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design, for uncertain inter-connected systems. However, as an extension to the robustness 

concepts some new ideas about the FTC problem for inter-connected systems are also 

developed.  The main idea is to isolate each subsystem from other subsystems of an inter-

connected system, taking account of actuator faults, uncertainties and exogenous 

disturbances as aspects of local control system design. 

The remaining Chapters of the thesis are arranged as follows: 

Chapter 2 focuses on the study and review of the most important methods and techniques 

in controlling linear inter-connected systems. The first method of control is the Hierarchical 

optimisation method with known interconnections, which includes (the Goal coordination 

approach, the three-level method of Tamura for discrete dynamical systems, the interaction 

prediction approach and the three level prediction principle controllers). Comparisons are 

made between these methods, all of which use the same concept of controlling in multi-

levels.  

The second method is Hierarchical feedback control with unknown interconnections. The 

Chapter ends by discussing the design of a hierarchical feedback control, and robust 

decentralised control using model following and robust decentralised control using 

parameter perturbation. In this Chapter all the types of faults and failures that can occur are 

discussed; included in the study are: Actuator faults (malfunction in actuator), Process 

faults (change in the parameters of dynamic systems) and Sensor faults (malfunction in 

sensor).Also how to build an observer to estimate faults .An example of vibration control 

of a three storey building excited by seismic data is discussed, including the approach to 

developing the inter-connected subsystems of the hierarchical distributed system structure. 

Chapter 3 presents a novel technique to control Lipschitz non-linear inter-connected 

systems with matched and unmatched uncertainties, unknown interactions and exogenous 

disturbances. This method depends on utilizing a state feedback distributed controller that 

depends on two components; one which decreases the effect of matching elements and 

actuator faults by using   the ISMC, and the other which can be designed based on LMI 

state feedback to reduce the effect of unmatched elements and to achieve predetermined 

specifications.  This part of the controller can be achieved in several ways, depending on 

whether the interactions between the subsystems are known or not. For unknown and 

known interactions there are two methods to design a controller: (a) An LMI formulation 
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for each subsystem separately and (b) using an LMI approach applied to the overall system 

as a single (one shot) system. Comparisons are made between the relative advantages and 

disadvantages of all of the above methods. 

Chapter 4 focuses on a new approach to estimate the state of Lipschitz non-linear inter-

connected systems with matched uncertainties and unknown interactions. Measuring the 

state is not always possible, due to several reasons, such as the cost of measurements and 

maintenance. This Chapter describes a new approach to observer-based control design for 

inter-connected systems. There are two steps in this method: (i) One part of the controller 

gain and the observer gain can be achieved by using an appropriate LMI, (ii) An ISMC is 

designed to cancel the effect of any matched components in the subsystem or bounded 

actuator faults. This method can be designed in two ways. One way is to design all 

subsystems as a compact system and the second way is to design each subsystem 

individually; if the total number of systems is not too big, then it is possible to tune every 

subsystem separately, but if the number is too large, it is easier to use the compact system 

(One shot) to design the observers and the control gains in one step. 

Chapter 5 investigates and presents a new proposal of an LMI-based design based on static 

output feedback with Adaptive Output Integral Sliding Mode Control (AOISMC) of non-

linear inter-connected systems. The AOISMC is used to control unknown matched 

components with unknown bounds. This Chapter offers a new technique to deal with the 

non-linear terms arising from the application of the LMI formulation using the output 

signals to design the controller gain. An example of a single machine connected to an 

infinite power bus system is used as an example to verify this approach and compare all 

simulations results achieved by using OISMC and AOISMC. This study also includes the 

effects of actuator faults in the power system. 

Chapter 6 considers a new design of an output dynamic controller that depends on LMI 

design to verify the systems stability and achieve specific performance. Because the output 

signals are the only information available OISMC is used to deal with the transient effects 

of any matched components. Finally, an example of two coupled inverted pendula is used 

to illustrate the new approach. Simulated responses of the subsystems are provided for 

specific actuator fault cases. 
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Chapter 7 presents an approach to estimate the actuator faults of uncertain Lipschitz non-

linear inter-connected systems via state observation applied to each subsystem, in turn. 

It is assumed that the individual subsystem observers can estimate the state variables and 

actuator faults on-line and at the same time instants. This is achieved by designing an 

appropriate controller with a given performance and robustness specification. It is possible 

to add an observer to every subsystem, called the de-centralized observer, to estimate 

actuator faults, which depends on the nature of the required fault detection process.  

Chapter 8 summarizes all the work accomplished in the thesis, highlighting the most 

important points and offering recommendations that can benefit other future researchers 

interested in this subject. 
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Chapter 2 :Outline review of linear 

inter-connected systems 

 

2.1 Introduction 

As summarized in Figure 1-1 of Chapter 1 inter-connected dynamical systems can be re-

presented in either linear of non-linear model forms.  It is interesting initially to consider 

the concepts from a linear systems standpoint. Hence, this Chapter focuses on the linear 

systems approach to provide a background for the basic concepts involved, in terms of the 

system behaviour corresponding to small changes around an operating point 

(Dutton,Thompson and Barraclough, 1997). The de-centralized system strategy involves an 

optimisation framework to stabilize the linear subsystems of the inter-connected system 

according to the linear dynamics (Al-Abdullah, 1984,Brittain,Otaduy,Rovere and Perez, 

1988, Trave,Titli and Tarras, 1989). 

This Chapter first outlines the multi-level control approach to de-centralised systems using 

a state variable system description. Multi-level control strategies incorporating either two 

or three levels are investigated along with the use of hierarchal optimization methods 

(Singh,Hassan and Titli, 1976,Hassan and Boukas, 2007, Changqing,Patton and Zong, 

2010) . 

Each level of the multi-level system has a special role for dealing with specific 

performance of all the inter-connected subsystems. This Chapter investigates the basic 

concepts of several architectures that may be used to achieve stability and for each 

subsystem and as well as the stability of the overall system (Brittain,Otaduy,Rovere and 

Perez, 1988, Larbah and Patton, 2010a). 

For example, one level can deal with the stability of each local subsystem whilst in a 

second level the effects of the subsystem interactions can be minimized and conditions for 

achieving stability of the overall stability of the system can be determined. 

The work outlines the concept of multi-levelled (or hierarchical) control used to achieve 

optimum “local” and “global” stability, disturbances minimization as well as optimal 
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feedback control performance, with carefully defined optimality criteria (Singh,Hassan and 

Titli, 1976, Sandell,Varaiya,Athans and Safonov, 1978, Hassan and Singh, 1980). 

The system must also have a degree of tolerance to system faults occurring either at 

subsystem or at higher system levels. To handle the faults each fault is considered as signal 

acting within the system dynamics and a study of possible faults that may occur must be 

completed (Larbah and Patton, 2010a).   To decide on the severity of a particular fault 

acting in the inter-connected system each of the fault signals is estimated by a state 

observer. 

An example of a tall building structure is described which has a two-level hierarchical 

control approach to ensure good performance in the presence of seismic disturbance 

excitation acting during an earthquake. For this problem an optimal control approach is 

compared with the use of H∞ disturbance minimization method. Both methods are 

compared subject to the criterion of minimum deviation of each building floor to a central 

datum line. Each floor of the building is considered to have a semi-active or passive 

damping system in place. The semi-active damping is achieved through the use of a special 

actuator the magneto-rheological (MR) damper (Shayeghi,Kalasar and Shayeghi, 2009, 

Larbah and Patton, 2010b). 

The effects of actuator faults have also been studied in some detail, identifying whether an 

actuator fault occurs only on one floor or whether there are several actuator faults each 

affecting different floors of the building structure. The main contributions of this Chapter 

are to apply optimal hierarchical feedback control to a three-floor high building, and study 

how the controller is affected by the actuator faults
1
.  The approached used is also 

compared with the use of H∞ control to illustrate the robustness of the plug and play 

concept. 

The structure of this Chapter is as follows. Firstly, Section 2.2 reviews the methods of 

controlling linear inter-connected systems focussed on well-known approaches. Section 2.3 

describes the concept of hierarchical feedback control used to illustrate the optimal control 

                                                           
1 Part of the work presented in this chapter has been published in: 

 

 Eshag  Larbah and Ron J. Patton, Fault tolerant control in high building structures, Conference on Control and Fault-Tolerant 
Systems (SysTol‟10), October 6-8, 2010, Nice, France 

 

 Eshag Larbah and R.J. Patton, Fault tolerant “plug and play” vibration control in building structures,  49th IEEE Conference 

on.Decision and Control, December 15-17, 2010, Atlanta, Georgia USA 
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formulation for the derivation of the hierarchical feedback control. Section 2.4 illustrates 

the development of a robust decentralised control system using model-following control. 

Section 2.5 describes an approach to fault-tolerant control in linear inter-connected systems, 

illustrating how the faults can affect the overall system performance. Section 2.6 describes 

the example of a model system for the vibration control of a three storey building excited by 

seismic data. This includes the approach to developing the inter-connected subsystems of 

the hierarchical distributed system structure.  Finally, the Chapter conclusions are stated in 

Section 2.7. 

 

2.2 Problem formulation 

The linear model of the inter-connected system and corresponding controller designs are 

discussed in this Chapter. Chapters 3, 4, 5, 6 & 7 are concerned with the application of 

various de-centralized control and estimation methods for systems with non-linear model 

dynamics. The linear model is described by: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 +  𝐶𝑖𝑧𝑖 𝑡 +𝐸𝑖𝑑𝑖  ( 2-1) 

𝑧𝑖(𝑡) =  𝐿𝑖𝑗 𝑥𝑗

𝑁

𝑗 =1

(𝑡) 
( 2-2) 

 

𝑦𝑖 𝑡 = 𝑇𝑖𝑥𝑖 𝑡                   𝑖 = 1, … … , 𝑁 ( 2-3) 

where 𝑥𝑖(𝑡) ∈ 𝑅𝑛×1 is a state vector, 𝑢𝑖(𝑡) ∈ 𝑅𝑚×1 is a control vector , 𝑦𝑖(𝑡) ∈ 𝑅𝑞×1 is the 

output signal ,  𝑧𝑖(𝑡) ∈ 𝑅𝑞×1 is a vector of interconnections between individual subsystems 

and 𝑑𝑖  is an unknown bounded disturbance. 𝐴𝑖 ,𝐵𝑖 , 𝐶𝑖  , 𝐸𝑖  and 𝑇𝑖  are known matrices of 

appropriate dimensions and 𝐿𝑖𝑗  is an interconnection matrix between subsystems 𝑖 and 𝑗, 

and 𝑥 0 = 𝑥𝑖𝑜  is an initial state vector. 

 

2.3 Methods of controlling linear inter-connected systems  

To achieve the required objectives and to improve the performance of a distributed 

hierarchical structure, coordination functions are required to deal with the interactions 

between the subsystems (Patton et al., 2007) . Figure 1-5 illustrates how to use a multi-
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level system to achieve multi-objectives of acceptable stability, robust performance and 

good fault tolerance. 

(Jamshidi, 1997) stated that some of these methods are applicable to hierarchical structures 

with two or more levels; the lower level (local controller) is responsible for local variables 

to complete local optimisation or local requirements, whereas in highest level (coordinator) 

deals only with global variables. The role of the coordinator is thus to force the local 

controllers to achieve global stability and global optimisation. In the classical work on 

large-scale systems optimal control is used at both local and global levels of the system 

(Singh and Titli, 1978, Jamshidi, 1997, Stanislaw, 2003). 

Several alternative methods can be used to develop optimal strategies for multi-level 

control of de-centralised but inter-connected systems. This Chapter presents a general 

overview of the main techniques reported in the literature. 

 

2.3.1   Hierarchical optimization and control for distributed linear inter-

connected systems with quadratic cost function 
 

In optimal control, a linear quadratic cost function is used to achieve the optimal trajectory 

and this approach is applicable for inter-connected systems. However, if the system is 

large-scale and inter-connected the optimization problem can become very computationally 

expensive. However, if the optimisation problem is divided into N sub-optimisation 

problems according to the number of subsystems, then the process of the whole 

optimisation problem is made more efficient and faster (Krumov, 2008). 

The optimisation problem of inter-connected systems comprising n linear inter-connected 

dynamical subsystems provides the subsystem control variables  𝑢𝑖(𝑡) by minimizing the 

performance function (Singh,Hassan and Titli, 1976, Singh and Titli, 1978, Hassan and 

Singh, 1980, Jamshidi, 1997): 

𝐽 =   (
1

2
𝑥𝑖

𝑇 𝑇 𝑃𝑖𝑥𝑖 𝑇 +  
1

2
(

𝑇

0
𝑁
𝑖=1 𝑥𝑖

𝑇 𝑡 𝑄𝑖𝑥𝑖(𝑡) + 𝑢𝑖
𝑇(𝑡)𝑅𝑖𝑢𝑖(𝑡))𝑑𝑡)   

𝑖 = 1, … … , 𝑁 

( 2-4) 

Subject to Eqs. ( 2-1)  & ( 2-3) 

where 𝑄𝑖  and 𝑃𝑖  are positive semi definite matrices, 𝑅𝑖 is a positive definite matrix . 
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The principle of optimal optimization is to form the Hamiltonian function for the i
th

 

subsystem as: 

𝐻𝑖 =
1

2
𝑥𝑖

𝑇𝑄𝑖𝑥𝑖 +
1

2
𝑢𝑖

𝑇𝑅𝑖𝑢𝑖 + 𝜆𝑖
𝑇 𝑧𝑖 −  𝐿𝑖𝑗 𝑥𝑗

𝑁
𝑗=1  + 𝑃𝑖

𝑇( 𝐴𝑖𝑥𝑖 + 𝐵𝑖𝑢𝑖 + 𝐶𝑖𝑧𝑖 + 𝐸𝑖𝑑𝑖)        ( 2-5) 

The Lagrangian of the overall system is: 

𝐿 =   [
1

2
𝑥𝑖

𝑇 𝑇 𝑃𝑖𝑥𝑖 𝑇 +  
1

2
(

𝑇

0

𝑁

𝑖=1

𝑥𝑖
𝑇 𝑡 𝑄𝑖𝑥𝑖 𝑡 + 𝑢𝑖

𝑇 𝑡 𝑅𝑖𝑢𝑖 𝑡 + 𝑧𝑖
𝑇 𝑡 𝑅𝑖𝑧𝑖 𝑡 

+        𝜆𝑖
𝑇(𝑧𝑖(𝑡) −  𝐿𝑖𝑗 𝑥𝑗

𝑁

𝑗 =1

(𝑡)))𝑑𝑡] 

( 2-6) 

where 𝜆𝑖  are Lagranage multipliers and 𝑃𝑖  are adjoint variables. 

The necessary conditions to satisfy the optimisation criteria are: 

𝜕𝐻𝑖

𝜕𝑢𝑖
= 0 𝑜𝑟 𝑢𝑖 = −𝑅𝑖

−1𝐵𝑖
𝑇𝑃𝑖 ( 2-7) 

 
𝜕𝐻𝑖

𝜕𝑃𝑖
= 𝑥 𝑖 = 𝐴𝑖𝑥𝑖 + 𝐵𝑖𝑢𝑖 + 𝐶𝑖𝑧𝑖 + 𝐸𝑖𝑑𝑖  

( 2-8) 

 
𝜕𝐻𝑖

𝜕𝑥𝑖
= − 𝑃 

𝑖 = 𝑄𝑖𝑥𝑖 −  𝐿𝑇
𝑖𝑗

𝑁

𝑗 =1

𝜆𝑖  + 𝐴𝑖
𝑇𝑃𝑖  

( 2-9) 

𝜕𝐻𝑖

𝜕𝜆𝑖
= 0 𝑜𝑟 𝑧𝑖 =  𝐿𝑖𝑗 𝑥𝑗

𝑁

𝑗 =1

 

( 2-10) 

𝜕𝐻𝑖

𝜕𝑧𝑖
= 0 𝑜𝑟 𝜆𝑖  = −𝐶𝑖

𝑇𝑃𝑖  
( 2-11) 

𝜆𝑖 𝑇 = 0 ( 2-12) 

The optimal feedback control 𝑢𝑖(𝑡) is formed as: 

𝑢𝑖 𝑡 = −𝑅𝑖
−1𝐵𝑖

𝑇𝑃𝑖  ( 2-13) 

This is the general formula to find the optimal feedback control, which leads to several 

approaches for calculating the optimal trajectory depending on the system as well as on the 

number of levels of hierarchy in the multi-level distributed control problem. 
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2.3.1.1 The Goal coordination approach 

The Goal Coordination approach has two levels of hierarchy. Independently, the subsystem 

minimisation is subject to subsystem constraints by the initially given Lagrange multipliers 

𝜆𝑖 = 𝜆∗
𝑖  (Singh,Hassan and Titli, 1976, Jamshidi, 1997). The crucial part of this technique 

is the first step in which the higher level sends the initial value of the 𝜆𝑖  to the lower level 

to compute the subsystem Lagrangian 𝐿𝑖 , where the 𝐿𝑖  are minimised subject to their 

constraints. After the minimisation process, 𝑥𝑖 , 𝑢𝑖  and  𝑧𝑖  are determined and are sent back 

to the higher level to calculate the interconnection error (𝑒𝑖) that is calculated by: 

𝑒𝑖 = 𝑧𝑖 −  𝐿𝑖𝑗 𝑥𝑗

𝑁

𝑗 =1

 ( 2-14) 

This process continues until a specified error is reached, at which point the global 

optimisation has been achieved. The global Lagrangian L is obtained via the summation of 

the individual 𝐿𝑖  so that L has an additively separable property; if one subsystem is 

removed the global Lagrangian L takes account of this via the so-called “plug and play” 

concept. This means that  it is quite easy to add new subsystems or to remove any old 

subsystems (Shayeghi,Kalasar and Shayeghi, 2009) whilst the global system adjusts the 

optimal performance. The principle of this approach is shown in Figure  2-1. 
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Figure  2-1: Goal coordination approach 
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2.3.1.2 The three-level method of Tamura for discrete-time systems 

The formulation of this method is made in discrete-time and it is a modification of the Goal 

Coordination approach where three levels are used. The difference between this method 

and the Goal coordination approach is that the optimisation process is divided into 𝑘 

optimisation problems, where 𝑘  is the sampling instant. That means decomposing the 

Lagrangian into sub-Largrangians for each subsystem (Singh,Hassan and Titli, 1976,Singh 

and Titli, 1978, Jamshidi, 1997). Figure  2-2 illustrates the general idea of this method. 
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Figure  2-2: Three level method of Tamura 

The lower level receives new 𝜆𝑖  values from the higher level to solve the optimisation 

problem k times, and each time the higher level receives updated values of 𝑥𝑖(𝑘) and  𝑧𝑖(𝑘) 

obtained from the second level. These are then used to reduce the computation errors in 

both 𝜑𝑖 𝜆𝑖  and  𝜇𝑖 𝑃𝑖 , where the calculations of these error are given by: 

∆𝜑𝑖(𝜆𝑖)|𝜆𝑖=𝜆𝑖
∗=𝑒𝑖 = 𝑧𝑖 −  𝐿𝑖𝑗 𝑥𝑗

𝑁
𝑗=1  ( 2-15) 

∆𝜇𝑖 𝑃𝑖 |𝑝 𝑖=𝑝𝑖
∗ = −𝑥𝑖 𝑘 + 1 + 𝐴𝑖𝑥𝑖 𝑘 + 𝐵𝑖𝑢𝑖 𝑘 + 𝐶𝑖𝑧𝑖 𝑘  ( 2-16) 

The overall optimisation is achieved when both ∆𝜑𝑖(𝜆𝑖) and ∆𝜇𝑖 𝑃𝑖  become equal to zero 

or specified value. This method is used in the case of a open-loop system and the gain is 

calculated on-line, however, there is a time-delay in the subsystem which increases the 

complexity of the calculation and may lead to an unstable model (Singh and Titli, 1978). 
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2.3.1.3 The Interaction Prediction approach 

This approach is formulated in continuous-time and the principle depends on using two 

levels, as in the Goal Coordination approach (Singh and Titli, 1978, Hassan and Singh, 

1980). However, the main difference is that the updated values of  𝜆𝑖  and 𝑧𝑖  are calculated 

as coordination vectors at the higher level. After the coordination vectors have been 

obtained, they are used to minimise every 𝐿𝑖  in the lower level to obtain the updated values 

of 𝑥𝑖 , 𝑢𝑖  and  𝑃𝑖  . These values are then sent back to the higher level to calculate the new 

values of the coordination vectors. The optimisation process is stopped if the calculations 

of the errors 𝑒𝑖  given by Eq. ( 2-14) reach an acceptable value, then the last values of  𝑥𝑖  and 

𝑢𝑖  are used as the optimal values. The steps of this approach are shown in Figure  2-3 

(Singh,Hassan and Titli, 1976, Jamshidi, 1997). 
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Figure  2-3: Interaction prediction approach 

2.3.1.4 The three-level prediction principle controller 

This method is an upgraded version of the Interaction Prediction approach (Singh,Hassan 

and Titli, 1976, Singh and Titli, 1978), where the coordination is divided to two parts; 1
st
 

coordinator and 2
nd

 coordinator (Singh and Titli, 1978). The role of the 1
st
 coordinator is to 

send the initial value of  𝑧𝑖
1  and π𝑖

1  to the 2
nd

 coordinator to update  𝜆𝑖
1

 where π is a 

variable . The 2
nd

 coordinator sends 𝜆𝑖
1
 to all subsystems to minimise sub-Largrangian, 

following the 2
nd

 coordinator receives the updated  𝜆𝑖
1+𝑖

 to calculate an error 𝑒𝑘
𝜆𝑖  using the 

formula: 

𝑒𝑘
𝜆𝑖 = 𝜆𝑖

1+𝑖  − 𝜆𝑖
1
 ( 2-17) 
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This procedure continues until the error reaches a suitable value. Then the last values of 

z𝑖
1+𝑖   and π𝑖

1+𝑖  are sent back to the 1
st
 coordinator to calculate errors 𝑒𝑘

𝑧𝑖  and 𝑒𝑘
𝜋𝑖   using 

Eqs.( 2-18) & ( 2-19): 

𝑒𝑘
𝜋𝑖 = π𝑖

1+𝑖 − π𝑖
1 ( 2-18) 

𝑒𝑘
𝑧𝑖 = z𝑖

1+𝑖  − z𝑖
1   2-19) 

The optimisation process is stopped if the calculation of all errors 𝑒𝑘
𝜆𝑖  ,  𝑒𝑘

𝜋𝑖  and 𝑒𝑘
𝑧𝑖  

reaches an acceptable value. The steps of the algorithm describing how to enter data until 

the algorithm reaches the optimal control and trajectory are illustrated in Figure  2-4 (Singh 

and Titli, 1978). Although this method gives accurate optimal values, it requires complex 

calculations. 
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Figure  2-4: Three-level prediction principle controller 
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2.3.1.5 Comparison between hierarchical distributed control systems 

methods 
 

Table  2-1 below illustrates the comparison between the different methods of control in 

hierarchical distributed control systems with quadratic cost functions. 

 

Method 

 

Number 

of levels 

 

Type of 

system 

 

Notes 

 

The Goal coordination 

approach 

 

Two 

 

 

Continuous 

time 

 

Cost function includes the interaction 

term 𝑧𝑖 𝑡 does not correspond to a 

realistic ( the state 𝑥𝑖 𝑡  and the control 

signal 𝑢𝑖 𝑡 ) 

 

 

The three level method 

of Tamura 

 

Three 

 

Discrete 

time 

 

Complicated and gives attractive results 

for open-loop control design only. 

 

 

The interaction 

prediction approach 

Two 
 

Continuous 

time 

Easy and fast but the minimisation only 

takes the interaction constraints but it 

requires fewer calculations. 

 

The three level 

prediction principle 

controller 

Three 
 

Continuous 

time 

Fast to calculate the optimal controller 

and the trajectory but it is complicated. 

Table  2-1: Comparison of hierarchical distributed control systems methods 

 

2.3.2 De-centralized iterative learning control for inter-connected 

systems with unknown interconnections 
 

This method has been proposed by (Hansheng,Kawabata and Kawabata, 2003). The 

advantage of this method is that it does not depend on the availability of information about 

the interactions between the subsystems. Therefore this method requires less computation 

to obtain the gains to satisfy a desired output. The principle of this approach is shown in 

Figure  2-1. 
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Consider the inter-connected system has a form: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 +  𝐵𝑖𝑢𝑖 𝑡 +  𝐶𝑖𝑧𝑖 𝑡 + 𝐸𝑖𝑑𝑖 𝑡   ( 2-20) 

𝑧𝑖 =  𝐿𝑖𝑗 𝑥𝑗

𝑁

𝑗 =1

 ( 2-21) 

𝑦𝑖 𝑡 = 𝑇𝑖𝑥𝑖 𝑡                  𝑖 = 1, … … , 𝑁 ( 2-22) 

with 𝑥𝑖 0 = 𝑥𝑖𝑜  , for each subsystem the error between the desired local output and the 

actual local output is: 

𝑒𝑖 𝑡 = 𝑦𝑖
𝑑 𝑡 − 𝑦𝑖 𝑡  ( 2-23) 

where 𝑑𝑖 𝑡  is ∈ ℝ  unknown bounded process disturbance , 𝑦𝑖
𝑑 𝑡  is desired local output 

and 𝑦𝑖 𝑡   is actual local output . 

Through the iterative learning process the limited error is: 

lim
𝑘→∞

  𝑒𝑖
𝑘 𝑡   = lim

𝑘→∞
  𝑦𝑖

𝑑 𝑡 − 𝑦𝑖
𝑘 𝑡   = 0           𝑖 = 1, … . . 𝑁     ( 2-24) 

Where 𝑘 is an iteration index and the de-centralized iterative learning control algorithm is: 

𝑢𝑖
𝑘+1 𝑡 = 𝑢𝑖

𝑘 𝑡 + 𝛤𝑖
𝑘𝑒𝑖

𝑘 𝑡  ( 2-25) 

The initial state of the learning control algorithm is given by: 

𝑥𝑖
𝑘+1 𝑡 = 𝑥𝑖

𝑘 𝑡𝑜 + 𝐵𝑖𝛤𝑖
𝑘𝑒𝑖

𝑘 𝑡𝑜  ( 2-26) 

where 𝛤𝑖
𝑘  is an iterative learning control gain matrix and can be calculated from: 

 ||𝐼𝑖 − 𝐶𝑖𝐵𝑖𝛤𝑖|| < 1     

when 𝐼𝑖 ∈ 𝑅 is an identity matrix, 𝑥𝑖
𝑘 𝑡𝑜  and 𝑒𝑖

𝑘 𝑡𝑜  are initial values of the state and error 

to begin the iteration. 

This kind of control is executed online; the steps of the algorithm describing how to 

execute the data until reaching the optimal control and trajectory are illustrated in 

Figure  2-6. 
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Figure  2-5: De-centralized iterative learning control for inter-connected systems with 

unknown interconnections 
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Figure  2-6: Flowchart of the algorithm of de-centralized iterative learning control for inter-

connected systems with unknown interconnections  
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2.4 Hierarchical feedback control design  

To implement the controller in hierarchical distributed inter-connected systems most of the 

previous strategies propose an optimal feedback approach to satisfy the stability and 

desired performance (Sandell,Varaiya,Athans and Safonov, 1978, Kalsi,Jianming and Zak, 

2008). Although all the methods can be used to control inter-connected systems, every 

method has a different calculation to obtain the controller gains. The general formula to 

obtain the optimal hierarchical feedback control is described as: 

From Eq. ( 2-12) the control signal 𝑢𝑖 𝑡 = −𝑅𝑖
−1𝐵𝑖

𝑇𝑃𝑖  

Let the 𝑃𝑖  be the adjoint variables given by the solution of a Matrix Ricatti equation as 

follows: 

𝑃𝑖(𝑡) = 𝐾𝑖𝑥𝑖(𝑡) + 𝑆𝑖(𝑡) ( 2-27) 

𝑢𝑖 𝑡 = −𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖𝑥𝑖 𝑡 − 𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖 𝑆𝑖(𝑡) ( 2-28) 

where −𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖𝑥𝑖(𝑡)  is the local control ,  −𝑅𝑖
−1𝐵𝑖

𝑇𝑆𝑖(𝑡)  is the effect of the global 

control (coordinator) and    𝐾𝑖   is the local optimal gain and 𝑆𝑖  is an open-loop interaction 

compensation control vector. 
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Figure  2-7: Hierarchical feedback control 

Where the − 𝑅−1𝐵𝑇𝑌 compensates for the interactions, 𝑅 = 𝑑𝑖𝑎𝑔(𝑅𝑖) , 𝐵 = 𝑑𝑖𝑎𝑔(𝐵𝑖) and 

𝑌 = 𝑑𝑖𝑎𝑔(𝑆𝑖) .The local control depends on its state and the coordinator depends on all the 
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states of the overall system as shown in Figure  2-7 (Singh,Hassan and Titli, 1976, Singh 

and Titli, 1978, Patton et al., 2007) 

 

2.5 Robust de-centralized control 

The problems of robust stability in inter-connected systems with complex interconnections 

become more important in closed-loop systems (Chen and Wong, 1987, Larbah and Patton, 

2012). Several problems may occur such as the change in the parameters of the system as 

well as in the inaccuracy of the model (uncertainties), which can lead to system instability. 

Consequently, there are many methods to solve this problem, including the following 

model. 

 

2.5.1 Robust de-centralized control using model following 

The basic concept is to construct a dynamic model of the interactions for every subsystem 

and use the states of this model as the interaction inputs(Singh,Hassan and Titli, 1976, 

Singh and Titli, 1978). The idea of this technique is to combine the original system model 

with an interaction model into a single system. As a consequence of the inherent modelling 

uncertainty arising from the use of the interaction model an additional optimization must be 

used to modify the interaction model parameters based on the online system measurements 

(Hassan and Singh, 1980). The following additional features of this design approach should 

be noted (Singh and Titli, 1978): 

 The de-centralised control gains are independent of the initial conditions. 

 The controller is easy to calculate. 

 

2.6 Fault-tolerant control in inter-connected linear systems 

As mentioned in Chapter 1, the idea of using fault-tolerant control is motivated by (a) the 

detectability of the various faults that occur in the inter-connected system, (b) how these 

faults affect the overall system stability and performance, and (c) how to compensate for 

the faults and reduce their effects on the subsystems. The faults that can occur in the 

systems can be classified, according to (Witczak, 2007) into: 
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1- Actuator faults (actuator malfunctions) 

2- Process faults (parametric changes in the system dynamics) 

3- Sensor faults (sensor malfunctions) 

Subsystem information about these types of faults can be used to detect faults on-line by 

using appropriately chosen observers. The observers are used to estimate these faults and 

give enough information about them. 

 

2.6.1 Estimating faults in linear inter-connected systems 

Fault detection can be achieved by estimating certain measured or unmeasured signals from 

the system (Witczak, 2007) . The model without any faults as described in Eqs. ( 2-1) & 

( 2-3). 

The effects of faults may enter the system via 𝑢𝑖 𝑡  , 𝑦𝑖(𝑡) and 𝑧𝑖 𝑡  or the faults may 

affect the subsystem parameters directly. 

The model of the linear system with faults can be expressed as: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 +  𝐵𝑖𝑢𝑖 𝑡 +  𝐶𝑖𝑧𝑖 𝑡  +𝐸𝑐𝑖𝑓𝑐𝑖 𝑡 + 𝐸𝑧𝑖𝑓𝑧𝑖 𝑡  ( 2-29) 

𝑦𝑖 𝑡 = 𝑊𝑖𝑥𝑖 𝑡 + 𝐸𝑠𝑖𝑓𝑠𝑖 𝑡               𝑖 = 1, … … , 𝑁  ( 2-30) 

Where the 𝑓𝑐𝑖 𝑡   are the actuator faults, the 𝑓𝑧𝑖 𝑡  are faults that come from the 

interactions, and the 𝑓𝑠𝑖 𝑡  are the subsystem sensor faults. The 𝐸𝑐𝑖 , 𝐸𝑧𝑖  and 𝐸𝑠𝑖  are known 

inputs matrices with appropriate dimensions. 

 

2.6.2 Full observer to estimate faults in inter-connected systems 

Model-based fault diagnosis is needed to detect faults by residual generation to indicate 

whether or not the faults have occurred. Therefore, suitable decisions can be made to either 

compensate for the effects of the faults in the system or to use hardware redundancy to 

replace a faulty component (sensor, actuator, etc) (Chen and Patton, 1999, 

Menighed,Aubrun and Yamé, 2009). 

𝑥 𝑖 (𝑡) = 𝐴𝑖𝑥𝑖  𝑡 +  𝐵𝑖𝑢𝑖 𝑡 + 𝐶𝑖𝑧𝑖 𝑡 + 𝐿𝑖[𝑦𝑖 𝑡 − 𝑊𝑖𝑥𝑖  𝑡 ] ( 2-31) 

The structure of the full observer used in an inter-connected system is shown in Figure  2-8. 
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For this system ,the state error  𝑒𝑥𝑖 (𝑡)  =  𝑥𝑖 𝑡 − 𝑥𝑖 (𝑡) ( 2-32) 

where: 𝑒 𝑥𝑖 𝑡 =  𝐴𝑖 − 𝐿𝑖𝑊𝑖 𝑒𝑥𝑖 𝑡 + 𝐸𝑐𝑖𝑓𝑐𝑖 𝑡 + 𝐸𝑧𝑖𝑓𝑧𝑖 𝑡 − 𝐿𝑖𝐸𝑠𝑖𝑓𝑠𝑖 𝑡  ( 2-33) 

If there is no fault in the subsystem then 𝑒 𝑥𝑖 𝑡  tends to zero, but if the fault has occurred 

then 𝑒 𝑥𝑖 𝑡 ≠ 0   

where  𝐸𝑐𝑖𝑓𝑐𝑖 𝑡 + 𝐸𝑧𝑖𝑓𝑧𝑖 𝑡 − 𝐿𝑖𝐸𝑠𝑖𝑓𝑠𝑖 𝑡 ≠ 0   
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Figure  2-8: Full observer with i
th

 subsystem  

 

Before examining the faults in the subsystems it is necessary to understand the subsystem 

well, especially in complex subsystems with interconnections. In these subsystems it is 

necessary to distinguish between signals coming from other subsystems to the faults. Then 

their challenge is made to design a robust and adaptive controller to achieve stability and 

specific performance. It is possible to include observers in an inter-connected systems 

framework to give an indication of the presence of faults; Figure  2-9 illustrates the idea of 

including observers for this fault detection role in an inter-connected system. 
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Figure  2-9: Coordinate all the subsystems with its controller and observer 

 

2.7 Fault-tolerant vibration control in building structures 

According to a report by the US Geological Survey National Earthquake Information 

Centre, the number of earthquakes occurring worldwide during 1990 to 2008 has doubled 

(USGS, 2010). This study focuses on a control example of a multi-floor building structure, 

with aim to minimize floor displacements under seismic vibration. The seismic data 

corresponds to the El Centro Richter 7.1 earthquake of July 1940 (NISEE, 2010). 

The control of the structural integrity of large buildings subjected to severe external forces 

from natural phenomena such as earthquakes and wind storms has become one of the 

biggest challenges in civil and structural engineering (Spencer,Christenson and Dyke, 1999, 

Sk and Ramaswamy, 2009). During an earthquake, large buildings are subjected to very 

significant structural stresses and bending moments that can be minimized using control 

methods (Spencer,Dyke and Deoskar, 1997). 

It is normal practice in earthquake zones for the various floors of multi-storey buildings to 

be constructed to include actuator devices to either provide strong vibration isolation or 

actuate the structure to compensate for high bending loads. There are three types of 

actuators in use in buildings; these are passive, active or semi-active (Jerome and Kincho, 

2004).The passive actuator does not use sensors and control devices but provides shock 

absorption or damping to lower the effect of the external forces and moments acting on the 
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structure. Although passive devices require no external energy their parameters are tuned at 

design to give vibration isolation for a limited range of externally acting forces and 

moments. On the other hand active devices require special sensors and control design and 

cannot operate in power failure outages as they consume large amounts of energy and are 

typically not used on every floor of a building (Sk and Ramaswamy, 2009). 

The semi-active actuator devices for vibration control combine the advantages of passive 

and active methods, providing adaption to high exogenous load levels, through a 

mechanism to tune their physical properties to facilitate good control performance 

(Yalla,Kareem and Kantor, 2001). 

The requirement for robust adaption to variable external forces and moments acting on a 

building leads to interesting control challenges. The controlled structure must have fault-

tolerance in the sense that a suitable level of control performance should be maintained, 

even when power outages occur. Furthermore, if an actuator should become faulty or even 

fail the cooperative structure control through the building should be tolerant to this type of 

malfunction. 

The literature on this application subject does discuss the use of various control methods 

including centralized and de-centralized control techniques (Lynch,Law and Blume, 2002). 

However, the published studies do not consider fault-tolerance properties in the sense of 

improving the integrity of the vibration control system subject to actuator and/or sensor 

faults or failures. 

This Chapter proposes that a de-centralized and hierarchical approach to the structural 

control problem provides good FTC properties in the presence of individual floor actuator 

fault or failures. The system is a two-level control autonomous coordination and 

supervision scheme (ACSS) scheme with an autonomous coordinator (at the highest level). 

The second level comprises the subsystems representing the individual floor structures with 

their semi-active actuator systems.  The subsystems are assumed to be inter-connected as a 

consequence of the building structure. 

The main goal is to demonstrate a flexible control “plug and play” property of the FTC 

system (Kambhampati,Patton and Uppal, 2006, Patton et al., 2007).Wherein a good 

structural control performance is maintained throughout the building, while there are for 

example malfunctions or failures of semi-active actuators in one or more floors of the 
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structure. When a semi-active actuator device fails the distributed two-level system takes 

account of the loss of one subsystem and autonomously reconfigures/redistributes the 

control action among the remaining floor actuation systems. The mathematical structure of 

this two-level scheme shows that if a subsystem fails, i.e. its function is “unplugged” a 

suitable performance can be maintained using the additive separable control performance 

of the distributed system receding horizon control structure. In a sense the hierarchical 

control system utilizes a form of redundancy that exists between the distributed subsystems 

by balancing the system subsequent to faults and failures. 

The two-level distributed control design is compared against a single level (aggregated) H-

∞ control method with control applied to each floor actuation system. 

 

2.7.1 Building structure modeling and control challenges 

The concept of an N-floor building structure is shown in Figure  2-10. The physical problem 

is one of continuous bending of the vertical structure in response to seismic vibration 

excitation. An assumption usually made is that the structural bending can be further 

represented as a simple linear displacement of a rigid structure. Hence, the horizontal 

displacements due to seismic vibrations are taken from a datum line. 

 

M1 K1 

MN 

MN-1 

M2 K2 

KN-1 

KN 

𝒙 𝒈  

z1 

z2 

zN-1 

zN 

Datum line 

 

Figure  2-10: N- Floor building structure 

The deflection from the datum is a continuum resulting from the bending of the structure. 

However, a rigid body structure can be assumed and hence a simplified representation of 

the horizontal displacements 𝑍𝑖  , 𝑖 = 1, … … , 𝑁of each floor can be achieved using linear 

second order system dynamics. Here we assume that each floor is actuated as shown in 
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Figure 2-10. The aggregate lumped 2N order system representation (corresponding to the 

N-floors) is N degrees of freedom lumped mass vector representation as follows 

(Nguyen,Dalvand,Yu and Ha, 2008): 

𝑀𝑍  𝑡 + 𝐶𝑍  𝑡 + 𝐾𝑍 𝑡 = 𝐿𝑢𝑢 𝑡 + 𝐿𝑤𝑤(𝑡) ( 2-34) 

where 𝑍 𝑡 =  𝑍1, 𝑍2 , … . 𝑍𝑁 𝑇 ∈ 𝑅𝑁×1 is vector of linear displacements, with respect to the 

datum. 𝑀 ∈ 𝑅𝑁𝑥𝑁 , 𝐶 ∈ 𝑅𝑁𝑥𝑁  and 𝐾 ∈ 𝑅𝑁𝑥𝑁  contain the masses, viscous damping 

coefficients and stiffness coefficients of each floor. 𝑢(𝑡) ∈ 𝑅𝑁×1 is the control and 𝑤(𝑡) is 

the scalar external seismic excitation. 𝐿𝑢(𝑡) ∈ 𝑅𝑁×𝑁 and 𝐿𝑤 (𝑡) ∈ 𝑅𝑁×1 are the control and 

excitation matrices within the framework of a single displacement control system acting on 

each floor (Swartz and Lynch, 2009). 

The linear state-space model incorporating the lumped mass models of each floor is: 

𝑥 𝑧 𝑡 = 𝐴𝑧𝑥𝑧 𝑡 + 𝐵𝑧𝑢 𝑡 + 𝐸𝑧𝑥 𝑔  ( 2-35) 

The states are defined as:       𝑥𝑧 = [ 𝑍       𝑍 ]𝑇 ∈ 𝑅2𝑁×1  ,    and 

𝐴𝑧 =  
0 𝐼

−𝑀−1𝐾   −𝑀−1𝐶
 ∈ 𝑅2𝑁×2𝑁 ,𝐵𝑧 =  

0
𝑀−1𝐿𝑢

 ∈ 𝑅2𝑁×𝑁, 𝐸𝑧 =  
−𝑙
0

 ∈ 𝑅2𝑁×1 ( 2-36) 

𝑥𝑔  is the horizontal ground displacement and 𝐿𝑤 = −𝑀𝑙  

The displacement and velocity variables in 𝑥𝑧 𝑡  relate to the datum. To take into account 

the inter-floor displacements the following transformation must be used (Yang,Jerome and 

Kincho, 2009): 

𝑥 =  𝑍1, 𝑍 
1 ,  𝑍2 − 𝑍1  ,  𝑍 

2 − 𝑍 
1  , … . ,  𝑍𝑁 − 𝑍𝑁−1  ,  𝑍 

𝑁 − 𝑍 
𝑁−1  

𝑇
 ( 2-37) 

The transformation matrix is 𝛬 ∈ 𝑅2𝑁×2𝑁, so that: 𝑥 = 𝛬𝑥𝑧 ⇒ 𝑥𝑧 = 𝛬−1𝑥 

The transformed state space representation is: 

𝑥  𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐸𝑥 𝑔  ( 2-38) 

where  𝑥(𝑡) ∈ 𝑅2𝑁×1 ,  𝑢(𝑡) ∈ 𝑅𝑁×1 ,  𝐴 ∈ 𝑅2𝑁×2𝑁 ,  𝐵 ∈ 𝑅2𝑁×𝑁 and  𝐸 ∈ 𝑅2𝑁×1 

𝐴 = 𝛬𝐴𝑧𝛬
−1 ,  𝐵 = 𝛬𝐵𝑧   and  𝐸 = 𝛬𝐸𝑧  ( 2-39) 

The output of this model system is: 

𝑦 𝑡 = 𝐶𝑥𝑥 𝑡 + 𝐷𝑥𝑢 𝑡  ( 2-40) 
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where 𝐶𝑥 ∈ 𝑅𝑃×2𝑁 and 𝐷𝑥 ∈ 𝑅𝑃×𝑀 

 

2.7.2 Vibration control strategies 

The greatest challenge for the control of vibration in building structures in the presence of 

an earthquake is to maintaining structural integrity. The main control objective is thus to 

enhance the degree to which the structure is isolated from the vibration. This control 

enhancement must be achieved at each principal stage of the building structure, i.e. at each 

floor of the building. A number of methods have been proposed to address the required 

enhancements ranging from LQR and LQG to H2 / H∞ , sliding mode and pole-placement 

(Shayeghi,Kalasar and Shayeghi, 2009). For this application problem it is very important to 

maintain good control function, not only under severe earthquake conditions but also to 

ensure that if faults or failures occur the control system is sufficiently tolerant to these 

malfunctions. Example of faults may be actuator or sensor malfunctions or the fact that 

power outages can cause system failure. When faults occur the system should either be 

reconfigured or make use of inherent redundancy to maintain the required control action.  

Hence, this Chapter focuses on the requirement for good FTC performance. 
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Figure  2-11: Autonomous Coordination & Supervision Scheme (ACSS) 

 

Figure  2-11 illustrates a suitable architecture which facilitates this requirement, based on a 

two-level decomposition of the overall system into a higher level autonomous coordination 

of local control systems at a subsystem level. This is the autonomous control and 

supervision system (ACSS) proposed in (Patton et al., 2007). 
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The coordinator role includes an element of management of system reconfiguration in the 

event of control failure of one subsystem. The coordinator minimizes the interaction 

imbalance among the local controllers as a result of a controller malfunction. Hence, the 

coordination can be viewed as a global control function comprising the highest level of the 

two-level structure. It will be shown that by using this two-level structure with LQR and 

local and global constraints a “plug and play” feature enables the system to reconfigure 

easily, subsequent to a local control malfunction. 

In the context of building vibration control it is important to be able to maintain good 

control performance and fault tolerance when the control actuation fails to function 

correctly on one or more floors of the building. 

 

2.7.2.1 H-infinity ( H∞ ) control 

In this study the performance of the two-level distributed control scheme to seismic 

excitation is compared with that of a single level centralized (or aggregate) output feedback 

using a robust control design.  The H∞ approach is considered to be a suitable approach (in 

terms of robustness and disturbance rejection) controller, for a system such as Eqs.( 2-38)-

( 2-40), that has vibration disturbance  (Burns, 2001). As the H∞ approach to robust control 

is very well known it is only necessary here to outline the main concept. The H∞ output 

feedback design (for actuation at multiple floors) is made using the MATLAB© LMI 

toolbox, based on the concept of disturbance minimization as follows: 

The closed-loop system transfer function from the seismic disturbance to the outputs is 

considered as 𝑇𝑦𝑤 (s), where: 

||𝑇𝑦𝑥 𝑔
 𝑠 ||∞ = 𝑠𝑢𝑝𝜔𝜎 [𝑇𝑦𝑥 𝑔

 𝑗𝜔 ] ( 2-41) 

𝜎  denotes the largest singular value of the matrix 𝑇𝑦𝑤  𝑠  and supω denotes the least upper 

bound of a set of real numbers, covering the angular frequency range of interest (Ashish, 

2002) . This centralized control system is used here only as a basis for control performance 

comparison with the two-level distributed scheme. It will be shown that this single level 

structure cannot be used to satisfy the FTC requirements for a multi-floor building system. 
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2.7.2.2 Two-Level hierarchical approach to fault-tolerant vibration 

control of building structures 
 

The concept of interest is that of achieving FTC if a subsystem should malfunction. For this 

study and to correspond with Figure 2-10 an individual subsystem is defined as the local 

dynamics of a single floor with its actuation.  To provide an explanation for the way in 

which a two-level hierarchical control system can achieve the required fault-tolerance it is 

first necessary to examine the properties of the two-level scheme initially proposed by 

(Singh,Hassan and Titli, 1976). 

In order to implement a two-level distributed control system a method is required to 

decompose the system into appropriate subsystems (Singh,Hassan and Titli, 1976, 

Jamshidi, 1997). 

A suitable decomposition is essential to construct the use of more than one level of control 

in the hierarchical scheme of Figure 2-11. The decomposition of the system Eqs.( 2-38)& 

( 2-40) can be made in terms of 𝑛 subsystems, as follows: 

𝑥 𝑖(𝑡) = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝐶𝑖𝑧𝑖 𝑡   ( 2-42) 

𝑧𝑖(𝑡) =  𝐿𝑖𝑗 𝑥𝑗  𝑡                     𝑖 = 1, …… , 𝑁

𝑁

𝑗 =1

 ( 2-43) 

where 𝑥𝑖(𝑡) ∈ 𝑅𝑛×1  , 𝑢𝑖(𝑡) ∈ 𝑅𝑚×1  are the subsystem states and controls. 𝑧𝑖(𝑡) ∈ 𝑅𝑞×1 

represents the interconnection states between the i
th

 and 𝑁 − 1 remaining subsystems. 

Following the procedure of (Singh,Hassan and Titli, 1976), based on constrained LQR the 

global optimization problem for the control of an inter-connected system is: 

min 𝐽, where 𝐽 is a cost function defined as: 

𝐽 =  
1

2

𝑁

𝑖=1

 (𝑥𝑖
𝑇

𝑇

𝑡𝑜

 𝑡 𝑄𝑖𝑥𝑖(𝑡) + 𝑢𝑖
𝑇 𝑡 𝑅𝑖𝑢𝑖(𝑡))𝑑𝑡    ( 2-44) 

where 𝑄𝑖  is a positive semi definite matrix and 𝑅𝑖  is a positive definite matrix, 𝑡𝑜  is the 

initial time and 𝑇 is the final time. It can be seen that this cost function is “additively 

separable”, since the individual subsystem cost components are added together to give the 

global cost (Singh and Titli, 1978). This leads to the important concept of “plug and play” 
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through which the global controller (coordinator) can effectively reschedule the control 

action, for example if a subsystem malfunctions of fails. The following theoretical 

derivation from (Jamshidi, 1997) maintains the plug and play concept noted in 

(Kambhampati,Patton and Uppal, 2006). As the main contribution of this work is to use 

this concept for FTC it is necessary to outline here the mathematical structure of the two-

level control system, showing the concept of interaction compensation that is important to 

achieve fault-tolerance. When local control of a subsystem fails the interaction 

compensation is an important function of the global control and can lead to good FTC 

performance. From optimization theory the Lagrangian of the global system is: 

𝐿 =  𝐿𝑖 =

𝑁

𝑖=1

 
1

2

𝑁

𝑖=1

 {(𝑥𝑖
𝑇

𝑇

𝑡𝑜

𝑄𝑖𝑥𝑖 + 𝑢𝑖
𝑇𝑅𝑖𝑢𝑖)  + 𝜆𝑖

𝑇(𝑧𝑖 −  𝐿𝑖𝑗 𝑥𝑗 (𝑡))

𝑁

𝑗 =1

+ 𝑃𝑖
𝑇(−𝑥 𝑖 𝑡 

+  𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝐶𝑖𝑧𝑖 𝑡 )}𝑑𝑡 

( 2-45) 

where 𝜆𝑖  are Lagrange multipliers and 𝑃𝑖  is the adjoint vector. 

It can be seen that 𝐿 is additively separable for any given 𝑧𝑖  and 𝜆𝑖  , preserving the plug 

and play property. 

The Hamiltonian for each subsystem can be written as in (Stefani et al., 2002): 

𝐻𝑖 =
1

2
𝑥𝑖

𝑇 𝑡 𝑄𝑖𝑥𝑖(𝑡) +
1

2
𝑢𝑖

𝑇 𝑡 𝑅𝑖𝑢𝑖(𝑡) + 𝜆𝑖
𝑇(𝑧𝑖(𝑡) −  𝐿𝑖𝑗 𝑥𝑗 (𝑡))

𝑁

𝑗 =1

+ 𝑃𝑖
𝑇  𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝐶𝑖𝑧𝑖 𝑡   

( 2-46) 

From Eq. ( 2-46), the necessary optimality conditions are: 

𝜕𝐻𝑖

𝜕𝑥𝑖
= −𝑃 

𝑖 = 𝑄𝑖𝑥𝑖 𝑡 + 𝐴𝑖
𝑇𝑃𝑖 𝑡 −  [𝐿𝑗𝑖

𝑇 𝜆𝑗 ]

𝑁

𝑗 =1

 

with  𝑃 𝑇 = 0 

( 2-47) 

𝜕𝐻𝑖

𝜕𝑢𝑖
= 0  ⟹ 𝑢𝑖(𝑡) = −𝑅𝑖

−1𝐵𝑖
𝑇𝑃𝑖(𝑡) ( 2-48) 

𝜕𝐻𝑖

𝜕𝑧𝑖
= 0  ⟹ 𝜆𝑖 = −𝐶𝑖

𝑇𝑃𝑖(𝑡) ( 2-49) 
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𝜕𝐻𝑖

𝜕𝜆𝑖
= 0  ⟹ 𝑧𝑖(𝑡) =  𝐿𝑖𝑗 𝑥𝑗 (𝑡)

𝑁

𝑗 =1

 ( 2-50) 

Using the procedure of (Singh and Titli, 1978) the compensation of the interaction is 

computed via partial feedback control as follows: 

Let 𝑃𝑖(𝑡) = 𝐾𝑖𝑥𝑖(𝑡) + 𝑆𝑖(𝑡)  where  𝐾𝑖   is the local optimal gain determined from the 

solution of the standard LQR matrix Riccati equation, and 𝑆𝑖  is an open-loop interaction 

compensation control vector. 

It then follows that: 

𝑃 
𝑖(𝑡) = 𝐾𝑖𝑥 𝑖(𝑡) + 𝐾 

𝑖𝑥𝑖(𝑡) + 𝑆 
𝑖(𝑡) ( 2-51) 

Substituting Eq.( 2-48) into Eq.( 2-42) gives the closed-loop i
th

 subsystem state equation as: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 − 𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖𝑥𝑖 𝑡 − 𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇𝑆𝑖 𝑡 + 𝐶𝑖𝑧𝑖 𝑡  ( 2-52) 

Substituting Eq.( 2-47) and Eq.( 2-52) into Eq.( 2-51) yields: 

−𝑄𝑖𝑥𝑖 𝑡 − 𝐴𝑖
𝑇𝑃𝑖 𝑡 +   𝐿𝑗𝑖

𝑇 𝜆𝑗  

𝑁

𝑗 =1

= 𝐾𝑖  𝐴𝑖𝑥𝑖 𝑡 − 𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖𝑥𝑖 𝑡 − 𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇𝑆𝑖 𝑡 + 𝐶𝑖𝑧𝑖 𝑡  

+ 𝐾 
𝑖𝑥𝑖 𝑡 + 𝑆 

𝑖 𝑡   

( 2-53) 

On re-arranging Eq. ( 2-53) the local control 𝐾𝑖  is then given from the solution to the Riccati 

equation: 

𝐾 
𝑖 + 𝐴𝑖

𝑇𝐾𝑖 + 𝐾𝑖𝐴𝑖 − 𝐾𝑖𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖 + 𝑄𝑖 = 0          with 𝐾𝑖 𝑇 = 0 ( 2-54) 

And the compensation vector 𝑆𝑖  can be determined from the solution of: 

𝑆 
𝑖 = −𝐴𝑖

𝑇𝑆𝑖 + 𝐾𝑖𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇𝑆𝑖 − 𝐾𝑖𝐶𝑖𝑧𝑖 +  [𝐿𝑗𝑖
𝑇 𝜆𝑗 ]𝑁

𝑗 =1         with 𝑆𝑖 𝑇 = 0 ( 2-55) 

Substituting Eq.( 2-49) & Eq.( 2-50)into Eq. ( 2-53) leads to: 

𝑆 
𝑖 = −𝐴𝑖

𝑇𝑆𝑖 + 𝐾𝑖𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇𝑆𝑖 − 𝐾𝑖𝐶𝑖   𝐿𝑖𝑗 𝑥𝑗  𝑡 

𝑁

𝑗 =1

 −  [𝐿𝑗𝑖
𝑇 𝐶𝑗

𝑇𝑃𝑗 (𝑡)]

𝑁

𝑗 =1

 ( 2-56) 

and substituting 𝑃𝑖(𝑡) = 𝐾𝑖𝑥𝑖(𝑡) + 𝑆𝑖(𝑡) into Eq. ( 3-56) we get: 
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𝑆 
𝑖 = −𝐴𝑖

𝑇𝑆𝑖 + 𝐾𝑖𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇𝑆𝑖 − 𝐾𝑖𝐶𝑖   𝐿𝑖𝑗 𝑥𝑗

𝑁

𝑗 =1

 −  [𝐿𝑗𝑖
𝑇 𝐶𝑗

𝑇(𝐾𝑗 𝑥𝑗 + 𝑆𝑗 )]

𝑁

𝑗 =1

 ( 2-57) 

The solution to Eq. ( 2-57) gives the updated compensation matrix 𝑆𝑖 . 𝑆𝑖   can thus be 

updated and the process repeated. The total subsystem control is thus: 

𝑢𝑖 𝑡 = −𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖𝑥𝑖 𝑡 − 𝑅𝑖
−1𝐵𝑖

𝑇𝑆𝑖(𝑡) ( 2-58) 

where −𝑅𝑖
−1𝐵𝑖

𝑇𝐾𝑖𝑥𝑖(𝑡) is the local control and  −𝑅𝑖
−1𝐵𝑖

𝑇𝑆𝑖(𝑡) is the “global” control action 

of the interaction compensation provided by the coordination function (Singh,Hassan and 

Titli, 1976). 

This formulation shows clearly that if the i
th

 subsystem control malfunctions or suffers an 

unusual disturbance then the interaction state will reflect the change and the global control 

will provide some compensation through the update of the interaction compensation 

vector   𝑆𝑖 . This ability of the two-level distributed system to compensate for local control 

faults (or failures) corresponds to the plug and play feature in which a local actuator could 

be completely removed from the overall system structure in a fault-tolerant way. The 

building example of Sections 2.6.3 illustrates this fault-tolerance principle with results that 

include the removal of one or more floor actuation systems. 

 

2.7.3 Three-floor building example 

Consider the structure of three-story building model as shown in Figure  2-12, which has 

one semi-active actuator installed at each floor, this example has been adopted from  

(Yang,Jerome and Kincho, 2009) where the mass, stiffness coefficient, and damping 

coefficient matrices of the building are: 

𝑀 =    
6           0       0
0     6  0
0    0 6

  × 10
3
kg    , 𝐾 =  

3.4        −1.8               0
−1.8         3.4         −1.6

0       −1.6            1.6
 × 10

6 N m
-1

  

𝐶 =  
12.4             −5.16             0

−5.16            12.4          −4.59

0           −4.59               7.2
 × 10

3
N m s

-1
 

From Eq. ( 2-36) and Eq.( 2-37) , the state-space model of the building is: 
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𝐴 =

 
 
 
 
 
 

0

−266.7
0

266.7
0

0

           

  1
−1.2

0
0.7647

0

0

         
  0

300

   0
           −600

           0
              300

0

0.8603

1
          −2.156

0

       0.8603

          
0

0

0
            266.7

         0
        −533.3

 

           0
           0
           0

           0.7647

            1
−1.965  

 
 
 
 
 

        

𝐵 =

 
 
 
 
 
 

0
−1.667

0
1.667

0
0

 

        
0

1.667
0

         
   −3.333

0
1.667

         

0
0
0

    1.667
0

−3.333 
 
 
 
 
 

× 10−4, 𝐸 =

 
 
 
 
 
 

 

0
−1
0
0
0
0

 

 
 
 
 
 
 

 

( 2-59) 

 

2.7.3.1 Linear system decomposition 

A procedure of (Jamshidi, 1997) can be used to decompose the linear building structure 

dynamic system of Eqs. ( 2-38)-( 2-40) into k inter-connected linear subsystems. First this 

system is re-written as: 

 
 
 
 
 
 
𝑥 1
𝑥 2
.
.
.

𝑥 𝑘  
 
 
 
 
 

=  

 
 
 
 
 
 
𝐴1   𝐿12   .   .    .    .   .     𝐿1𝑘

𝐿21     𝐴2   𝐿23   .    .    .   𝐿2𝑘

.

.

.
 𝐿𝑘1   .     .      .    .     .    .  𝐴𝑘   

 
 
 
 
 

 
 
 
 
 
 
𝑥1

𝑥2

.

.

.
𝑥𝑘  

 
 
 
 
 

 +  

 

 
 
 
 
 
 
𝐵1   𝐵12   .   .    .    .   .     𝐵1𝑘

𝐵21    𝐵2   𝐵23   .    .    .   𝐵2𝑘

.

.

.
 𝐵𝑘1  .     .      .    .     .    .  𝐵𝑘   

 
 
 
 
 

 
 
 
 
 
 
𝑢1

𝑢2

.

.

.
𝑢𝑘 

 
 
 
 
 

+

 
 
 
 
 
 
𝐸1

𝐸2

.

.

.
𝐸𝑘  

 
 
 
 
 

𝑊   

( 2-60) 

From this the subsystems are described as: 

𝑥 1 = 𝐴1𝑥1 + 𝐿12𝑥2 +  … + 𝐿1𝑘𝑥𝑘 + 𝐵1𝑢1 + 𝐵12𝑢2 +  … + 𝐵1𝑘𝑢𝑘 + 𝐸1𝑊    ( 2-61) 

𝑥 2 = 𝐿21𝑥1 + 𝐴2𝑥2 + … + 𝐿1𝑘𝑥𝑘 + 𝐵21𝑢1 + 𝐵2𝑢2 +  … + 𝐵2𝑘𝑢𝑘 + 𝐸2𝑊    ( 2-62) 

𝑥 𝑘 = 𝐿𝑘1𝑥1 + 𝐿𝑘2𝑥2 +  … + 𝐴𝑘𝑥𝑘 + 𝐵𝑘1𝑢1 + 𝐵𝑘2𝑢2  … + 𝐵𝑘𝑢𝑘 + 𝐸𝑘𝑊    ( 2-63) 
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Figure  2-12: Three-story building 

 

In this case the system is described by Eq.( 2-59) can be divided into three subsystems 

defined as follows: 

 

𝐴 =

 
 
 
 
 
 

0

−266.7
0

266.7
0

0

   

           
1

−1.2
0

             
0.7647

0

0

         
0

300

0
   −600

         0
          300

         
0

0.8603

1
       −2.156

         0
            0.8603

     
0

0

0
        266.7

      0
          −533.3

           

0

0

0

  0.7647

1

−1.965 
 
 
 
 
 

 

 

𝐵 =

 
 
 
 
 
 

0

−1.667

0

1.667

0

0

 

              
0

1.667

0
           −3.333

            0
              1.667

         

0

0

0

    1.667

0

−3.333 
 
 
 
 
 

× 10
−4

 

The three subsystem models are as follows: 

1
st
 Subsystem  

𝐴1 =  
0   1

−266.7    −1.2
   , 𝐵1 =  

0
−1.667

 × 10−4 ,  𝐵12 =  
0

1.667
 × 10−4,   

𝐵13 =  
0
0
 × 10−4 and  𝐸1 =  

0
−1

  

( 2-64) 

The interconnection matrices between 2
nd

 subsystem and the 1
st
 as well as between 3

rd
 

subsystem and the 1
st
 respectively are: 
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𝐿12 =  
0 0

300      0.8603
  and  𝐿13 =  

0     0
0     0

  ( 2-65) 

2
nd

 Subsystem: 

𝐴2 =  
0        1

−600       −2.156
    ,   𝐵21 =  

0
1.667

 × 10−4,𝐵2 =  
0

−3.333
 × 10−4,     

𝐵23 =  
0

1.667
 × 10−4 and   𝐸2 =  

0
0
  

( 2-66) 

The interconnection matrices between 1
st
 subsystem and the 2

nd
 as well as between 3

rd
 

subsystem and the 2
nd

 respectively are: 

𝐿21 =  
0     0

266.7      0.7647
  and 𝐿23 =  

0    0
266.7      0.7647

  ( 2-67) 

3
rd

 Subsystem: 

𝐴3 =  
0        1

−533.3      −1.965
   ,  𝐵31 =  

0
0
 × 10−4 ,  𝐵32 =  

0
1.667

 × 10−4  ,    

𝐵3 =  
0

−3.333
 × 10−4 and   𝐸2 =  

0
0
  

( 2-68) 

The interconnection matrices between 1
st
 subsystem and the 3

rd
 as well as between 2

nd
 

subsystem and the 3
rd

 respectively are: 

𝐿31 =  
0    0
0    0

  and 𝐿32 =  
0      0

300        0.8603
  ( 2-69) 

Figure  2-13 shows the validation of the decomposed (distributed) model system by 

comparing the outputs with the aggregated system outputs. The 1940 El Centro earthquake 

record is used as a single seismic disturbance input (at ground level) to evaluate the 

effectiveness of both the two-level hierarchical and the aggregated systems with H∞ control 

(NISEE, 2010). 
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Figure  2-13: Displacements for both aggregated and distributed systems 

 

2.7.3.2 Plug and play FTC results 

Figure  2-14, 2-15 & 2-16 show the displacement response of all three building floors when 

excited by the El Centro earthquake seismic data for cases of: (i) no control, (ii) H∞ output 

feedback control and (iii) two-level hierarchical control. 

Figure  2-17 illustrates the maximum inter-floor displacements of all three floors (i) without 

control, (ii) the H∞ control and (iii) with the two-level control. With no faults this result 

shows that the centralized H∞ solution is very similar to the two-level control result. For the 

1
st
 and 2

nd
 floors the H∞ control is slightly better, but for the 3

rd
 floor the two-level control 

gives the best result. 

 

Figure  2-14: 1
st
 floor displacements 
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Figure  2-15: 2
nd

 floor displacements 

 

Figure  2-16: 3
rd

 floor displacements 

 

Figure  2-17: Maximum inter-floor displacements 

Figure  2-18 shows the normal force output of the 1
st
 floor actuator subject to the seismic 

input excitation, under two-level control operation. 
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Figure  2-18: 1
st
 floor actuator force with no faults 

 

Figure  2-19: 1
st
 floor actuator malfunction and failure 

Figure  2-19 illustrates the simulation of a realistic fault/failure scenario for this actuator 

with the two-level control. After normal operation (0 to 5 s) the actuator is considered to be 

sticking (5 to 10 s). To simulate the effect of a limit cycle caused by friction a random 

noise uniformly distributed [0, 8000] is applied to the actuator input (10 to 12 s). After a 

normal operation period of (12 to 18 s) the simulation includes total actuator failure, 

meaning that the local system (1
st
 floor) no longer has vibration control action. 



51 
 

 

Figure  2-20: 1
st
 floor displacement (two-level control and actuator faults) 

 

The corresponding 1
st
 floor displacement Figure  2-20 illustrates the comparison between 

the normal and faulty operations. 

 

Figure  2-21: Maximum inter-floor displacements 

Using the same 1
st
 floor actuator fault/failure scenario depicted in Figure  2-19 & 2-20 the 

maximum inter-floor displacements for the cases of (i) no control, (ii) H∞ control and (iii) 

the two-level hierarchical control are shown in Figure  2-21, 2-22 & 2-23. A comparison of 

the floor displacement results for both the two-level and H∞ control designs shows that 

when there is a fault/failure in one actuator (1
st
, 2

nd
 or 3

rd
 floors) the two-level scheme 

gives the least displacement. This is the case as the two-level system is able to react to the 

control malfunction via the global control compensation function of the term 𝑅𝑖
−1𝐵𝑖

𝑇𝑆𝑖(𝑡) in 

Eq. ( 2-58). 
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Figure  2-22: Maximum inter-floor displacement: 2
nd

 floor actuator fault 

The malfunction of the subsystem control is compensated by re-scheduling the control 

actions to the remaining subsystems. This is the case, even when the subsystem control 

fails completely (i.e. the control has no effect). Thus is the essence of the plug and play 

concept of the two-level distributed control that can be seen via the additively separable 

nature of the global cost function of Eq.( 2-44). There is, however upper bounds to the 

permissible control signals that have not been determined in this work. 

 

Figure  2-23: Maximum inter-floor displacement: 3
rd

 floor actuator fault 

Figure  2-24 shows the comparison between the H∞ and two-level control systems for the 

case when the coordinator itself malfunctions. Each subsystem operates independently 

through three local control systems (based on LQR design). 

Figure  2-25 shows the case when the model parameters of Eq.( 2-59) are perturbed by -

10%, for which the floor displacements for the two-level and H∞ control systems cases 

converge above the 2
nd

 floor level. The H∞ solution shows better robustness between the 1
st
 

and 2
nd

 floor levels. 
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Figure  2-24: Maximum inter-floor displacement: Coordinator failure 

 

Figure  2-25: Maximum displacements: 10% mismatched & correct models with H∞ & two-

level control 

 

2.8 Conclusion 

This Chapter outlines the linear inter-connected systems methods and makes a comparison 

of the hieratical distributed control methods, as well as their FTC properties. Particular 

attention is paid to the interaction prediction approach with the inclusion of fault-tolerant 

control.  The fault estimation is used to detect and isolate the presence of faults so that a 

system reconfiguration can be carried out to replace the faulty subsystem component by a 

healthy one.  

An example of controlling tall buildings in the event of an earthquake is given using the 

interaction prediction approach. An interesting result observed in this example is that 
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systems that are controlled via two-level hierarchical control exhibit a special form of fault-

tolerance. If subsystems malfunction or fail, the global control has the capability of 

compensating for the individual controller malfunctions, to maintain the required control 

performance. This is the so-called “plug and play” feature of two-level distributed systems, 

based on constrained LQR control with additive separable global cost. This concept is 

illustrated using an example of displacement control in multi-floor buildings subject to 

seismic excitation. 

The global performance of the two-level scheme, both for floor actuator malfunctions and 

model uncertainties have been compared with a centralized (aggregated) robust control 

design using H∞ optimization with respect to the exogenous seismic inputs. When the 

coordinator of the two-level systems fails completely, the control performance (in terms of 

minimal floor displacement) is similar to that of the H∞ design. The H∞ design deteriorates 

if any of the floor actuators malfunctions or fails. However, the two-level system shows a 

strong ability to maintain good displacement control in the presence of actuator faults and 

even in the presence of a completely failed floor actuator, illustrating the significance of the 

plug and play feature. 

In reality, all systems have non-linear dynamics.  It is therefore of value to examine the 

performance of de-centralised control and FTC when applied to non-linear inter-connected 

systems. Consequently, the remaining Chapters of the thesis focus on the development of 

inter-connected de-centralised control schemes that take into account the system non-

linearity and provide robust performance in the presence of modelling uncertainty. The aim 

is to develop robust schemes that also have good FTC properties. The thesis describes 

several approaches to robust de-centralised control and these are compared using various 

non-linear system examples and the approach to FTC is based on robust fault estimation, 

together with system reconfiguration if a fault is detected and located. 
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Chapter 3 : Control of inter-connected 

systems via LMI combined with ISMC 
 

3.1 Introduction 

Chapter 2 discussed the concept of inter-connected systems, starting from the more general 

non-linear system description and focusing on the development of linear systems concepts. 

As a further development this chapter is based entirely on the consideration of a non-linear 

inter-connected system with bounded uncertainty, non-linear interconnections as well as 

bounded disturbances. In this work the Lipschitz non-linear model has been considered as a 

tutorial example to which the appropriate analysis non-linear inter-connected system design 

is made. This fits with the subject of de-centralized control of inter-connected systems 

which has received a very significant amount of research attention during more than three 

decades (Gertler, 1995, Šiljak and Stipanovic, 2001, Zecevic and Šiljak, 2005, Castaños,Xu 

and Fridman, 2006, Batool,Horacio and Tongwen, 2009, Dhbaibi,Tlili,Elloumi and Benhadj 

Braiek, 2009, Zecevic and Šiljak, 2010).The literature is rich with the development of 

powerful strategies for handling the combined problem of minimizing the effect of non-

linear interactions whilst designing suitable robust de-centralized (or local) control systems. 

The de-centralized control concept is naturally extendable to large-scale systems, 

comprising significant complexity in terms of many inter-connected systems. Well-known 

design methods include 𝐻∞ optimization and multi-objective designs based on linear matrix 

inequalities (LMI). 

This thesis is based on developments of sliding mode control (SMC) applicable to inter-

connected systems. The SMC theory provides a powerful approach to inherent robustness 

to unknown matched uncertainties, actuator faults and disturbances (Utkin, 1992, Edwards 

and Spurgeon, 1998, Pisano and Usai, 2011, Mondal and Mahanta, 2012) and has attractive 
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properties for ensuring the robustness of some inter-connected systems. When the system is 

on the sliding surface, the system is robust to unknown matched uncertainties, bounded 

actuator fault and disturbances but it is still sensitive to unmatched ones (Edwards and 

Spurgeon, 1998, Poznyak,Fridman and Bejarano, 2004, Hamayun,Edwards and Alwi, 

2010). 

The concept of sliding and its inherent robustness to matched uncertainties has been 

applied to the de-centralized control problem by a number of investigators during the last 

decade (Yan,Spurgeon and Edwards, 2003,Yan,Edwards and Spurgeon, 2004, Castaños 

and Fridman, 2005).  

Following this background this study concentrates on a further development of SMC, the 

so-called integral sliding mode control (ISMC) that ensures the system state starts 

functioning on the sliding surfaces from initial time, without the requirement of a sliding 

surface “reaching phase” (Castaños and Fridman, 2005, Hamayun,Edwards and Alwi, 

2010). ISMC offers some robustness advantages over classical SMC because it 

compensates unknown matched uncertainties, actuator faults and disturbances from initial 

time (Edwards,Spurgeon and Patton, 2000,Chang, 2009, Changqing,Patton and Zong, 

2010). However, one disadvantage of the standard approach to ISMC is that a 

comprehensive knowledge of the state vector is required as well as the initial state vector 

during implementation. A valuable concept in this current study is the use of a combination 

of a sensitivity minimization approach with the ISMC design to enhance the overall 

robustness from initial time, thereby ensuring sliding but also reducing the effect of the 

unmatched uncertainties on the closed-loop system performance. This can be achieved, for 

example by using an 𝐻∞ optimization approach with an LMI framework (Bejarano,Fridman 

and Poznyak, 2007,Jeang-Lin and Huan-Chan, 2009, Mondal and Mahanta, 2012). Thus, 

the control action is the sum of two signals; the first rejects the unknown matched 

uncertainties and the actuator fault and disturbances, whilst the second is responsible for 

the system stability and works to ensure that the required level of robustness performance is 

achieved by using the LMI strategy. An alternative control design procedure to make the 

subsystem controllers insensitive to any bounded matched components after applying 

sliding mode control is described by  (Šiljak and Stipanovic, 2001)  
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Using these concepts this Chapter focuses on the design of state feedback control assuming 

a Lipschitz non-linear state space system model, where each subsystem is dependent only 

on its own subsystem states, within the required de-centralized control. 

The main contributions of this Chapter are as follows: 

1- The suggestion of developing a new ISMC with an LMI-based control design of 

non-linear inter-connected systems covering two approaches. The first is to design 

independent control systems for each subsystem, whilst the second approaches the 

design of the whole system as a “one shot” approach involving a single overall 

simultaneous design of all the subsystems. 

2- The applications of all these techniques are applied to a three-floored building 

structure involving a study of the faults that may occur in the actuators, in addition 

to an investigation of the ability of the overall system to compensate for the effects 

these actuator faults. 

The remaining Sections are planned as follows: Section 3.2 presents the main problem 

formulation of non-linear inter-connected systems as well as stating the necessary 

assumptions. Section 3.3 describes the control design methods that use the combined ISMC 

and LMI-based design strategy. These design methods focus on the subsystem description 

comprising both known and unknown interactions applicable to the two possible approaches 

to controller design, namely the one shot and individual subsystems (taken one at a time). 

Section 3.4 gives an example of a three storey building assumed to have a seismic 

excitation considered as a disturbance input. This non-linear system building example with 

floor actuator faults is used as a benchmark problem to compare the properties of each of 

the one shot and individual subsystem control design approaches. Finally, the conclusions 

are presented in Section 3.5. 

 

3.2 Problem description and basic assumptions 

Consider an inter-connected system that consists of many subsystems, and every subsystem 

is a continuous-time system which can be described as: 
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𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝑍𝑖 𝑡 + 𝑊𝑖 𝑥𝑖 , 𝑡 + 𝐸𝑖𝑑𝑖(𝑡) + 𝐵𝑖𝑓𝑖(𝑡) 

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡                   𝑖 = 1, … … , 𝑁 

( 3-1) 

where 𝑥𝑖(𝑡) ∈ ℝ𝑛 is the state vector, 𝑢𝑖(𝑡) ∈ ℝ𝑚  are the control inputs and 𝑦𝑖 𝑡 ∈ ℝ𝑝  is the 

vector of system outputs. 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖  and 𝐸i  are known matrices of appropriate dimensions. 

𝑍𝑖 𝑡 ∈ ℝ𝑛  represents the unknown time-varying interactions between the subsystems, 

containing matched and unmatched components. 

Hence, 𝑍𝑖 = 𝑍𝑚𝑖 + 𝑍𝑢𝑖  where 𝑍𝑚𝑖  is a matched component of 𝑍𝑖and 𝑍𝑢𝑖  are the unmatched 

components (Castaños,Xu and Fridman, 2006). 

Dropping the subscripts in 𝑍𝑖 𝑡  and using the Bezout identity 𝐼𝑛 = 𝐵𝐵+ + 𝐵⊥𝐵⊥+ , where 

𝐵+ = (𝐵𝑇𝐵)−1𝐵𝑇 , 𝐵⊥  is a null space of 𝐵𝑇 , 𝑍𝑖 = 𝐵𝑖𝐵𝑖
+𝑍𝑖 + 𝐵𝑖

⊥𝐵𝑖
⊥+𝑍𝑖  and 𝐵𝑇𝐵⊥ = 0, 

then 𝑍𝑖 = 𝐵𝑖𝐵𝑖
+𝑍𝑖 + 𝜁𝑖  where 𝜁𝑖 = 𝐵𝑖

⊥𝐵𝑖
⊥+𝑍𝑖  contains the unmatched uncertainty 

components. 

𝑊𝑖 𝑥𝑖 , 𝑡  represents the subsystem unknown modelling uncertainties that satisfy the 

matching condition 𝑊𝑖(𝑥𝑖 , 𝑡) = 𝐵𝑖𝑄𝑖(𝑥𝑖 , 𝑡), 𝑑𝑖(𝑡) is an unknown bounded disturbance, 𝑓𝑖(𝑡) 

∈ ℝ𝑘  denotes the actuator faults, where 𝑓𝑖(𝑡)  = −𝐾(𝑡)𝑢𝑖  and 𝐾 𝑡 = 𝑑𝑖𝑎𝑔(𝐾𝑖)  with 

0 ≤ 𝐾𝑖 ≤ 1 , 𝐾𝑖 = 0  that means the actuator is working perfectly and if 𝐾𝑖 = 1  the i
th

 

actuator has failed completely therefore the subsystem does not respond to any control 

signal otherwise for 0 ≤ 𝐾𝑖 ≤ 1 a fault (without failure) is present. 

Assumptions: 

A1-The pair (𝐴𝑖 , 𝐵𝑖) is controllable and (𝐶𝑖 , 𝐴𝑖) is an observable. 

A2-The matrices  𝐵𝑖  has full rank 𝑚𝑖 . 

A3-The initial state 𝑥𝑖(𝑡𝑜) is bounded. 

A4- 𝑍𝑖(𝑡) Euclidean bounded norms as: 

 𝑍𝑖(𝑡) ≤ 𝛽𝑖(𝑥𝑖 , 𝑡) where 𝛽𝑖 𝑥𝑖 , 𝑡   is known non-linear function and it vanishes 

when 𝑥𝑖(𝑡) tends to zereo  (Šiljak and Stipanovic, 2001). 

A5- 𝑄𝑖(𝑥𝑖 , 𝑡)) are bounded as: 

 𝑄𝑖(𝑥𝑖) ≤ 𝜅𝑖 𝑥𝑖  ,where 𝜅𝑖 > 0 are known Lipschitz constants (Changqing,Patton 

and Zong, 2010). 
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A6- 𝑑𝑖(𝑡)   bounded norms as: 

  𝑑𝑖(𝑡) ≤ 𝛾𝑖   𝑥𝑖  ,where 𝛾𝑖 > 0 are known constants. 

A7- 𝑓𝑖(𝑡)  bounded norms as: 

 𝑓𝑖(𝑡) ≤ 𝜂𝑖   𝑥𝑖  ,where 𝜂𝑖 > 0 are known Lipschitz constants and 𝐾𝑖 < 1 . 

Following the Assumptions above Eq. ( 3-1) becomes: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝐵𝑖𝐵𝑖
+𝑍𝑖 𝑡 + 𝜁𝑖 𝑡 + 𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 + 𝐸𝑖𝑑𝑖(𝑡) + 𝐵𝑖𝑓𝑖(𝑡) 

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡                    𝑖 = 1, … … , 𝑁 

( 3-2) 

The control signal contains two components as: 

𝑢𝑖(𝑡) = 𝑢𝑖
𝐿𝑀𝐼(𝑡) + 𝑢𝑖

𝐼𝑆𝑀(𝑡) ( 3-3) 

Where 𝑢𝑖
𝐿𝑀𝐼  is responsible for stabilizing the system, obtaining the desired performance 

and decreasing the effects of unmatched components, 𝑢𝑖
𝐼𝑆𝑀  is a discontinuous control 

responsible for rejecting the effects of matched components (uncertainties, disturbances and 

actuator faults). 

Substituting Eq. ( 3-3) into Eq. ( 3-2) yields the i
th

 subsystem including the ISMC: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼(𝑡) + 𝐵𝑖𝑢𝑖

𝐼𝑆𝑀(𝑡) + 𝐵𝑖𝐵𝑖
+𝑍𝑖 𝑡 + 𝜁𝑖 𝑡 + 𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 

+ 𝐸𝑖𝑑𝑖(𝑡) + 𝐵𝑖𝑓𝑖(𝑡) 

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡                   𝑖 = 1, … … , 𝑁 

( 3-4) 

3.3 Control design techniques  

The design of a control system based on the inter-connected systems depends on 

knowledge of the type and extent of the subsystem interconnections. Consequently, the 

control design is classified as follows: 

1- All the interconnections are unknown. 

2- All the interconnections are known. 

Control designs based on these classifications are considered as follows. 
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3.3.1 All the interconnections are unknown 

If it is assumed that all the subsystems are connected to each other and the i
th

 subsystem 

interconnections 𝑍𝑖   are unknown, then this implies that the distribution matrices of the 

interconnections are also unknown.  The de-centralized subsystem control system 

corresponding to this scenario is now developed using the classical ISMC approach 

(without minimizing the effects of the unmatched uncertainty): 

 

3.3.1.1 Integral sliding mode control (ISMC) design 

The ISMC design to deal with any matched components can be achieved through the 

following two steps: 

1- Design a sliding surface to satisfy a chosen linear system performance specification 

when the system is on the sliding surface. 

2- Design an appropriate discontinuous control to maintain the chosen sliding motion. 

 

The integral sliding switching surface is proposed as: 

𝜎𝑖 𝑥𝑖 , 𝑡 = 𝐺𝑖[𝑥𝑖(𝑡) − 𝑥𝑖 𝑡𝑜 −   𝐴𝑖𝑥𝑖(𝑡) + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼(𝑡) 𝑑𝑡

𝑡

𝑡𝑜

] ( 3-5) 

where 𝐺𝑖  is an appropriate design matrix that must satisfy the condition that 𝐺𝑖𝐵𝑖  is 

invertible if the actuator has not failed completely. The integral term provides the freedom 

to add any linear controller that satisfies the prescribed time response performance 

specification. The structure of Eq.( 3-5) implies that there is independent freedom to choose 

any control system design method of the linear component of the feedback. This is an 

important characteristic of the ISMC design problem. 

The so-called equivalent control 𝑢𝑒𝑞𝑖 (𝑡)  can maintain the state motion on the sliding 

surface if the actuator fault is bounded by letting the time derivative of 𝜎𝑖 𝑥𝑖 , 𝑡   be 

identically zero, i.e. 𝜎 𝑖 𝑥𝑖 , 𝑡 = 0 (Zinober, 1990,Utkin and Jingxin, 1996, Cao and Xu, 

2001). 

𝜎 𝑖 𝑥𝑖 , 𝑡 = 𝐺𝑖𝑥 𝑖(𝑡) − 𝐺𝑖𝐴𝑖𝑥𝑖(𝑡) − 𝐺𝑖𝐵𝑖𝑢𝑖
𝐿𝑀𝐼(𝑡) = 0 ( 3-6) 
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Substituting Eq. ( 3-4) into Eq. ( 3-6) yields: 

𝐺𝑖𝐴𝑖𝑥𝑖 + 𝐺𝑖𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 + 𝐺𝑖𝐵𝑖𝑢𝑖

𝐼𝑆𝑀+𝐺𝑖𝐵𝑖𝐵𝑖
+𝑍𝑖 𝑡 + 𝐺𝑖𝜁𝑖 𝑡 + 𝐺𝑖𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 

+ 𝐺𝑖𝐸𝑖𝑑𝑖 𝑡 + 𝐺𝑖𝐵𝑖𝑓𝑖 𝑡 − 𝐺𝑖𝐴𝑖𝑥𝑖 − 𝐺𝑖𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 = 0 

( 3-7) 

This leads to the equivalent control signal if 𝑓𝑖 𝑡  is not failure (𝐾𝑖 ≠ 0): 

𝑢𝑒𝑞𝑖  𝑡 = −(𝐺𝑖𝐵𝑖)
−1 𝐺𝑖𝐵𝑖𝐵𝑖

+𝑍𝑖 𝑡 + 𝐺𝑖𝜁𝑖 𝑡 + 𝐺𝑖𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 + 𝐺𝑖𝐸𝑖𝑑𝑖 𝑡 +

𝐺𝑖𝐵𝑖𝑓𝑖𝑡  
( 3-8) 

Rearranging Eq. ( 3-8): 

𝑢𝑒𝑞𝑖  𝑡 = −𝐵𝑖
+𝑍𝑖 𝑡 − (𝐺𝑖𝐵𝑖)

−1𝐺𝑖𝜁𝑖 𝑡 − 𝑄𝑖 𝑥𝑖 , 𝑡 − (𝐺𝑖𝐵𝑖)
−1𝐺𝑖𝐸𝑖𝑑𝑖 𝑡 − 𝑓𝑖 𝑡                                                                                         ( 3-9) 

Substituting ( 3-9) into ( 3-4) gives the equivalent dynamic equation of the i
th

 subsystem in 

sliding mode as: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + [𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐵𝑖)

−1𝐺𝑖]𝜁𝑖 𝑡 

+ [𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐵𝑖)
−1𝐺𝑖]𝐸𝑖𝑑𝑖(𝑡) 

( 3-10) 

From Eq. ( 3-10) the unknown matched uncertainties (𝐺𝑖𝐵𝑖)
−1𝐺𝑖𝜁𝑖 𝑡  and actuator faults 

𝑓𝑖 𝑡  are completely nullified. However, the dynamics of the subsystem on the sliding 

surface still contain the unknown unmatched uncertainties [𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐵𝑖)
−1𝐺𝑖]𝜁𝑖 𝑡  and 

disturbances  [𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐵𝑖)
−1𝐺𝑖]𝐸𝑖𝑑𝑖(𝑡). 

The proposed discontinuous control takes the form: 

𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇𝑖

𝜎𝑖 𝑥𝑖 , 𝑡 

 𝜎𝑖 𝑥𝑖 , 𝑡  
 ( 3-11) 

It is assumed that 𝜇𝑖  is a positive scalar function and a possible choice (according to the 

stability of the subsystem) is: 

𝜇𝑖 >  (𝐺𝑖𝐵𝑖)
−1𝐺𝑖 𝛽𝑖 𝑥𝑖 , 𝑡 + 𝜅𝑖 𝑥𝑖 + 𝛾𝑖 (𝐺𝑖𝐵𝑖)

−1𝐺𝑖𝐸𝑖   𝑥𝑖 + 𝜂𝑖   𝑥𝑖  ( 3-12) 

To maintain the subsystem state on the sliding surface, let 𝜎𝑖 𝑥𝑖 , 𝑡 = 0 . Then consider the 

subsystem stability by choosing the following subsystem Lyapunov functions: 

 𝑉𝑖

𝑁

𝑖=1

(𝜎𝑖 𝑥𝑖 , 𝑡 ) =   𝜎𝑖 𝑥𝑖 , 𝑡  

𝑁

𝑖=1

> 0 
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For stability of each subsystem the time derivatives of each of the 𝑉𝑖(𝜎𝑖 𝑥𝑖 , 𝑡 ) must be 

negative, i.e. 𝑉 
𝑖 𝜎𝑖 𝑥𝑖 , 𝑡  < 0 . this can be verified as follows: 

𝑉 
𝑖(𝜎𝑖 𝑥𝑖 , 𝑡 ) =

𝜎𝑖
𝑇 𝑥𝑖 , 𝑡 𝜎 𝑖 𝑥𝑖 , 𝑡 

 𝜎𝑖 𝑥𝑖 , 𝑡  
 ( 3-13) 

where: 

𝜎 𝑖 𝑥𝑖 , 𝑡 = 𝐺𝑖𝐵𝑖𝑢𝑖
𝐼𝑆𝑀+𝐺𝑖𝑍𝑖 𝑡 + 𝐺𝑖𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 + 𝐺𝑖𝐸𝑖𝑑𝑖 𝑡 + 𝐺𝑖𝐵𝑖𝑓𝑖 𝑡  ( 3-14) 

Substituting the proposed discontinuous control as in Eq.( 3-11) into Eq.( 3-14) and 

substituting the result into Eq.( 3-13) yields: 

 𝑉 
𝑖

𝑁

𝑖=1

 𝜎𝑖 𝑥𝑖 , 𝑡  

=  [

𝑁

𝑖=1

− 𝐺𝑖𝐵𝑖𝜇𝑖+
𝜎𝑖

𝑇 𝑥𝑖 , 𝑡 

 𝜎𝑖 𝑥𝑖 , 𝑡  
 𝐺𝑖𝑍𝑖 𝑡 +

𝜎𝑖
𝑇 𝑥𝑖 , 𝑡 

 𝜎𝑖 𝑥𝑖 , 𝑡  
 𝐺𝑖𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 

+
𝜎𝑖

𝑇 𝑥𝑖 , 𝑡 

 𝜎𝑖 𝑥𝑖 , 𝑡  
 𝐺𝑖𝐸𝑖𝑑𝑖 𝑡 +

𝜎𝑖
𝑇 𝑥𝑖 , 𝑡 

 𝜎𝑖 𝑥𝑖 , 𝑡  
 𝐺𝑖𝐵𝑖𝑓𝑖 𝑡 ] 

( 3-15) 

Re-arranging Eq.( 3-15) as: 

 𝑉 
𝑖

𝑁

𝑖=1

 𝜎𝑖 𝑥𝑖 , 𝑡  

≤  [

𝑛

𝑖=1

−  𝐺𝑖𝐵 [𝜇𝑖 − (𝐺𝑖𝐵𝑖)
−1𝐺𝑖 𝑍𝑖 −  𝑄𝑖 − (𝐺𝑖𝐵𝑖)

−1𝐺𝑖𝐸𝑖 𝑑𝑖 

−  𝑓𝑖 ] 

( 3-16) 

According to Assumptions (4, 5, 6 and 7): 

 𝑉 
𝑖

𝑁
𝑖=1  𝜎𝑖 𝑥𝑖 , 𝑡  ≤

 [𝑁
𝑖=1 −

 𝐺𝑖𝐵𝑖  𝜇𝑖 −  (𝐺𝑖𝐵𝑖)
−1𝐺𝑖 𝛽𝑖 𝑥𝑖 , 𝑡 − 𝜅𝑖 𝑥𝑖  – 𝛾𝑖 (𝐺𝑖𝐵𝑖)

−1𝐺𝑖𝐸𝑖  𝑥𝑖  – 𝜂𝑖   𝑥𝑖    

( 3-17) 

Furthermore according to the choice of in Eq. ( 3-12) that leads to  𝑉 
𝑖

𝑁
𝑖=1  𝜎𝑖 𝑥𝑖 , 𝑡  ≤ 0. 

This implies that the choices of the 𝜇𝑖  according to the inequality Eq.( 3-12) indeed 

guarantee the stability of the sliding surface by using the proposed discontinuous control. 
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The matrices 𝐺𝑖  must be chosen in order to reduce the norm of 𝛹𝑖𝜁𝑖 𝑡  and 𝛹𝑖𝐸𝑖𝑑𝑖(𝑡), as 

well as reducing the amplification of 𝛹𝑖  to the unknown unmatched uncertainties and 

disturbances (Castaños,Xu and Fridman, 2006). 

By using the classical projection theorem, there is a unique vector 𝑚𝑜 ∈ 𝑀  such that 

 𝑥 − 𝑚𝑜 ≤  𝑥 − 𝑚  for all 𝑚 ∈ 𝑀 as shown in Figure  3-1. To minimize the vector 𝑚𝑜  

and (𝑥 − 𝑚𝑜) they must be orthogonal to each other on 𝑀 (Luen, 1997). 
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Figure  3-1: The projection theorem 

 

In the case of unmatched uncertainties where [𝜁𝑖 − 𝐵𝑖(𝐺𝑖𝐵𝑖)
−1𝐺𝑖𝜁𝑖] = 𝜁𝑖 − 𝐵𝑖𝜑𝑖  and 

𝜑𝑖 = (𝐺𝑖𝐵𝑖)
−1𝐺𝑖𝜁𝑖 . Then as in the classical projection theorem, a search for 𝜑𝑖  which 

would make  (𝜁𝑖 − 𝐵𝑖𝜑𝑖) orthogonal to span (𝐵𝑖) is as shown in Figure  3-2. 

The sufficient condition is: 

𝐵𝑖
𝑇𝜁𝑖 − 𝐵𝑖

𝑇𝐵𝑖𝜑𝑖 = 0 .  

This leads to 𝜑𝑖 = (𝐵𝑖
𝑇𝐵𝑖)

−1𝐵𝑖
𝑇𝜁𝑖 = 𝐵𝑖

+𝜁𝑖  

Then 𝜑𝑖 = (𝐺𝑖𝐵𝑖)
−1𝐺𝑖𝜁𝑖 = 𝐵𝑖

+𝜁𝑖  

From the last equation (𝐺𝑖𝐵𝑖)
−1𝐺𝑖 = 𝐵𝑖

+ where 𝐵𝑖
+ = (𝐵𝑖

𝑇𝐵𝑖)
−1𝐵𝑖

𝑇 

As a result the best chose of 𝐺𝑖  is to take  𝐺𝑖 = 𝐵𝑖
𝑇 
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Figure  3-2: The projection theorem of choosing the matrix Gi  

The matrices which minimize the norms 𝛹i  are 𝐵𝑖
𝑇 or 𝐵𝑖

+ which are the same as: 

𝛹𝑖 =  𝐼𝑖 − 𝐵𝑖(𝐵𝑖
𝑇𝐵𝑖)

−1𝐵𝑖
𝑇 =  𝐼𝑖 − 𝐵𝑖𝐵𝑖

+  ( 3-18) 

In addition, the choice of 𝐺𝑖  must not amplify the unknown unmatched uncertainties and 

disturbances where the following identity holds   𝛹𝑖 = 1  (Castaños,Xu and Fridman, 

2006). 

 𝛹𝑖 
2 = 𝛹𝑖

𝑇𝛹𝑖 =  𝐼𝑖 − 𝐵𝑖𝐵𝑖
+ 𝑇 𝐼𝑖 − 𝐵𝑖𝐵𝑖

+ = 𝐼𝑖 − 𝐵𝑖
𝑇+𝐵𝑖

𝑇 − 𝐵𝑖𝐵𝑖
+ + 𝐵𝑖

𝑇+𝐵𝑖
𝑇𝐵𝑖𝐵𝑖

+

=  𝐼𝑖 − 𝐵𝑖𝐵𝑖
+  

( 3-19) 

This leads to: 

𝛹𝑖
𝑇𝛹𝑖 = 𝛹𝑖  ( 3-20) 

From ( 3-20) it can be seen that the matrices 𝛹𝑖  are symmetric which implies that all the 

eigenvalues of 𝛹𝑖  ∈ ℝ𝑛   are real. Suppose that 𝜆𝑖𝑘  with 𝑘 = 1,2, . . 𝑛  is an eigenvalue of 𝛹𝑖  

and 𝑣𝑖𝑘  is the corresponding eigenvector (Castaños and Fridman, 2005), then: 

𝛹𝑖𝑣𝑖𝑘 = 𝜆𝑖𝑘  𝑣𝑖𝑘  ⟹ 𝑣𝑖𝑘
𝑇 𝛹𝑖

𝑇𝛹𝑖𝑣𝑖𝑘 = 𝜆𝑖𝑘
2  𝑣𝑖𝑘 2 ( 3-21) 

According to Eq. ( 3-20): 

𝑣𝑖𝑘
𝑇 𝛹𝑖

𝑇𝛹𝑖𝑣𝑖𝑘 = 𝑣𝑖𝑘
𝑇 𝛹𝑖𝑣𝑖𝑘 = 𝜆𝑖𝑘 𝑣𝑖𝑘 2 ( 3-22) 

That leads to: 

 𝑣𝑖𝑘
𝑇 𝛹𝑖

𝑇𝛹𝑖𝑣𝑖𝑘 = 𝑣𝑖𝑘
𝑇 𝛹𝑖𝑣𝑖𝑘   then  𝜆𝑖𝑘

2  𝑣𝑖𝑘 2 = 𝜆𝑖𝑘 𝑣𝑖𝑘 2 
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This means that  𝜆𝑖𝑘 = 𝜆𝑖𝑘
2  , the solutions of this equation are 𝜆𝑖𝑘1 = 0 and  𝜆𝑖𝑘2 = 1 . The 

rank of  𝐼𝑖 − 𝐵𝑖𝐵𝑖
+ ≠ 0. Therefore,  𝛹𝑖  must have 𝜆𝑖𝑘  different from zero and as a result 

the maximum eigenvalue =1, as a result  𝛹𝑖 = 1 this means that the unknown unmatched 

uncertainties and disturbances are not amplified. 

By substituting the matrices 𝐵𝑖
+ instead of 𝐺𝑖  in Eq. ( 3-10), then: 

1- The terms: 

    𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐵𝑖)
−1𝐺𝑖 𝜁𝑖 𝑡 =  𝐼𝑖 − 𝐵𝑖(𝐵𝑖

+𝐵𝑖)
−1𝐵𝑖

+ 𝐵𝑖
⊥𝐵𝑖

⊥+𝑍𝑖 𝑡  

Where the 𝜁𝑖 𝑡 = 𝐵𝑖
⊥𝐵𝑖

⊥+𝑍𝑖 𝑡  since the 𝐵𝑖
𝑇𝐵𝑖

⊥ = 0  , these terms can be re-written as: 

 𝐼𝑖 − 𝐵𝑖(𝐵𝑖
+𝐵𝑖)

−1𝐵𝑖
+ 𝐵𝑖

⊥𝐵𝑖
⊥+𝑍𝑖 𝑡 = 𝐵𝑖

⊥𝐵𝑖
⊥+𝑍𝑖 𝑡  ( 3-23) 

2- The terms: 

 𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐵𝑖)
−1𝐺𝑖 𝐸𝑖𝑑𝑖 𝑡 =  𝐼𝑖 − 𝐵𝑖(𝐵𝑖

+𝐵𝑖)
−1𝐵𝑖

+ 𝐸𝑖𝑑𝑖 𝑡 =  𝐼𝑖 − 𝐵𝑖𝐵𝑖
+ 𝐸𝑖𝑑𝑖 𝑡  ( 3-24) 

Substituting Eq. ( 3-23) and Eq. ( 3-24) into Eq. ( 3-10) yields:  

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + 𝐵𝑖

⊥𝐵𝑖
⊥+𝑍𝑖 𝑡 +  𝐼𝑖 − 𝐵𝑖𝐵𝑖

+ 𝐸𝑖𝑑𝑖 𝑡  ( 3-25) 

The dynamics of the subsystems on the sliding surfaces can thus be described as: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + 𝑇𝑖𝑍𝑖 𝑡 + 𝑀𝑖𝑑𝑖 𝑡  ( 3-26) 

Where 𝑇𝑖 = 𝐵𝑖
⊥𝐵𝑖

⊥+and 𝑀𝑖 =  𝐼𝑖 − 𝐵𝑖𝐵𝑖
+ 𝐸𝑖  

From Eq. ( 3-26) it can be observed that the unknown unmatched uncertainties and 

disturbances have not been completely eliminated. As a result another method must be 

found to enhance the properties of the control design to reduce of the influences of the 

unknown unmatched uncertainties and disturbances. 

Note: 

When applying the 𝑢𝑖
𝐼𝑆𝑀 𝑡  to the subsystems, so-called chattering motion takes place, i.e. 

repeated discontinuous motion in a small vicinity of each sliding surface is present. The 

chattering motion can be reduced by the addition of a small constant  𝔷𝑖 > 0  if all 

uncertainties disappear and the subsystem is stable ,where the control will be as 

(Changqing,Patton and Zong, 2010). 
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𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇𝑖

𝜎𝑖 𝑥𝑖 , 𝑡 

 𝜎𝑖 𝑥𝑖 , 𝑡  + 𝔷𝑖

 

 

3.3.1.2 Continuous control design via LMI framework 

The Linear matrix inequality (LMI) has been used for over 100 years to study and analyse 

systems and specifically the first use of LMI theory to study the stability of systems was 

introduced by Lyapunov. The first use of  LMI theory in control engineering appeared in 

the Soviet Union in 1940 and was later used in convex optimization problems by Boyd 

(Stephen,Laurent,Eric and Venkataraman, 1994). (Šiljak and Stipanovic, 2001) first 

proposed the LMI framework to study the design of the control of large-scale systems.  

The possible design of LMI methods can be classified as outlined in Section 3-1 by either: 

1- Designing a controller for each subsystem individually, using LMI framework. 

2- Designing a one shot controller for the overall system structure using LMI 

framework. 

Both procedures use the same ISMC technique, and the difference between these two 

subsystem controller design strategies lies only in the approach taken. Some systems 

consist of several subsystems with each subsystem having its own characteristics with some 

interconnections, but some inter-connected systems are considered as large-scale systems. 

Consequently, the subsystem design approach depends on the subsystem requirements. 

 

3.3.1.2.1  Continuous control design via LMI for each subsystem 

individually where none of the interconnections are known 

 

The LMI framework is used as a tool to find the appropriate gains that can guarantee the 

stability and decrease the effect of any bounded unmatched compounds and disturbances. 

The object here is to design closed-loop gains based on LMI-based design formulation is 

through a one-step solution to the set of LMIs to satisfy performances design. 

After designing the ISMC the closed-loop subsystem takes the form: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + Γ𝑖𝐽𝑖 𝑡  ( 3-27) 
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where Γ𝑖 = [𝑇𝑖       𝑀𝑖] and 𝐽𝑖 𝑡 =  
𝑍𝑖 𝑡 

𝑑𝑖 𝑡 
  

Suppose 𝐽𝑖 𝑡  is an unknown input, but confirms the condition of quadratic inequality. 

𝐽𝑖
𝑇(𝑡)𝐽𝑖 𝑡 ≤ 𝛼𝑖

2𝑥𝑖
𝑇(𝑡)𝑥𝑖 𝑡  ( 3-28) 

where the 𝛼𝑖 > 0 are bounding constants. (Šiljak and Stipanovic, 2001). 

To develop a robust control law, insert the feedback control into the formula: 

𝑢𝑖
𝐿𝑀𝐼 𝑡 = 𝑘𝑖𝑥𝑖(𝑡) ( 3-29) 

Where the 𝑘𝑖  are the gains that stabilise the subsystem under a specific performance. The 

objective of the control design is to choose suitable values for the  𝑘𝑖  to minimize the effect 

of the 𝐽𝑖 𝑡  on the system of Eq.( 3-27). It is required to attenuate the 𝐽𝑖 𝑡  to the 

appropriate level   𝜖𝑖 . The Lyapunov function candidate, 𝑉𝑖 𝑥𝑖 , 𝑡 = 𝑥𝑖
𝑇 𝑡 𝑃𝑖𝑥𝑖(𝑡), can be 

used to check the stability of the closed-loop system, where the 𝑃𝑖 > 0  are s.p.d. matrices. 

The time derivatives of the 𝑉𝑖 𝑥𝑖 , 𝑡  are given by: 

𝑉𝑖
  𝑥𝑖 , 𝑡 = 𝑥𝑖

𝑇 (𝑡)𝑃𝑖𝑥𝑖 𝑡 + 𝑥𝑖
𝑇(𝑡)𝑃𝑖𝑥𝑖 (𝑡) ( 3-30) 

Substituting Eq. ( 3-29) into Eq. ( 3-27) and then substituting the result into Eq.( 3-30) yields: 

𝑉𝑖
  𝑥𝑖 , 𝑡 = [𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖

𝐿𝑀𝐼 𝑡 + Γ𝑖𝐽𝑖 𝑡 ]𝑇𝑃𝑖𝑥𝑖 𝑡 + 𝑥𝑖
𝑇 𝑡 𝑃𝑖[𝐴𝑖𝑥𝑖 𝑡 

+ 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + Γ𝑖𝐽𝑖 𝑡 ] 

( 3-31) 

Rearranging Eq. ( 3-29) gives: 

𝑉𝑖
  𝑥𝑖 , 𝑡 = 𝑥𝑖

𝑇 𝑡 𝐴𝑖
𝑇𝑃𝑖𝑥𝑖 𝑡 + 𝑥𝑖

𝑇𝑘𝑖
𝑇𝐵𝑖

𝑇𝑃𝑖𝑥𝑖 𝑡 + 𝐽𝑖
𝑇 𝑡 Γ𝑖

𝑇𝑃𝑖𝑥𝑖 𝑡 + 𝑥𝑖
𝑇𝑃𝑖𝐴𝑖𝑥𝑖 𝑡  

+𝑥𝑖
𝑇 𝑡 𝑃𝑖𝐵𝑖𝑘𝑖𝑥𝑖(𝑡) + 𝑥𝑖

𝑇 𝑡 𝑃𝑖Γ𝑖𝐽𝑖 𝑡  
( 3-32) 

The stability of the system Eq. ( 3-27) requires that 𝑉𝑖
  𝑥𝑖 , 𝑡 < 0 for all 𝑥𝑖 𝑡 ≠ 0. 

The equation Eq. ( 3-31) could now be rewritten as: 

𝒵𝑖
𝑇𝒟𝑖𝒵𝑖 < 0 ( 3-33) 

Where: 𝒵𝑖 =  
𝑥𝑖 𝑡 

𝐽𝑖 𝑡 
  and 𝒟𝑖 =  

𝐴𝑖
𝑇𝑃𝑖 + 𝑃𝑖𝐴𝑖 + 𝑘𝑖

𝑇𝐵𝑖
𝑇𝑃𝑖 + 𝑃𝑖𝐵𝑖𝑘𝑖       

𝛤𝑖
𝑇𝑃𝑖

    
𝑃𝑖𝛤𝑖

0
  

In order to check the stability of the condition, matrices 𝒟𝑖  must be negative-definite, 

i.e. 𝒟𝑖 < 0. 
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The equation Eq. ( 3-28) could be rewritten as: 

𝒵𝑖
𝑇𝒪𝑖𝒵𝑖 ≤ 0 ( 3-34) 

Where: 𝒵𝑖 =  
𝑥𝑖 𝑡 

𝐽𝑖 𝑡 
  and 𝒪𝑖 =  −𝛼𝑖

2𝐼𝑖      
0

  0
𝐼𝑖
  

Eqs. ( 3-33)&( 3-34) can be combined into one single equation by using the S-procedure 

(Šiljak and Stipanovic, 2001). If 𝒟𝑖  and 𝒪𝑖  are symmetric matrices then 𝒵i
T𝒟i𝒵i < 0 and  

𝒵i
T𝒪i𝒵i ≤ 0 , where there is a number 𝜏𝑖 > 0 that satisfies the relation  𝒟i − τi𝒪i < 0 . 

Therefore the combination of the two equations is: 

𝒟𝑖 − 𝜏𝑖𝒪𝑖 =  
𝐴𝑖

𝑇𝑃𝑖 + 𝑃𝑖𝐴𝑖 + 𝑘𝑖
𝑇𝐵𝑖

𝑇𝑃𝑖 + 𝑃𝑖𝐵𝑖𝑘𝑖       

Γ𝑖
𝑇𝑃𝑖

  𝑃𝑖Γ𝑖

0
 − 𝜏𝑖  −𝛼𝑖

2𝐼𝑖      
0

  0
𝐼𝑖
 < 0 ( 3-35) 

Put 𝒴𝑖 =
𝑃𝑖

𝜏𝑖
 in Eq. ( 3-35) this yields: 

 
𝐴𝑖

𝑇𝒴𝑖 + 𝒴𝑖𝐴𝑖 + 𝑘𝑖
𝑇𝐵𝑖

𝑇𝒴𝑖 + 𝒴𝑖𝐵𝑖𝑘𝑖 + 𝛼𝑖
2𝐼𝑖       

Γ𝑖
𝑇𝒴𝑖

      
𝒴𝑖Γ𝑖

−𝐼𝑖
 < 0 ( 3-36) 

Eq. ( 3-36) cannot be solved by LMI because of the bilinear terms 𝒴𝑖𝐵𝑖𝑘𝑖 . To overcome this 

limitation the non-convex problem must be converted into a convex problem. To achieve 

this, both sides of Eq.( 3-36) must be multiplied by the matrices  𝒴𝑖
−1     
0

  0
𝐼𝑖
  and 𝒫𝑖 = 𝒴𝑖

−1
. 

 
𝒫𝑖𝐴𝑖

𝑇 + 𝐴𝑖𝒫𝑖 + 𝒫𝑖𝑘𝑖
𝑇𝐵𝑖

𝑇 + 𝐵𝑖𝑘𝑖𝒫𝑖 + 𝛼𝑖
2𝒫𝑖𝒫𝑖      

Γ𝑖
𝑇

  Γ𝑖

−𝐼𝑖
 < 0 ( 3-37) 

By putting 𝑁𝑖 = 𝑘𝑖𝒫𝑖  ,  𝜖𝑖 =
1

𝛼𝑖
2 and by further using the Schur complement the inequality 

( 3-37) and can be re-formulated as: 

 

𝒫𝑖𝐴𝑖
𝑇 + 𝐴𝑖𝒫𝑖 + 𝑁𝑖

𝑇𝐵𝑖
𝑇 + 𝐵𝑖𝑁𝑖 +  𝛶𝑖

𝑇𝛶𝑖    

Γ𝑖
𝑇

𝒫𝑖  

        
  Γ𝑖                𝒫𝑖   
−𝐼𝑖               0

    0       − 𝜖𝑖𝐼𝑖  
 < 0 ( 3-38) 

where 𝛶𝑖  is a tuning matrix that can be used to obtain specific subsystem responses. The de-

centralized control gain matrix 𝑘𝑖  is obtained by  𝑘𝑖 = 𝑁𝑖𝒫𝑖
−1 

Algorithm 3-1: 

1- Calculate 𝜎𝑖 𝑥𝑖 , 𝑡  from the Eq.( 3-5) 
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2- Get the discontinuous from   𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇𝑖

𝜎𝑖 𝑥𝑖 ,𝑡 

 𝜎𝑖 𝑥𝑖 ,𝑡  +𝔷𝑖
  

3- Minimizing 𝜖𝑖  subject to 𝒫i > 0 and the Eq.(3-38), by solving the LMI this leads to 

the calculation of the controller gain from  𝑘𝑖 = 𝑁𝑖𝒫𝑖
−1

 

For real system implementation it is also essential to ensure that the numerical conditioning 

of 𝑘𝑖 = 𝑁𝑖𝒫𝑖
−1must satisfy a maximum condition number, giving an acceptable Euclidean 

norm  𝐾 2  of the gain. If this norm is too large, the conditioning can be improved by 

adding extra inequality constraints (for 𝒫i  and 𝑁𝑖 ) to the LMI of Eq.(3-38) In fact the 

Euclidean norms of both 𝒫𝑖
−1 and 𝑁𝑖  must be jointly minimized via additional LMI 

constraints.  This can be done as follows (Zecevic and Šiljak, 2005) as: 

The first condition is  𝑁𝑖 
2 < 𝑘𝑁𝑖𝐼 , where 𝑘𝑁𝑖  is a scalar variable, and by using Schur 

complement the appropriate LMI condition becomes: 

 
 −𝑘𝑁𝑖𝐼𝑖       

𝑁𝑖
    
𝑁𝑖

𝑇

−𝐼𝑖
 < 0 ( 3-39) 

The algorithm that now seeks to compute the gain 𝑘𝑖 = 𝑁𝑖𝒫𝑖
−1 satisfying these 

conditioning constraints is stated (Šiljak and Stipanovic, 2001) where 𝒫𝑖 > 𝑘𝑃𝑖𝐼𝑖  and by 

using Schur complement the appropriate LMI condition becomes: 

 
 𝒫𝑖     

𝐼𝑖
         

𝐼𝑖
𝑘𝑃𝑖𝐼𝑖  

 > 0 ( 3-40) 

where the 𝑘𝑃𝑖  are scalar variables. 

 

Algorithm 3-2: 

1- Calculate 𝜎𝑖 𝑥𝑖 , 𝑡  from the Eq.( 3-5) 

2- Get the discontinuous from   𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇𝑖

𝜎𝑖 𝑥𝑖 ,𝑡 

 𝜎𝑖 𝑥𝑖 ,𝑡  +𝔷𝑖
 

3- Minimize (𝜖𝑖 + 𝑘𝑁𝑖 + 𝑘𝑃𝑖) subject to  𝒫𝑖 > 0 , the Eqs. ( 3-38) , ( 3-39) & ( 3-40) 

4- The controller gain can be calculated from  𝑘𝑖 = 𝑁𝑖  𝒫𝑖
−1 

The principle of this approach when it is applied to inter-connected systems is shown in 

Figure 3-3. 
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Figure  3-3: Control of inter-connected systems via LMI + ISMC subsystem by subsystem 

 

3.3.1.2.2  Continuous control design via LMI for all subsystems (one shot) 

The objective of this procedure is to design a de-centralized control that robustly regulates 

the state of the overall system without any information exchange between the controllers. 

On other hand each de-centralized control uses only available local information. 

After the ISMC is designed to the i
th

 subsystem, the dynamic i
th

 subsystem is described by: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + Γ𝑖𝐽𝑖 𝑡  ( 3-41) 

where Γ𝑖 = [𝑇𝑖     𝑀𝑖] and 𝐽𝑖 𝑡 =  
𝑍𝑖 𝑡 

𝑑𝑖 𝑡 
  

Suppose  𝐽𝑖 𝑡  is an unknown input but conforms to the quadratic inequality condition. 

𝐽𝑖
𝑇(𝑡)𝐽𝑖 𝑡 ≤ 𝛼𝑖

2𝑥𝑖
𝑇(𝑡)𝑥𝑖 𝑡  ( 3-42) 

Where the 𝛼𝑖 > 0 are scalar parameters. Then the overall (one shot) system can be written 

as: 

𝑋  𝑡 = 𝐴𝑑𝑋 𝑡 + 𝐵𝑑𝑈 𝑡 + Γ𝑑𝐽(𝑡) ( 3-43) 

where  𝑡 = [𝑥1, 𝑥2 , … … . , 𝑥𝑛 ] , 𝑈 𝑡 = [𝑢1
𝐿𝑀𝐼 , 𝑢2

𝐿𝑀𝐼 , … … . , 𝑢𝑛
𝐿𝑀𝐼]  ,  𝐴𝑑 = 𝑑𝑖𝑎𝑔(𝐴𝑖) ,       

𝐵𝑑 = 𝑑𝑖𝑎𝑔(𝐵𝑖) , Γ𝑑 = 𝑑𝑖𝑎𝑔(Γ𝑖)  and 𝐽 𝑡 = [𝐽1, 𝐽2 , … … . , 𝐽𝑛] , where diag is a block 

diagonal matrix. 
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To develop a robust control law, let the feedback have the following form: 

𝑈 𝑡 = 𝐾𝑋(𝑡) ( 3-44) 

where 𝐾 is the controller gain. The purpose of the choice of the value of  𝐾 is to minimize 

the effect of 𝐽 𝑡  on the one shot system. 

The unknown input disturbance 𝐽 𝑡  satisfies the condition of the quadratic inequality: 

𝐽𝑇(𝑡)𝐽 𝑡 ≤ 𝛼2𝑋𝑇(𝑡)𝑋 𝑡  ( 3-45) 

where 𝛼 > 0 is a scalar parameter.  

To check the stability of this one shot closed-loop system choose a candidate Lyapunov 

function candidate 𝑉 𝑋, 𝑡 = 𝑋𝑇 𝑡 𝑃𝑋(𝑡) ,  where 𝑃 = 𝑑𝑖𝑎𝑔 𝑃𝑖  and  𝑃𝑖 > 0  are s.p.d. 

matrices. The choice of control method depends on the designer and can be either de-

centralized control by choosing 𝑃 as a diagonal matrix or by de-centralized overlapping 

control by choosing 𝑃 as a non-diagonal matrix. The stability of the one shot system can be 

checked as described in Section 3.3.1.2.1. This leads to an inequality which can be written 

as: 

After using the S-procedure (Šiljak and Stipanovic, 2001), combining  Eqs (3-43) & (3-45), 

and following and application  of the  Schur complement then the inequality is: 

 
𝒫𝐴𝑑

𝑇 + 𝐴𝑑𝒫 + 𝑁𝑇𝐵𝑑
𝑇 + 𝐵𝑑𝑁 + 𝛶𝑇  𝛶    

Γ𝑑
𝑇

𝒫

      
   Γ𝑑                𝒫  

−𝐼              0
    0          − 𝜖𝐼 

 < 0 ( 3-46) 

Where 𝛶 is a tuning matrix, 𝑁 = 𝐾𝒫 and 𝜖 =
1

𝛼2
 

Algorithm 3-3: 

1- Calculate 𝜎𝑖 𝑥𝑖 , 𝑡  from the Eq.( 3-5) 

2- Get the discontinuous from   𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇𝑖

𝜎𝑖 𝑥𝑖 ,𝑡 

 𝜎𝑖 𝑥𝑖 ,𝑡  +𝔷𝑖
 

3- Calculate the aggregate system from Eq.( 3-43) 

4- Minimize 𝜖 subject to 𝒫 > 0 and the Eq.( 3-46) 

5- Get the controller gain 𝐾 = 𝑁𝒫−1 

As in Algorithm 3-1, limit the gain so that it is not too high by adding other conditions to 

the LMI algorithm. In addition, a condition can be added to the matrix 𝑁 as: 
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 −𝑘𝑁𝐼    

𝑁
       𝑁

𝑇

−𝐼
 < 0 ( 3-47) 

As well as adding another condition to the matrix  . 

 
 𝒫    

𝐼
       𝐼
     𝑘𝑃I 

 > 0 ( 3-48) 

Where 𝑘𝑁  and 𝑘𝑃  are scalar variables. 

Algorithm 3-4: 

The same procedure as in Algorithm 3-3 is used by replacing step 3 by: 

Minimize (𝜖 + 𝑘𝑁 + 𝑘𝑃) subject to 𝒫 > 0   , the Eqs. ( 3-46) , ( 3-47) & ( 3-48) 

The control of the overall or one shot system is achieved by using the ISMC and LMI 

gains. According to the choice of form of the matrix 𝑃  there are two design possibilities: 

(1) 𝑃 is a diagonal matrix then the control of the one shot system will be as shown in 

Figure  3-3. But if 𝑃 is a non-diagonal matrix the control of the one shot system is attained 

by using the combined ISMC with LMI minimization of the unmatched uncertainty, as 

shown in Figure  3-4. 
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Figure  3-4: Control of inter-connected systems via LMI + ISMC (One shot) 
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3.3.2 All the interconnections are known 

It can now be assumed that all the subsystems are connected to each other and that all the 

interconnections between them are known. For this scenario the dynamics of each 

subsystem can be described by: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼(𝑡) + 𝐵𝑖𝑢𝑖

𝐼𝑆𝑀(𝑡) + 𝑍𝑖 𝑡 + 𝑊𝑖 𝑥𝑖 , 𝑡 + 𝐸𝑖𝑑𝑖(𝑡)

+ 𝐵𝑖𝑓𝑖(𝑡) 

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡                                                  𝑖 = 1, … … , 𝑁  

( 3-49) 

Assume further that the known interconnections can be described as: 

𝑍𝑖 𝑡 =  (𝐿𝑖𝑗𝑥𝑗 𝑡 + 𝑉𝑖𝑗𝑢𝑗 𝑡 )   

𝑁

𝑗=1

 ( 3-50) 

where 𝑥𝑗  𝑡  and 𝑢𝑗  𝑡  are the state and control of other inter-connected systems, and 𝐿𝑖𝑗  

and 𝑉𝑖𝑗  are the appropriate interconnection matrices between the i
th

 and j
th

 subsystems. 

 

3.3.2.1 Integral sliding mode control (ISMC) design 

Based on the inter-connected system of Eqs.( 3-49) & ( 3-50) with known interactions, an 

integral sliding surface can be developed that is different from the one outlined in Section 

3.3.1.1. The new sliding surface formulation includes the effects of the interaction terms in 

an ISMC design as follows: 

𝜎𝑖 𝑥𝑖 , 𝑡 = 𝐺𝑖[𝑥𝑖(𝑡) − 𝑥𝑖 𝑡𝑜 −   𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + 𝑍𝑖 𝑡  𝑑𝑡

𝑡

𝑡𝑜

] ( 3-51) 

As stated in Section 3.3.1.1 although 𝐺𝑖  are design matrices they must satisfy the condition 

that the 𝐺𝑖𝐵𝑖 are invertible. 

The so-called equivalent control 𝑢𝑒𝑞𝑖 (𝑡) can maintain the sliding surface by forcing the 

time derivative of 𝜎𝑖 𝑥𝑖 , 𝑡  to be identically zero, i.e. 𝜎𝑖  𝑥𝑖 , 𝑡 = 0 (Cao and Xu, 2001).  

𝜎 𝑖 𝑥𝑖 , 𝑡 = 𝐺𝑖𝑥 𝑖 𝑡 − 𝐺𝑖𝐴𝑖𝑥𝑖 𝑡 − 𝐺𝑖𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 − 𝐺𝑖𝑍𝑖 𝑡 = 0 ( 3-52) 

Substituting Eq. ( 3-49) into Eq. ( 3-52) yields: 
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𝐺𝑖𝐴𝑖𝑥𝑖 + 𝐺𝑖𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 + 𝐺𝑖𝐵𝑖𝑢𝑖

𝐼𝑆𝑀+𝐺𝑖𝑍𝑖 𝑡 + 𝐺𝑖𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 + 𝐺𝑖𝐸𝑖𝑑𝑖 𝑡 + 𝐺𝑖𝐵𝑖𝑓𝑖 𝑡 

− 𝐺𝑖𝐴𝑖𝑥𝑖 − 𝐺𝑖𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 − 𝐺𝑖𝑍𝑖 𝑥𝑖 , 𝑡 = 0 

( 3-53) 

Then the equivalent control is: 

𝑢𝑒𝑞𝑖  𝑡 = 𝑢𝑖
𝐼𝑆𝑀 = −(𝐺𝑖𝐵𝑖)

−1[𝐺𝑖𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 + 𝐺𝑖𝐸𝑖𝑑𝑖 𝑡 + 𝐺𝑖𝐵𝑖𝑓𝑖 𝑡 ] ( 3-54) 

Eq. (3-54) can be re-written as: 

𝑢𝑒𝑞𝑖  𝑡 = 𝑢𝑖
𝐼𝑆𝑀 = −𝑄𝑖 𝑥𝑖 , 𝑡 − (𝐺𝑖𝐵𝑖)

−1𝐺𝑖𝐸𝑖𝑑𝑖 𝑡 − 𝑓𝑖 𝑡  ( 3-55) 

Substituting Eq. ( 3-53) into Eq. ( 3-49) gives the i
th

 subsystem state equation after applying 

ISMC as follows: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + 𝑍𝑖 𝑡 + [𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐵𝑖)

−1𝐺𝑖]𝐸𝑖𝑑𝑖(𝑡) ( 3-56) 

From Eq. ( 3-56) the unknown matched uncertainties and actuator faults are completely 

deleted by the sliding action, but during sliding the sliding surfaces still contain the 

unknown disturbance components that are multiplied by 𝛹𝑖 = [𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐵𝑖)
−1𝐺𝑖]. 

The proposed discontinuous sliding control is: 

𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇𝑖

𝜎𝑖 𝑥𝑖 , 𝑡 

 𝜎𝑖 𝑥𝑖 , 𝑡  
 ( 3-57) 

where the 𝜇𝑖  are positive scalar functions with suitable choice: 

𝜇𝑖 > (𝐺𝑖𝐵𝑖)
−1𝐺𝑖𝛽𝑖 𝑥𝑖 , 𝑡 + 𝜅𝑖 𝑥𝑖 + (𝐺𝑖𝐵𝑖)

−1𝐺𝑖𝐸𝑖𝛾𝑖   𝑥𝑖 + 𝜂𝑖   𝑥𝑖  ( 3-58) 

The proof of how to obtain suitable functions 𝜇𝑖  to ensure the stability of each subsystem 

with 𝑢𝑖
𝐼𝑆𝑀 𝑡  is the same as described in Section 3.3.1.1. 

The same procedure is applied when choosing the matrix  𝐺𝑖  to reduce the norm of 

𝛹𝑖𝐸𝑖𝑑𝑖(𝑡) or reducing the amplification of 𝛹𝑖  to the unknown disturbance (Castaños,Xu 

and Fridman, 2006). 

A suitable choice of the 𝐺𝑖  to guarantee that the 𝐺𝑖𝐵𝑖  are full rank is 𝐺𝑖 = 𝐵𝑖
+ and this can 

be used to compensate in Eq. ( 3-56) where the term: 

 𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐵𝑖)
−1𝐺𝑖 𝐸𝑖𝑑𝑖 𝑡 =  𝐼𝑖 − 𝐵𝑖(𝐵𝑖

+𝐵𝑖)
−1𝐵𝑖

+ 𝐸𝑖𝑑𝑖 𝑡 =  𝐼𝑖 − 𝐵𝑖𝐵𝑖
+ 𝐸𝑖𝑑𝑖 𝑡  

After applying ISMC and compensating 𝐺𝑖 = 𝐵𝑖
+ , the subsystem dynamics can then be 

expressed as: 
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𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + 𝑍𝑖 𝑡 +  𝐼𝑖 − 𝐵𝑖𝐵𝑖

+ 𝐸𝑖𝑑𝑖 𝑡  ( 3-59) 

The dynamics of the subsystem on the sliding surface: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + 𝑍𝑖 𝑡 + 𝑀𝑖𝑑𝑖 𝑡  ( 3-60) 

where  𝑀𝑖 =  𝐼𝑖 − 𝐵𝑖𝐵𝑖
+ 𝐸𝑖  

From Eq. ( 3-60) it can be observed that the unknown and unmatched disturbances have not 

been completely eliminated. Hence, another method must be used to remove their 

influences. The final form of discontinuous control after adding a small constant 𝔷𝑖 > 0 is: 

𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇𝑖

𝜎𝑖 𝑥𝑖 , 𝑡 

 𝜎𝑖 𝑥𝑖 , 𝑡  + 𝔷𝑖
 ( 3-61) 

Where the constants 𝔷𝑖  are selected, as described in Section 3.3.1.1 to keep the subsystem 

state motion close to the sliding boundary and thereby avoid excessive chattering motion. 

 

3.3.2.2  Continuous control design via LMI for overall systems (one shot) 

After designing the ISMC, each subsystem still contains interactions 𝑍𝑖 𝑡  and 

disturbances.  The equation of the subsystem is: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐿𝑀𝐼 𝑡 + 𝑍𝑖 𝑡 + 𝑀𝑖𝑑𝑖 𝑡  ( 3-62) 

Where 𝑍𝑖 𝑡 =  (𝐿𝑖𝑗𝑥𝑗 𝑡 + 𝑉𝑖𝑗𝑢𝑗 𝑡 )  𝑁
𝑗=1 and  𝑀𝑖 =  𝐼𝑖 − 𝐵𝑖𝐵𝑖

+ 𝐸𝑖  

The overall or one shot system form of Eq. ( 3-62) can be written as: 

𝑋  𝑡 = 𝐴𝑑𝑋 𝑡 + 𝐵𝑑𝑈 𝑡 + 𝐿𝑋 𝑡 + 𝑉𝑈 𝑡 + 𝑀𝑑𝑑𝑑 𝑡  ( 3-63) 

where  𝑡 = [𝑥1 , 𝑥2, … … . , 𝑥𝑛 ]  ,    𝑈 𝑡 = [𝑢1
𝐿𝑀𝐼 , 𝑢2

𝐿𝑀𝐼 , … … . , 𝑢𝑛
𝐿𝑀𝐼]     , 𝐴𝑑 = 𝑑𝑖𝑎𝑔(𝐴𝑖)  ,    

𝐵𝑑 = 𝑑𝑖𝑎𝑔(𝐵𝑖)  , 𝑀𝑑 = 𝑑𝑖𝑎𝑔(𝑀𝑖)    , 𝐿 = 𝑛𝑜𝑛𝑑𝑖𝑎𝑔(𝐿𝑖𝑗)   ,  𝑉 = 𝑛𝑜𝑛𝑑𝑖𝑎𝑔(𝑉𝑖𝑗)  and   

𝑑𝑑 𝑡 = [𝑑1, 𝑑2, … … . , 𝑑𝑛]  , where diag denotes a block diagonal matrix and nondiag 

denotes a block non-diagonal matrix, therefore Eq. ( 3-63) could be rewritten as : 

𝑋  𝑡 = 𝒜𝑋 𝑡 + 𝔅𝑈 𝑡 + 𝑀𝑑𝑑𝑑 𝑡  ( 3-64) 

where 𝒜 = 𝐴𝑑 + 𝐿 and 𝔅 = 𝐵𝑑 + 𝑉 

To develop a robust state feedback control, let the control signal 𝑈 𝑡  be given by: 
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𝑈 𝑡 = 𝐾𝑋(𝑡) ( 3-65) 

The objective of 𝐾  is to minimize the influence of the unknown input disturbances 

𝑑𝑑 𝑡  on the one shot system. Suppose that 𝑑𝑑 𝑡  is an unknown input disturbance and 

satisfies the quadratic inequality condition: 

𝑑𝑑
𝑇(𝑡)𝑑𝑑 𝑡 ≤ 𝛼2𝑋𝑇(𝑡)𝑋 𝑡  ( 3-66) 

where 𝛼 > 0  is a scalar parameter. The Lyapunov candidate function 𝑉 𝑋, 𝑡 =

𝑋𝑇 𝑡 𝑃𝑋(𝑡)  can be used to check the stability of the closed-loop system. Where 𝑃 =

𝑑𝑖𝑎𝑔 𝑃𝑖  and  𝑃𝑖 > 0 is a s.p.d. matrix. The reason for choosing 𝑃 as a diagonal matrix is 

to obtain the de-centralized control. However, if 𝑃  is not a diagonal matrix, the de-

centralized overlapping approach can be obtained, as stated in Section 3.3.1.2.2.  

The stability of the one shot system is derived according the procedure outlined in Section 

3.3.1.2.1. This then leads to the following inequality: 

 
𝒫𝒜𝑇 + 𝒜𝒫 + 𝑁𝑇𝔅𝑇 + 𝔅𝑁 + Υ𝑇  Υ     

𝑀𝑑
𝑇

𝒫

    
𝑀𝑑             𝒫  
−𝐼              0
0       − 𝜖𝐼 

 < 0 ( 3-67) 

where Υ is a tuning matrix.  Feasible solutions for 𝒫 and 𝑁 in the linear matrix inequality 

(3-67) can be found using interior point methods provided by the Matlab LMI toolbox, 

according to the following Algorithm: 

Algorithm 3-5: 

1- Calculate 𝜎𝑖 𝑥𝑖 , 𝑡  from the Eq.( 3-51) 

2- Get the discontinuous control signal from the Eq.( 3-61) 

3- Calculate the overall system from the Eq.( 3-64) 

4- Minimize the 𝜖  subject to 𝒫 > 0  and the Eq. (3-67). After solving this LMI 

problem, the gains can be calculated from 𝐾 = 𝑁𝒫−1 

It is acceptable practice to limit the magnitudes of the gain elements, by adding further 

inequalities to the LMI algorithm. 

The condition  𝑁 2 < 𝑘𝑁𝐼 can be added to the matrix 𝑁 where the Euclidean norms of the 

𝑁 is bounded as in(Zecevic and Šiljak, 2005). 
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where 𝑘𝑁  is a scalar variable, and by using Schur complement the appropriate LMI 

condition becomes: 

 
 −𝑘𝑁𝐼    

𝑁
      𝑁

𝑇

−𝐼
 < 0 ( 3-68) 

Another condition (𝒫 > 𝑘𝑃I ) can be added to the matrices  𝒫  . Once again invoking the 

Schur complement this maximization is achieved via the following LMI: 

 
 𝒫    

𝐼
       

𝐼
𝑘𝑃I 

 > 0 ( 3-69) 

where 𝑘𝑃is a scalar variable. 

The algorithm that now seeks to compute the gain 𝐾 = 𝑁𝒫−1 satisfying these conditioning 

constraints is stated as: 

Algorithm 3-6: 

The procedure is as given under Algorithm 3-5 but step 4 must be changed to: 

Minimize (𝜖 + 𝑘𝑁 + 𝑘𝑃) subject to  𝒫 > 0 , the Eqs. ( 3-67) , ( 3-68) & ( 3-69). 

Following this the scheme for the control of the one shot system with known 

interconnections is illustrated in Figure  3-5. 
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Figure  3-5: Control of inter-connected systems (known interactions) via LMI + ISMC one 

shot system 
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3.4 Control of dynamic non-linear model of a multi-floor 

building structure 

 

It is appropriate here to provide an example of a Lipschitz non-linear system which has 

practical application value whilst at the same time enables all the concepts of Sections 3.1, 

3.2 and 3.3 to be applied. For this purpose the linear example of a multi-floor building 

control problem described in Section 2.7.3 can be extended to a non-linear representation 

incorporating non-linear damping elements. 

Recall from Section 2.7.3 that the equations that describe the movement of the building 

with respect to a datum line are obtained by using Newton‟s second law according to the 

following assumptions: 

1- The mass of each floor acts as a point mass acting on the central datum line, 

neglecting the effect of the walls and other structures within the floor. 

2- All the floors are affected by the movement of a horizontal seismic force due to 

an earthquake. 

The equations of motion that describe the structure are given by: 

1- First-floor equation: 

𝑚1𝑥 1(𝑡) + 𝑐1𝑥 1(𝑡) + 𝑘1𝑥1(𝑡) − 𝑐2 𝑥 2 𝑡 − 𝑥 1 𝑡  − 𝑘2 𝑥2 𝑡 − 𝑥1 𝑡  

= −𝑚1𝑥 𝑔(𝑡) − 𝑓1(𝑡) + 𝑓2(𝑡) 
( 3-70) 

2- Second-floor equation: 

𝑚2𝑥 2(𝑡) + 𝑐2(𝑥 2(𝑡) − 𝑥 1(𝑡)) + 𝑘2 𝑥2 𝑡 − 𝑥1 𝑡  − 𝑐3 𝑥 3 𝑡 − 𝑥 2 𝑡  

− 𝑘3 𝑥3 𝑡 − 𝑥2 𝑡  = −𝑚2𝑥 𝑔(𝑡) − 𝑓2(𝑡) + 𝑓1(𝑡) 
( 3-71) 

3- The (𝑛 − 1)-Floor equation: 

𝑚𝑛−1𝑥 𝑛−1(𝑡) + 𝑐𝑛−1(𝑥 𝑛−1(𝑡) − 𝑥 𝑛−2(𝑡)) + 𝑘𝑛−1 𝑥𝑛−1 𝑡 − 𝑥𝑛−2 𝑡  

− 𝑐𝑛 𝑥 𝑛 𝑡 − 𝑥 𝑛−1 𝑡  − 𝑘𝑛 𝑥𝑛 𝑡 − 𝑥𝑛−1 𝑡  

= −𝑚𝑛−1𝑥 𝑔(𝑡) − 𝑓𝑛−1(𝑡) + 𝑓𝑛−2(𝑡) 

( 3-72) 

4- The (𝑛)-Floor equation: 
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𝑚𝑛𝑥 𝑛 (𝑡) + 𝑐𝑛(𝑥 𝑛(𝑡) − 𝑥 𝑛−1(𝑡)) + 𝑘𝑛 𝑥𝑛 𝑡 − 𝑥𝑛−1 𝑡  = −𝑚𝑛𝑥 𝑔(𝑡) − 𝑓𝑛 (𝑡) ( 3-73) 

where 𝑥𝑖 𝑡  is the displacement away from the vertical datum line of the i
th

 floor and 𝑚𝑖 , 𝑐𝑖  

and 𝑘𝑖  are mass, damping and stiffness of the floor i
th

 respectively, 𝑓𝑖  and 𝑥 𝑔(𝑡) are the 

control force and one dimensional horizontal ground acceleration, respectively. The 

response of a n-floor building to an earthquake is illustrated in Figure  3-6. 

Consider an example of a three-storey building and rewrite the equations by putting 

𝑥 𝑖 𝑡 = 𝑣𝑖(𝑡) and 𝑣 𝑖 𝑡 = 𝑥 𝑖(𝑡) , where 𝑣𝑖 𝑡   is the horizontal velocity of the i
th

 floor.  
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Figure  3-6: The effects of one dimensional earthquake on building of n-floor 

 

The Newtonian equations representing the motion of each floor of the building can now be 

expressed as: 

1- First-floor equation: 

𝑣 1 𝑡 = −𝑚1
−1 𝑐1 + 𝑐2 𝑣1(𝑡) − 𝑚1

−1 𝑘1 + 𝑘2 𝑥1(𝑡)

+ 𝑚1
−1𝑐2𝑣2 𝑡 + 𝑚1

−1𝑘2𝑥2(𝑡) − 𝑥 𝑔(𝑡) − 𝑚1
−1𝑓1 𝑡 + 𝑚1

−1𝑓2(𝑡) 
( 3-74) 

2- Second-floor equation: 
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𝑣 2 𝑡 = −𝑚2
−1 𝑐2 + 𝑐3 𝑣2(𝑡) − 𝑚2

−1 𝑘2 + 𝑘3 𝑥2(𝑡)

+ 𝑚2
−1𝑐2𝑣1 𝑡 + 𝑚2

−1𝑘2𝑥1(𝑡) + 𝑚2
−1𝑐3𝑣3 𝑡 + 𝑚2

−1𝑘3𝑥3(𝑡)

− 𝑥 𝑔(𝑡) − 𝑚2
−1𝑓2 𝑡 + 𝑚2

−1𝑓3(𝑡) 

( 3-75) 

3- Third-floor equation: 

𝑣 3 𝑡 = −𝑚3
−1𝑐3𝑣3(𝑡) − 𝑚3

−1𝑘3𝑥3(𝑡) + 𝑚3
−1𝑐3𝑣2 𝑡 + 𝑚3

−1𝑘3𝑥2(𝑡) − 𝑥 𝑔(𝑡)

− 𝑚3
−1𝑓3(𝑡) 

( 3-76) 

Putting all these equations into state space form it follows that: 

 
 
 
 
 
 
 

  

𝑥 1 𝑡 

𝑣1 𝑡 

𝑥 2 𝑡   

𝑣2 𝑡 

𝑥 3 𝑡 

𝑣3 𝑡  
 
 
 
 
 
 

= 

 
 
 
 
 
 
 0
−𝑚1

−1 𝑘1 + 𝑘2 
0

𝑚2
−1𝑘2

0
0

1
       −𝑚1

−1 𝑐1 + 𝑐2 
0

𝑚2
−1𝑐2

0
0

    

0
     𝑚1

−1𝑘2

0
−𝑚2

−1 𝑘2 + 𝑘3    
0

𝑚3
−1𝑘3

0
     𝑚1

−1𝑐2

1
    −𝑚2

−1 𝑐2 + 𝑐3 

0
𝑚3

−1𝑐3

     

0
0
0

  𝑚2
−1𝑐3

1
   −𝑚3

−1𝑐3 
 
 
 
 
 

 
 
 
 
 
 
 
𝑥1 𝑡 

𝑣1 𝑡 

𝑥2 𝑡 

𝑣2 𝑡 

𝑥3 𝑡 

𝑣3 𝑡  
 
 
 
 
 
 

  

( 3-77) 

+

 
 
 
 
 
 

0
−𝑚1

−1

0
0
0
0

        

0
  𝑚1

−1

0
−𝑚2

−1

0
0

           

0
0
0

 𝑚2
−1

0
−𝑚3

−1 
 
 
 
 
 

  

𝑓1(𝑡)
𝑓2(𝑡)
𝑓3(𝑡)

  +

 
 
 
 
 
 

  

0
−1
0

−1
0

−1

  

 
 
 
 
 
 

 𝑥 𝑔 𝑡  

 

A horizontal force is applied at each floor using a magneto-rheological (MR damper) to 

provide suitable damping of the floor structure to the seismic excitation, i.e to invoke a 

form of semi-active damping by varying the damping force. The semi-active MR damper is 

a control device that can adjust the structural damping to reduce the vibrations caused by 

the seismic excitation (Dyke and Spencer, 1997). 

The non-linear equations that describe the MR damper force are adopted from (Kwok et al., 

2006) as follows: 
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𝑓𝑖 𝑡 = 𝑐0𝑖𝑣𝑖(𝑡) + 𝑘0𝑖𝑥𝑖(𝑡) +∝0𝑖 𝒮𝑖(𝑡) + 0𝑖𝑢𝑖(𝑡) + 𝑐1𝑖𝑢𝑖(𝑡)𝑣𝑖(𝑡)

+ 𝑘1𝑖𝑢𝑖(𝑡)𝑥𝑖(𝑡) 
( 3-78) 

where 𝑢𝑖(𝑡) = 𝐺𝑖𝑥𝑖(𝑡) is a control signal and 𝐺𝑖  is a gain. The  𝑘0𝑖   , 𝑐0𝑖  are coefficients of 

the MR damper and 𝒮𝑖(𝑡) is an evolutionary variable that describes the hysteresis according 

to: 

𝒮𝑖 𝑡 = tanh(𝛽𝑖𝑣𝑖(𝑡) + 𝜚𝑖𝑠𝑖𝑔𝑛 𝑥𝑖(𝑡) ) ( 3-79) 

where 𝜚𝑖 = 𝜚0𝑖 + 𝜚1𝑖𝑢𝑖(𝑡) , 𝛽𝑖  is a constant against the control signal and the parameters  

∝0𝑖  ,  0𝑖  , 𝑐1𝑖  , 𝑘1𝑖  , 𝜚0𝑖  and 𝜚1𝑖  are constants . 

Rewriting the Eq. ( 3-77) by adding Eq. ( 3-78) and using three MR dampers with the same 

specifications and 𝑄𝑖(𝑡) = 𝑐1𝑖𝑢𝑖(𝑡)𝑣𝑖(𝑡) + 𝑘1𝑖𝑢𝑖(𝑡)𝑥𝑖(𝑡), this yields the state-space model 

of the building as: 

 
 
 
 
 
 
 
𝑥 1 𝑡 

𝑣1 𝑡 

𝑥 2 𝑡 

𝑣2 𝑡 

𝑥 3 𝑡 

𝑣3 𝑡  
 
 
 
 
 
 

= 

 
 
 
 
 
 

0
−𝑚1

−1 𝑘1 + 𝑘2 + 𝑘01 
0

𝑚2
−1𝑘2

0
0

1
          −𝑚1

−1 𝑐1 + 𝑐2 + 𝑐01 
0

 𝑚2
−1𝑐2

0
0

    

0
     𝑚1

−1(𝑘2 + 𝑘01)
0

−𝑚2
−1 𝑘2 + 𝑘3 + 𝑘01    

0
𝑚3

−1𝑘3

  

      

0
                 𝑚1

−1 𝑐2 + 𝑐01 
1

                               −𝑚2
−1 𝑐2 + 𝑐3 + 𝑐01 

0
     𝑚3

−1𝑐3

       

0
0
0

    𝑚2
−1 𝑘3 + 𝑘01 

0
−𝑚3

−1 𝑘3 + 𝑘01 

      

0
0
0

  𝑚2
−1 𝑐3 + 𝑐01 

1
   −𝑚3

−1 𝑐3 + 𝑐01  
 
 
 
 
 

 
 
 
 
 
 
 

 

𝑥1 𝑡 

𝑣1 𝑡 

𝑥2 𝑡 

𝑣2 𝑡 

𝑥3 𝑡 

𝑣3 𝑡  
 
 
 
 
 
 

 

( 3-80) 
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+

 
 
 
 
 
 

0
−𝑚1

−101

0
0
0
0

          

0
  𝑚1

−101

0
−𝑚2

−101

0
0

            

0
0
0

 𝑚2
−101

0
−𝑚3

−101 
 
 
 
 
 

  

𝑢1 𝑡 

𝑢2 𝑡  

𝑢3 𝑡 
 

+

 
 
 
 
 
 

0
−𝑚1

−1 ∝01

0
0
0
0

           

0
  𝑚1

−1 ∝01

0
−𝑚2

−1 ∝01

0
0

           

0
0
0

  𝑚2
−1 ∝01

0
−𝑚3

−1 ∝01 
 
 
 
 
 

 

𝒮1 𝑡 

 𝒮2 𝑡 

𝒮3 𝑡 
 

+

 
 
 
 
 
 

0
−𝑚1

−1

0
0
0
0

          

0
  𝑚1

−1

0
−𝑚2

−1

0
0

            

0
0
0

 𝑚2
−1

0
−𝑚3

−1 
 
 
 
 
 

  

𝑄1 𝑡 

𝑄2 𝑡 

𝑄3 𝑡 
  +  

 
 
 
 
 
 

 

0
−1
0

−1
0

−1

 

 
 
 
 
 
 

 𝑥 𝑔 𝑡  

 

Consider an example of a building structure with three-storey building model where one 

installed semi-active actuator MR is added at each floor. 

The mass of each floor 𝑚1 = 𝑚2 = 𝑚3 = 6 ∗ 103  𝑘𝑔, the stiffness coefficients of each 

floor are  𝑘1 = 1.6 ∗ 106  𝑁/𝑚 , 𝑘2 = 1.8 ∗ 106 𝑁/𝑚  and  𝑘3 = 1.6 ∗ 106 𝑁/𝑚.  

The damping coefficients of each floor are: 

𝑐1 = 7.2 ∗ 103  𝑁/(𝑚/𝑠) , 𝑐2 = 5.16 ∗ 103  𝑁/(𝑚/𝑠) and 𝑐3 = 7.2 ∗ 103  𝑁/(𝑚/𝑠) .  

The other MR damper constants are: 

𝑘01 = 18 ∗ 104  𝑁/𝑚  , 𝑐01 = 7 ∗ 103  𝑁/(𝑚/𝑠) , ∝01= −30.86 , 01 = 1, 

𝑐11 = 53 𝑁/(𝑚/𝑠) , 𝑘11 = −3.4 ∗ 102  𝑁/𝑚 , 𝛽1 = 0.08 , 𝜚01 = 0.43 and 𝜚11 = 0.54. 

Substituting all these parameters into Eq. ( 3-80) yields the final state-space model for the 

velocities and positions of the three floors as: 
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𝑥 1 𝑡 

𝑣1 𝑡 

𝑥 2 𝑡 

𝑣2 𝑡 

𝑥 3 𝑡 

𝑣3 𝑡 

 

 
 
 
 
 
 
 

=

 
 
 
 
 
 

0
−596.6667

0
266.6667 

0
0

1
   −3.2267

0
1.20

0
0

0
330.00

0
−596.6667  

0
266.6667

0
2.0267

1
−3.2267

0
1.20

0
0
0

296.6667
0

−296.6667

 

0
0
0

 2.3667
1

   −2.3667 
 
 
 
 
 

 

 
 
 
 
 
 
 
𝑥1 𝑡 

𝑣1 𝑡 

𝑥2 𝑡 

𝑣2 𝑡 

𝑥3 𝑡 

𝑣3 𝑡  
 
 
 
 
 
 

 

( 3-81) 

+

 
 
 
 
 
 

0
−1.667

0
0
0
0

        

0
  1.667

0
−1.667

0
0

          

0
0
0

1.667
0

−1.667 
 
 
 
 
 

× 10−4  

𝑢1 𝑡 

 𝑢2 𝑡  

𝑢3 𝑡 
 

+

 
 
 
 
 
 

0
0.0051

0
0
0
0

         

0
 −0.0051

0
0.0051

0
0

        

0
0
0

−0.0051
0

0.0051  
 
 
 
 
 

 

𝒮1 𝑡 

 𝒮2 𝑡  

𝒮3 𝑡 
 

+

 
 
 
 
 
 

0
−1.667

0
0
0
0

        

0
  1.667

0
−1.667

0
0

         

0
0
0

1.667
0

−1.667 
 
 
 
 
 

× 10−4  

𝑄1 𝑡 

 𝑄2 𝑡 

𝑄3 𝑡 
  +   

 
 
 
 
 
 

0
−1
0

−1
0

−1 
 
 
 
 
 

 𝑥 𝑔 𝑡  

 

System decomposition: 

A procedure of  (Jamshidi, 1997) is used to decompose the building structure dynamic 

system into 𝑛 inter-connected subsystems. The compact system is re-written as: 
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𝑥 1(𝑡)
𝑥 2(𝑡)

.

.

.
𝑥 𝑛 (𝑡) 

 
 
 
 
 

=  

 
 
 
 
 
 
𝐴1  𝐿12   .   .    .    .   .     𝐿1𝑛

𝐿21    𝐴2  𝐿23   .    .    .   𝐿2𝑛

.

.

.
 𝐿𝑛1  .     .      .    .     .    .  𝐴𝑛   

 
 
 
 
 

 
 
 
 
 
 
𝑥1(𝑡)
𝑥2(𝑡)

.

.

.
𝑥𝑘(𝑡) 

 
 
 
 
 

 

+

 
 
 
 
 
 
𝐵1  𝐵12   .   .    .    .   .     𝐵1𝑛

𝐵21    𝐵2  𝐵23   .    .    .   𝐵2𝑛

.

.

.
 𝐵𝑛1  .     .      .    .     .    .  𝐵𝑛   

 
 
 
 
 

 
 
 
 
 
 
𝑢1(𝑡)
𝑢2(𝑡)

.

.

.
𝑢𝑛 (𝑡) 

 
 
 
 
 

 

( 3-82) 

+

 
 
 
 
 
 
𝑇1  𝑇12   .   .    .    .   .     𝑇1𝑛

𝑇21    𝑇2  𝑇23   .    .    .   𝑇2𝑛

.

.

.
 𝑇𝑛1  .     .      .    .     .    .  𝑇𝑛   

 
 
 
 
 

 
 
 
 
 
 
𝑍1(𝑡)
𝑍2(𝑡)

.

.

.
𝑍𝑛(𝑡) 

 
 
 
 
 

+

 
 
 
 
 
 
𝐵1  𝐵12   .   .    .    .   .     𝐵1𝑛

𝐵21    𝐵2  𝐵23   .    .    .   𝐵2𝑛

.

.

.
 𝐵𝑛1  .     .      .    .     .    .  𝐵𝑛   

 
 
 
 
 

 
 
 
 
 
 
𝑄1(𝑡)
𝑄2(𝑡)

.

.

.
𝑄𝑛(𝑡) 

 
 
 
 
 

+

 
 
 
 
 
 

𝐸1  𝑂  .   .    .    .   .     0
0    𝐸2  0 .    .    .    .   0

.

.

.
 0  .     .      .    .     .    .  𝐸𝑛   

 
 
 
 
 

 
 
 
 
 
 

 

𝑑1(𝑡)
𝑑2(𝑡)

.

.

.
𝑑𝑛(𝑡)

 

 
 
 
 
 
 

 

 

From Eq. ( 3-82) the subsystems are described as: 

1
st
 Subsystem: 

𝑥 1(𝑡) = 𝐴1𝑥1(𝑡) + 𝐿12𝑥2(𝑡) +  … + 𝐿𝑛𝑥𝑛(𝑡) + 𝐵1𝑢1(𝑡) + 𝐵12𝑢2(𝑡) +  …

+  𝐵1𝑛𝑢𝑛(𝑡) + 𝑇1𝑍1(𝑡) + 𝑇12𝑍2(𝑡) +  … +  𝑇1𝑛𝑍𝑛(𝑡) + 𝐵1𝑄1(𝑡)

+ 𝐵12𝑄2(𝑡) +  … +  𝐵1𝑛𝑄𝑛(𝑡) + 𝐸1𝑑1(𝑡) 

( 3-83) 

2
nd

 Subsystem: 

𝑥 2(𝑡) = 𝐿21𝑥1(𝑡) + 𝐴2𝑥2(𝑡) +  … + 𝐿1𝑛𝑥𝑛 (𝑡) + 𝐵21𝑢1(𝑡) + 𝐵2𝑢2(𝑡) +  …

+ 𝐵2𝑛𝑢𝑛(𝑡) + 𝑇21𝑍1(𝑡) + 𝑇2𝑍2(𝑡) +  … + 𝑇2𝑛𝑍𝑛(𝑡) + 𝐵21𝑄1(𝑡)

+ 𝐵2𝑄2(𝑡) +  … + 𝐵2𝑛𝑄𝑛(𝑡) + 𝐸2𝑑2(𝑡) 

( 3-84) 
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3
rd

 Subsystem: 

𝑥 3(𝑡) = 𝐿31𝑥1(𝑡) + 𝐿32𝑥2(𝑡) + … + 𝐴3𝑥3(𝑡) + 𝐵31𝑢1(𝑡) + 𝐵32𝑢2(𝑡) …

+  𝐵3𝑢3(𝑡) + +𝑇31𝑍1(𝑡) + 𝑇32𝑍2(𝑡) … +  𝑇3𝑍3(𝑡) + 𝐵31𝑄1(𝑡)

+ 𝐵32𝑄2(𝑡) … +  𝐵3𝑄3(𝑡) + 𝐸3𝑑3(𝑡) 

( 3-85) 

In this case the system described by Eq. ( 3-81) can be divided into three subsystems 

defined as follows: 

 

 

1
st
 Subsystem:  𝐴1 =  

0 1
−596.6667   −3.2267

   ,  𝐵1 =   
0

−1.667
  × 10−4, 

𝑇1 =  
0

 0.0051
    and  𝐸1 =   

0
−1

    

The interconnection matrices between the 1
st
 and 2

nd
 subsystems (floors) as well as 

between the 1
st
 and 3

rd
 subsystems are: 

𝐿12 =  
0 0

330    2.0267
  ,  𝐿13 =  

0   0
0   0

   ,  𝐵12 =   
0

1.667
  × 10−4,   𝐵13 =   

 0
 0

      ,  

𝑇12 =   
0

−0.0051
    and  𝑇13 =   

0
  0  

   

2
nd

 Subsystem:     𝐴2 =  
0 1

−596.6667   −3.2267
    ,  𝐵2 =    

0
−1.667

  × 10−4 , 

 𝑇2 =   
0

0.0051 
   and  𝐸2 =   

0
−1 

   

The interconnection matrices between the 1
st
 and 2

nd
 subsystems as well as between the 2

nd
 

and 3
rd

 subsystems are: 

𝐿21 =  
0 0

266.6667   1.20
   ,   𝐿23 =  

0 0
296.6667   2.3667

  ,  𝐵21 =  
0
0

      , 

𝐵23 =  
0

 1.667 
 × 10−4,   𝑇21 =  

 0
 0

    and  𝑇23 =   
0

−0.0051
    

3
rd

 Subsystem:   𝐴3 =  
0 1

−296.6667   −2.3667
    ,  𝐵3 =   

0
−1.667 

 × 10−4  , 

 𝑇3 =  
0

0.0051 
   and  𝐸3 =   

0
−1
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The interconnection matrices between the 1
st
 and 3

rd
 subsystems as well as between the 2

nd
 

and 3
rd

 subsystems are: 

𝐿31 =  
0  0
0  0

  ,  𝐿32 =  
0 0

266.6667   1.20
  ,  𝐵31 =   

0
0

     ,  𝐵32 =  
 0
 0

    , 𝑇31 =  
 0
 0

    

and  𝑇32 =   
0

 0  
  

The 1940 El Centro earthquake record is used as a single seismic disturbance input (acting 

at ground level) and MATLAB is used to simulate the response of the building where all 

supposed interactions are unknown (NISEE, 2010). 

 

3.4.1   Simulations and results of using algorithm 3-2 

The continuous control 𝑢𝑖
𝐿𝑀𝐼 𝑡  is designed by the LMI tool where the solution of 

algorithm 3-2 yields the gains: 

𝑘1 =  1.0493         0.0031 × 103    ,     𝑘2 = [1.0493          0.0031] × 103 

and     𝑘3 = [−3.3462         0.2394] × 103 

Where  𝔷1 = 𝔷2 = 𝔷3 = 0.2 and Υ1 = Υ2 = Υ2 =  
 0   0
 0   0

   

 The control signal will be as: 𝑢𝑖 𝑡 = 𝑘𝑖𝑥𝑖(𝑡) − 𝜇𝑖
𝜎𝑖 𝑥𝑖 ,𝑡 

 𝜎𝑖 𝑥𝑖 ,𝑡  +𝔷𝑖
 

Figures 3-7, 3-8 & 3-9 illustrate the displacement response of all three floors of the 

building when stimulated by the El Centro earthquake. The earthquake seismic data records 

correspond to cases of: (i) no control, (ii) with passive actuator only and (iii) with semi-

active actuator with control {𝑢𝑖
𝐿𝑀𝐼 𝑡 +𝑢𝑖

𝐼𝑆𝑀(𝑡)}. Figure  3-10 shows the maximum inter-

floor displacements of all three floors (i) without control, (ii) with passive actuator only and 

(iii) with actuator + (𝑢𝑖
𝐿𝑀𝐼 𝑡 +𝑢𝑖

𝐼𝑆𝑀(𝑡)). The results show that the actuator with the control 

signals (𝑢𝑖
𝐿𝑀𝐼 𝑡 +𝑢𝑖

𝐼𝑆𝑀(𝑡)) is slightly better than the one using the passive actuator (without 

additional control), especially on the 3
rd

 floor. 



87 
 

 

Figure  3-7: 1
st
 floor displacements 

 

Figure  3-8: 2
nd

 floor displacements 

 

Figure  3-9: 3
rd

 floor displacements 
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Figure  3-10: Maximum inter-floor displacements without fault 

 

Figure  3-11 shows the normal control signal of the 1
st
 floor actuator subject to the seismic 

input excitation, with the semi-active control applied via  𝑢𝑖
𝐿𝑀𝐼 𝑡 +𝑢𝑖

𝐼𝑆𝑀(𝑡). 

 

3.4.2 Building simulation with actuator fault included 

The above results show the effect of introducing a semi-active control action to the building 

system in which it is assumed that none of the actuators malfunction.  Figure  3-11 shows an 

example of the total control force acting on the 1
st
 floor mass. It is assumed that there are 

no faults acting, i.e. the semi-active actuators are working normally. 

 

Figure  3-11: 1
st
 floor control force with no faults 
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It is interesting to repeat the simulated building system example by including the effects of 

faults in the semi-active actuators as follows. 

Figure 3-12 illustrates the simulation of a realistic fault scenario for this actuator with 70% 

of actuator fault. Using the same 1
st
 floor actuator fault with 70% of actuator fault and 

100% actuator failure, the maximum inter-floor displacements for the cases of (i) no 

control, (ii) with passive actuator only and (iii) with semi-active actuator with control 

{𝑢𝑖
𝐿𝑀𝐼 𝑡 +𝑢𝑖

𝐼𝑆𝑀(𝑡)} are shown in Figures 3-13, 3-14 , 3-15 & 3-16. A comparison of the 

floor displacement results indicate that the designed control (𝑢𝑖
𝐿𝑀𝐼 𝑡 +𝑢𝑖

𝐼𝑆𝑀(𝑡)) gives better 

results in the case of faults and failures in terms of integrity of the building (i.e. with 

respect to the low level of floor displacements from the datum line. 

 

Figure  3-12: 1
st
 floor actuator force with 70% actuator fault 

 

Figure  3-13: Maximum inter-floor displacement: 1
st
 floor 70% actuator fault 
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Figure  3-14: Maximum inter-floor displacement: 1
st
 floor 100% actuator failure 

 

Figure  3-15: Maximum inter-floor displacement: 1
st
 and 2

nd
 floor 70% actuator fault 

 

Figure  3-16: Maximum inter-floor displacement: 1
st, 

2
nd

 and 3
rd

 floor 70% actuator fault 
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3.4.3 Simulations and results of using Algorithm 3-4 (one shot) 

When using the same example of the building structure with three floors, as illustrated in 

Eq. ( 3-81), it can be seen there are three subsystems. After putting all the three subsystems 

together into the one shot system the resulting position and velocity linear state space part 

of the non-linear Lipchitz system of Eq. ( 3-86) has the following parameters: 

𝐴𝑑 =

 
 
 
 
 
 

0
−596.6667

0
0 
0
0

     

1
   −3.2267

0
0
0
0

     

0
0
0

−596.6667     
0
0

0
0
1

−3.2267
0
0

   

0
0
0
0
0

−296.6667

      

0
0
0
 0
1

   −2.3667 
 
 
 
 
 

   

and  

𝐵𝑑 =

 
 
 
 
 
 

0
−1.667

0
0
0
0

          

0
  0
0

−1.667
0
0

            

0
0
0
0
0

−1.667 
 
 
 
 
 

× 10−4   

 

Algorithm 3-4 (see Section 3.3.1.2.2) is now used to examine the response of this building 

model to the seismic disturbance signal from the 1940 El Centro earthquake record. The 

gains are calculated using the MATLAB LMI toolbox and MATLAB is also used to 

simulate the response of the building where all the interactions are supposed unknown. 

The continuous control 𝑢𝑖
𝐿𝑀𝐼 𝑡  is designed according to the one shot LMI of Algorithm 3-

4.The solution gained by using this algorithm, after choosing 𝑃 as a diagonal matrix, yields 

the gain as: 

 𝐾 =  
−8.5493  

0
0

      
0.1444 

0
0

0   
     −8.5493 

0

0
       0.1444

0
       

0
0

  −3.3235

            
0
0

0.0792
 × 103 

where  𝔷1 = 𝔷2 = 𝔷3 = 0.2 and 𝛶 =   
0
0
0

 
     1     

0
0

 0
 0
 0

     0
      1
       0 

     0
     0
      0

      
 0
 0
 1

   

The overall control is given by: 𝑢𝑖 𝑡 = 𝑘𝑖𝑥𝑖(𝑡) − 𝜇𝑖
𝜎𝑖 𝑥𝑖 ,𝑡 

 𝜎𝑖 𝑥𝑖 ,𝑡  +𝔷𝑖
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The maximum inter-floor displacements of all three floors in the case of (i) no control, (ii) 

with passive actuator only and (iii) with semi-active actuator with control 

{𝑢𝑖
𝐿𝑀𝐼 𝑡 +𝑢𝑖

𝐼𝑆𝑀(𝑡)} are shown in  Figure 3-17,  where there is no any fault in any actuator 

floor. From the Figure 3-17 it is clear that the semi-active actuators operating in all the 

three floors with the added control signals perform better than the passive actuators do. 

The control force that is applied to the 1
st 

floor actuator stabilizes the building and a 

decrease the effects of earthquake is shown in Figure  3-18.  The control force is applied to 

the 1
st 

floor actuator which has a 70% actuator fault. The simulation of this control force is 

illustrated in Figure  3-19 . 

 

Figure  3-17 : Maximum inter-floor displacements without fault 

 

Figure  3-18: 1
st
 floor control force with no faults 
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Figure  3-19 : 1
st
 floor actuator force with 70% actuator fault 

 

As a consequence of the 70% actuator fault in the 1
st
 floor actuator, the maximum inter-

floor displacements for the cases of (i) no control, (ii) with passive actuator only and (iii) 

with semi-active actuator with control {𝑢𝑖
𝐿𝑀𝐼 𝑡 +𝑢𝑖

𝐼𝑆𝑀(𝑡)} is shown in  Figure  3-20 . The 

maximum inter-floor displacements, 100% actuator failure, in the 1
st
 floor actuator are 

shown in Figure  3-21. 

 

Figure  3-20 : Maximum inter-floor displacement: 1
st
 floor 70% actuator fault 

 



94 
 

 

Figure  3-21 : Maximum inter-floor displacement: 1
st
 floor 100% actuator failure 

 

Figure  3-22 : Maximum inter-floor displacement: 1
st
 and 2

nd
 floor 70% actuator fault 

 

Figure  3-22 shows the maximum inter-floor displacements of the three floors of the 

building with 70% actuator faults in the 1
st
 and 2

nd
 floors after applying the ISMC with the 

gains that are obtained using algorithm 3-4. Figure  3-23 shows the results for the 70% 

actuator faults in 1
st
, 2

nd 
and 3

rd
 actuator floors. The simulated building system is seen to 

have better integrity with the semi-active actuator control than for the passive actuator 

cases. 
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Figure  3-23 : Maximum inter-floor displacement: 1
st
, 2

nd
 and 3

rd
 floor 70% actuator fault 

 

3.4.4 Simulations and results of using algorithm 3-6 (overlapping) 

This new technique is applied to the same building example as illustrated in Eq. ( 3-81) , 

based on the 1940 El Centro earthquake seismic disturbance. 

𝒜 =

 
 
 
 
 
 

0
−596.6667

0
300.0000 

0
0

     

1
   −3.2267

0
0.8600

0
0

      

0
330.000

0
−596.6667  

0
266.6667

     

0
2.0267

1
−3.2267

0
1.2000

       

0
0
0

 296.6667
0

−296.6667

      

0
0
0

 2.3667
1

   −2.3667 
 
 
 
 
 

  

and            𝔅 =

 
 
 
 
 
 

0
−1.667

0
0
0
0

          

0
  1.667

0
−1.667

0
0

           

0
0
0

1.667
0

−1.667 
 
 
 
 
 

× 10−4   

 

The MATLAB LMI toolbox is used to calculate the gain from Section 3.3.2.2, using 

Algorithm 3-6. In addition, MATLAB is used to simulate the response of the three floor 

building where all the supposed interactions are known. 

The continuous control 𝑢𝑖
𝐿𝑀𝐼 𝑡  for the one shot system is designed by the LMI, where 𝑃 is 

a non-diagonal matrix with gain: 
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The gain: 

 𝐾 =   
−1.1197  

0.5523
1.5672

   
    0.0023 
−0.0003
   0.0023

     
     1.0963   
−1.7142 
−0.0123

    
0.0013
0.0042
0.0004

      −0.4752
         1.1562
       −1.1863

 
     −0.0015
      0.0077
       0.0051

  × 104 

Where  𝔷1 = 𝔷2 = 𝔷3 = 0.2 and Υ =   
0
0
0

 
     0     

0
0

0
0
 0

     0
     0

      0 

      0
      0
       0

      
 0
 0
 0

    

 The overall control will be as: 𝑢𝑖 𝑡 = 𝑘𝑖𝑥𝑖(𝑡) − 𝜇𝑖
𝜎𝑖 𝑥𝑖 ,𝑡 

 𝜎𝑖 𝑥𝑖 ,𝑡  +𝔷𝑖
 

 

Figure  3-24 : Maximum inter-floor displacements without fault 

 

Figure  3-25 : 1
st 

floor control force with no faults 
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Figure  3-24 shows the maximum inter-floor displacements that may take place in all three 

floors without any actuator faults for the cases where there is no control, there is only the 

passive actuator (with no controller) and where the semi-active actuators are controlled 

using the LMI and ISMC designs. The simulation results show that the semi-active actuator 

with control in the third floor performs a little better compared with the case when only 

passive actuation is applied. However, the results for the first floor are almost the same. 

 

Figure  3-26 : 1
st
 floor actuator force with 70% actuator fault 

 

The control signal for the 1
st
 floor fault-free semi-active actuator, subject to the 1940 El 

Centro earthquake seismic excitation is shown in Figure  3-25 . Figure  3-26  illustrates the 

same control signal, but with a 70% actuator fault in the 1
st
 floor semi-active actuator. 

Figure  3-27 shows the maximum inter-floor displacements of the three floors where the 1
st
 

floor semi-active actuator has a 70% fault. It can be seen clearly that the controlled actuator 

is well able to handle the fault. Figure  3-28 shows that for the 1
st
 floor semi-active actuator 

with 100% failure, there is very little difference of the maximum inter-floor displacements 

with and without control. 

 



98 
 

 

Figure  3-27 : Maximum inter-floor displacement: 1
st
 floor 70% actuator fault 

 

Figure  3-28 : Maximum inter-floor displacement: 1
st
 floor 100% actuator failure 

 

Figure  3-29 : Maximum inter-floor displacement: 1
st
 and 2

nd
 floor 70% actuator fault 
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Figure 3-29 shows that for the case when the 1
st
 and 2

nd
 floor semi-active actuators have 

70% faults, the semi-active actuator with the control is slightly better than the system 

operation with the passive actuator. However, if all the three of the floor actuators have 

70% faults the semi-active actuators all perform better than their passive counterparts, 

demonstrating the effectiveness of the floor controllers in dealing with these bounded 

actuator faults as shown in Figure  3-30. 

 

Figure  3-30 : Maximum inter-floor displacement: 1
st
, 2

nd
 and 3

rd
 floor 70% actuator fault 

 

3.4.5 Comparison of all methods 

Table  3-1 shows a comparison between the applications of the three ISMC design methods. 

From the table, it can be observed that a slightly higher gain can be obtained from using the 

method based on Algorithm 3-6. The control force resulting from the design using 

Algorithm 3-2 shows the most suitable range of variation between -20 to 20 N. On the 

other hand, designs based on algorithm 3-4 use the highest power, as the force variations 

are between -400 to 600 N. However, this design method produces a better power 

performance for the case of 70% actuator faults applied in all three subsystems (floors) and 

also the case of 100% failure in the 1
st
 floor. The Algorithms 3-2 and 3-4 have de-

centralized gains with unknown interactions but the Algorithm 3-2 has de-centralized 

overlapping gain with known interactions. 
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Contents 

 

Interconnections 

 

Gain 

 

 

Control 

force with 

no fault 

(N) 

Response to 

70% 

actuator 

fault in all 

(three floors) 

(m) 

 

Response to 

100% 

failure in 

(1st floor) 

(m) 
Method 

 

(ISMC+LMI) 

for each 

subsystem 

 

 

 

Unknown 

 

 

De-centralized 

control 

 

 

 

-20 to 20 

 

1
st
 floor 0.06 

2
nd

 floor 0.095 

3
rd

 floor 0.15 

 

1
st
 floor 0.06 

2
nd

 floor 0.09 

3
rd

 floor 0.098   

 

(ISMC+LMI) 

for overall 

system  

(one shot) 

 

 

 

Unknown 

 

 

De-centralized 

control 

 

 

 

-400 to 600 

 

1st floor 0.045 

2
nd

 floor 0.078 

3
rd

 floor 0.1 

 

1
st
 floor 0.05 

2
nd

 floor 0.08 

3
rd

 floor 0.09 

 

(ISMC+LMI) 

for overall 

system 

(one shot) 

 

 

 

Known 

 

De-centralized 

overlapping 

control 

 

 

 

-150 to 150 

 

1
st
 floor 0.055 

2
nd

 floor 0.09 

3
rd

 floor 0.13 

 

1
st
 floor 0.06 

2
nd

 floor 0.09 

3
rd

 floor 0.1 

 

Table  3-1 : Comparison of control inter-connected systems methods 

 

3.5 Conclusion 

In this Chapter, the ISMC with an LMI-based design taking into account the non-linear 

interaction between the inter-connected building floor systems has been presented for three 

different methods. The methods depend on the configuration of the controller where the 

first method gives de-centralized control for the case of unknown interactions. The second 

method is the same as the first method but the design considers all the subsystems together 

as a one shot system. Finally, the third method gives de-centralized overlapping control 

where all the interactions are known. 

The main common challenge to the application of all the three design methods is the 

requirement for decreasing the effects of the disturbances and interactions between the 

subsystems.  There are additional challenges of isolating each floor subsystem from the 
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propagation of the effects of faults that may arise within the other floor subsystems. This 

effectively involves the application of the “plug and play” concept. 

The controllers all contain two control signals; the first signal designed by using ISMC to 

deal with any matched components including uncertainties, disturbances and bounded 

actuator faults, and the second control signal is designed via the LMI formulation. This 

second control signal is responsible for dealing with any unmatched components to 

stabilise the system and to achieve a required performance in terms of minimum floor 

displacement. 

These methods are dependent on the availability of all states, however, when it is not easy 

to obtain all the states then the best solution is to estimate them. Chapter 4 focuses on the 

design method dependent on the use of observer-based control, leading to the de-

centralized observer approach. 
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Chapter 4 : De-centralized observed-

based control design with ISMC for 

inter-connected systems 
 

4.1 Introduction 

Some research on control of non-linear inter-connected systems focuses on inter-connected 

systems with uncertainties, e.g. unknown non-linear interconnections and disturbances, 

presenting robustness design challenges involving control specifications for each subsystem. 

These systems are particularly difficult to design when faced with limitations arising from 

uncertainty matching conditions and lack of available state information (Shafai,Ghadami 

and Saif, 2011). 

In most cases the design of robust de-centralized systems focuses on state feedback 

problems. However, in reality only output information is available and this adds a further 

challenge to the robust design problem. It is often the case that the controller designs must 

depend to a degree on estimated states, and hence it is common practice in the literature to 

investigate the observer based feedback control approach with state estimates based on local 

information (Pagilla and Zhu, 2005, Dhbaibi,Tlili,Elloumi and Benhadj, 2009). The 

derivation of robust output feedback for de-centralized control systems with uncertain 

interconnection remains a difficult challenge in the literature (Stanković,Stipanović and 

Šiljak, 2007, Huan,Jeang and Yon, 2012). 

Observer-based strategies represent a commonly used way of dealing with output feedback 

design and there are two observer-based control paradigms for de-centralized systems. 

Firstly, a separate “decentralized” observer is designed for each subsystem, taking account 

of local information (Aldeen,Lau and Marsh, 1998, Trinh and Aldeen, 1998). The second 

approach involves the use of “inter-connected observers” in which each observer 

measurement and input information is shared with observers from other local subsystems 

(Dhbaibi,Tlili and Benhadj, 2008). 
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In many branches of control systems there is a need to compensate robustly for effects of 

either system uncertainties or input disturbances or even faults, to maintain required closed-

loop performance and stability. One such approach is the use of sliding mode control (SMC) 

in which the system dynamic behaviour can be forced to be independent of inputs, and 

certain disturbances and modelling uncertainties, once the so-called sliding regime has been 

reached (Changqing,Patton and Zong, 2010, Larbah and Patton, 2012). Several studies of 

inter-connected de-centralized systems have focused on the use of SMC as a basis for 

solving robustness (Yan,Spurgeon and Edwards, 2003, Ghadami and Shafai, 2011). 

However, the classical approach to SMC requires (i) a reachability condition to guarantee 

that the SMC sliding or switching motion in state space can be reached from arbitrary initial 

conditions, and (ii) that two control components, one linear and one discontinuous are 

designed to achieve reachability and satisfy the sliding mode design objectives 

(Poznyak,Fridman and Bejarano, 2004). 

In the case of  output integral sliding mode (OISMC) the requirements for both (i) & (ii) 

above are obviated, making the use of OISMC very attractive for robust control of de-

centralized systems (Poznyak,Fridman and Bejarano, 2004, Castaños,Xu and Fridman, 

2006, Bejarano,Fridman and Poznyak, 2007). 

This Chapter focuses on the use of OISMC for de-centralized control, based on estimated 

state feedback.  It is assumed that the local system states are not measurable and hence the 

de-centralized observer approach outlined above is used as a part of a state-estimate 

feedback design problem. De-centralized observers are used as a part of the strategy to de-

couple the effects of interconnections between subsystems. Although, each observer has 

linear feedback structure the observer-based control is formulated using a single LMI 

procedure to satisfy both Lyapunov stability and performance of the augmented state space 

form of the observer-based controller state-space system.  This relates to the classical 

Separation Principle only in the sense that objective for each subsystem is to provide 

effective recovery of the Separation Principle and hence also effective decentralization. This 

is achieved through the use of the single LMI approach involving the feedback designs for 

each observer and controller (Zhu and Pagilla, 2007). The system description involves both 

matched and unmatched uncertainty components (arising from interconnections and external 

disturbances) and the Chapter deals with both forms of uncertainty. 
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The main contributions in this Chapter can be summarised as follows: 

1- The new proposal of an observer-based control design in LMI framework combined 

with OISMC to non-linear inter-connected system
2
. 

2- The impacts of actuator faults on the other subsystems and the role of the proposed 

control approach to deal with these faults. 

The Chapter is structured as follows. Section 4.2 describes the problem formulation. Then 

Section 4.3 considered the proposed control approach that includes OISMC in the first part 

and LMI observer–based control design one for a compact system (one shot) and the other 

for every subsystem individually. Section 4.4 describes a numerical example with three non-

linear inter-connected systems to illustrate the design approach and simulation performance 

Section 4.5 gives some conclusions and the further work. 

 

4.2 Model description and problem statement 

As described in Section 3.2 non-linear inter-connected system comprising n subsystems can 

be described by: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝑍𝑖 𝑡 + 𝑊𝑖 𝑥𝑖 , 𝑡 + 𝐸𝑖𝑑𝑖 𝑡 + 𝐵𝑖𝑓𝑖 𝑡  

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡              𝑖 = 1, … … , 𝑁 

( 4-1) 

where 𝑥𝑖(𝑡) ∈ ℝ𝑛 is the state vector, 𝑢𝑖(𝑡) ∈ ℝ𝑚  are the control inputs and 𝑦𝑖 𝑡 ∈ ℝ𝑝  is the 

vector of system outputs. 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖  and 𝐸i  are known matrices of appropriate dimensions. 

𝑍𝑖 𝑡 ∈ ℝ𝑛  represents the unknown time-varying interactions between the subsystems, 

containing matched and unmatched components. Hence, 𝑍𝑖 = 𝑍𝑚𝑖 + 𝑍𝑢𝑖  where 𝑍𝑚𝑖  is a 

matched component of 𝑍𝑖  and 𝑍𝑢𝑖  are the unmatched components (Castaños,Xu and 

Fridman, 2006). 

Dropping the subscripts in 𝑍𝑖 𝑡  and using the Bezout identity 𝐼𝑛 = 𝐵𝐵+ + 𝐵⊥𝐵⊥+  

where 𝐵+ = (𝐵𝑇𝐵)−1𝐵𝑇 , 𝑍𝑖 = 𝐵𝑖𝐵𝑖
+𝑍𝑖 + 𝐵𝑖

⊥𝐵𝑖
⊥+𝑍𝑖  and 𝐵𝑖

𝑇𝐵𝑖
⊥ = 0 , then 𝑍𝑖 =

𝐵𝑖𝐵𝑖
+𝑍𝑖 + 𝜁𝑖  where 𝜁𝑖 = 𝐵𝑖

⊥𝐵𝑖
⊥+𝑍𝑖 contains the unmatched uncertainty components. 

                                                           
2 Part of the work presented in this chapter has been published in: 

 
Larbah, E. and Patton, R.J. 2012. Robust decentralized control design using integral sliding mode control, The 2012 UKACC 

International Conference on Control, Cardiff, UK. 81 - 86. 
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𝑊𝑖 𝑥𝑖 , 𝑡  represent the subsystem unknown modelling uncertainties that satisfies the 

matching condition 𝑊𝑖(𝑥𝑖 , 𝑡) = 𝐵𝑖𝑄𝑖(𝑥𝑖 , 𝑡). 

The 𝑑𝑖(𝑡) are unknown bounded disturbances, 𝑓𝑖(𝑡) ∈ ℝ𝑘  denote the actuator faults, where 

𝑓𝑖(𝑡)  = −𝐾(𝑡)𝑢𝑖 .  𝐾 𝑡 = 𝑑𝑖𝑎𝑔(𝐾𝑖) with 0 ≤ 𝐾𝑖 ≤ 1, 𝐾𝑖 = 0 means that the i
th

 actuator is 

working perfectly and if 𝐾𝑖 = 1 the actuator has failed completely, otherwise the fault is 

present. 

Assumptions: 

As described in Chapter 3 in Section 3.2, the same assumptions from (A1 to A7) are 

considered in this Section. 

Applying (A1 to A7) to Eq.( 4-1), it then follows that: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝐵𝑖𝐵𝑖
+𝑍𝑖 𝑡 + 𝜁𝑖 𝑡 + 𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 + 𝐸𝑖𝑑𝑖(𝑡) + 𝐵𝑖𝑓𝑖(𝑡) 

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡                   𝑖 = 1, … . , 𝑁 

( 4-2) 

The control signal includes two components: 

𝑢𝑖(𝑡) = 𝑢𝑖
𝑂𝐵𝐶(𝑡) + 𝑢𝑖

𝐼𝑆𝑀(𝑡) ( 4-3) 

where 𝑢𝑖
𝑂𝐵𝐶  is responsible for stabilizing the system and affects the desired performance and 

decreases the effect of unmatched components where the state is not available. 𝑢𝑖
𝐼𝑆𝑀  is a 

discontinuous control responsible for rejecting the effects of matched components 

(uncertainties and actuator faults) where the state is not available. 

 

4.3 Control  design methods 

As described in Eq. ( 4-3) the subsystem control signal includes two parts with each part 

designed using a different method where (i) 𝑢𝑖
𝐼𝑆𝑀 𝑡  is designed by output integral sliding 

mode control OISMC where the state is not available and only the estimated state is 

obtainable, and (ii) 𝑢𝑖
𝑂𝐵𝐶(𝑡) feedback control depends on the estimated state as shown in 

Figure  4-1. 
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Observer1 Observeri ObserverN 

 

 Figure  4-1: Output control of inter-connected systems via LMI+ISMC 

 

4.3.1 Output integral sliding mode control (OISMC) 

As outlined in Section 4.2 the OISMC can be used to obviate the requirement for a 

reachability condition. The output feedback case of the integral sliding mode control can 

then be developed by defining the following output integral sliding switching surface for i
th 

subsystem: 

𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡 = 𝐺𝑖[𝑦𝑖(𝑡) − 𝑦𝑖 𝑡𝑜 −   𝐶𝑖𝐴𝑖𝑥 𝑖(𝑡) + 𝐶𝑖𝐵𝑖𝑢𝑖
𝑂𝐵𝐶(𝑡) 𝑑𝑡

𝑡

𝑡𝑜

] ( 4-4) 

where 𝐺𝑖  ∈ ℝ𝑚𝑥𝑝   is a design freedom matrix that must satisfy the invertibility of  𝐺𝑖𝐶𝑖𝐵𝑖  . 

The two steps involved in the design of an OISMC are as follows: 

1- Based on the estimated state, design a sliding surface that satisfies the system 

performance and guarantees design specification from the initial moment when the 

system is on the sliding surface. 

2-  Propose a suitable discontinuous control based on the estimated state to keep the 

system trajectory close to or on the sliding surface. 
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In the OISMC the design freedom of the integral action can be used to design a control law 

that satisfies the prescribed closed-loop performance.  

The equivalent control 𝑢𝑒𝑞𝑖 (𝑡) can maintain the subsystem i
th

 on the sliding surface by 

forcing the time derivative of 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  in Eq.( 4-4) to be zero-valued (Cao and Xu, 2001) 

i.e.: 

𝜎 𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡 = 𝐺𝑖𝑦 𝑖(𝑡) − 𝐺𝑖𝐶𝑖𝐴𝑖𝑥 𝑖(𝑡) − 𝐺𝑖𝐶𝑖𝐵𝑖𝑢𝑖
𝑂𝐵𝐶(𝑡) = 0     ( 4-5) 

Then substituting Eq. ( 4-2) and Eq. ( 4-3) into Eq. ( 4-5) yields: 

𝐺𝑖𝐶𝑖𝐴𝑖𝑥𝑖(𝑡) + 𝐺𝑖𝐶𝑖𝐵𝑖𝑢𝑖
𝑂𝐵𝐶 + 𝐺𝑖𝐶𝑖𝐵𝑖𝑢𝑖

𝐼𝑆𝑀+𝐺𝑖𝐶𝑖𝐵𝑖𝐵𝑖
+𝑍𝑖 𝑡 + 𝐺𝑖𝐶𝑖𝜁𝑖 𝑡 

+ 𝐺𝑖𝐶𝑖𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 + 𝐺𝑖𝐶𝑖𝐸𝑖𝑑𝑖 𝑡 + 𝐺𝑖𝐶𝑖𝐵𝑖𝑓𝑖 𝑡 − 𝐺𝑖𝐶𝑖𝐴𝑖𝑥 𝑖(𝑡)

− 𝐺𝑖𝐶𝑖𝐵𝑖𝑢𝑖
𝑂𝐵𝐶 = 0 

( 4-6) 

Hence, the so-called equivalent control for the output feedback case is: 

𝑢𝑒𝑞𝑖  𝑡 = 𝑢𝑖
𝐼𝑆𝑀

= −(𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖𝐴𝑖(𝑥𝑖 𝑡 − 𝑥 𝑖(𝑡)) − 𝐵𝑖

+𝑍𝑖 𝑡 

− (𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖𝜁𝑖 𝑡 − 𝑄𝑖 𝑥𝑖 , 𝑡  − (𝐺𝑖𝐶𝑖𝐵𝑖)

−1𝐺𝑖𝐶𝑖𝐸𝑖𝑑𝑖 𝑡 − 𝑓𝑖 𝑡  

( 4-7) 

Substituting Eq. ( 4-7) into Eq. ( 4-2) gives the i
th

 subsystem state equation as: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝑂𝐵𝐶 𝑡 +  𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐶𝑖𝐵𝑖)

−1𝐺𝑖𝐶𝑖 𝜁𝑖 𝑡 

+   𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖 𝐸𝑖𝑑𝑖(𝑡) − (𝐺𝑖𝐶𝑖𝐵𝑖)

−1𝐺𝑖𝐶𝑖𝐴𝑖(𝑥𝑖 𝑡 

− 𝑥 𝑖(𝑡)) 

( 4-8) 

From Eq. ( 4-8) the unknown matched uncertainties and the bounded actuator faults (not the 

complete failure) are completely nulled but the dynamics on the sliding surface contain the 

unknown unmatched uncertainties, disturbance and the state error. The terms in Eq.( 4-8) 

involving unknown unmatched uncertainties and disturbances are multiplied by a matrix: 

𝛹𝑖 = [𝐼𝑖 − 𝐵𝑖(𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖] 

To simplify the notation Eq. ( 4-8) can now be re-written as: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝑂𝐵𝐶 𝑡 + 𝛹𝑖𝜁𝑖 𝑡 + 𝛹𝑖𝐸𝑖𝑑𝑖(𝑡) − 𝑀𝑖𝑒𝑖 𝑡  ( 4-9) 
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where 𝑀𝑖 = (𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖𝐴𝑖  and 𝑒𝑖 𝑡 = 𝑥𝑖 𝑡 − 𝑥 𝑖 𝑡 ∈ ℝ𝑛  is the estimation error.  The 

proposed discontinuous control is: 

𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇𝑖

𝜎𝑖(𝑦𝑖 , 𝑥 𝑖 , 𝑡)

 𝜎𝑖(𝑦𝑖 , 𝑥 𝑖 , 𝑡) + 𝔷𝑖
 ( 4-10) 

 

The parameters 𝔷𝑖 > 0 are chosen to reduce the amount of “chattering” of the motion around 

the sliding surface (Changqing,Patton and Zong, 2010).To satisfy subsystem stability the 

positive scalar 𝜇𝑖  is chosen according to the following derivation: 

𝜇𝑖 >  (𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖𝛽𝑖  𝑥𝑖 , 𝑡 + 𝜅𝑖 𝑥𝑖 + 𝛾𝑖 (𝐺𝑖𝐶𝑖𝐵𝑖)

−1𝐺𝑖𝐶𝑖𝐸𝑖  𝑥𝑖 + 𝜂𝑖   𝑥𝑖 

+  (𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖𝐴𝑖  𝑒𝑖(𝑡)   

( 4-11) 

 

To ensure sliding motion let 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡 = 0 . Furthermore, the stability of the inter-

connected system Eq. ( 4-1) on the sliding surface is  considered in terms of a positive 

definite summation of individual Lyapunov subsystems components as: 

   𝑉𝑖
𝑁
𝑖=1 (𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡 ) =   𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  

𝑁
𝑖=1 > 0 

The derivative of the subsystem Lyapunov functions is: 

𝑉 
𝑖(𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡 ) =

𝜎𝑖
𝑇 𝑦𝑖 , 𝑥 𝑖 , 𝑡 𝜎𝑖  𝑦𝑖 , 𝑥 𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  
 ( 4-12) 

 

Hence, from  Eqs. ( 4-4) , ( 4-5) & ( 4-12) it can be shown that: 

 𝑉 
𝑖

𝑁

𝑖=1

 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  

=  [

𝑁

𝑖=1

− 𝐺𝑖𝐶𝑖𝐵𝑖𝜇𝑖+
𝜎𝑖

𝑇 𝑦𝑖 , 𝑥 𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  
 𝐺𝑖𝐶𝑖𝑍𝑖 𝑡 

+
𝜎𝑖

𝑇 𝑦𝑖 , 𝑥 𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  
 𝐺𝑖𝐶𝑖𝐵𝑖𝑄𝑖 𝑥𝑖 , 𝑡 +

𝜎𝑖
𝑇 𝑦𝑖 , 𝑥 𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  
𝐺𝑖𝐶𝑖𝐸𝑖𝑑𝑖 𝑡 

+
𝜎𝑖

𝑇 𝑦𝑖 , 𝑥 𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  
 𝐺𝑖𝐶𝑖𝐵𝑖𝑓𝑖 𝑡 +

𝜎𝑖
𝑇 𝑦𝑖 , 𝑥 𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  
𝐺𝑖𝐶𝑖𝐴𝑖𝑒𝑖(𝑡)] 

( 4-13) 

which  Eq. ( 4-13) can be re-written as: 
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 𝑉 
𝑖

𝑁

𝑖=1

 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  

≤  [

𝑁

𝑖=1

−  𝐺𝑖𝐶𝑖𝐵𝑖 [𝜇𝑖 − (𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖 𝑍𝑖 −  𝑄𝑖 

− (𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖𝐸𝑖 𝑑𝑖 −  𝑓𝑖 + (𝐺𝑖𝐶𝑖𝐵𝑖)

−1𝐺𝑖𝐶𝑖𝐴𝑖 𝑒𝑖(𝑡) ] 

( 4-14) 

Then, according to A4, A5, A6 & A7 from Chapter 3 Section 3.2 Eq.( 4-14): 

 𝑉 
𝑖

𝑁

𝑖=1

 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  

≤  [

𝑁

𝑖=1

−  𝐺𝑖𝐶𝑖𝐵𝑖 [𝜇𝑖 − (𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖𝛽𝑖 𝑥𝑖 , 𝑡 

− 𝜅𝑖 𝑥𝑖  – (𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖𝐸𝑖𝛾𝑖   𝑥𝑖  – 𝜂𝑖   𝑥𝑖 

+ (𝐺𝑖𝐶𝑖𝐵𝑖)
−1𝐺𝑖𝐶𝑖𝐴𝑖 𝑒𝑖 𝑡  ] 

( 4-15) 

 

By suitable choice of  𝜇𝑖   in Eq. ( 4-11) then   𝑉 
𝑖

𝑁
𝑖=1  𝜎𝑖 𝑥𝑖 , 𝑡  ≤ 0 

To minimize the norms   𝛹𝑖𝜁𝑖 𝑡   and  𝛹𝑖𝐸𝑖𝑑𝑖(𝑡)  corresponding to the unmatched 

uncertainty and disturbances, respectively, the matrix   𝐺𝑖  must be carefully chosen 

(Castaños,Xu and Fridman, 2006). One choice is 𝐺𝑖 = 𝐵𝑖
𝑇𝐶𝑖

+ which if substituted into Eq. 

( 4-8) leads to the following: 

(i) The term:  𝐼𝑖 − 𝐵𝑖(𝐵𝑖
+𝐵𝑖)

−1𝐵𝑖
+ 𝐵𝑖

⊥𝐵𝑖
⊥+𝑍𝑖 𝑡 , with 𝐵𝑖

𝑇𝐵𝑖
⊥ = 0, i.e.: 

 𝐼𝑖 − 𝐵𝑖(𝐵𝑖
+𝐵𝑖)

−1𝐵𝑖
+ 𝐵𝑖

⊥𝐵𝑖
⊥+𝑍𝑖 𝑡 = 𝐵𝑖

⊥𝐵𝑖
⊥+𝑍𝑖 𝑡  ( 4-16) 

(ii) The term: 

 𝐼𝑖 − 𝐵𝑖(𝐵𝑖
+𝐵𝑖)

−1𝐵𝑖
+ 𝐸𝑖𝑑𝑖 𝑡 =  𝐼𝑖 − 𝐵𝑖𝐵𝑖

+ 𝐸𝑖𝑑𝑖 𝑡  ( 4-17) 

Substituting Eqs. ( 4-16) & ( 4-17) into Eq. ( 4-8) yields the subsystem dynamics during 

sliding: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝑂𝐵𝐶 𝑡 + 𝑇𝑖𝑍𝑖 𝑡 + 𝐻𝑖𝑑𝑖 𝑡 − 𝑀𝑖𝑒𝑖 𝑡  ( 4-18) 

where  𝑇𝑖 = 𝐵𝑖
⊥𝐵𝑖

⊥+  and  𝐻𝑖 =  𝐼𝑖 − 𝐵𝑖𝐵𝑖
+ 𝐸𝑖 
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From Eq. ( 4-18) it can be observed that the unknown unmatched uncertainties 𝑇𝑖𝑍𝑖 𝑡  and 

disturbances  𝐻𝑖𝑑𝑖 𝑡  have not been minimized. Hence, another method must be found to 

minimize these terms and to limit their influence on the subsystem dynamics. 

 

4.3.2 Observer-based control design via LMI framework 

Control design is depended on the topology of the connections between subsystems. 

Therefore LMIs formulation is used according to two procedures: 

1- LMIs for overall subsystem one system as (one shot). 

2- LMIs for each subsystem individually. 

However, there are two procedures to design the continuous control, but they both use the 

same discontinuous control (OISMC), enabling the designer to choose the best procedure to 

control inter-connected systems depends on the number of subsystems in the compact (or 

centralised) system. 

 

4.3.2.1 LMI observer–based control design of a compact system (one 

shot) 
After designing the OISMC, the subsystem sliding dynamics are: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝑂𝐵𝐶 𝑡 + 𝛤𝑖𝐽𝑖 𝑡 − 𝑀𝑖𝑒𝑖 𝑡  ( 4-19) 

where  𝛤𝑖 = [𝑇𝑖       𝐻𝑖]  and  𝐽𝑖 𝑡 =   
𝑍𝑖 𝑡 

𝑑𝑖 𝑡 
   

The aggregated system dynamics are given by: 

𝑋  𝑡 = 𝐴𝑑𝑋 𝑡 + 𝐵𝑑𝑈𝑂𝐵𝐶 𝑡 + 𝛤𝑑𝐽 𝑡 − 𝑀𝑑𝑒 𝑡  ( 4-20) 

Where  𝑡 = [𝑥1, 𝑥2 , … … . , 𝑥𝑛 ] , 𝑈𝑂𝐵𝐶 𝑡 = [𝑢1
𝑂𝐵𝐶 , 𝑢2

𝑂𝐵𝐶 , … … . , 𝑢𝑛
𝑂𝐵𝐶] , 

 𝑒 𝑡 = [𝑒1, 𝑒2, … … . , 𝑒𝑛] , 𝐴𝑑 = 𝑑𝑖𝑎𝑔(𝐴𝑖) ,  𝐵𝑑 = 𝑑𝑖𝑎𝑔(𝐵𝑖) , 𝛤𝑑 = 𝑑𝑖𝑎𝑔(𝛤𝑖)   and 

𝐽 𝑡 = [𝐽1 , 𝐽2, … … . , 𝐽𝑛 ] , where “𝑑𝑖𝑎𝑔" represents the block diagonal matrix. 

To develop a robust control law for the aggregate system (one shot) consider a state estimate 

feedback of the form: 

𝑈𝑂𝐵𝐶 𝑡 = 𝐾𝑋  𝑡 = 𝐾𝑋 𝑡 − 𝐾𝑒 𝑡  ( 4-21) 
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where 𝐾 = 𝑑𝑖𝑎𝑔(𝑘𝑖) is the de-centralized control system gain that stabilizes the system 

under a specific performance objective.  The design objective is to choose the gain 𝐾 to 

minimize the effect of 𝐽 𝑡  on all the subsystems. Suppose further that 𝐽 𝑡  is the unknown 

input disturbance which satisfies the quadratic inequality ((Zecevic and Šiljak, 2010): 

𝐽𝑇(𝑡)𝐽 𝑡 ≤ 𝛼2𝑋𝑇(𝑡)𝑋 𝑡  ( 4-22) 

where 𝛼 > 0  a positive constant. Any suitable observer can be used to estimate the 

aggregate system state 𝑋  𝑡 . However, the observer subsystems are given by: 

𝑥  𝑖 𝑡 = 𝐴𝑖𝑥 𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝑂𝐵𝐶 𝑡 + 𝐿𝑖(𝑦𝑖 𝑡 − 𝐶𝑖𝑥 𝑖(𝑡)) ( 4-23) 

where 𝐿𝑖  is the subsystem observer gain. The aggregate observer dynamics are thus: 

𝑋   𝑡 = 𝐴𝑑𝑋  𝑡 + 𝐵𝑑𝑈𝑂𝐵𝐶 𝑡 + 𝐿𝑑(𝑌 𝑡 − 𝐶𝑑𝑋 (𝑡)) ( 4-24) 

where  𝑡 = [𝑦1, 𝑦2, … … . , 𝑦𝑛 ] , 𝐿𝑑 = 𝑑𝑖𝑎𝑔(𝐿𝑖) and  𝐶𝑑 = 𝑑𝑖𝑎𝑔(𝐶𝑖) 

Subtracting Eq. ( 4-20) from Eq. ( 4-24) yields the state estimation error: 

𝑒  𝑡 = (𝐴𝑑 − 𝐿𝑑𝐶𝑑)𝑒 𝑡 + 𝛤𝑑𝐽 𝑡 − 𝑀𝑑𝑒 𝑡  ( 4-25) 

To check the stability of the observer-based closed-loop system the following candidate 

Lyapunov function is used: 

𝑉 𝑋, 𝑡 = 𝑋𝑇 𝑡 𝑃𝑋 𝑡 + 𝑒𝑇 𝑡 𝐹𝑒(𝑡) where  𝑃 > 0 and 𝐹 > 0. 

The time derivative of 𝑉 𝑋, 𝑡 is thus: 

𝑉  𝑋, 𝑡 = 𝑋 𝑇 𝑡 𝑃𝑋 𝑡 + 𝑋𝑇 𝑡 𝑃𝑋  𝑡 + 𝑒 𝑇 𝑡 𝐹𝑒(𝑡) + 𝑒𝑇 𝑡 𝐹𝑒 (𝑡) ( 4-26) 

Substituting Eqs. ( 4-21) & ( 4-20) into Eq. ( 4-26) and substituting Eq. ( 4-25) into Eq. ( 4-26): 

𝑉  𝑋, 𝑡 = 𝑋𝑇 𝑡 [𝐴𝑑
𝑇𝑃 + 𝐾𝑇𝐵𝑑

𝑇𝑃 + 𝑃𝐵𝑑𝐾]𝑋 𝑡 − 𝑒𝑇[𝐾𝑇𝐵𝑑
𝑇𝑃 + 𝑀𝑑

𝑇𝑃]𝑋 𝑡 

+ 𝐽𝑇 𝑡 𝛤𝑑
𝑇𝑃𝑋 𝑡 − 𝑋𝑇 𝑡 [𝑃𝐵𝑑𝐾 + 𝑃𝑀𝑑 ]𝑒 𝑡 + 𝑋𝑇 𝑡 𝑃𝛤𝑑𝐽 𝑡 

+ 𝑒𝑇 𝑡 [𝐴𝑑
𝑇𝐹 + 𝐶𝑑

𝑇𝐿𝑑
𝑇𝐹 − 𝑀𝑑

𝑇𝐹 + 𝐹𝐴𝑑 + 𝐹𝐿𝑑𝐶𝑑 − 𝐹𝑀𝑑 ]𝑒 𝑡 

+ 𝐽𝑇 𝑡 𝛤𝑑
𝑇𝐹𝑒 𝑡 + 𝑒𝑇 𝑡 𝐹𝛤𝑑𝐽 𝑡  

( 4-27) 

The stability of the subsystem Eq. ( 4-27) requires that condition  𝑉  𝑋, 𝑡 < 0 ∀ 𝑋 𝑡 ≠ 0 so 

that the Lyapunov  stability theory is satisfied. Equation Eq. ( 4-27) can then be re-written as: 

http://en.wikipedia.org/wiki/Alexander_Lyapunov
http://en.wikipedia.org/wiki/Stability_theory
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𝒵𝑇𝒟𝒵 < 0 ( 4-28) 

where:   𝒵 =  
𝑋 𝑡 

𝑒 𝑡 

𝐽 𝑡 
  and : 

𝒟 =  

𝐴𝑑
𝑇𝑃 + 𝑃𝐴𝑑 + 𝐾𝑇𝐵𝑑

𝑇𝑃 + 𝑃𝐵𝑑𝐾     

−𝐾𝑇𝐵𝑑
𝑇𝑃 − 𝑀𝑑

𝑇𝑃

𝛤𝑑
𝑇𝑃

   

 

−𝑃𝐵𝑑𝐾 − 𝑃𝑀𝑑      𝑃𝛤𝑑

𝐴𝑑
𝑇𝐹 + 𝐹𝐴𝑑 + 𝐶𝑑

𝑇𝐿𝑑
𝑇𝐹 + 𝐹𝐿𝑑𝐶 𝑑 − 𝐹𝑀𝑑 − 𝑀𝑑

𝑇𝐹       𝐹𝛤𝑑

𝛤𝑑
𝑇𝐹     0

 < 0 

 

( 4-29) 

To guarantee stability of the system Eq. ( 4-28) the matrix 𝒟 must be negative-definite. 

Furthermore, Eq. (4-22) can be rewritten as:  

𝒵T𝒪𝒵 ≤ 0 ( 4-30) 

where: 𝒵𝑖 =   
𝑋 𝑡 

𝑒 𝑡 

𝐽 𝑡 
   and 𝒪 =  

−𝛼2𝐼     
0
0

  
0
0
0

       
0
0
𝐼

   

To combine Eqs. ( 4-28) & ( 4-30) into a single inequality matrix ,the so-called S-procedure 

is now used (Šiljak and Stipanovic, 2001). 

If 𝒟  and 𝒪  can be considered as symmetric matrices then  𝒵𝑇𝒟𝒵 < 0  and 𝒵𝑇𝒪𝒵 ≤ 0  . 

Hence, there is a number  𝜏 > 0 where  −𝜏𝒪 < 0 and it follows that: 

𝒟 − 𝜏𝒪 =  

𝐴𝑑
𝑇𝑃 + 𝑃𝐴𝑑 + 𝐾𝑇𝐵𝑑

𝑇𝑃 + 𝑃𝐵𝑑𝐾 + 𝜏𝛼2𝐼    

−𝐾𝑇𝐵𝑑
𝑇𝑃 − 𝑀𝑑

𝑇𝑃

𝛤𝑑
𝑇𝑃

  

  

−𝑃𝐵𝑑𝐾 − 𝑃𝑀𝑑      𝑃𝛤𝑑

𝐴𝑑
𝑇𝐹 + 𝐹𝐴𝑑 + 𝐶𝑑

𝑇𝐿𝑑
𝑇𝐹 + 𝐹𝐿𝑑𝐶 𝑑 − 𝐹𝑀𝑑 − 𝑀𝑑

𝑇𝐹      𝐹𝛤𝑑

𝛤𝑑
𝑇𝐹     −𝜏𝐼

 < 0 

( 4-31) 

Substituting 𝒴 =
𝑃

𝜏
 and Ⅎ =

𝐹

𝜏
 into Eq. ( 4-31) yields: 
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𝛱 =  

𝐴𝑑
𝑇𝒴 + 𝒴𝐴𝑑 + 𝐾𝑇𝐵𝑑

𝑇𝒴 + 𝒴𝐵𝑑𝐾 + 𝛼2𝐼   

−𝐾𝑇𝐵𝑑
𝑇𝒴 − 𝑀𝑑

𝑇𝒴

𝛤𝑑
𝑇𝒴

  

 

−𝒴𝐵𝑑𝐾 − 𝒴𝑀𝑑      𝒴𝛤𝑑

                            𝐴𝑑
𝑇Ⅎ + Ⅎ𝐴𝑑 + 𝐶𝑑

𝑇𝐿𝑑
𝑇Ⅎ + Ⅎ𝐿𝑑𝐶𝑑 −  Ⅎ𝑀𝑑 − 𝑀𝑑

𝑇Ⅎ      Ⅎ𝛤𝑑

𝛤𝑑
𝑇Ⅎ     −𝐼

 < 0 

( 4-32) 

The inequality Eq. ( 4-32) cannot be solved via an LMI tool since it includes the non-linear 

term 𝒴𝐵𝑑𝐾 to overcome this problem both sides of Eq. ( 4-32) must be multiplied by the 

matrix 𝒲: 

 𝒲 =    𝒴
−1     

0       
    

0
𝒯

    where  𝒯 =     𝒴−1       
0        

   
0
𝑆

      where  𝑆 is a design parameter. 

Hence: 

𝒲𝛱𝒲𝑇 =  𝒴
−1     

0        
  0
𝒯

  
𝛱11      
𝛱21     

   
𝛱12

𝛱22
  𝒴

−1     
0         

  0
𝒯

 =  
𝒴−1𝛱11  𝒴−1    

𝒯𝛱21𝒴−1     
      

𝒴−1𝛱12𝒯
𝒯𝛱22𝒯

  ( 4-33) 

Also, by making a partition of 𝛱𝑖  into four parts: 

𝛱11 = 𝐴𝑑
𝑇𝒴 + 𝒴𝐴𝑑 + 𝐾𝑇𝐵𝑑

𝑇𝒴 + 𝒴𝐵𝑑𝐾 + 𝛼2𝐼  ( 4-34) 

𝛱12 = [−𝒴𝐵𝑑𝐾 − 𝒴𝑀𝑑                 𝒴𝛤𝑑]  ( 4-35) 

𝛱21 =   
−𝐾𝑇𝐵𝑑

𝑇𝒴 − 𝑀𝑑
𝑇𝒴

𝛤𝑑
𝑇𝒴

   
( 4-36) 

𝛱22 =    
𝐴𝑑

𝑇Ⅎ + Ⅎ𝐴𝑑 + 𝐶𝑑
𝑇𝐿𝑑

𝑇Ⅎ + Ⅎ𝐿𝑑𝐶𝑑 − Ⅎ𝑀𝑑 − 𝑀𝑑
𝑇Ⅎ     

𝛤𝑑
𝑇Ⅎ

          
Ⅎ𝛤𝑑

−𝐼
   

( 4-37) 

The term 𝒯𝛱22𝒯 can then be described using (Ichalal,Marx,Ragot and Maquin, 2010) as: 

𝒯𝛱22𝒯 ≤ −𝜆 𝒯 + 𝒯𝑇 − 𝜆2𝛱22
−1 ( 4-38) 

where 𝜆 > 0 is used for tuning to get an acceptable response. 

𝒲𝛱𝒲𝑇 =   
𝒴−1𝛱11  𝒴−1    

𝒯𝛱21𝒴−1   
      

           𝒴−1𝛱12𝒯

−𝜆 𝒯 + 𝒯𝑇 − 𝜆2𝛱22
−1  < 0 ( 4-39) 

By using the Schur complement Eq. ( 4-39) could rewritten as: 
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𝒴−1𝛱11  𝒴−1           

𝒯𝛱21𝒴−1          

0           

    
𝒴−1𝛱12𝒯                   0  
−2𝜆𝒯                     𝜆𝐼  

    𝜆𝐼                         𝛱22  
 < 0 ( 4-40) 

Substituting 𝒫 = 𝒴−1  in Eq.( 4-40) and also substituting Eqs. ( 4-34) , ( 4-35) , ( 4-36) & 

( 4-37) into Eq. ( 4-40) yields: 

 
 
 
 
 

𝕎     
−𝒫𝐾𝑇𝐵𝑑

𝑇 − 𝒫𝑀𝑑
𝑇

𝑆𝛤𝑑
𝑇

0
0

    

−𝐵𝑑𝐾𝒫 − 𝑀𝑑𝒫
−2𝜆𝒫

0
𝜆𝐼 
0

        

𝛤𝑑𝑆
0

−2𝜆𝑆
0
𝜆𝐼 

         

0
𝜆𝐼 
0
𝕃

𝛤𝑑
𝑇Ⅎ

           

0
0
𝜆𝐼 
𝐹𝛤𝑑

−𝐼

  

 
 
 
 
 

< 0 ( 4-41) 

where 𝕎 =   𝒫𝐴𝑑
𝑇 + 𝐴𝑑𝒫 + 𝒫𝐾𝑇𝐵𝑑

𝑇 + 𝐵𝑑𝐾𝒫 + 𝛼2𝒫𝒫  and 

 𝕃 = 𝐴𝑑
𝑇Ⅎ + Ⅎ𝐴𝑑 + 𝐶𝑑

𝑇𝐿𝑑
𝑇Ⅎ + Ⅎ𝐿𝑑𝐶𝑑 − Ⅎ𝑀𝑑 − 𝑀𝑑

𝑇Ⅎ 

Choose = 𝐼  , and substituting 𝑁 = 𝐾𝒫 , 𝑅 = Ⅎ𝐿𝑑  and 𝜖 =
1

𝛼2  , by using the Schur 

complement Eq. ( 4-41) is re-written as: 

 
 
 
 
 
 𝕎         
−𝑁𝑇𝐵𝑑

𝑇 − 𝒫𝑀𝑑
𝑇

𝛤𝑑
𝑇

0
0
𝒫

  

−𝐵𝑑𝑁 − 𝑀𝑑𝒫
−2𝜆𝒫

0
𝜆𝐼
0
0

       

𝛤𝑑

0
−2𝜆

0
𝜆𝐼
0

        

0
𝜆𝐼
0

𝕃 

𝛤𝑑
𝑇Ⅎ
0

         

0
0
𝜆𝐼
𝐹𝛤𝑑

−𝐼
0

     

𝒫
0
0
0
0

−𝜖𝐼 
 
 
 
 
 

< 0 ( 4-42) 

where  𝕎   = 𝒫𝐴𝑑
𝑇 + 𝐴𝑑𝒫 + 𝑁𝑇𝐵𝑑

𝑇 + 𝐵𝑑𝑁 and 

𝕃 = 𝐴𝑑
𝑇Ⅎ + Ⅎ𝐴𝑑 + 𝐶𝑑

𝑇𝑅𝑑
𝑇 + 𝑅𝐶𝑑 − Ⅎ𝑀𝑑 − 𝑀𝑑

𝑇Ⅎ 

The augmented system is globally stable in the Lyapunov sense if the matrices  𝑁,  , 𝑅 and  

𝐿𝑑   can be found to satisfy the LMI of  Eq.( 4-42): 

There are two approaches to solving this LMI, as follows: 

Algorithm 4-1: 

1- Calculate the 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  from the Eq.( 4-4) 

2- Use the 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  to get the discontinuous controller from the Eq.( 4-10) 

3- Calculate the aggregate system from the Eq.( 4-20) 

4- Calculate the aggregate observer from Eq( 4-23) 

5- Minimize 𝜖 subject to     𝒫 > 0 , Ⅎ > 0 and the Eq. ( 4-42) 
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6- The aggregate system control gain can be calculated from  𝐾 = 𝑁𝒫−1 

7- The aggregate system observer gain can be calculated from  𝐿𝑑 = Ⅎ−1𝑅 

To minimize the gain magnitude the conditioning of the matrices 𝑁 and 𝑅 are given in terms 

of norm bounds  𝑁 2 < 𝐾𝑁𝐼  and   𝑅 2 < 𝐾𝑅𝐼  (Zecevic and Šiljak, 2005): 

where 𝐾𝑁 and 𝐾𝑅  are scalar variables, and by using the Schur complement inequalities Eqs. 

( 4-43) & ( 4-44) can be added to Eq. ( 4-42)as follows: 

  
 −𝐾𝑁𝐼      

𝑁    
   𝑁

𝑇  
−𝐼

  < 0   and    
  −𝐾𝑅𝐼    

𝑅
      𝑅

𝑇

−𝐼
  < 0 ( 4-43) 

Additional inequalities can be added to the matrices 𝒫 and Ⅎ (Zecevic and Šiljak, 2005). 

 
  𝒫    
𝐼  

    
𝐼

𝐾𝑃𝐼  
 > 0   and      

 Ⅎ    
𝐼  

      
𝐼

𝐾Ⅎ𝐼 
  > 0 ( 4-44) 

where  𝐾𝑃 and 𝐾Ⅎ are scalar variables. 

Algorithm 4-2: 

The same procedure as in algorithm 4-1 is used by replacing step 5 by: 

Minimize (𝜖 + 𝐾𝑁 + 𝐾𝑃+ 𝐾𝑅 + 𝐾Ⅎ) subject to  𝒫 > 0 , Ⅎ > 0 , the Eqs. ( 4-42) , ( 4-43) & 

( 4-44). 

 

 

4.3.2.2 LMI observer–based control design  for every subsystem 

individually  
 

After design the OISMC as in Section 4.3.1 the subsystem on sliding mode will be as in Eq. 

( 4-19): 

To develop a robust control law let the feedback control has the form: 

𝑢𝑖
𝑂𝐵𝐶 𝑡 = 𝑘𝑖𝑥 𝑖 𝑡 = 𝑘𝑖𝑥𝑖 𝑡 − 𝑘𝑖𝑒𝑖 𝑡  ( 4-45) 

where 𝑘𝑖  is the constant gain. It is assumed that this gain is determined via an LMI tool to 

stabile the subsystem i
th

 under specific performance as well as decrease the influence of 

𝐽𝑖 𝑡  on the subsystem. 
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The estimated state 𝑥 𝑖 𝑡  can be obtained by using a Luenberger observer based on n inter-

connected system. This de-centralized observer is designed depending on local information 

(input and output) and no connections between the other observers or subsystems. The i
th

 

subsystem observers can be expressed as: 

𝑥  𝑖 𝑡 = 𝐴𝑖𝑥 𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝑂𝐵𝐶 𝑡 + 𝐿𝑖(𝑦𝑖 𝑡 − 𝐶𝑖𝑥 𝑖(𝑡)) ( 4-46) 

where  𝐿𝑖  is the constant gain that stabiles observer i
th

. 

By subtracting Eq. ( 4-46) from Eq. ( 4-45) the resulting equation gives the subsystem state 

estimation errors as follows:  

𝑒 𝑖 𝑡 = (𝐴𝑖 − 𝐿𝑖𝐶𝑖)𝑒𝑖 𝑡 + Γ𝑖𝐽𝑖 𝑡 − 𝑀𝑖𝑒𝑖 𝑡  ( 4-47) 

The same Lyapunov procedure as described in Section 4.3.2.1 is used to check the stability 

of each closed-loop subsystem comprising local subsystem controllers and observers, using 

the Lyapunov candidate functions 𝑉𝑖 𝑥𝑖 , 𝑡 = 𝑥𝑖
𝑇 𝑡 𝑃𝑖𝑥𝑖 𝑡 + 𝑒𝑖

𝑇 𝑡 𝐹𝑖𝑒𝑖(𝑡)  , with 𝑃𝑖 > 0 

and 𝐹𝑖 > 0 . 

The results that are obtained from this procedure give the flowing LMI: 

 
 
 
 
 
 
 𝕎   𝑖       

−𝑁𝑖
𝑇𝐵𝑖

𝑇 − 𝒫𝑖𝑀𝑖
𝑇

𝛤𝑖
𝑇

0
0
𝒫𝑖

     

−𝐵𝑖𝑁𝑖 − 𝑀𝑖𝒫𝑖

−2𝜆𝑖𝒫𝑖

0
𝜆𝑖𝐼𝑖

0
0

        

𝛤𝑖

0
−2𝜆𝑖

0
𝜆𝑖𝐼𝑖

0

        

0
𝜆𝑖𝐼𝑖

0

𝕃 𝑖

𝛤𝑖
𝑇Ⅎ𝑖

0

           

0
0

𝜆𝑖𝐼𝑖
𝐹𝑖𝛤𝑖

−𝐼𝑖
0

        

𝒫𝑖

0
0
0
0

−𝜖𝑖𝐼𝑖 
 
 
 
 
 

< 0 ( 4-48) 

where 𝕎   𝑖 = 𝒫𝑖𝐴𝑖
𝑇 + 𝐴𝑖𝒫𝑖 + 𝑁𝑖

𝑇𝐵𝑖
𝑇 + 𝐵𝑖𝑁𝑖   

𝕃 = 𝐴𝑖
𝑇Ⅎ𝑖 + Ⅎ𝑖𝐴𝑖 + 𝐶𝑖

𝑇𝑅𝑖
𝑇 + 𝑅𝑖𝐶𝑖 − Ⅎ𝑖𝑀𝑖 − 𝑀𝑖

𝑇Ⅎ𝑖   

The other variables are: 

 Ⅎ𝑖 > 0 ,   𝒫𝑖 > 0  ,   𝑁𝑖 = 𝑘𝑖𝒫𝑖  ,   𝑅𝑖 = Ⅎ𝑖𝐿𝑖  , 𝜖𝑖 =
1

𝛼𝑖
2  and  𝜆𝑖  is a tuning matrix for every 

subsystem.  

Algorithm 4-3: 

1- Calculate the  𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  from the Eq.( 4-4) 

2- Use the 𝜎𝑖 𝑦𝑖 , 𝑥 𝑖 , 𝑡  to get the discontinuous controllers from Eq.( 4-10) 

3- Minimize the  𝜖𝑖  subject to  𝒫𝑖 > 0 , Ⅎ𝑖 > 0 & Eq. ( 4-48) 



117 
 

4- The controller gains can be calculated from the  𝑘𝑖 = 𝑁𝑖  𝒫𝑖
−1 

5- The observer gain can be calculated from the  𝐿𝑖 = Ⅎ𝑖
−1𝑅𝑖  

This algorithm follows Algorithm 3-2, with the addition of conditions to reduce the norms 

of the control and observer gains in the LMI framework. 

To limit the conditioning of the controller designs the Euclidean norms  𝑁𝑖  and  𝑅𝑖  of 

the gains 𝑁𝑖  and 𝑅𝑖  are bounded according to the following: 

  
 −𝑘𝑁𝑖𝐼𝑖       

𝑁𝑖
    

 𝑁𝑖
𝑇

−𝐼𝑖
  < 0     and        

 −𝑘𝑅𝑖𝐼𝑖     
𝑅𝑖

     
𝑅𝑖

𝑇

−𝐼𝑖
  < 0 ( 4-49) 

where 𝑘𝑁𝑖  and 𝑘𝑅𝑖  are scalar variables.  

To limit the conditioning of the observer designs the Euclidean norms  𝒫𝑖   and  Ⅎ𝑖  are 

bounded as follows:  

  
 𝒫𝑖     
𝐼𝑖   

      
𝐼𝑖

𝑘𝑃𝑖𝐼𝑖  
  > 0     and        

 Ⅎ𝑖     
𝐼𝑖   

       
𝐼𝑖

𝑘Ⅎ𝑖
𝐼𝑖  

  > 0 ( 4-50) 

where 𝑘𝑃𝑖  and 𝑘Ⅎ𝑖
 are scalar variables. 

Algorithm 4-4: 

The same procedure as in algorithm 4-3 is used by replacing step 3 by: 

Minimize (𝜖𝑖 + 𝑘𝑁𝑖 + 𝑘𝑃𝑖+ 𝑘𝑅𝑖 + 𝑘Ⅎ𝑖
) subject to  𝒫𝑖 > 0 , Ⅎ𝑖 > 0 ,  the Eqs. ( 4-48) , ( 4-49) 

& ( 4-50). 

4.4 Numerical example 

Consider the following numerical example consisting of three non-linear inter-connected 

systems adapted from (Castaños,Xu and Fridman, 2006) : 

1
st
 Subsystem: 

𝐴1 =  
0

  6   
  −6

1
   , 𝐵1 =  

 0 
1

  , 𝐶1 =  
1

 0  
  0
1
  , 𝐸1 =  

0.1
0.3

 , 𝑧1 = ( 
0

 1  
  0
1
  

𝑥21

𝑥22
 +  

0
 1  

  0
1
  

𝑥31

𝑥32
 ) 

𝑊1 𝑥1, 𝑡 =  
0

4 cos 2𝑡 𝑥11 − 2 sin(𝑡)𝑥12
  , 𝑥1 0 =  

   0.4
−0.1

   and  𝑥1(𝑡) =  
𝑥11(𝑡)
𝑥12(𝑡)
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2
nd

 Subsystem: 

𝐴2 =  
0

−2   
  −1
−7

  , 𝐵2 =  
0
1
  , 𝐶2 =  

1
 0  

  0
1
  , 𝐸2 =  

0.1
0.3

 , 𝑧2 = ( 
0

 1  
  0
2
  

𝑥11

𝑥12
 +  

0
 1  

  0
2
  

𝑥31

𝑥32
 ) 

𝑊2 𝑥2, 𝑡 =  
0

2 sin 𝑡 𝑥21 + 4 cos(2𝑡)𝑥22
  , 𝑥2(0) =  

0.3
−0.2

   and   𝑥2(𝑡) =  
𝑥21(𝑡)
𝑥22(𝑡)

  

 

3
rd

 Subsystem: 

𝐴3 =  
0

−4   
  −1
−5

 ,𝐵3 =  
0
1
 , 𝐶3 =  

1
 0  

  0
1
 , 𝐸3 =  

0.1
0.3

 , 𝑧3 = ( 
0

 2  
  0
1
  

𝑥11

𝑥12
 +  

0
−2  

  0
−1

  
𝑥21

𝑥22
 ) 

𝑊3 𝑥3, 𝑡 =  
0

6 sin 𝑡 𝑥31 + 2 cos(2𝑡)𝑥32
  , 𝑥3(0) =  

−0.3
−0.3

    and    𝑥3(𝑡) =  
𝑥31(𝑡)

𝑥32(𝑡)
  

𝑑1 𝑡 = 𝑑2 𝑡 = 𝑑3 𝑡 = 0.3 + 0.01sin(100𝑡) 

 

It can be seen that the subsystem systems without controls are unstable. 

 

4.4.1 Simulations and results  

This Section illustrates results and simulations of applying the above algorithms to the 

numerical example. The same OISMC design is used for each subsystem but a different 

choice of LMI algorithm is used for each of the controller and observer gains. 

 

4.4.1.1 Observer-based control design of compact system (one shot) 

The continuous subsystem control 𝑢𝑖
𝑂𝐵𝐶 𝑡  is obtained via the LMI tool corresponding to 

Algorithm 4-2 yielding the following controller and observer gains: 

Controller gains: 

k1 =  [−4.9522     − 4.4306 ]  ,  k2=  [5.6854      3.6946]   and   k3 =  [7.6854       1.6946] 

Observer gains: 

L1 =   
5.2947        

0   
  −0.1504

0
     ,  L2 =   

7.7790     
0   

      
0
0

     and    L3 =   
7.7790       

0   
     

0
0

   

 

The tuning design parameter of the aggregate systems is chosen to be 𝜆 = 1.86 
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Furthermore, the gains of the discontinuous controllers are: 𝜇1 = 𝜇2  = 𝜇3 =5 and the 

constants chosen to eliminate the chattering motion are 𝔷1= 𝔷2 = 𝔷3= 0.2 

All three subsystems without controls are unstable, one reason being the interactions 

between them and the disturbances. Figure  4-2 shows the response of these systems without 

control. 

 

Figure  4-2 : Three subsystems without control 

 

Figure  4-3 shows the response of all three subsystems under using output de-centralized 

(LMI + OISMC) with no faults. These results illustrate that the controllers give an 

acceptable and stable response for all of the subsystems. 
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Figure  4-3: Three subsystems with controls and without faults 

 

Figure  4-4 ,Figure  4-5 &Figure  4-6 illustrate the simulation results of the states of every 

subsystem and their estimates when there are no faults in all subsystems (actuators and 

sensors). From these results, the estimated and true state values are almost identical, with a 

little difference at the start of the simulated responses. 

 

Figure  4-4: States of 1
st
 subsystem and its estimated 
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Figure  4-5 : States of 2
nd

 subsystem and it‟s estimated 

 

These estimated states are used as feedback signals to control the subsystems. Figure  4-7 

illustrates the simulation response of a 50% fault scenario in the 1
st
 subsystem actuator, 

with the remaining two actuators considered as fault-free. The effects of 1
st
 subsystem 

actuator fault on the remaining two subsystems are also shown. From the Figure, it is clear 

that the controller compensates the faults and attenuates any disturbance effects. 

 

Figure  4-6 : States of 3
rd

 subsystem and its estimates 



122 
 

 

Figure  4-7: Three subsystems with controls and with a 50% actuator fault in 1
st
 subsystem 

 

Figure  4-8: Control signal of the 1
st
 subsystem with 50% actuator fault 

 

 Figure  4-9: Three subsystems with controls and with 50% actuator fault in 1
st
, 2

nd
 and 3

rd
 

subsystems 
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Figure  4-8 shows the control signal of the 1
st
 subsystem for (a) no fault and (b) for a 50% 

actuator fault. Therefore the control signal compensates the actuator fault. 

 Figure  4-9 shows the simulation of a fault scenario for all three subsystems with 50% 

actuator faults. From the Figure it can be seen that all the subsystems  are affected by the 

faults and disturbance.  The faults cause a loss of desired response. However, all 

subsystems will be unstable, as shown in Figure  4-10 when all the subsystems have 70% 

faults in their actuators. 

 

Figure  4-10 : Three subsystems with controls and with 70% actuator fault of 1
st
, 2

nd
 and 3

rd
 

subsystems 

 

Figure  4-11: Three linear subsystems with controls but no faults and no interconnections or 

uncertainties 
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Figure  4-11 shows the response of all three linear subsystems resulting from the use of 

output de-centralized LMI + OISMC with no faults, no interconnections and no 

uncertainties. 

 

4.4.1.2 Observer-based control design of subsystem by subsystem 

The continuous control 𝑢𝑖
𝑂𝐵𝐶 𝑡  designed by the LMI tool of algorithm 4-4 yields: 

Controller‟s gains: 

 

k1 = [-5.0191        -4.3222]    ,   k2 = [6.9282       3.0775]   and   k3 = [8.9282       1.0775] 

Algorithm 4-4 also yields: 

Observer‟s gains: 

 

L1 = 
8.3427    

0   
     

0
0
      ,   L2 = 

52.9197    
0   

    
−0.0065

0
      and     L3 = 

52.9197    
0   

     
−0.0065

0
  

where the design parameters of the subsystems are: 

 𝜆1= 1.91, 𝜆2= 1.99 and 𝜆3= 1.99 

The resulting subsystem control signals are 𝑢𝑖 𝑡 = 𝑘𝑖𝑥𝑖(𝑡) − 𝜇𝑖
𝜎𝑖 𝑥𝑖 ,𝑡 

 𝜎𝑖 𝑥𝑖 ,𝑡  +𝔷𝑖
 

where 𝜇1= 𝜇2 = 𝜇3=5  and  𝔷1= 𝔷2 = 𝔷3= 0.2 

Figure  4-12 shows the response of all three subsystems by using output de-centralized 

(LMI + OISMC) control with no faults. From the results the proposed method gives 

controllers that can stabilize the inter-connected systems based on feedback from the 

estimated state. It can be seen that the controllers produce acceptable responses. 
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Figure  4-12 : Three subsystems with controls and without faults 

 

The states and their estimates for all the inter-connected subsystems are shown in 

Figure  4-13 , Figure 4-14 & Figure 4-15 . All the simulations of the states correspond to the 

fault-free case. Moreover, the Figures show that the estimated values nearly match the true 

subsystem states, apart from small transient differences. 

 

Figure  4-13 : States of 1
st
 subsystem and its estimated 
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Figure  4-14 : States of 2
nd 

subsystem and it‟s estimated 

 

Figure  4-15 : States of 3
rd 

subsystem and its estimated 

 

Figure  4-16 : Three subsystems with controls and with 50% actuator fault in 1
st
 subsystem 
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The effects of a 50% actuator fault of the 1
st
 subsystem on the 1

st
 subsystem itself and the 

other subsystems is shown in Figure 4-16, where it is assumed that the remaining 

subsystems are fault-free,. The Figure also shows that all subsystems can compensates the 

faults and the controller of the 1
st
 subsystem is still capable of stabilizing the 1

st
 subsystem 

very effectively.  The control signal of the 1
st
 subsystem with a 50% actuator fault can be 

seen in Figure  4-17. 

 

Figure  4-17 : The control signal of the 1
st
 subsystem with a 50% actuator fault 

 

Figure  4-18 : Three subsystems with controls and with 50% actuator faults in the 1
st
, 2

nd
 

and 3
rd

 subsystems 
 

All three subsystems have 50% actuator faults with the responses shown in Figure  4-18. 

The Figure shows that all the subsystems are affected by each other but they are still stable. 
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However, if all the faults are increased, all subsystems are unstable, as shown in 

Figure  4-19 where all the subsystems have 70% faults in their actuators. 

 

Figure  4-19 : Three subsystems with controls and 70% actuator fault of 1
st
, 2

nd
 and 3

rd
 

subsystems 

 

4.4.1.3 Comparison of the two methods 

The comparison of the proposed methods to control non-linear inter-connected systems is 

illustrated in Table 4-1.  To summarize it is assumed that the estimated states replace the 

true states in a state estimate feedback structure to stabilize the subsystems. 

However, the two methods have some similarity but there are some differences in the LMI 

calculations. The aggregate system only requires the solution of one LMI but in other 

methods each LMI requires separate solutions according to the number of subsystems. 

Hence, the LMI solution strategy for the aggregate system is straightforward but the LMI 

designs for each subsystem give flexibility to tune every subsystem individually to achieve 

specific subsystem responses and behaviour in large-scale inter-connected systems. 

From the Table 4-1, each design method can be used in specific applications. The LMI 

approach for the aggregate system is useful for large-scale inter-connected systems. In the 

case of smaller inter-connected systems the approach based on the use of individual 

subsystem LMI designs becomes more useful. This also shows up the concept of “plug and 

play” in which individual subsystems can be added or removed if the corresponding 

subsystems fails or malfunctions (Kragelund,Leth and Wisniewski, 2010, Michelsen and 

Stoustrup, 2010). 
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Method 
 

Observer-based control via LMI  

for each subsystem separately 

 

 

Observer-based control via LMI 

for overall system (one shot) 
Contents 

ISMC 
 

The same discontinuous control 

 

The same discontinuous control 

 

Calculations of 

gains by LMI 

 

Solve the LMI n times Solve the LMI only once. 

Choosing tuning 

parameter   𝛌 
 

Every subsystem has its own 𝜆𝑖  One λ for the aggregate  system 

Gains of 

controllers 

Assumed identical in all 

subsystems 

 

Assumed identical in all 

subsystems 

Gains of 

observers 

 

Slightly higher norms Lower norm values 

Response 
 

Adjust individual subsystems 

 

 

Adjust only the aggregate system 

The best use 
Good for small inter-connected 

systems 

 

Good for large-scale inter 

connected systems 

Table  4-1: Comparison of two proposed methods 

 

4.5 Conclusion 

A major challenge of the control of uncertain inter-connected systems is to remove or 

compensate for the effects of uncertainly and disturbances acting in the subsystems so that 

an ideal decentralization can be achieved. In the ideal case, the resulting hitherto inter-

connected system now becomes a truly de-centralized structure in which the subsystems can 

be designed independently. This approach to the control of complex systems has important 

consequences for security and fault-tolerance, e.g. if one subsystem fails then this failure 

does not influence the integrity of the remaining subsystems. 

It is assumed in this work that the subsystem states are not available for control and hence 

the outputs are used together with the classical notion of the state estimate feedback to 

develop a strategy for de-centralization. Hence, the output de-centralized control is achieved 

via OISMC together with linear observer design to give robust performance for both 
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matched and unmatched uncertainty and disturbances. The combination of the OISMC and 

an LMI design framework can be used to give suitably robust control and the parameters 𝜆𝑖  

used to achieve desired subsystem response or parameters λ  of the aggregate system, 

according to the method chosen. 

Depending on whether or not the subsystems are connected as a large-scale system 

(according to the designer‟s consideration of the size of a large-scale system) it is possible 

to design observer-based control for all the subsystem as an aggregate (one-shot) system. 

The aggregate design uses a single LMI to achieve stability as well as the minimization of 

matched/unmatched uncertainties and interactions and control performance specification. 

But if they are connected in a small-scale system it is possible to design observer-based 

control for each subsystem and perform tuning to achieve a desired response. 

Whilst the design procedure is considerably complex the system implementation is nothing 

more than the OISMC and linear observers are applied locally to each subsystem. 

Suitably robust control of non-linear inter-connected systems via estimated states can be a 

very challenging design problem since the approach requires a satisfactory implementation 

of a suitable Separation Principle recovery procedure. 

An alternative solution would make use of the output signal directly as a feedback signal in 

the so-called static or dynamic output feedback control problem as described in Chapters 5 

and 6. 
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Chapter 5 :Static output feedback 

adaptive ISMC for inter-connected 

non-linear systems 

 
 

5.1 Introduction 

One of the challenges of feedback control of inter-connected systems is how best to use 

static feedback design in the presence of modelling uncertainty and interconnections 

(Yu,Jun-e,Lin and Juan, 2010). During the last few years several researchers have studied 

the stability of inter-connected systems using static output control, developing different 

static feedback control strategies (Yan,Edwards and Spurgeon, 2004, Zecevic and Šiljak, 

2004). Despite the excellent research more effort is required for further investigations 

(Cao,Lam and Sun, 1998). Most of the methods used to create static feedback are based on 

linear systems and little effort and attention has been given to studying non-linear systems.  

This is especially true for large-scale or inter-connected systems, due to challenges of 

stability, robustness and complexity of computation (Zecevic and Šiljak, 2004, Yuanwei and 

Dimirovski, 2006). 

For practical applications static output control has several advantages; it may lead to a 

reduction in implementation cost and a decrease the cost of maintenance (Trofino-Neto and 

Kucera, 1993). However, the design conditions for controllable and observable static output 

systems are well known even if the design freedom for such systems is restricted.  This is 

the case for systems with no interconnections as the design complexity increases 

dramatically when inter-connections are considered (Stephen,Laurent,Eric and 

Venkataraman, 1994). 

A large-scale system can be considered as a combination of inter-connected dynamic 

subsystems, e.g. infrastructure systems (electrical grids, telecommunications networks and 

building structure) and some industries such as production lines and oil industries that 

cannot easily have a single control structure (Poznyak,Fridman and Bejarano, 2004). This 

Chapter focuses on inter-connected systems that are Lipschitz, i.e. with bounded non-

http://en.wikipedia.org/wiki/Electrical_grid
http://en.wikipedia.org/wiki/Telecommunication
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linearity. The non-linearities may come from one or more subsystems or may reflect some 

non-linear dynamic interconnections between subsystems (Dimirovski,Jing,Yuan and 

Zhang, 1998). The main challenges for the design of control systems for inter-connected 

non-linear systems are to design de-centralized controllers that ensure the global stability 

when the interactions are unknown (Yuanwei and Dimirovski, 2006). 

There are many techniques to design static output feedback control; one of them is based on 

linear matrix inequalities (LMI) which are used to handle the multi-objective control 

problem arising from the need to solve a joint stability, uncertainty robustness and 

performance design problem. This is actually an appropriate approach for the design of 

linear robust control for system that is actually non-linear with bounded non-linearity 

(Benton and Smith, 1999,Veselý, 2001,Daniel, 2003, Gadewadikar et al., 2007). However, 

the complexity in this design approach arises from the difficulty in directly determining the 

feedback gains because of the need to convert the non-convex optimization to a convex one. 

Most researchers who use LMI tools rely on the iterative algorithm approach to compute the 

appropriate gains after determining suitable convergence criteria (Juntao, 2009). The use of 

iteration is difficult because it depends on choosing the best initial state feedback matrix, 

which may lead to a non-LMI solution (Wenlong,Yaqiu and Liping, 2006). Also some 

methods are based on iterative calculation, substitutive LMI and a min/max algorithm 

(Poznyak,Fridman and Bejarano, 2004). At every iteration cycle the LMIs must be resolved, 

but these methods do not necessarily guarantee that a solution can be determined (Cao,Lam 

and Sun, 1998).  

An approach to output feedback control of de-centralized systems which does not require 

the use of iterative LMI calculations can be based on the use of ISMC as an extension of the 

classical state feedback work of (Castaños and Fridman, 2005, Castaños,Xu and Fridman, 

2006) which considers problems in which the disturbances satisfy a matching condition. In 

the work described in this Chapter a more general ISMC problem is considered in which (a) 

the control is based on static output feedback, (b) the disturbances considered can be both 

matched and unmatched. It is shown in this work that the key to achieve both (a) and (b) in a 

de-centralized control problem is to use adaptive control as a tool that takes into account 

changes in system parameters, to ensure that the response of the system is automatically 
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controlled according to required closed-loop and stability performance specifications 

(Bejarano,Fridman and Poznyak, 2007). 

This new approach to ISMC is used to enable robust control to be achieved at the local 

levels of the de-centralized inter-connected system. It will be shown that the ISMC is 

capable of rejecting matched uncertainties/disturbances arising from a subsystem or the 

interconnections between subsystems (Mondal and Mahanta, 2012). The idea relies on 

splitting the control signal into two parts; continuous and discontinuous control. The first 

part is designed via LMI condition and the discontinuous gain is designed by an adaptive 

output feedback integral sliding control (AOISMC) in which the gain is a function of the 

output feedback, taking into account known upper bounds for both disturbances and 

matched components. 

The main contributions in this Chapter can be summarized as: 

3- The new proposal of an LMI-based design on static output feedback  with AOISMC 

of non-linear inter-connected systems in two cases, one to design a control for every 

subsystem individually and the second to design the overall centralised system in a 

“one shot” design
3
. 

4- Application of this new method to an example of the model of a single electrical 

machine connected to an infinite electrical bus system, as well as to study the 

scenario when faults occur in actuators and assess the impact of the faults on the 

stability of whole system. 

The Chapter is organized as follows. Section 5.2 describes the problem formulation. Then 

Section 5.3 considers the proposed control approach that includes the proposal for a new 

AOISMC in the first part and an LMI-based output feedback control design in the second 

part. Section 5.4 describes the electrical power systems example comprising two inter-

connected systems to illustrate the design approach. The simulated performance of this 

example is given and a comparison is made between the OISMC and adaptive OISMC 

design approaches. Finally, a concluding discussion is presented in Section 5.5. 

 

                                                           
3 Part of the work presented in this chapter has been published in: 
 

Larbah, E. and Patton, R.J. 2013. Static output feedback adaptive integral sliding control for interconnected nonlinear systems. The 9th 

Asian Control Conference (ASCC) June 23th -26th . 
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5.2 System description 

Consider a non-linear inter-connected state-space system comprising 𝑛  subsystems as 

follows: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝑍𝑖 𝑡 + 𝑊𝑖 𝑥𝑖 , 𝑡 + 𝐸𝑖𝑑𝑖 𝑡 + 𝐵𝑖𝑓𝑖 𝑡  

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡                  𝑖 = 1, … … , 𝑁 

( 5-1) 

where 𝑥𝑖(𝑡) ∈ ℝ𝑛 is the state vector, 𝑢𝑖(𝑡) ∈ ℝ𝑚  are the control inputs and 𝑦𝑖(𝑡) ∈ ℝ𝑝 is the 

vector of system outputs. 𝐴𝑖 ∈ ℝ𝑛×𝑛 is a subsystem characteristic matrix, 𝐵𝑖 ∈ ℝ𝑛×𝑚  is the 

subsystem control input matrix, 𝐶𝑖 ∈ ℝ𝑝×𝑛  is the subsystem output matrix and 𝐸𝑖 ∈ ℝ𝑛×𝑞  is 

the subsystem external disturbance matrix. It is assumed that all of the matrices 

𝐴𝑖   𝐵𝑖 ,  𝐶𝑖  & 𝐸𝑖  are known and that the   𝑍𝑖(𝑡)  denote the interactions between the 

subsystems. The   𝑊𝑖 𝑥𝑖 , 𝑡 denote the unknown uncertainties that satisfy the matching 

conditions  𝑊𝑖(𝑥𝑖 , 𝑡) = 𝐵𝑖𝑄𝑖(𝑥𝑖 , 𝑡) . 𝑑𝑖(𝑡) represent an unknown bounded disturbance. 

 𝑓𝑖(𝑡) ∈ ℝ𝑘  denote the actuator faults where 𝑓𝑖 = −𝐾(𝑡)𝑢𝑖  and for which 𝐾 𝑡 = 𝑑𝑖𝑎𝑔(𝐾𝑖) 

and 0 ≤ 𝐾𝑖 ≤ 1. 𝐾𝑖 = 0 .  This means that the actuator is working perfectly and if 𝐾𝑖 = 1 

the actuator has failed completely, otherwise the fault is present. 

Some of the assumptions are taken into account as mentioned in Section 3.2 of Chapter 3 

from (A1 to A7). 

Suppose that:  𝛤 = 𝐼𝑛 − 𝐵𝐵+  where  𝐵+  is pseudo-inverse of the matrix 𝐵  , so that       

𝐵+ = (𝐵𝑇𝐵)−1𝐵𝑇 and 𝐼𝑛  is the 𝑛 × 𝑛 identity matrix. 

It is also assumed that the interactions between the subsystems contain two matched and 

unmatched components, so that 𝑍𝑖 = 𝑍𝑚𝑖 + 𝑍𝑢𝑖  where 𝑍𝑚𝑖 = 𝐵𝑖𝐵𝑖
+𝑍𝑖  is a matched 

component of 𝑍𝑖  and 𝑍𝑢𝑖 = 𝛤𝑖𝑍𝑖  is an unmatched component of 𝑍𝑖   (Ghadami and Shafai, 

2011) in which 𝛤𝑖 = 𝐼𝑛𝑖 − 𝐵𝑖𝐵𝑖
+ . 

The same procedure is applied to the components 𝐸𝑖𝑑𝑖  which divide into two further 

matched and unmatched components 𝐸𝑖𝑑𝑖 = 𝐸𝑖𝑑𝑚𝑖 + 𝐸𝑖𝑑𝑢𝑖  , with 𝐸𝑖𝑑𝑚𝑖 = 𝐵𝑖𝐵𝑖
+𝐸𝑖𝑑𝑖  and  

𝐸𝑖𝑑𝑢𝑖 = 𝛤𝑖𝐸𝑖𝑑𝑖  . 

After substituting all assumptions the subsystem of Eq. ( 5-1) becomes: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝐵𝑖𝛷𝑚𝑖  𝑡 + 𝛷𝑢𝑖  𝑡  

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡               𝑖 = 1, … … , 𝑁 

( 5-2) 

http://en.wikipedia.org/wiki/Matrix_(mathematics)
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where 𝛷𝑚𝑖  is a matched component, 𝛷𝑚𝑖 = 𝐵𝑖
+𝑍𝑖 𝑡 + 𝑄𝑖 𝑥𝑖 , 𝑡 + 𝐵𝑖

+𝐸𝑖𝑑𝑖 𝑡 + 𝑓𝑖(𝑡) and 

𝛷𝑢𝑖  is an unmatched component, 𝛷𝑢𝑖 = 𝑍𝑢𝑖  𝑡 + 𝐸𝑖𝑑𝑢𝑖 = [𝛤𝑖        𝛤𝑖𝐸𝑖]   
𝑍𝑖

𝑑𝑖  
 = 𝑟𝑖𝑤𝑖 . 

The matched and unmatched components are bounded by known positive constants 

𝜖0𝑖 ,  𝜖1𝑖  ,  𝛾0𝑖 and  𝛾1𝑖   such as: 

 𝛷𝑚𝑖  ≤ 𝜖0𝑖 + 𝜖1𝑖 𝑦𝑖  
( 5-3) 

and 

 𝛷𝑢𝑖 ≤ 𝛾0𝑖 + 𝛾1𝑖 𝑦𝑖  
( 5-4) 

The control signal contains two components: 

𝑢𝑖(𝑡) = 𝑢𝑖
𝑂𝑡𝑝 (𝑡) + 𝑢𝑖

𝐼𝑆𝑀(𝑡) 
( 5-5) 

where 𝑢𝑖
𝑂𝑡𝑝

 is responsible for stabilizing the system and achieving the desired performance 

whilst also decreasing the effect of unmatched components where the state is not available. 

𝑢𝑖
𝐼𝑆𝑀  is a discontinuous control responsible for eliminating the effects of matched 

components (uncertainties and actuator faults). 

Substituting  Eq.( 5-5) into Eq.( 5-2) yields: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝑂𝑡𝑝  𝑡 + 𝐵𝑖𝑢𝑖

𝐼𝑆𝑀 𝑡 + 𝐵𝑖𝛷𝑚𝑖  𝑡 + 𝛷𝑢𝑖  𝑡  

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡                      𝑖 = 1, … … , 𝑁 

 

( 5-6) 
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Figure  5-1: Static output control of inter-connected systems via LMI+AOISMC 

 

5.3 Control design methods 

In this Section two design methods are described for the control of inter-connected systems 

which depend on the type and extent of knowledge of the interactions between the 

subsystems. Suppose that all subsystems are connected to each other and all the interactions 

are not known, so that the input or “distribution” matrices of the interactions are not 

known.  It is assumed that the control input matrices and the disturbance distributions are 

known. As summarised in Section 5.2 the control signal contains two parts one is designed 

via an LMI framework and the second one is designed by a proposed AOISMC approach as 

follows. 

 

5.3.1 Adaptive output integral sliding mode control (AOISMC) 

An application based on the use of adaptive control is able to improve the behaviour of the 

system if compared with the use of a fixed gain controller (Nguyen, 2012). Adaptive control 

has great advantages when applied to non-linear subsystems containing uncertainties, 

interactions, disturbances and faults. Based on the behavioural changes that may occur in the 

system, the control tunes its parameters online to change the system response to ensure 

stability and achieve a pre-specified performance, in the presence of system parameter 
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changes, uncertain perturbations or disturbances (Wai, 2000, Yu and Fei, 2011). Therefore 

the control is able to adapt the system parameters to events that may change the system 

behaviour. Accordingly, the controller is changed depending on internal and external system 

changes to reach the best level of stability. Despite several advantages of adaptive control, it 

nevertheless can suffer from a reliability problem when implemented in safety critical 

systems (Nguyen, 2012).  

The output integral sliding switching surface is defined as: 

𝜎𝑖 𝑦𝑖 , 𝑡 = 𝐺𝑖[𝑦𝑖(𝑡) − 𝑦𝑖 𝑡𝑜 ] −   𝑢𝑖
𝑂𝑡𝑝 (𝑡) + 𝐺𝑖𝐶𝑖𝐴𝑖𝔾𝑖𝑦𝑖(𝑡)  𝑑𝑡

𝑡

𝑡𝑜

 ( 5-7) 

where the 𝐺𝑖  are design freedom matrices satisfying the conditions 𝐺𝑖 = 𝐶𝑖𝐵𝑖  where the 

𝐺𝑖  are invertible and the 𝔾𝑖  are design matrices to be chosen. 

The steps of the proposed AOISMC design are: 

1- Design sliding surface based on outputs that insure the performance of the system. 

2- Design an appropriate discontinuous control to force the system to be maintained in 

the sliding surface. 

3- Design the required adaptive gains for the AOISMC discontinuous control. 

For this problem the equivalent controls (for each subsystem) 𝑢𝑒𝑞𝑖 (𝑡)  can maintain the 

sliding surfaces by ensuring that the time derivatives of 𝜎𝑖 𝑦𝑖 , 𝑡 = 0 are given by: 

𝜎 𝑖 𝑦𝑖 , 𝑡 = 𝐺𝑖𝑦 𝑖 𝑡 − 𝑢𝑖
𝑂𝑡𝑝  𝑡 − 𝐺𝑖𝐶𝑖𝐴𝑖𝔾𝑖𝑦𝑖 𝑡  

𝜎 𝑖 𝑦𝑖 , 𝑡 = 𝐺𝑖𝐶𝑖𝑥 𝑖 𝑡 − 𝑢𝑖
𝑂𝑡𝑝  𝑡 − 𝐺𝑖𝐶𝑖𝐴𝑖𝔾𝑖𝐶𝑖𝑥𝑖 𝑡 = 0 

( 5-8) 

Substituting Eq. ( 5-6) into Eq. ( 5-8) yields: 

𝐺𝑖𝐶𝑖𝐴𝑖𝑥𝑖 𝑡 + 𝐺𝑖𝐶𝑖𝐵𝑖𝑢𝑖
𝑂𝑡𝑝 (𝑡) + 𝐺𝑖𝐶𝑖𝐵𝑖𝑢𝑖

𝐼𝑆𝑀(𝑡) + 𝐺𝑖𝐶𝑖𝐵𝑖𝛷𝑚𝑖  𝑡 + 𝐺𝑖𝐶𝑖𝛷𝑢𝑖  𝑡 

− 𝑢𝑖
𝑂𝑡𝑝

(𝑡) − 𝐺𝑖𝐶𝑖𝐴𝑖𝔾𝑖𝐶𝑖𝑥𝑖(𝑡) = 0 

( 5-9) 

Selecting the 𝐺𝑖  as  𝐺𝑖 = (𝐶𝑖𝐵𝑖)
+ 

Then:  
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𝑢𝑒𝑞𝑖  𝑡 = − (𝐶𝑖𝐵𝑖)
+𝐶𝑖𝐴𝑖𝑥𝑖 𝑡 + 𝛷𝑚𝑖  𝑡 + (𝐶𝑖𝐵𝑖)

+𝐶𝑖𝛷𝑢𝑖  𝑡  

− (𝐶𝑖𝐵𝑖)
+𝐶𝑖𝐴𝑖𝔾𝑖𝐶𝑖𝑥𝑖 𝑡   

( 5-10) 

Now, substituting Eq. ( 5-10) into Eq. ( 5-6) gives: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝑂𝑡𝑝  𝑡 + [𝐼𝑖 − 𝐵𝑖(𝐶𝑖𝐵𝑖)

+𝐶𝑖]𝛷𝑢𝑖  𝑡  
( 5-11) 

where:  −𝐵𝑖(𝐶𝑖𝐵𝑖)
+𝐶𝑖𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖(𝐶𝑖𝐵𝑖)

+𝐶𝑖𝐴𝑖𝔾𝑖𝐶𝑖𝑥𝑖 𝑡 = 0 

Leading to the selection 𝔾𝑖 = (𝐶𝑖)
+ 

Then the i
th

 subsystem on the sliding surface will be: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝑂𝑡𝑝  𝑡 + 𝑇𝑖𝛷𝑢𝑖  𝑡  

( 5-12) 

where 𝑇𝑖 = [𝐼𝑖 − 𝐵𝑖(𝐶𝑖𝐵𝑖)
+𝐶𝑖] 

From Eq. ( 5-12) the i
th

 subsystem still has unmatched components. 

The proposed adaptive discontinuous controls for each subsystem are: 

𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇 𝑖

𝜎𝑖 𝑦𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑡  
 

( 5-13) 

where 𝜇 𝑖 = 𝜇 𝑖0 + 𝜇 𝑖1 𝑦𝑖(𝑡)  , 𝜇 𝑖0  and 𝜇 𝑖1  are adaptive values to adapt the unknown 

constant parameters of  𝜇𝑖0 and  𝜇𝑖1 . 

The parameter adaptive errors are defined as: 

 𝜇 𝑖0 = 𝜇 𝑖0 − 𝜇𝑖0 and  𝜇 𝑖1 = 𝜇 𝑖1 − 𝜇𝑖1.The two adaptive gains are specified as: 

𝜇 𝑖0
 ≅ 𝑞𝑖0 𝜎𝑖 𝑦𝑖 , 𝑡   

( 5-14) 

and  

𝜇 𝑖1
 ≅ 𝑞𝑖1 𝜎𝑖 𝑦𝑖 , 𝑡   𝑦𝑖(𝑡)  

( 5-15) 

where 𝑞𝑖0 and 𝑞𝑖1 are constants defined by the designer. To study the stability of the system 

Eq. ( 5-2) with the proposed discontinuous control and the two adaptive gains, one must 

check if the subsystem is globally stable on its sliding surface. To check the global stability, 

consider a candidate Lyapunov function as: 

𝑉𝑖 𝜎𝑖 , 𝑦𝑖 , 𝑡 =
1

2
[𝜎𝑖

𝑇 𝑦𝑖 , 𝑡 𝜎𝑖 𝑦𝑖 , 𝑡 + 𝑞𝑖0
−1𝜇 𝑖0

2 + 𝑞𝑖1
−1𝜇 𝑖1

2] 
( 5-16) 
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To maintain the motion close to the sliding surface consider the time derivative of 𝑉𝑖  

yielding: 

𝑉𝑖
  𝜎𝑖 , 𝑦𝑖 , 𝑡 = 𝜎𝑖

𝑇 𝑦𝑖 , 𝑡 𝜎 𝑖 𝑦𝑖 , 𝑡 + 𝑞𝑖0
−1𝜇 𝑖0𝜇 𝑖0

 + 𝑞𝑖1
−1𝜇 𝑖1𝜇 𝑖1

  
( 5-17) 

Substituting Eq. ( 5-13) into Eq. ( 5-9) gives: 

𝜎 𝑖 𝑦𝑖 , 𝑡 = −𝜇 𝑖
𝜎𝑖 𝑦𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑡  
+ 𝛷𝑚𝑖  𝑡 + (𝐶𝑖𝐵𝑖)

+𝐶𝑖𝛷𝑢𝑖  𝑡  
( 5-18) 

Substituting Eq. ( 5-14), Eq. ( 5-15) and Eq. ( 5-18) into Eq.( 5-17) gives: 

𝑉𝑖
  𝜎𝑖 , 𝑦𝑖 , 𝑡 = 𝜎𝑖

𝑇 𝑦𝑖 , 𝑡  −𝜇 𝑖
𝜎𝑖 𝑦𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑡  
+ 𝛷𝑚𝑖  𝑡 + (𝐶𝑖𝐵𝑖)

+𝐶𝑖𝛷𝑢𝑖  𝑡  

+  𝜇 𝑖0 − 𝜇𝑖0  𝜎𝑖 + (𝜇 𝑖1 − 𝜇𝑖1) 𝜎𝑖  𝑦𝑖(𝑡)  

( 5-19) 

Substituting Eq. ( 5-3) and Eq. ( 5-4) into Eq. ( 5-19) leads to: 

𝑉𝑖
  𝜎𝑖 , 𝑦𝑖 , 𝑡 ≤ − 𝜎𝑖 𝜇 𝑖 + 𝜖0𝑖  𝜎𝑖 + 𝜖1𝑖 𝜎𝑖  𝑦𝑖 + 𝛾0𝑖 𝜎𝑖  (𝐶𝑖𝐵𝑖)

+𝐶𝑖 

+ 𝛾1𝑖 𝜎𝑖  (𝐶𝑖𝐵𝑖)
+𝐶𝑖  𝑦𝑖 +  𝜇 𝑖0 − 𝜇𝑖0  𝜎𝑖 + (𝜇 𝑖1

− 𝜇𝑖1) 𝜎𝑖  𝑦𝑖(𝑡)  

( 5-20) 

Substituting  𝜇 𝑖  by 𝜇 𝑖0 + 𝜇 𝑖1 𝑦𝑖(𝑡)  , 𝜇 𝑖0 > (𝜖0𝑖 + 𝛾0𝑖) ,  𝜇 𝑖1 > ( 𝜖1𝑖 + 𝛾1𝑖) and rearranging 

Eq. ( 5-20) as: 

𝑉𝑖
  𝜎𝑖 , 𝑦𝑖 , 𝑡 ≤ −𝜇 𝑖0 𝜎𝑖 − 𝜇 𝑖1 𝜎𝑖  𝑦𝑖(𝑡) + 𝜇𝑖0 𝜎𝑖 + 𝜇𝑖1 𝜎𝑖  𝑦𝑖(𝑡) 

+  𝜇 𝑖0 − 𝜇𝑖0  𝜎𝑖 + (𝜇 𝑖1 − 𝜇𝑖1) 𝜎𝑖  𝑦𝑖(𝑡)  

( 5-21) 

It can be shown that: 

𝑉𝑖
  𝜎𝑖 , 𝑦𝑖 , 𝑡 ≤ 0 

( 5-22) 

From Eq. ( 5-22) the discontinuous controllers and the two adaptive gains for each subsystem 

will guarantee stability of the sliding surface and ensure that the dynamic subsystem will 

remain on the sliding surface. 

Note: 

When applying the 𝑢𝑖
𝐼𝑆𝑀 𝑡  on the system chattering will occur and the defect can be 

eliminated by the addition of a small constant  𝔷i > 0  (Changqing,Patton and Zong, 2010). 

The final version of the discontinuous control is: 
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𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇 𝑖

𝜎𝑖 𝑦𝑖 ,𝑡 

 𝜎𝑖 𝑦𝑖 ,𝑡  +𝔷𝑖
  , where  𝜇 𝑖 = 𝜇 𝑖0 + 𝜇 𝑖1 𝑦𝑖(𝑡)  and  

From a practical view threshold must added to the adaptive gains: 

  
( 5-23) 

 

and 

 

 
( 5-24) 

Where the  𝜇 𝑖0𝑖𝑛𝑙   and  𝜇 𝑖1𝑖𝑛𝑙  are initial values of   𝜇 𝑖0   and  𝜇 𝑖1  respectively, Thr is a 

specific threshold. 

 

5.3.2  Output integral sliding mode control (OISMC) 

Using the same integral sliding switching surfaces for each subsystem as defined in Eq. 

( 5-7). The i
th

 subsystem on the sliding surface as in Eq. ( 5-12). 

The difference between this controller and the AOISMC is the gain of the discontinuous 

controller is fixed on specific value. The proposed discontinuous subsystem control signals 

are: 

𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇𝑖

𝜎𝑖 𝑦𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑡  + 𝔷𝑖
 

( 5-25) 

where the  𝜇𝑖   are positive scalar . 

 

5.3.3 Continuous control design via LMI formulation 

After the design of the AOISMC the dynamic subsystem will be as in Eq. ( 5-12). As 

mentioned above the system still has unmatched components to solve this problem and 

hence the LMI strategy for solving this problem cannot be used since output feedback rather 

than a state feedback control is being developed. This leads to a non-convex optimization 

problem which must be converted to an appropriate convex solution problem. 

𝜇 𝑖0𝑖𝑛𝑙 + 𝑞𝑖0   𝜎𝑖 𝑦𝑖 , 𝑡  𝑑𝑡   if Threshold < Thr 

 
𝜇 𝑖0 

𝜇 𝑖0𝑖𝑛𝑙    if  threshold ≥ Thr 

 
𝜇 𝑖1𝑖𝑛𝑙 + 𝑞𝑖1   𝜎𝑖 𝑦𝑖 , 𝑡   𝑦𝑖(𝑡) 𝑑𝑡   if Threshold < Thr 

 

 

 

𝜇 𝑖1𝑖𝑛𝑙   if  threshold ≥ Thr 

 

𝜇 𝑖1 
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It is important to note here (see Section 3.3.1.2) that achievable designs making use of LMI 

tools can be classified into two main procedures: 

1- Design controller via LMI for each subsystem individually. 

2- Design controller via LMI for overall subsystem (one shot). 

Hence, the designer must choose the more appropriate of these two strategies according to 

the number of interconnections. For systems with a low number of interconnections 

procedure (1) can be used.  On the other hand for a larger-scale system with a significant 

number of connected subsystems procedure (2) is essential, i.e. as a one shot system design.  

 

5.3.3.1 Control design via LMI framework for each subsystem 

individually 
 

The required static output feedback control has the form: 

𝑢𝑖
𝑂𝑡𝑝  𝑡 = 𝐾𝑖𝑦𝑖(𝑡) 

( 5-26) 

Where the 𝐾𝑖  are controllers required to stabilize the dynamic system and reach a specific 

performance. 

Substituting Eq. ( 5-26) into Eq. ( 5-12) yields: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝐾𝑖𝑦𝑖 𝑡 + 𝑇𝑖𝛷𝑢𝑖  𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝐾𝑖𝐶𝑖𝑥𝑖 𝑡 + 𝑇𝑖𝛷𝑢𝑖  𝑡  
( 5-27) 

Eq. ( 5-27) can be re-arranged as: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖[ 𝐾𝑖         0𝑖  ]𝒯𝑖𝑥𝑖 𝑡 + 𝑇𝑖𝛷𝑢𝑖  𝑡  
( 5-28) 

Where the 𝒯𝑖 =   
𝐶𝑖

𝑂𝑐𝑖
   are square and non-singular and the 𝑂𝑐𝑖  are the orthogonal bases of 

the null space of 𝐶𝑖   (Prempain and Postlethwaite, 2001). 

Making a transformation of the  𝑥𝑖 𝑡  to  𝒯𝑖
−1𝑥 𝑖 𝑡  and substituting into Eq. ( 5-28) yields: 

𝒯𝑖
−1𝑥  𝑖 𝑡 = 𝐴𝑖𝒯𝑖

−1𝑥 𝑖 𝑡 + 𝐵𝑖[ 𝐾𝑖         0𝑖  ]𝒯𝑖𝒯𝑖
−1𝑥 𝑖 𝑡 + 𝑇𝑖𝛷𝑢𝑖  𝑡  

( 5-29) 

Rearranging Eq. ( 5-29) as: 

𝑥  𝑖 𝑡 = 𝐴𝑐𝑖𝑥 𝑖 𝑡 + 𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖𝑥 𝑖 𝑡 + 𝑇𝑐𝑖𝛷𝑢𝑖  𝑡  
( 5-30) 

𝐴𝑐𝑖 = 𝒯𝑖𝐴𝑖𝒯𝑖
−1,  𝐵𝑐𝑖 =  𝒯𝑖𝐵i   ,  𝐶𝑐𝑖 = [ 𝐼 𝑝×𝑝 𝑖            0𝑖  ]  and   𝑇𝑐𝑖 = 𝒯𝑖𝑇𝑖  
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Suppose that the 𝛷𝑢𝑖 (𝑡)  are so-called “unknown inputs” satisfying the condition of 

quadratic inequality for each subsystem (Šiljak and Stipanovic, 2001), as follows: 

𝛷𝑢𝑖
𝑇(𝑡)𝛷𝑢𝑖 (𝑡)  ≤ 𝛼𝑖

2𝑥 𝑖
𝑇(𝑡)𝑥 𝑖 𝑡  

( 5-31) 

where the  𝛼𝑖 > 0  are scalar parameters. 

The Lyapunov function candidates 𝑉𝑖 𝑥 𝑖 , 𝑡 = 𝑥 𝑖
𝑇 𝑡 𝑃𝑖𝑥 𝑖(𝑡) are used to check the stability 

of the closed-loop system, where  𝑃𝑖 > 0 . 

The time derivative of the 𝑉𝑖 𝑥 𝑖 , 𝑡  are: 

𝑉𝑖
  𝑥 𝑖 , 𝑡 = 𝑥 𝑖

 𝑇(𝑡)𝑃𝑖𝑥 𝑖 𝑡 + 𝑥 𝑖
𝑇(𝑡)𝑃𝑖𝑥 𝑖

 (𝑡) 
( 5-32) 

Substituting Eq. ( 5-30) into Eq. ( 5-32) yields: 

𝑉𝑖
  𝑥 𝑖 , 𝑡 = [𝐴𝑐𝑖𝑥 𝑖 𝑡 + 𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖𝑥 𝑖 𝑡 + 𝑇𝑐𝑖𝛷𝑢𝑖  𝑡 ]𝑇𝑃𝑖𝑥 𝑖 𝑡 + 𝑥 𝑖

𝑇 𝑡 𝑃𝑖[𝐴𝑐𝑖𝑥 𝑖 𝑡 

+ 𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖𝑥 𝑖 𝑡 + 𝑇𝑐𝑖𝛷𝑢𝑖  𝑡 ] 
( 5-33) 

Rearranging Eq. ( 5-33) as: 

𝑉𝑖
  𝑥 𝑖 , 𝑡 = 𝑥𝑖

𝑇 𝑡 𝐴𝑐𝑖
𝑇 𝑃𝑖𝑥 𝑖 𝑡 + 𝑥 𝑖

𝑇𝐶𝑐𝑖
𝑇 𝐾𝑖

𝑇𝐵𝑐𝑖
𝑇 𝑃𝑖𝑥 𝑖 𝑡 + 𝛷𝑢𝑖

𝑇(𝑡)𝑇𝑐𝑖
𝑇𝑃𝑖𝑥 𝑖 𝑡 

+ 𝑥 𝑖
𝑇 𝑡 𝑃𝑖𝐴𝑐𝑖𝑥 𝑖 𝑡 + 𝑥 𝑖

𝑇 𝑡 𝑃𝑖𝐵𝑐𝑖𝐶𝑐𝑖𝐾𝑖𝑥 𝑖(𝑡) + 𝑥 𝑖
𝑇 𝑡 𝑃𝑖𝑇𝑐𝑖𝛷𝑢𝑖 (𝑡) 

( 5-34) 

The stability of the system Eq. ( 5-30) requires that 𝑉𝑖
  𝑥 𝑖 , 𝑡 < 0 for all 𝑥 𝑖 𝑡 ≠ 0. 

Equation ( 5-34) can then be rewritten as: 

𝒵𝑖
𝑇𝒟𝑖𝒵𝑖 < 0 

( 5-35) 

 𝒵𝑖 =   
𝑥 𝑖 𝑡 

𝛷𝑢𝑖 (𝑡)
   and 𝒟𝑖 =   

𝐴𝑐𝑖
𝑇 𝑃𝑖 + 𝑃𝑖𝐴𝑐𝑖 + 𝐶𝑐𝑖

𝑇 𝐾𝑖
𝑇𝐵𝑐𝑖

𝑇 𝑃𝑖 + 𝑃𝑖𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖

𝑇𝑐𝑖
𝑇𝑃𝑖

                
𝑃𝑖𝑇𝑐𝑖

0
   

In order to check the stability condition matrices 𝒟𝑖  must be negative-definite, i.e. 𝒟𝑖 < 0 

and also Eq. (5-31) can be rewritten as: 

𝒵𝑖
𝑇𝒪𝑖𝒵𝑖 ≤ 0 

( 5-36) 

where: 𝒵𝑖 =   
𝑥 𝑖 𝑡 

𝛷𝑢𝑖 (𝑡)
   and  𝒪𝑖 =   −𝛼𝑖

2𝐼𝑖
0

             
0
𝐼𝑖

   

To organize the equations into a single equation the S-procedure can be used (Šiljak and 

Stipanovic, 2001). 
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If  𝒟𝑖  and 𝒪𝑖  are symmetric matrices then  𝒵𝑖
𝑇𝒟𝑖𝒵𝑖 < 0 and  𝒵𝑖

𝑇𝒪𝑖𝒵𝑖 ≤ 0 there is a number 

𝜏𝑖 > 0 where  𝒟𝑖 − 𝜏𝑖𝒪𝑖 < 0. In order to put the equations in a single set of equations (one 

for each subsystem) to study the stability, it can be shown that: 

𝒟𝑖 − 𝜏𝑖𝒪𝑖 =   
𝐴𝑐𝑖

𝑇 𝑃𝑖 + 𝑃𝑖𝐴𝑐𝑖 + 𝐶𝑐𝑖
𝑇 𝐾𝑖

𝑇𝐵𝑐𝑖
𝑇 𝑃𝑖 + 𝑃𝑖𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖

𝑇𝑐𝑖
𝑇𝑃𝑖

               
𝑃𝑖𝑇𝑐𝑖

0
   

                                                                                   − 𝜏𝑖   −𝛼𝑖
2𝐼𝑖

0
             

0
𝐼𝑖

  < 0 

( 5-37) 

Putting 𝒴𝑖 =
𝑃𝑖

𝜏𝑖
 into Eq. ( 5-37) yields: 

  
𝐴𝑐𝑖

𝑇 𝒴𝑖 + 𝒴𝑖𝐴𝑐𝑖 + 𝐶𝑐𝑖
𝑇 𝐾𝑖

𝑇𝐵𝑐𝑖
𝑇 𝒴𝑖 + 𝒴𝑖𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖 + 𝛼𝑖

2𝐼𝑖
𝑇𝑐𝑖

𝑇𝒴𝑖

           
    𝒴𝑖𝑇𝑐𝑖

−𝐼𝑖
  < 0 

( 5-38) 

Eq. ( 5-38) is not an LMI since it contains the non-linear term 𝒴𝑖𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖 . To overcome this 

problem, both sides of Eq. ( 5-38) must be multiplied by the matrices   𝒴𝑖
−1

0
       

0
𝐼𝑖  

  setting 

the 𝒫𝑖 = 𝒴𝑖
−1

 , as: 

  
𝒫𝑖𝐴𝑐𝑖

𝑇 + 𝐴𝑐𝑖𝒫𝑖 + 𝒫𝑖𝐶𝑐𝑖
𝑇 𝐾𝑖

𝑇𝐵𝑐𝑖
𝑇 + 𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖𝒫𝑖 + 𝛼𝑖

2𝒫𝑖𝒫𝑖

𝑇𝑐𝑖
𝑇               

𝑇𝑐𝑖

−𝐼𝑖
  < 0 

( 5-39) 

Rearranging Eq. ( 5-39) and using the Schur complement Eq. ( 5-39) can be rewritten as: 

 

𝒫𝑖𝐴𝑐𝑖
𝑇 + 𝐴𝑐𝑖𝒫𝑖 + 𝒫𝑖𝐶𝑐𝑖

𝑇 𝐾𝑖
𝑇𝐵𝑐𝑖

𝑇 + 𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖𝒫𝑖

𝑇𝑐𝑖
𝑇

𝒫𝑖

  
             𝑇𝑐𝑖               𝒫𝑖   
         −𝐼𝑖                  0

              0           − 𝜖𝑖𝐼𝑖  
  < 0 

( 5-40) 

To ensure that the 𝒫𝑖  are s.p.d matrices whilst satisfying the inequality Eq. ( 5-40), the  

𝒫𝑖   can be chosen as (Prempain and Postlethwaite, 2001): 

𝒫𝑖 = 𝒫𝑖
𝑇 =   

  𝑃1𝑖   

𝑁𝑖
𝑇𝑃1𝑖

           
      𝑃1𝑖𝑁𝑖

      𝑃2𝑖 + 𝑁𝑖
𝑇𝑃1𝑖𝑁𝑖

   ( 5-41) 

𝑃1𝑖 = 𝑃1𝑖
𝑇 ∈ ℝ𝑝  ,  𝑃2𝑖 = 𝑃2𝑖

𝑇 ∈ ℝ(𝑛−𝑝)×(𝑛−𝑝)  and  𝑁𝑖 ∈ ℝ𝑝×(𝑛−𝑝) . 𝑃𝑖  can be rearranged as: 

𝑃𝑖 = 𝑃𝑖
𝑇 =  𝑇𝑁𝑖𝑃𝑑𝑖𝑇𝑁𝑖

𝑇  
( 5-42) 

𝑃𝑑𝑖 =  
  𝑃1𝑖

0
        0
         𝑃2𝑖

  and  𝑇𝑁𝑖 =  
  𝐼(𝑝×𝑝)𝑖

𝑁𝑖
𝑇                

0
𝐼((𝑛−𝑝)×(𝑛−𝑝))𝑖

  with 𝑑𝑒𝑡(𝑁𝑖) ≠  0 

Substituting Eq.( 5-42) into Eq. ( 5-40) yields:  
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 𝑇𝑁𝑖𝑃𝑑𝑖𝑇𝑁𝑖
𝑇 𝐴𝑐𝑖

𝑇 + 𝐴𝑐𝑖  𝑇𝑁𝑖𝑃𝑑𝑖𝑇𝑁𝑖
𝑇 +  𝑇𝑁𝑖𝑃𝑑𝑖𝑇𝑁𝑖

𝑇 𝐶𝑐𝑖
𝑇 𝐾𝑖

𝑇𝐵𝑐𝑖
𝑇 + 𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖  𝑇𝑁𝑖𝑃𝑑𝑖𝑇𝑁𝑖

𝑇    

𝑇𝑐𝑖
𝑇

 𝑇𝑁𝑖𝑃𝑑𝑖𝑇𝑁𝑖
𝑇  

  

                                                                                       
 𝑇𝑐𝑖               𝑇𝑁𝑖𝑃𝑑𝑖𝑇𝑁𝑖

𝑇   
−𝐼𝑖                              0    

0                    − 𝜖𝑖𝐼𝑖  
 < 0 

( 5-43) 

Pre- and post-multiplying Eq. ( 5-43) by 𝑑𝑖𝑎𝑔 𝑇𝑁𝑖
−𝑇 , 𝐼𝑖 , 𝐼𝑖 = 𝛱𝑖  yields: 

 

𝑃𝑑𝑖𝑇𝑁𝑖
𝑇 𝐴𝑐𝑖

𝑇 𝑇𝑁𝑖
−𝑇 + 𝑇𝑁𝑖

−𝑇𝐴𝑐𝑖  𝑇𝑁𝑖𝑃𝑑𝑖 + 𝑃𝑑𝑖𝑇𝑁𝑖
𝑇 𝐶𝑐𝑖

𝑇 𝐾𝑖
𝑇𝐵𝑐𝑖

𝑇 𝑇𝑁𝑖
−𝑇 + 𝑇𝑁𝑖

−𝑇𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖  𝑇𝑁𝑖𝑃𝑑𝑖    

𝑇𝑐𝑖
𝑇𝑇𝑁𝑖

−𝑇

 𝑇𝑁𝑖𝑃𝑑𝑖  

  

                                                                               
 𝑇𝑁𝑖

−𝑇𝑇𝑐𝑖                    𝑃𝑑𝑖𝑇𝑁𝑖
𝑇   

−𝐼𝑖                             0
0                        − 𝜖𝑖𝐼𝑖  

 < 0 

( 5-44) 

It then follows that: 

𝑇𝑁𝑖
−𝑇𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖  𝑇𝑁𝑖𝑃𝑑𝑖 = 𝑇𝑁𝑖

−𝑇𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖𝑃𝑑𝑖 = 𝑇𝑁𝑖
−𝑇𝐵𝑐𝑖𝐾𝑖   𝑃1𝑖𝐶𝑐𝑖  

( 5-45) 

Since: 𝐶𝑐𝑖  𝑇𝑁𝑖 =  𝐼𝑖 𝑝×𝑝          0𝑖  
 𝐼𝑖 𝑝×𝑝 

𝑁𝑖
𝑇

              
0𝑖

𝐼𝑖  𝑛−𝑝 × 𝑛−𝑝    =  𝐼𝑖 𝑝×𝑝       0𝑖 = 𝐶𝑐𝑖  

So that, 𝐶𝑐𝑖𝑃𝑑𝑖 =  𝐼𝑖 𝑝×𝑝         0𝑖  
  𝑃𝑖1

0
             0
             𝑃𝑖2

 =   𝑃1𝑖 𝐼𝑖 𝑝×𝑝          0𝑖 =   𝑃1𝑖𝐶𝑐𝑖  

Hence: 

𝑇𝑁𝑖
−𝑇𝐵𝑐𝑖𝐾𝑖   𝑃1𝑖𝐶𝑐𝑖 = 𝑇𝑁𝑖

−𝑇𝐵𝑐𝑖ℋ𝑖𝐶𝑐𝑖  
( 5-46) 

Where the ℋ𝑖 = 𝐾𝑖   𝑃1𝑖  . It follows that the subsystem gain matrices are given by: 

𝐾𝑖 = ℋ𝑖𝑃1𝑖
−1 

( 5-47) 

Substituting Eq. ( 5-46) into Eq. ( 5-44) and rearranging yields: 

 

𝑃𝑑𝑖𝑇𝑁𝑖
𝑇 𝐴𝑐𝑖

𝑇 𝑇𝑁𝑖
−𝑇 + 𝑇𝑁𝑖

−𝑇𝐴𝑐𝑖  𝑇𝑁𝑖𝑃𝑑𝑖 + 𝐶𝑐𝑖
𝑇 ℋ𝑖

𝑇𝐵𝑐𝑖
𝑇 𝑇𝑁𝑖

−𝑇 + 𝑇𝑁𝑖
−𝑇𝐵𝑐𝑖ℋ𝑖𝐶𝑐𝑖    

𝑇𝑐𝑖
𝑇𝑇𝑁𝑖

−𝑇

 𝑇𝑁𝑖𝑃𝑑𝑖  

   

                                                                                     
 𝑇𝑁𝑖

−𝑇𝑇𝑐𝑖                           𝑃𝑑𝑖𝑇𝑁𝑖
𝑇   

−𝐼𝑖                                    0
0                            − 𝜖𝑖𝐼𝑖  

 < 0 

( 5-48) 
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The 𝑁𝑖  can then be chosen as tuning matrices to achieve the specific subsystem 

performances. 

Algorithm 5-1:  

1- Calculate the 𝜎𝑖 𝑦𝑖 , 𝑡  from the Eq.( 5-7) 

2- Design the OISMC from the Eqs. ( 5-13), ( 5-23) &( 5-24) 

3- Calculate the 𝑂𝑐𝑖  and then find 𝒯𝑖  from the Eq. ( 5-28) 

4- Transform the subsystem by the Eq. ( 5-29) 

5- Choose the tuning parameters 𝑁𝑖  and calculate the  𝑇𝑁𝑖  from the Eq.( 5-42) 

6- Minimize 𝜖𝑖  subject to 𝑃𝑑𝑖 > 0, 𝑃1𝑖 > 0, 𝑃2𝑖 > 0 and the Eq. ( 5-48) 

7- Calculate the controller gains from 𝐾𝑖 = ℋ𝑖𝑃1𝑖
−1 

The Euclidean norms of the gains 𝐾𝑖  can be limited in two steps. (i) The Euclidean norms of 

ℋ𝑖  can be constrained as   ℋ𝑖 
2 < 𝑘ℋ𝑖𝐼𝑖  , where the 𝑘ℋ𝑖  are scalar variables. This is 

achieved by adding another LMI conditions (Zecevic and Šiljak, 2005). Then using the 

Schur complement it follows that: 

  
−𝑘ℋ𝑖𝐼𝑖

ℋ𝑖

        
ℋ𝑖

𝑇

−𝐼𝑖
  < 0 

( 5-49) 

(ii) A second condition must be added to the matrices 𝑃𝑑𝑖 > 𝑘𝑃𝑖𝐼𝑖  (Zecevic and Šiljak, 2005) 

, as: 

  
𝑃𝑑𝑖

𝐼𝑖
         

𝐼𝑖
𝑘𝑃𝑖𝐼𝑖

  > 0 
( 5-50) 

where 𝑘𝑃𝑖  are scalar variables. 

Algorithm 5-2: 

The same procedure as in Algorithm 5-1 is used by replacing step 6 by: 

Minimize (𝜖𝑖 + 𝑘ℋ𝑖 + 𝑘𝑃𝑖 ) subject to  𝑃𝑑𝑖 > 0 , 𝑃1𝑖 > 0  , 𝑃2𝑖 > 0  , the Eqs.( 5-48) , ( 5-49) 

& ( 5-50). 

 

5.3.3.2  One shot Control design via LMI 

As mentioned in the Section 5.3.1 the subsystem dynamics during ideal sliding are 

described by Eq. ( 5-12) . 
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The dynamics of the centralized or aggregated system that contains all the inter-connected 

subsystems are: 

𝑋  𝑡 = 𝐴𝑑𝑋 𝑡 + 𝐵𝑑𝑈𝑂𝑇𝑃 𝑡 + 𝑇𝑑𝐽 𝑡  ( 5-51) 

where:𝑋 𝑡 =  𝑥1, 𝑥2, …… . , 𝑥𝑛    , 𝑈𝑂𝑇𝑃 𝑡 =  𝑢1
𝑂𝑡𝑝 , 𝑢2

𝑂𝑡𝑝 , … … . , 𝑢𝑛
𝑂𝑡𝑝       , 𝐴𝑑 = 𝑑𝑖𝑎𝑔(𝐴𝑖), 

 𝐵𝑑 = 𝑑𝑖𝑎𝑔 𝐵𝑖      , 𝛤𝑑 = 𝑑𝑖𝑎𝑔(𝛤𝑖) ,  𝑌 𝑡 = [𝑦1, 𝑦2, … … . , 𝑦𝑛]   ,   𝐶𝑑 = 𝑑𝑖𝑎𝑔(𝐶𝑖)   and 

𝐽 𝑡 = [𝐽1 , 𝐽2, … … . , 𝐽𝑛 ]  where “𝑑𝑖𝑎𝑔" represents the block diagonal matrix. 

The control signal to achieve a specific performance can be constructed as: 

𝑈𝑂𝑇𝑃 𝑡 = 𝐾𝑌 𝑡 = 𝐾𝐶𝑋 𝑡  ( 5-52) 

where 𝐾 = 𝑑𝑖𝑎𝑔(𝑘𝑖).  The gain 𝐾 is to be designed via LMI to minimize the effect of 𝐽 𝑡  

on the aggregated system. Suppose that 𝐽 𝑡  is the unknown input disturbance which 

satisfies the quadratic inequality: 

𝐽𝑇(𝑡)𝐽 𝑡 ≤ 𝛼2𝑋𝑇(𝑡)𝑋 𝑡  ( 5-53) 

Making a transformation of 𝑋 𝑡  to  𝒯−1𝑋 𝑡  and substituting it in Eq. ( 5-51) yields: 

𝒯−1𝑋  𝑡 = 𝐴𝑑𝒯−1𝑋 𝑡 + 𝐵𝑑[ 𝐾          0 ]𝒯𝒯−1𝑋 𝑡 + 𝑇𝑑𝐽 𝑡  
( 5-54) 

Rearranging Eq. ( 5-54) as: 

𝑋  𝑡 = 𝐴𝑐𝑑𝑋 𝑡 + 𝐵𝑐𝑑𝐾𝐶𝑐𝑑𝑋 𝑡 + 𝑇𝑐𝑑 𝐽 𝑡  
( 5-55) 

𝐴𝑐𝑑 = 𝒯𝐴𝑑𝒯−1,𝐵𝑐𝑑 = 𝒯−1𝐵𝑑    ,  𝐶𝑐𝑑 = [ 𝐼 𝑝×𝑝        0 ]  and  𝑇𝑐𝑑 = 𝒯−1𝑇𝑑  

The procedure of Section 5.3.2.1 is used to check the stability conditions and derive the 

gains 𝐾 in a one-step solution of the following LMI:  

  

𝑃𝑑𝑇𝑁
𝑇𝐴𝑐𝑑

𝑇 𝑇𝑁
−𝑇 + 𝑇𝑁

−𝑇𝐴𝑐𝑑  𝑇𝑁𝑃𝑑 + 𝐶𝑐𝑑
𝑇 ℋ𝑑

𝑇𝐵𝑐𝑑
𝑇 𝑇𝑁

−𝑇 + 𝑇𝑁
−𝑇𝐵𝑐𝑑ℋ𝑑𝐶𝑐𝑑    

𝑇𝑐
𝑇𝑇𝑁

−𝑇

 𝑇𝑁𝑃𝑑  

   

                                                                                     
 𝑇𝑁

−𝑇𝑇𝑐                     𝑃𝑑𝑇𝑁
𝑇   

−𝐼                           0
0                        − 𝜖𝐼 

 < 0 

( 5-56) 

𝑁 can be chosen as a tuning design matrix to achieve specific performances in the compact 

system from : 

 𝑇𝑁 =   
  𝐼 𝑝×𝑝 

𝑁𝑇
              

0
𝐼  𝑛−𝑝 × 𝑛−𝑝     
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The following Algorithms 5-3 and 5-4 are alternative ways to solve Eq. ( 5-56), as follows: 

Algorithm 5-3: 

1- Calculate 𝜎𝑖 𝑦𝑖 , 𝑡  from the Eq.( 5-7) 

2- Design OISMC from the Eqs. ( 5-13), ( 5-23) &( 5-24) 

3- Calculate the aggregate system from the Eq.( 5-51) 

4- Calculate 𝑂𝑐 and then find 𝒯  

5- Transform the subsystem by the Eq. ( 5-54)  

6- Choose the tuning parameter 𝑁 and calculate  𝑇𝑁  

7- Minimize 𝜖 subject to 𝑃𝑑 > 0, 𝑃1 > 0, 𝑃2 > 0 and the Eq. ( 5-56) 

8- Calculate the controller gain from 𝐾 = ℋ𝑑𝑃1
−1 

In some application the Algorithm 5-3 can give a high gain norm.  

Algorithm 5-4 is used to provide an approach to bounding this norm via two additional LMIs 

as follows: 

  
−𝑘ℋ𝐼
ℋ𝑑

          ℋ𝑑
𝑇

−𝐼
  < 0 

( 5-57) 

and 

  
𝑃𝑑

𝐼
              

𝐼
𝑘𝑃𝐼

  > 0 
( 5-58) 

where 𝑘𝑃  and 𝑘ℋ are scalar variables. 

Algorithm 5-4: 

This procedure is as described as in Algorithm 5-3 but step 6 must be changed to: 

Minimize (𝜖 + 𝑘ℋ + 𝑘𝑃) subject to  𝑃𝑑 > 0 , 𝑃1 > 0  , 𝑃2 > 0  , the Eqs. ( 5-56), ( 5-57) & 

( 5-58). 

5.4 Application example (Power system) 

This technique is applied to an example problem of a single power generation system 

requiring both electrical (excitation) control and mechanical (steam valve) control. The 

generation system is assumed to be connected to an infinite bus so that the bus itself does 

not provide additional loading variations to the generator. This machine consists of a 

turbine connected to an electrical generator that is in turn producing power on the infinite 
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bus. The control objectives are to improve the transient stability and control the output of 

the generator during the transient, as shown in Figure  5-2.  

Power systems are more vulnerable to faults or failures because they can be considered 

dynamically as several overlapping systems with some mechanical and electrical 

components. The task of the controller is to keep the rotor angle fixed at a specific value 

even in the case of the emergence of some faults that  can occur in the generator itself, the 

transformer, the turbine or in several other components (Saha,Aldeen and Tan, 2011).  
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Figure  5-2: Single machine connected to infinite bus system 

5.4.1 Power system model 

It is conventional to model the single machine infinite bus problem using a set of so-called 

d-q axis Parks equations in terms of equations describing the electrical flux and voltage and 

mechanical torque. The model comprises a set of six well-known non-linear equations 

(Subramaniam and Malik, 1973, Brittain,Otaduy,Rovere and Perez, 1988) as follows: 
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𝑥 1 = 𝛿 = 𝑥2 

𝑥 2 = 𝑆 = 𝑎21𝑠𝑖𝑛2𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3𝑠𝑖𝑛𝑥1 + 𝑐1𝑥5 

𝑥 3 = 𝜆𝑓𝑑
 = 𝑎31𝑐𝑜𝑠𝑥1 + 𝑎32𝑥3 + 𝑥4 

𝑥 4 = 𝐸𝑓𝑞
 = 𝑎41𝑐𝑜𝑠𝑥1 + 𝑎43𝑥3 + 𝑎44𝑥4 + 𝑘1𝑢1 

𝑥 5 = 𝑇𝑚
 = 𝑎52𝑥2 + 𝑎55𝑥5 + 𝑘2𝑢2 

𝑥 6 = 𝜆𝑓𝑞
 = 𝑎61𝑠𝑖𝑛𝑥1 + 𝑎65𝑥5 + 𝑎66𝑥6 

( 5-59) 

where 𝛿 is the rotor angle (rad), 𝑆 is the speed deviation around a nominal value (rad s
-1

),  

𝜆𝑓𝑑   and 𝜆𝑓𝑞  are the field flux linkages.  𝐸𝑓𝑞  is an excitation bus voltage and 𝑇𝑚  is the per 

unit (p.u.) mechanical power normalised according to the maximum Torque. 

All the parameters of the system are described in  

Table  5-1 . 

 

𝑎21 = −
𝑒𝑜

2(𝑋𝑑
′ − 𝑋𝑞

′ )

4𝑀 𝑋𝑒 + 𝑋𝑞
′  (𝑋𝑒 + 𝑋𝑑

′ )
 

 

 

𝑎22 = −
𝐾𝑑

𝑀
 

 

𝑎23 = −
𝑒𝑜

2𝑀𝑇𝑑𝑜
′ (𝑋𝑒 + 𝑋𝑑

′ )
 

 

𝑐1 =
1

𝑀
 

 

 

𝑎31 =
𝑒𝑜(𝑋𝑑 + 𝑋𝑑

′ )

(𝑋𝑒 + 𝑋𝑑
′ )

 

 

𝑎32 = −
(𝑋𝑒 + 𝑋𝑑)

𝑇𝑑𝑜
′ (𝑋𝑒 + 𝑋𝑑

′ )
 

 

𝑎41 = −
𝑘𝑣𝑒𝑜𝑋𝑑

′

𝜏𝑣(𝑋𝑒 + 𝑋𝑑
′ )

 

 

 

𝑎43 = −
𝑘𝑣𝑋𝑒

𝜏𝑣𝑇𝑑𝑜
′ (𝑋𝑒 + 𝑋𝑑

′ )
 

 

𝑎44 = −
1

𝜏𝑣
 

 

𝑘1 =
𝑘𝑣

𝜏𝑣
 

 

 

𝑎52 = −
𝑘𝑚

𝜏𝑚
 

 

𝑎55 = −
1

𝜏𝑚
 

 

𝑘2 =
1

𝜏𝑚
 

 

 

𝑎61 = −
𝑒𝑜(𝑋𝑞 + 𝑋𝑞

′ )

(𝑋𝑒 + 𝑋𝑞
′ )

 

 

𝑎65 = −
(𝑋𝑒 + 𝑋𝑞)

𝑇𝑞𝑜
′ (𝑋𝑒 + 𝑋𝑞

′ )
 

 

𝑎66 = −
(𝑋𝑒 + 𝑋𝑞)

𝑇𝑞𝑜
′ (𝑋𝑒 + 𝑋𝑞

′ )
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Table  5-1 : Parameters of the single machine infinite bus power 
 

 

System parameters 

𝑒𝑜  is an infinite bus voltage (p.u) , 𝑋𝑑
′ , 𝑋𝑞

′  are d-q axis transient reactance, 𝑀 is the inertia 

constant , 𝑋𝑒  is a transmission line and transformer reactance, 𝐾𝑑  is a damping coefficient, 

𝑇𝑑𝑜
′ , 𝑇𝑞𝑜

′  are d-q-axis open circuit time constants (s),  𝑋𝑑 , 𝑋𝑞  are d-q-axis synchronous 

reactances,  𝑘𝑣 is a voltage regulator gain, 𝜏𝑣 is a voltage regulator time constant, 𝑘𝑚  is a 

governor and turbine loop gain  and  𝜏𝑚  is a governor and turbine loop time constant . 

The system has been decomposed into two subsystems as: 

1
st
 Subsystem: 

𝑥 11 = 𝑥12  

𝑥 12 = 𝑎21𝑠𝑖𝑛2𝑥11 + 𝑎22𝑥12 + 𝑎23𝑥3𝑠𝑖𝑛𝑥11 + 𝑐1𝑥15 

𝑥 13 = 𝑎31𝑐𝑜𝑠𝑥11 + 𝑎32𝑥13 + 𝑥14  

𝑥 14 = 𝑎41𝑐𝑜𝑠𝑥11 + 𝑎43𝑥13 + 𝑎44𝑥14 + 𝑘1𝑢1 

( 5-60) 

2
nd

 Subsystem:  

𝑥 25 = 𝑇𝑚
 = 𝑎52𝑥12 + 𝑎55𝑥25 + 𝑘2𝑢2 

𝑥 26 = 𝜆𝑓𝑞
 = 𝑎61𝑠𝑖𝑛𝑥11 + 𝑎65𝑥25 + 𝑎66𝑥26  

( 5-61) 

 

System parameters of the single power example 

All reactances are in p.u values and time constants are in seconds as in  

Table  5-2: 

𝑒𝑜 = 1 𝑋𝑑
′ =-0.176 𝑋𝑞

′ = 0 𝑀 =0.0338 𝑋𝑒 =0.00186 

𝐾𝑑 =0.0732 𝑇𝑑𝑜
′ =5.41588 𝑇𝑞𝑜

′ =-0.4901 𝑋𝑑 =-0.96719 𝑋𝑞 = 0 

𝑘𝑣 = 3 𝜏𝑣 = 2 𝑘𝑚 =0.204 𝜏𝑚 =0.2 
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Table  5-2 : System parameters of the single power generator 

 

 

 

1
st
 Subsystem: 

𝐴1 =  

0
𝑎22

0
0

       

1
0
0
0

        

0
0

𝑎32

𝑎43

       

0
0
1
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0
0
0
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0.8
 0  

        
0.1
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0

  0  
     

0
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0.1
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    , 𝑧1 =   

0
 𝑐1

0
 0 

          

0
0
0
0

    
𝑥25

𝑥26    , 𝑊1 𝑥1, 𝑡 =  

0
𝑎21𝑠𝑖𝑛2𝑥11 + 𝑎23𝑥3𝑠𝑖𝑛𝑥11

𝑎31𝑐𝑜𝑠𝑥11

𝑎41𝑐𝑜𝑠𝑥11

  

, 𝑥1 0 =   

0.7105
0

5.604
0.8

    and    𝑥1(𝑡) =

 
 
 
 
 

𝑥11(𝑡)

𝑥12 𝑡 

𝑥13 𝑡 

𝑥14 𝑡 

 

 
 
 
 
 

 

( 5-62) 

2
nd

 Subsystem: 

𝐴2 =    
𝑎55   
𝑎65          

  0
𝑎66  

   ,   𝐵2 =   
𝑘2

0
    ,    𝐶2 =   0        1    ,   𝐸2 =   

0.1
0.1

    ,  

𝑧2 =  
𝑎52

 0  
       

0
𝑎61𝑠𝑖𝑛

  
𝑥11

𝑥12
  , 𝑥2(0) =  

0.8
2.645

  and 𝑥2(𝑡) =  
𝑥25 𝑡 

 𝑥26(𝑡)
  

 

( 5-63) 

5.4.2 Simulation results 

The continuous control 𝑢𝑖
𝑂𝑡𝑝  𝑡  is designed via the LMI described in Algorithm 5-2, leading 

to the gains: 

𝐾1 = [0.1611         − 0.2981]    and    𝐾2 =  −3.9167  

The subsystem parameter design or tuning matrices are: 

𝑁1 =   

0.08
0

0.08
0

         

0
0.08

0
0.08

          

0.08
0
0
0

          

0
0.08

0
0

   and 𝑁2 =   
0.6
  0   

          
  0

  0.6
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The adaptive OISMC parameters (defined in Section 5.2.1) are as follows: 

1
st
 Subsystem: 

 𝜇 10𝑖𝑛𝑙 = 0.1  ,  𝑞10 = −3 ,   𝜇 11𝑖𝑛𝑙 = 0.1  ,  𝑞11 = −2   and    𝔷1 = 0.2 

 

2
nd

 Subsystem: 

 𝜇 20𝑖𝑛𝑙 = −2   ,  𝑞 20 = −4  ,   𝜇 21𝑖𝑛𝑙 = −0.1  ,    𝑞21 = −2  and   𝔷2 = 0.2 

For the case of the OISMC the parameters are: 

The discontinuous control is   𝑢𝑖
𝐼𝑆𝑀 𝑡 = 𝜇𝑖

𝜎𝑖 𝑥𝑖 ,𝑡 

 𝜎𝑖 𝑥𝑖 ,𝑡  +𝔷𝑖
 

where  𝜇1= 𝜇2 = 5  and   𝔷1= 𝔷2 = 0.2 

The outputs of the two subsystems without controls are shown in Figure  5-3 & Figure  5-4.  

Figure  5-5 shows the response of the rotor angle of the single machine system using output 

de-centralized control applied to the continuous control component 𝑢𝑖
𝑂𝑡𝑝  𝑡  . The 

discontinuous control has been designed for the two cases of (i) OISMC and (ii) AOISMC, 

both with no faults. 

 

Figure  5-3 : Response of 1
st
 subsystem without control (rotor angle) 
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Figure  5-4: Response of 2
nd

 subsystem without control 

 

Figure  5-5 : The rotor angle with OISMC and AOISMC with no fault 

 

From Figure 5-5 it can be seen that the AOISMC gives better results compared with the 

OISMC. The AOISMC has some higher transient phase oscillation but it is more stable than 

the OISMC. Figure  5-6 shows the simulation with a 50% actuator fault in the 1
st
 subsystem 

with AOISMC. If all the actuator faults are increased to 70%; the 1
st
 subsystem is still 

stable, as shown in Figure  5-7 . 
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Figure  5-6 : 1
st
 subsystem with AOISMC and 50% actuator faults in only in 1

st
 subsystem 

 

Figure  5-7 : 1
st
 subsystem with AOISMC and 70% actuator faults in only in 1

st
 subsystem 

 

Figure  5-8 illustrates the simulation of a 70% fault of the 2
nd

 subsystem actuator and its 

effects on other subsystems when there is no fault in the 1
st
 subsystem, by applying the 

AOISMC.  From Figure  5-8 , the controller compensates the faults and decreases the 

effects of the disturbances. Furthermore, the AOISMC gives even better control action, in 

terms of the low rotor angle deviation. 
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Figure  5-8 : 2
nd

 subsystem with AOISMC and 70% actuator faults in only in 2
nd

 subsystem 

 

Figure  5-9 : Two subsystems with AOISMC with 70% actuator faults in all subsystems 

 

Figure  5-9 shows the AOISMC simulation of the 70% actuator fault scenario for two 

subsystems. From Figure 5-9 all the subsystems are affected by the faults but all are stable 

but are still subjected to some rotor angle deviations in the transient phase. However, if the 

actuator fault is increased in the 2
nd

 subsystem until the actuator completely fails whilst the 

1
st
 subsystem has no actuator faults. That leads to a big transient change in the rotor angle 

after 3 sec, as shown in Figure  5-10 . 



156 
 

 

Figure  5-10 : AOISMC with 1
st
 subsystem fault-free and 2

nd
 subsystem with actuator failure 

 

5.4.3 Comparison of OISMC and AOISMC 

The Table  5-3 illustrates some points of comparison between the OISMC and AOISMC.  

From the table the LMI design with OISMC method only requires the choice of  𝜇𝑖  and  𝔷𝑖  

but the LMI design with AOISMC requires a suitable selection of the initial values of 𝜇 𝑖0𝑖𝑛𝑙  

and 𝜇 𝑖1𝑖𝑛𝑙 .  Suitable values of  𝑞𝑖0   ,   𝑞𝑖1 and  𝔷𝑖  must also be chosen. Although, the time 

response of the AOISMC and the OISMC are slightly different, the AOISMC does give 

better performance in the case of 70% actuator fault in subsystems. 

 

 

Method 

 

LMI with OISMC 

 

 

LMI with AOISMC 

Contents 

 

OISMC 

 

OISMC  

 

 

OISMC + two adaptive laws 

 

Response 

 

 

Only choosing 𝜇𝑖  and  𝔷𝑖  

Choosing initial values of 

𝜇 𝑖0𝑖𝑛𝑙  and 𝜇 𝑖1𝑖𝑛𝑙  as well as    

𝑞𝑖0   ,   𝑞𝑖1 and  𝔷𝑖  

Stability 
Less stable if the actuator faults 

or disturbances are increased 

 

More stable if the faults or 

disturbances are increased 

 

Table  5-3: Comparison of control inter-connected systems methods 
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5.5 Conclusion  

A major challenge of the control of uncertain inter-connected systems is to remove or 

compensate for the effects of uncertainties and disturbances acting in the subsystems so that 

an ideal decentralization can be achieved. In the ideal case, the resulting hitherto inter-

connected system now becomes a truly de-centralized structure in which the subsystems can 

be designed independently. This approach to the control of complex systems is an important 

contribution to the subject of fault-tolerant control for inter-connected systems.  

An example of this fault tolerance can be seen if one subsystem fails then this failure does 

not influence the integrity of the remaining subsystems. Using static output de-centralized 

AOISMC in the inter-connected systems can give rise to robust performance in the 

elimination of the faults as well as any matched inputs. The controller is designed by the 

LMI method to achieve certain specifications while minimizing any mismatched inputs by 

using only the output signal. However, the combined AOISMC and LMI controllers may 

have limited ability to reduce the impact of faults and external inputs. However, these 

controllers are designed specifically to give good robust control action and by tuning the 

matrices 𝑁𝑖  a desired response of every subsystem can also be achieved. When comparing 

the AOISMC with OISMC, the AOISMC gives the best results in the event of faults or 

disturbance in the actuators. 

 

In some applications, for example with lack of measured states, the designer needs more 

freedom in the control design. The appropriate solution then is to consider dynamic output 

feedback design. Chapter 6 considers the design of de-centralized non-linear inter-connected 

systems via dynamic output feedback control, offering significant advantages over the static 

output feedback approaches described in this Chapter. 

 

 

 

 

 

 



158 
 

Chapter 6 : Dynamic output feedback 

ISMC with LMI for inter-connected 

non-linear systems 
 

6.1 Introduction 

As mentioned in Chapter 1 modern systems have become large and inter-connected to each 

other with increasing complexity. This stimulates the need for the design of ‘de-centralized 

control’ that makes use of local states or output information (Park,Choi and Kong, 2007, 

Sung and Jin, 2012). The design of controllers for inter-connected systems requires 

knowledge of the dynamics of the individual subsystems. Since it is difficult to know the 

interactions between the subsystems, it is important to limit the effects of these interactions. 

Hence, a suitable de-centralized controller should take care to reduce the neglected 

interaction impacts on the subsystems, leading to improved stability and performance in the 

subsystems and also in the overall inter-connected system (Stanković and Šiljak, 2009). 

The work required for non-linear inter-connected systems is to find a method to design a 

local control where each subsystem uses only local information, ensuring local (subsystem) 

stability and achieving some performance requirements (Pagilla and Zhu, 2005, Yongliang 

and Prabhakar, 2005, Batool,Horacio and Tongwen, 2009). So the designed control should 

ensure stability if there is any change in the interaction signals between these subsystems or 

under the action of external disturbances or internal uncertainties.  Although robust stability 

and performance are the most important design objectives for the majority of control 

problems, these objectives can be hard to meet in practice because of uncertainty in the 

form of unmatched components and/or disturbances. Methods that seek to eliminate or 

reduce the impact of unmatched components and disturbances on robust stability and 

performance are complex, especially if the controller is designed on the basis of the 

nominal linear model (Ning and Wei-hua, 2007). 

In the case of not being able to get access to some of the system states, the design freedom 

available to ensure stability and achieve the desired goals becomes limited. Hence, another 

approach must be used to recover the design freedom so that the performance and stability 
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goals can be reached. The available signals that can be measured are output signals. For 

this reason, observer-based control and output feedback control have received considerable 

attention in the literature (Vidyasagar, 1981, Aldeen,Lau and Marsh, 1998, Trinh and 

Aldeen, 1998, Ghadami and Shafai, 2001, Pagilla and Zhu, 2005, Dhbaibi,Tlili,Elloumi and 

Benhadj Braiek, 2009, Tognetti,Oliveira and Peres, 2012). Specifically, within the 

framework of non-linear inter-connected systems the aforementioned output feedback 

methods have been proposed in the literature (Huan,Jeang and Yon, 2012, Park,Choi and 

Kong, 2007). 

It is difficult and sometimes impossible to implement a full-order dynamic controller on a 

large-scale system (Tognetti,Oliveira and Peres, 2012). Therefore, a suitable way to deal 

with these systems is to decompose them into smaller subsystems with some interactions 

between them. For that reason each subsystem has a controller that can be designed alone 

by appropriate methods. One of these methods is an 𝐻2/𝐻∞  based on  dynamic output 

control for non-linear systems where the uncertainties are considered to be in polytope 

bounded form (Ning and Wei-hua, 2007, Zhao et al., 2012). This approach has also been 

used to control systems with bounded uncertainties  (Ning and Wei-hua, 2007). Normally 

the dynamic controller has a dynamic order that is the same as the system order, which 

gives the possibility of converting the design problem to an LMI optimization problem 

(Tognetti,Oliveira and Peres, 2012). One of the advantages of using dynamic output control 

is that it is an approach to attempt to recover the original state variable freedom by 

augmenting the system order. The increased design freedom means that there is increased 

potential for improving stability and enhancing system performance. 

Sliding mode control (SMC) is a control system design method used to tackle some robust 

control problems. However, an SMC system has some limitations. For example, before 

reaching the sliding surface the system becomes sensitive to so-called unmatched 

components or unmatched exogenous disturbances (Edwards and Spurgeon, 1998,Pisano 

and Usai, 2011, Mondal and Mahanta, 2012). One strong limitation of the SMC approach is 

that it is often assumed that all the states are available for control. The output feedback 

approaches to SMC are more challenging, either requiring the use of dynamic 

compensation design (dynamic output feedback) or multi-objective design tools such as 

linear matrix inequalities (LMIs) in the static output feedback case. The challenge of output 

feedback and its practical use has been the cause of a steady increase in interest in output 
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feedback based SMC (Edwards and Spurgeon, 1998, Ning and Wei-hua, 2007, Jeang-Lin 

and Huan-Chan, 2009). 

When ISMC is used in control design, matched uncertainties do not resemble unmatched 

uncertainties or any disturbance for the reason that the latter affects the system behaviour 

and performance, even if the system is in the sliding surface (Poznyak,Fridman and 

Bejarano, 2004, Castaños,Xu and Fridman, 2006, Larbah and Patton, 2012). As a result 

unmatched compounds cannot be completely removed when the system is in the sliding 

surface, and so a technique must be found to reduce their influence on the system stability 

(Huan,Jeang and Yon, 2012). 

The method proposed here consists of the combined use of output integral sliding mode 

control and a dynamic controller based on LMI design for a subsystem containing matched 

and unmatched uncertainties and with unmatched exogenous disturbances. To guarantee 

the robust stability in the closed-loop system and minimize the effect of disturbances on the 

sliding surface, the proposed approach ensures stability, and minimizes the impact of any 

disturbances. The method itself is simple in design, so the LMI is solved for each 

subsystem to find a linear feedback gain prior to designing the discontinuous component of 

the controller. As a result the controller consists of both linear and non-linear components. 

The non-linear part is responsible for dealing with matched uncertainties designed by using 

ISMC, whilst the linear part is responsible for reducing the impact of any unmatched 

uncertainties or external disturbances designed via an LMI formulation. 

This Chapter investigates the methodology and benefit of utilizing available output signals 

to design an LMI-based dynamic output feedback controller within an OISMC framework 

applicable to de-centralized control, problems. 

The main contribution of this Chapter is a new LMI-based design method for dynamic 

output feedback having the structure of an OISMC for non-linear inter-connected systems. 

Consequently, to verify this method an example of two inter-connected inverted pendulum 

systems is studied. 

The Chapter is structured as follows. Section 6.2 describes the problem formulation. Then 

Section 6.3 shows the proposed control method that includes OISMC in the first part and an 

LMI-based output feedback dynamic control design in the second part. Section 6.4 describes 

the two inter-connected pendula application example used to illustrate the new approach and 
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the simulation response of the subsystems. Finally, Section 6.5 presents a conclusion and 

further discussion. 

 

6.2 Definitionandproblemformulation 

Consider a non-linear inter-connected system comprising n subsystems described by: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝑍𝑖 𝑡 + 𝑊𝑖 𝑥𝑖 , 𝑡 + 𝐸𝑖𝑑𝑖 𝑡 + 𝐵𝑖𝑓𝑖 𝑡  

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡              𝑖 = 1, … … , 𝑁 

 

( 6-1) 

where 𝑥𝑖(𝑡) ∈ ℝ𝑛 is the state vector, 𝑢𝑖(𝑡) ∈ ℝ𝑚 is are the control inputs and 𝑦𝑖 𝑡 ∈ ℝ𝑝  is 

the vector of system outputs.   𝐴𝑖 ∈ ℝ𝑛×𝑛 is a known subsystem characteristic matrix, 

𝐵𝑖 ∈ ℝ𝑛×𝑚  is the known subsystem control input matrix, 𝐶𝑖 ∈ ℝ𝑝×𝑛  is the known 

subsystem output matrix and 𝐸𝑖 ∈ ℝ𝑛×𝑞  is the known subsystem external disturbance 

matrix. 𝑍𝑖(𝑡) denotes the interactions between subsystems. 𝑊𝑖 𝑥𝑖 , 𝑡  denotes the unknown 

uncertainties that satisfy the matching condition 𝑊𝑖(𝑥𝑖 , 𝑡) = 𝐵𝑖𝑄𝑖(𝑥𝑖 , 𝑡). 

The 𝑑𝑖(𝑡)  represents an unknown bounded disturbance, 𝑓𝑖(𝑡) ∈ ℝ𝑘  denotes the actuator 

faults where 𝑓𝑖 = −𝐾(𝑡)𝑢𝑖  and for which 𝐾 𝑡 = 𝑑𝑖𝑎𝑔(𝐾𝑖) and 0 ≤ 𝐾𝑖 ≤ 1. 𝐾𝑖 = 0 . As 

described in Section 3.2 that 0 ≤ 𝐾𝑖 ≤ 1 means that the actuator is working correctly and if 

𝐾𝑖 = 1 the actuator has failed completely, otherwise the fault is present. 

Suppose that: 𝛤 = 𝐼𝑛 − 𝐵𝐵+ where 𝐵+ is pseudo-inverse of a matrix 𝐵,  𝐵+ = (𝐵𝑇𝐵)−1𝐵𝑇 

and 𝐼𝑛  is the 𝑛 × 𝑛 identity matrix. 

It is assumed that the interactions between subsystems contain two components matched and 

unmatched components, respectively.  so 𝑍𝑖 = 𝑍𝑚𝑖 + 𝑍𝑢𝑖  where 𝑍𝑚𝑖  is a matched 

component of 𝑍𝑖  and 𝑍𝑢𝑖  is an unmatched component of 𝑍𝑖   (Shafai,Ghadami and Saif, 

2011). 

where  𝑍𝑚𝑖 = 𝐵𝑖𝐵𝑖
+𝑍𝑖  and  𝑍𝑢𝑖 = 𝛤𝑖𝑍𝑖    

The same procedure is applied for the disturbance component  𝐸𝑖𝑑𝑖  , which is decomposed 

into matched and unmatched components via 𝐸𝑖𝑑𝑖 = 𝑑𝑚𝑖 + 𝑑𝑢𝑖  , with 𝑑𝑚𝑖 = 𝐵𝑖𝐵𝑖
+𝐸𝑖𝑑𝑖  and  

𝑑𝑢𝑖 = 𝛤𝑖𝐸𝑖𝑑𝑖 . 

http://en.wikipedia.org/wiki/Matrix_(mathematics)
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After substituting all of the subsystem assumptions the subsystem dynamics of  Eq.( 6-1) 

now becomes: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝐵𝑖𝛷𝑚𝑖  𝑡 + 𝛷𝑢𝑖  𝑡  

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡                𝑖 = 1, … … , 𝑁 

 

( 6-2) 

where 𝛷𝑚𝑖  is a matched component, 𝛷𝑚𝑖 = 𝐵𝑖
+𝑍𝑖 𝑡 + 𝑄𝑖 𝑥𝑖 , 𝑡 + 𝐵𝑖

+𝐸𝑖𝑑𝑖 𝑡 + 𝑓𝑖(𝑡) and 

𝛷𝑢𝑖  is an unmatched component, 𝛷𝑢𝑖 = 𝑍𝑢𝑖  𝑡 + 𝑑𝑢𝑖 = [ 𝛤𝑖         𝛤𝑖𝐸𝑖  ]   
𝑍𝑖

𝑑𝑖
  = 𝑟𝑖𝑤𝑖 

From Section 6.1 the control signal contains two components: 

𝑢𝑖(𝑡) = 𝑢𝑖
𝐷𝑦𝑛

(𝑡) + 𝑢𝑖
𝐼𝑆𝑀(𝑡) 

( 6-3) 

where 𝑢𝑖
𝐷𝑦𝑛

 is responsible for stabilizing the system and achieving the desired performance. 

On the other hand 𝑢𝑖
𝐼𝑆𝑀  is a discontinuous control responsible for eliminating the effects of 

matched components. 

Substituting  Eq.( 6-3) into Eq.( 5-2) yields: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐷𝑦𝑛  𝑡 + 𝐵𝑖𝑢𝑖

𝐼𝑆𝑀 𝑡 + 𝐵𝑖𝛷𝑚𝑖  𝑡 + 𝛷𝑢𝑖  𝑡  

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡               𝑖 = 1, … … , 𝑁 

 

( 6-4) 

 

6.3 De-centralized dynamic output feedback control design 

For inter-connected systems the approach to control design depends on the topology of the 

connections of the inter-connected systems (Šiljak and Stipanovic, 2001). These topologies 

are either based on physical interpretation or on logical meaning. According to the 

available topology the control system design uses either a one shot strategy or requires the 

individual control of each of the subsystems. 

The control signal contains two parts one is designed by solving LMI formulation of the 

control problem and the second part is designed by OISLMC as following. 
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6.3.1 Output integral sliding mode control (OISLMC) 

It is possible to use any of the commonly used or adaptive output integral sliding mode 

control methods to design the discontinuous control as is described in Chapter 5. 

The integral sliding switching surfaces for each subsystem are defined as: 

𝜎𝑖 𝑦𝑖 , 𝑡 = 𝐺𝑖[𝑦𝑖(𝑡) − 𝑦𝑖 𝑡𝑜 ] −   𝑢𝑖
𝐷𝑦𝑛

(𝑡) + 𝐺𝑖𝐶𝑖𝐴𝑖𝔾𝑖𝑦𝑖(𝑡)  𝑑𝑡

𝑡

𝑡𝑜

 ( 6-5) 

where the 𝐺𝑖  are design matrices that must satisfy the condition that the 𝐺𝑖 = 𝐶𝑖𝐵𝑖  are 

invertible and the 𝔾𝑖  are matrices chosen so that 𝔾𝑖 = (𝐶𝑖)
+ 

Then the i
th

 subsystem on the sliding surface will be: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖
𝐷𝑦𝑛  𝑡 + 𝑇𝑖𝛷𝑢𝑖  𝑡  

( 6-6) 

where 𝑇𝑖 = [𝐼𝑖 − 𝐵𝑖(𝐶𝑖𝐵𝑖)
+𝐶𝑖] 

From Eq. ( 5-12) the i
th

 subsystem still has unmatched components. 

The proposed discontinuous subsystem control signals are: 

𝑢𝑖
𝐼𝑆𝑀 𝑡 = −𝜇𝑖

𝜎𝑖 𝑦𝑖 , 𝑡 

 𝜎𝑖 𝑦𝑖 , 𝑡  + 𝔷𝑖
 

( 6-7) 

where the 𝜇𝑖  are positive scalar . 

 

6.3.2 Dynamic output-feedback control design via LMI framework 

After design of the OISMC the dynamic subsystem will be as in Eq. (6-6). Design of the 

LMI technique depends on the interactions between the subsystems, which can be 

classified into two procedures as mentioned in Chapters 3,4 and 5 .One procedure is based 

on individual subsystem design, whilst the second design is made on the overall system, the 

so-called one shot procedure. 
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6.3.2.1 LMI-based approach to local dynamic control design 

The dynamic output feedback control will be as: 

𝑥 𝑐𝑖 𝑡 = 𝐴𝑐𝑖𝑥𝑐𝑖 𝑡 + 𝐵𝑐𝑖𝑦𝑖 𝑡  

𝑢𝑖
𝐷𝑦𝑛  𝑡 = 𝐶𝑐𝑖𝑥𝑐𝑖 𝑡 + 𝐷𝑐𝑖𝑦𝑖 𝑡  

( 6-8) 

where 𝑥𝑐𝑖 𝑡  is the state of the dynamic controller, with 𝐴𝑐𝑖 , 𝐵𝑐𝑖  , 𝐶𝑐𝑖  and 𝐷𝑐𝑖   the constant 

controller gain matrices with appropriate dimensions. And 𝑢𝑖
𝐷𝑦𝑛  𝑡  is a linear part 

responsible for stabilizing the dynamic system. 

Augmenting the subsystem Eq. (6-6) and the equations of the controller Eq. (6-8) after 

substituting the control signal 𝑢𝑖
𝐷𝑦𝑛  𝑡  into the subsystem dynamics of Eq.( 6-6) yields: 

𝑥 𝑎𝑔𝑖  𝑡 = 𝐴𝑎𝑔𝑖 𝑥𝑎𝑔𝑖  𝑡 + 𝐵𝑎𝑔𝑖 𝐾𝑑𝑦𝑖 𝐶𝑎𝑔𝑖 𝑥𝑎𝑔𝑖  𝑡 + 𝑇𝑎𝑔𝑖 𝛷𝑢𝑖  𝑡  ( 6-9) 

where  

𝑥𝑎𝑔𝑖  𝑡 =  
𝑥𝑖 𝑡 

𝑥𝑐𝑖 𝑡 
  ,  𝐴𝑎𝑔𝑖 =   

𝐴𝑖     0 
0     0

   ,  𝐵𝑎𝑔𝑖 =   
𝐵𝑖   0
0    𝐼𝑖

   ,  𝐾𝑑𝑦𝑖 =   
𝐷𝑐𝑖    𝐶𝑐𝑖

𝐵𝑐𝑖    𝐴𝑐𝑖
  , 

𝐶𝑎𝑔𝑖 =   
𝐶𝑖    0
0     𝐼𝑖

   and 𝑇𝑎𝑔𝑖 =  
  𝑇𝑖   

0
  

Here the same LMI design procedure as described in Chapter 5 is used to find a static output 

controller to control the non-linear inter-connected system. Following this, Eq.( 6-9) can 

describe the system with the dynamical controller in one equation. As a result the LMI 

formulation is as follows: 

By transforming 𝑥𝑎𝑔𝑖  to 𝑥 𝑎𝑔𝑖  , after using the S-procedure (Šiljak and Stipanovic, 2001) 

and combining the two Eqs (6-9) & 𝛷𝑢𝑖
𝑇(𝑡)𝛷𝑢𝑖 (𝑡)  ≤ 𝛼𝑖

2𝑥 𝑎𝑔𝑖
𝑇(𝑡)𝑥 𝑎𝑔𝑖  𝑡  . 

Then by using  the Schur complement then the inequality becomes: 

 

𝑃𝑑𝑖𝑇𝑁𝑖
𝑇 𝐴𝑎𝑔𝑐𝑖

𝑇 𝑇𝑁𝑖
−𝑇 + 𝑇𝑁𝑖

−𝑇𝐴𝑎𝑔𝑐𝑖  𝑇𝑁𝑖𝑃𝑑𝑖 + 𝐶𝑎𝑔𝑐𝑖
𝑇 ℋ𝑖

𝑇𝐵𝑎𝑔𝑐𝑖
𝑇 𝑇𝑁𝑖

−𝑇 + 𝑇𝑁𝑖
−𝑇𝐵𝑎𝑔𝑐𝑖 ℋ𝑖𝐶𝑎𝑐𝑖    

𝑇𝑎𝑔𝑐𝑖
𝑇 𝑇𝑁𝑖

−𝑇

 𝑇𝑁𝑖𝑃𝑑𝑖  

   

                                                                        
 𝑇𝑁𝑖

−𝑇𝑇𝑎𝑔𝑐𝑖                     𝑃𝑑𝑖𝑇𝑁𝑖
𝑇   

−𝐼𝑖                                 0
   0                            − 𝜖𝑖𝐼𝑖  

 < 0 

( 6-10) 
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where the 𝑃𝑑𝑖 =  
  𝑃1𝑖

0𝑖

           0𝑖

         𝑃2𝑖
   ,  𝑇𝑁𝑖 =  

   𝐼𝑖(𝑝×𝑝)

𝑁𝑖
𝑇

            
0𝑖

𝐼𝑖((𝑛−𝑝)×(𝑛−𝑝))
   and 𝑁𝑖  can be 

chosen as tuning matrices to achieve specific performances in each subsystem. 

The algorithms to solve this problem are: 

Algorithm 6-1: 

1- Design OISMC from the Eqs. ( 6-5) & ( 6-7) 

2- Calculate the augmenting matrices  𝐴𝑎𝑔𝑖  , 𝐵𝑎𝑔𝑖  , 𝐶𝑎𝑔𝑖    and  𝑇𝑎𝑔𝑖  from the Eq.( 6-9) 

3- Calculate 𝑂𝑐𝑖  and then find 𝒯𝑖  from the Eq. ( 5-28) 

4- Transform the subsystem by the Eq. ( 5-29) 

5- Choose the tuning parameter 𝑁𝑖  and calculate  𝑇𝑁𝑖  from the Eq.( 5-42) 

6- Minimize the 𝜖𝑖  subject to 𝑃𝑑𝑖 > 0  ,  𝑃1𝑖 > 0  ,  𝑃2𝑖 > 0 and the Eq.( 6-10) 

7- Calculate the controller gain from 𝐾𝑑𝑦𝑖 = ℋ𝑖𝑃1𝑖
−1 

8- Find the dynamic control parameters from 𝐾𝑑𝑦𝑖 =    
𝐷𝑐𝑖     𝐶𝑐𝑖

𝐵𝑐𝑖     𝐴𝑐𝑖
   

9- Build the dynamic output feedback control from the Eq.( 6-8) 

As described in the Chapter 5 in Algorithm 5-2, two other LMI conditions are added to 

decrease the magnitude of the Euclidean norm of the subsystem controller gains  𝐾𝑑𝑦𝑖  2
 

(improved the numerical conditioning of the feedback design) as follows: 

  
−𝑘ℋ𝑖𝐼𝑖

ℋ𝑖

           
ℋ𝑖

𝑇

−𝐼𝑖
  < 0 

( 6-11) 

and 

  
𝑃𝑑𝑖

𝐼𝑖
            

𝐼𝑖
𝑘𝑃𝑖𝐼𝑖

  > 0 
( 6-12) 

where 𝑘ℋ𝑖  and  𝑘𝑃𝑖  are a scalar variables. 

Algorithm 6-2: 

The procedure is as given under Algorithm 6-1 but step 6 must be changed to: 

Minimize (𝜖𝑖 + 𝑘ℋ𝑖 + 𝑘𝑃𝑖 ) subject to  𝑃𝑑𝑖 > 0 , 𝑃1𝑖 > 0  , 𝑃2𝑖 > 0  , the Eqs. ( 6-10) , ( 6-11)  

& ( 6-12) . 
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6.3.2.2 One shot LMI–based dynamic control design 

As mentioned in Section 6.3.2.1 the dynamics of each subsystem in the sliding mode is 

described by Eq. ( 5-12) . 

A one shot system dynamic that contains all inter-connected subsystems is given by: 

𝑋  𝑡 = 𝐴𝑑𝑋 𝑡 + 𝐵𝑑𝑈𝐷𝑦𝑛  𝑡 + 𝑇𝑑𝐽 𝑡  ( 6-13) 

where: 𝑋 𝑡 = [𝑥1, 𝑥2, … … . , 𝑥𝑛 ] , 𝑈𝐷𝑦𝑛  𝑡 = [𝑢1
𝐷𝑦𝑛

, 𝑢2
𝐷𝑦𝑛

, … . . , 𝑢𝑛
𝐷𝑦𝑛

] , 𝐴𝑑 = 𝑑𝑖𝑎𝑔(𝐴𝑖), 

 𝐵𝑑 = 𝑑𝑖𝑎𝑔(𝐵𝑖) , 𝛤𝑑 = 𝑑𝑖𝑎𝑔(𝛤𝑖) , 𝑌 𝑡 = [𝑦1, 𝑦2 , … … . , 𝑦𝑛] , 𝐶𝑑 = 𝑑𝑖𝑎𝑔(𝐶𝑖) and 

𝐽 𝑡 = [𝐽1 , 𝐽2, … … . , 𝐽𝑛 ] . where “𝑑𝑖𝑎𝑔" represents the block diagonal matrix. 

The one shot dynamic control can be constructed as: 

𝑋 
𝑐 𝑡 = 𝐴𝑐𝑑𝑋𝑐 𝑡 + 𝐵𝑐𝑑𝑌 𝑡  

𝑈𝐷𝑦𝑛  𝑡 = 𝐶𝑐𝑑𝑋𝑐 𝑡 + 𝐷𝑐𝑑𝑌 𝑡  

( 6-14) 

where 𝑋𝑐 𝑡 = [𝑥𝐶1 , 𝑥𝐶2, … … . , 𝑥𝐶𝑛 ] is the controller‟s state , 𝐴𝑐𝑑 = 𝑑𝑖𝑎𝑔(𝐴𝑐𝑖 ) , 

𝐵𝑐𝑑 = 𝑑𝑖𝑎𝑔(𝐵𝑐𝑖)  , 𝐶𝑐𝑑 = 𝑑𝑖𝑎𝑔(𝐶𝑐𝑖)  and 𝐷𝑐𝑑 = 𝑑𝑖𝑎𝑔(𝐷𝑐𝑖)   are constant controller gain 

matrices with appropriate dimensions.  

After substituting the control signal 𝑈𝐷𝑦𝑛  𝑡  in the one shot system, the augmentation of the 

one shot system Eq. ( 6-13) and the one shot controller Eq. ( 6-14) are: 

𝑋 
𝑎𝑔  𝑡 = 𝐴𝑎𝑔 𝑋𝑎𝑔  𝑡 + 𝐵𝑎𝑔 𝐾𝑑𝑦 𝐶𝑎𝑔𝑋𝑎𝑔  𝑡 + 𝑇𝑎𝑔𝛷𝑢 𝑡  ( 6-15) 

where  

𝑋𝑎𝑔  𝑡 =   
𝑋 𝑡 

𝑋𝑐 𝑡 
   , 𝐴𝑎𝑔 =   

𝐴𝑑     0
0     0

   ,   𝐵𝑎𝑔 =   
𝐵𝑑     0
0     𝐼

   ,   𝐾𝑑𝑦 =   
𝐷𝑐𝑑     𝐶𝑐𝑑

𝐵𝑐𝑑     𝐴𝑐𝑑
   , 

𝐶𝑎𝑔 =  
 𝐶𝑑    0
0   𝐼

    and  𝑇𝑎𝑔 =   
𝑇𝑑

0
   

As described above, the formulation of the LMI based control is: 
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𝑃𝑑𝑇𝑁
𝑇𝐴𝑎𝑔𝑐

𝑇 𝑇𝑁
−𝑇 + 𝑇𝑁

−𝑇𝐴𝑎𝑔𝑐  𝑇𝑁𝑃𝑑 + 𝐶𝑎𝑔𝑐
𝑇 ℋ𝑇𝐵𝑎𝑔𝑐

𝑇 𝑇𝑁
−𝑇 + 𝑇𝑁

−𝑇𝐵𝑎𝑔𝑐 ℋ𝐶𝑎𝑐    

𝑇𝑎𝑔𝑐
𝑇 𝑇𝑁

−𝑇

 𝑇𝑁𝑃𝑑  

   

                                                                                
 𝑇𝑁

−𝑇𝑇𝑎𝑔𝑐                     𝑃𝑑𝑇𝑁
𝑇   

−𝐼                              0
   0                         − 𝜖𝐼 

 < 0 

( 6-16) 

where 𝑃𝑑 =  
  𝑃1

0
         0
         𝑃2

   ,  𝑇𝑁 =   
𝐼(𝑝×𝑝)

𝑁𝑇
  0
            𝐼((𝑛−𝑝)×(𝑛−𝑝))

   and 𝑁  can be chosen as 

tuning matrices to achieve specific performances in each subsystem. 

The algorithms to solve this problem are: 

Algorithm 6-3: 

1- Design OISMC from the Eqs. ( 6-5) & ( 6-7) 

2- Calculate the augmenting matrices 𝐴𝑎𝑔  , 𝐵𝑎𝑔  , 𝐶𝑎𝑔    and 𝑇𝑎𝑔  from the Eq.( 6-15) 

3- Transform the subsystem. 

4- Choose the tuning parameter 𝑁 and calculate  𝑇𝑁 from  𝑇𝑁 =  
𝐼(𝑝×𝑝)

𝑁𝑇
  0
  𝐼((𝑛−𝑝)×(𝑛−𝑝))

  

5- Minimize 𝜖 subject to 𝑃𝑑 > 0  , 𝑃1 > 0 , 𝑃2 > 0 and the Eq.( 6-16) 

6- Calculate the controller gain from 𝐾𝑑𝑦 = ℋ𝑃1
−1 

7- Find the dynamic control parameters from 𝐾𝑑𝑦 =   
𝐷𝑐   𝐶𝑐

𝐵𝑐    𝐴𝑐
   

8- Build the dynamic output feedback control from the Eq.( 6-14) 

As described in Chapter 5 in Algorithm 5-3, two other LMI conditions are added to decrease 

the magnitude of the Euclidean norm of the subsystem controller gains   𝐾𝑑𝑦  
2
 (improved 

the numerical conditioning of the feedback design) as follows: 

  
−𝑘ℋ𝐼

ℋ
          ℋ

𝑇

−𝐼
 < 0 

( 6-17) 

and 

  
𝑃𝑑

𝐼
             

𝐼
𝑘𝑃𝐼

  > 0 
( 6-18) 

where 𝑘ℋ and  𝑘𝑃  are a scalar variables. 

 



168 
 

Algorithm 6-4: 

The same procedure as in Algorithm 6-3 is used by replacing step 6 by: 

Minimize (𝜖 + 𝑘ℋ + 𝑘𝑃) subject to  𝑃𝑑 > 0 , 𝑃1 > 0  , 𝑃2 > 0  , the Eqs.( 6-16) , ( 6-17) & 

( 6-18) 

The principle of this approach when it is applied to inter-connected systems is shown in 

Figure  6-1. 
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Figure  6-1: Dynamic output control of inter-connected systems via LMI+AOISMC 

 

6.4 Application example (coupled inverted pendula) 

The inverted pendulum is a very common tutorial example problem in control engineering, 

used to study the behaviour of unstable systems. The inverted pendulum example is 

analogous to a robotic arm and can thus be used to emulate an unstable robot arm or to 

study the motion of a standing human. In a more complex example a system comprising 

two coupled inverted pendula. To achieve stability forces must be applied to each of the 

poles of the pendula to protect them from falling down, i.e. the system is a two-dimensional 

control problem. 
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Consider two inverted pendula connected to each other by a spring, as shown in Figure  6-2. 

This example is considered to illustrate the proposed design technique for the case when 

the only available measurements are angular position, i.e. with the angular velocities 

remaining unmeasured. 

 

 

 
m1 m2 

 

u1 u2 

a 

l 

𝜽𝟏 𝜽𝟐 

k 

 

 

 Figure  6-2 : Two coupled inverted pendula 

6.4.1 Two inverted pendula system model 

The motion of the two inverted pendula can be described by two inter-connected 

subsystems. The objective of the de-centralized is to control each pendulum with only its 

own information. The model is adopted from (Hua,Yuanwei,Siying and Lina, 2006). 

The system contains two non-linear subsystems described as follows: 

1
st
 Subsystem: 

 
𝑥11 (𝑡)
𝑥12 (𝑡)

 =  
0

  1   
     

1
0

    
𝑥11(𝑡)
𝑥12(𝑡)

 +  

0

 −
𝑎2(𝑡)

(1 + Δ𝑚1)𝑙2
   

   
1

𝑎2(𝑡)

(1 + 0)0𝑙2

    
𝑥11(𝑡)
𝑥12(𝑡)

 

+   
0
1

    1 −
Δ𝑚1

 1 + Δ𝑚1 
  𝑢1 𝑡 

+  

0

  
𝑎2(𝑡)

(1 + Δ𝑚1)𝑙2
   

   
1

𝑎2(𝑡)

(1 + 0)0𝑙2

    
𝑥21(𝑡)
𝑥22(𝑡)

 +  
0.1
0.1

 𝑑1(𝑡) 

( 6-19) 
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2
nd

 Subsystem: 

 
𝑥21 (𝑡)
𝑥22 (𝑡)

 =  
0

  1   
     

1
0

    
𝑥21(𝑡)
𝑥22(𝑡)

 +  

0

 −
2𝑎2(𝑡)

(1 + Δ𝑚2)𝑙2
   

   
1

𝑎2(𝑡)

(1 + 0)0𝑙2

    
𝑥21(𝑡)
𝑥22(𝑡)

 

+   
0
2

   1 −
Δ𝑚2

 1 + Δ𝑚2 
 𝑢2 𝑡 

+  

0

 
2𝑎2(𝑡)

(1 + Δ𝑚2)𝑙2
   

   
1

𝑎2(𝑡)

(1 + 0)0𝑙2

    
𝑥11(𝑡)
𝑥12(𝑡)

 +  
0.1
0.1

 𝑑1(𝑡) 

( 6-20) 

where  𝑥11 𝑡 = 𝜃1  , 𝑥12 𝑡 = 𝜃 
1  , 𝑥21 𝑡 = 𝜃2  , 𝑥22 𝑡 = 𝜃 

2  ,  Δ𝑚1 < 0.1  ,  Δ𝑚2 <

0.05   and   
𝑎 𝑡 

𝑙
∈ [0,1] 

1
st
 Subsystem: 

𝐴1 =  
0   

  1     
   
 1
0

    , 𝐵1 =  
1
0
  , 𝐶1 = [1    0] , 𝐸1 =  

0.1
0.1

 , 𝑧1 =  
0 1

𝑎2(𝑡)

(1+Δ𝑚1)𝑙2 0   
𝑥21

𝑥22
  

,  𝑊1 𝑥1, 𝑡 =  
0  1

 
−𝑎2(𝑡)

(1+Δ𝑚1)𝑙2   0   , 𝑥1(0) =   
4 
0 

    and  𝑥1(𝑡) =  
𝑥11(𝑡)
𝑥12(𝑡)

  

( 6-21) 

2
nd

 Subsystem: 

𝐴2 =  
0

  1   
   
1
0

    , 𝐵2 =  
2
0
  , 𝐶2 = [1    0] , 𝐸2 =  

0.1
0.1

 , 𝑧2 =  
0 1

2𝑎2(𝑡)

(1+Δ𝑚2)𝑙2  0   
𝑥11

𝑥12
  

, 𝑊2 𝑥2, 𝑡 =   
0 1

−
2𝑎2(𝑡)

(1+Δ𝑚2)𝑙2 0   ,  𝑥2(0) =   
4
0

    and  𝑥2(𝑡) =  
𝑥21(𝑡)
𝑥22(𝑡)

  

( 6-22) 

 

6.4.2 Simulation results 

The subsystem dynamic controller 𝑢𝑖
𝐷𝑦𝑛  𝑡  designed using the LMI procedure of algorithm 

6-2, leads to the gains: 

1
st
 subsystem: 

𝐴𝑐1 =   
−2.4732         −1.6778
−16.4386      −30.6373

    ,  𝐵𝑐1 =   
−0.4569
1.0435

   , 𝐶𝑐1 =  −1.7364             2.8465  

,  𝐷𝑐1 = −2.2372         
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2
nd

 subsystem: 

𝐴𝑐2 =  
−0.8173         0.7464
−10.3240      −21.3989

    ,  𝐵𝑐2 =   
−0.4581
0.6659

     , 𝐶𝑐2 =  −3.8667            2.1721   

, 𝐷𝑐2 = −2.9032 

The subsystem parameter design or tuning matrices are: 

𝑁1 =   

1
0

2.6
0

       

0
1
0

2.6

       

0
0
1
0

        

 0
 0
 0
 1

   and  𝑁2 =   

1
0

2.8
0

       

0
1
0

2.8

        

0
0
1
0

        

0
0
0
1

   

The discontinuous control is  𝑢𝑖
𝐼𝑆𝑀 𝑡 − 𝜇𝑖

𝜎𝑖 𝑦𝑖 ,𝑡 

 𝜎𝑖 𝑦𝑖 ,𝑡  +𝔷𝑖
 

where  𝜇1= 𝜇2 = 0.05   and   𝔷1= 𝔷2 = 0.2 

 

The two subsystems without controls are unstable are shown in Figure  6-3 . The responses 

of the outputs (angles) of the two subsystems by applying dynamic control and OISMC with 

no faults in any subsystem are illustrated in Figure  6-4. 

 

 

Figure  6-3: Unstable response of 1
st
 & 2

nd
 subsystems without control 
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Figure  6-4: The inverted pendula angles with controller and no faults 

 

From Figure  6-4 the two subsystems are stable and they oscillate at the beginning and reach 

the stable point around 8 s. Figure  6-5 shows the simulation of a 60% actuator fault in the 1
st
 

subsystem and the 2
nd

 subsystem remains fault-free. From the simulation it is clear that both 

the systems are stable and the controller for the 1
st
 subsystem decreases the affects of the 

faults. It is demonstrated that the OISMC can deal with a de-centralized control for some 

faults that are bounded. 

 

Figure  6-5: 1
st
 subsystem with controller and 60% actuator fault 
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Figure  6-6: The 2
nd

 subsystem with controller and 60% actuator fault
 

 

The same scenario is applied to the 2
nd

 subsystem with no faults in the 1
st
 subsystem as 

shown in Figure  6-6. Although the fault is a 60% actuator fault the 1
st
 subsystem is still 

stable. This demonstrates the capability of the controllers to provide robust stabilization in 

the presence of unknown interactions. 

 

 

Figure  6-7: Two subsystems with controller and 50% actuator faults in each subsystem 
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Figure  6-7 shows the response of the output of the two subsystems for the case of 50% 

actuator faults in each of the subsystems. Although the faults reach 50% in the two 

actuators, the two subsystems remain stable. The explanation for this is the ability of the 

controllers to deal with these faults. 

 

Figure  6-8 : Two subsystems with controller and 60% actuator faults in each subsystem 

 

Figure  6-8 shows the simulation of a fault scenario for two subsystems in which each of the 

actuator faults is 60% and furthermore the actuator faults are 60%.  It can be clearly seen 

that the subsystems are affected by the faults but the 1
st
 subsystem is unstable whilst the 2

nd
 

subsystem is still stable. That means the controllers can deal with some limited or bounded 

actuators faults. 

According to the simulation results, the following points are now highlighted as follows: 

 Different actuator fault scenarios are investigated by designing a dynamic control 

with OISMC to decease the impacts of these faults on the closed-loop performance 

of the inter-connected system. 

 The effects of some bounded actuator faults on the performance of the subsystem 

can be passively tolerated by the dynamic controller with OISMC in this example 

less than 60% of actuator faults. 
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6.5 Conclusion  

The control of non-linear inter-connected systems is challenging, especially when available 

information about the system and measured information is limited. This Chapter shows that 

the use of output information to control these systems through utilization of a dynamic 

controller gives a greater chance and more freedom to achieve a specific performance. 

A linear dynamic controller for ensuring system sliding in each subsystem of an inter-

connected system can be designed via an LMI framework, in which each sliding surface is 

designed according to some specifications. A downside of the LMI formulation arises due to 

the presence of a non-linear term 𝒴𝑖𝐵𝑐𝑖𝐾𝑖𝐶𝑐𝑖  in the LMI formulation as explained in Chapter 

5. The effect of this can be overcome by considering these non-linear terms as described in 

Chapter 5. 

In the de-centralized control case, the linear component of the OISMC controller is designed 

to deal satisfy performance and stability requirements, for example in a given subsystem. 

However, this linear component can also be used to compensate the subsystem unmatched 

uncertainties arising from modelling errors, subsystem interactions and exogenous 

disturbances. On the other hand, the approach proposed in this work is focused on integral 

sliding for output feedback systems – the OISMC. 

Linear output feedback control can be achieved either using dynamical compensation 

control or using static output feedback. Although the dynamic compensation approach alone 

could give good stability and performance, when combined with OISMC some powerful 

robustness properties result that guarantee the compensation of matched components and 

bounded faults. 

In this Chapter this strategy has been applied to an example of two non-linear coupled 

inverted pendulum systems, connected by spring. As a result of using two controllers, the 

dynamic output feedback and OISMC, the response of the two subsystems is perfect when 

there are no faults in either of the pendula subsystems. However, the controller can 

compensate the effects of actuator faults but up to a bounded value of these faults. In this 

example the control can overcome up to about 50% of actuator fault. Above that level the 

subsystems tend to become unstable. 

Chapters 3, 4, 5 & 6 discuss new methods or new techniques to deal with fault-tolerant 

control in actuators. On the other hand, Chapter 7 focuses on the fault estimation in inter-

connected systems, and how to construct an observer-based fault estimator to estimate an 
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actuators fault. Hence, as long as the estimation of the fault is achieved robustly it is very 

easy to determine the location of the fault so that subsequent system reconfiguration after a 

fault has occurred can easily be achieved. 
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Chapter 7 : Actuator fault estimation for 

non-linear inter-connected systems 
 

7.1 Introduction 

The purpose of this Chapter is to investigate the potential of using robust fault estimation 

methods for actuator fault estimation in non-linear inter-connected systems after designing 

robust FTC. It is assumed that any of the methods of distributed control, based on either 

single level or multi-level approaches as considered in Chapters 2, 3, 4, 5 & 6 are used to 

achieve the stability. The challenge is to ensure that the estimation of faults in subsystem 

actuators is done precisely in the presence of modelling uncertainty, interactions between 

subsystems and disturbance. A significant number of robust fault estimation methods are 

available in the literature, for example using sliding mode observer estimation 

(Edwards,Spurgeon and Patton, 2000), proportional multiple integral observers (Ibrir, 2004, 

Koenig, 2005, Gao,Ding and Ma, 2007, Aiguo  and Guangren, 2007). However there have 

been few studies that apply these methods to distributed and inter-connected system 

structures (Trinh and Aldeen, 1998, Klinkhieo,Patton and Kambhampati, 2008). Complex 

inter-connected systems have very challenging FDI design requirements due to 

uncertainties acting at different levels of the system (within subsystem components or at 

higher hierarchical levels). Hence, although fault estimation is an appealing approach to 

FDI the robustness problem requires careful attention. As the system complexity increases, 

more complex models are required, especially when uncertainties appear. It then becomes 

difficult to predict the fault directly online, because of the separation of the effects arising 

from the influences of the interactions and the uncertainties. 

The problem of fault estimation for inter-connected systems is more complex than for the 

case of single systems since inter-connected systems are influenced not only by faults but 

also by subsystem inter-connections and exogenous disturbances.  Whilst the literature does 

discuss the challenging problem of fault estimation in the presence of disturbance (Yan and 

Edwards, 2008)  the more complex problem of fault estimation in the presence of unknown 

interactions has not been considered. 
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The distributed and inter-connected system can be viewed as a form of complex system 

since the number of subsystems can be significant and hence systematic procedures are 

required to handle the general distributed and inter-connected system problem from a fault 

estimation standpoint. Indeed, scientific progress in the fields of industry, energy, and 

several other areas of daily life has resulted in an increase in system complexity in 

application fields such as telecommunications networks (Boubour et al., 1997), transport 

systems and power systems distribution networks (Tan,Crusca and Aldeen, 2008), 

coordinated formation flying etc (Flint,Polycarpou and Fernandez-Gaucherand, 2002), 

complex inter-connected process systems (Schuler,Munz and Allgower, 2012), water 

distribution networks (Boccelli et al., 1998), high building structures (Chowdhury and 

Carrier, 2000) and environmental control in complex building systems. 

There is a security issue associated with many complex distributed systems and 

furthermore the increased complexity can lead to an increase in the possibility of 

component faults and failures. Hence, to avoid catastrophic failure and to enhance system 

security and reliability as well as improve the system performance and stability some 

additional features beyond those of robust control are required. The detection and robust 

isolation of faults in system components (using robust FDI methods) with the potential of 

reliable FTC has become a steadily more important field of research for complex inter-

connected systems (Polycarpou and Vemuri, 1995, Gertler, 1998, Wang and Yuan-Chun, 

2004, Panagi and Polycarpou, 2011, Shames,Teixeira,Sandberg and Johansson, 2011, 

Zhang and Zhang, 2012). 

It can never be guaranteed that a subsystem will operate without faults or component 

failures. Although many system components can have high reliability, in practice a fault 

could occur at any moment during the system operation.  Indeed for a truly complex large-

scale inter-connected system there is always a significant possibility that faults can occur in 

any subsystem.  However, the faults may occur in the presence of interactions and other 

known or unknown disturbances and this means that the problem of robust FDI is very 

challenging, since the faults and the interactions or disturbances can have competing effects 

on the detection/isolation system. 

Although the influence from interactions gives rise to inaccurate estimation of faults most 

published FDI methods dealing with complex inter-connected systems can only deal with 
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single types of faults (without uncertainties or with very small uncertainties). These faults 

may lead to instability or even overall system failure. 

Although FDI methods provide information about the existence of faults, they are not 

always capable of providing information about the size and the type of the faults and their 

effects on the system. On other hand by using information from the input and the output 

signals of the system, the faults can be estimated online (Blanke,Kinnaert,Lunze and 

Staroswiecki, 2006, Sun,Patton and Goupil, 2012). 

For example if a fault occurs in a system actuator, fault estimation can be used not only to 

indicate that a fault has occurred as well as where it acts but the nature and characteristic of 

the fault becomes known immediately from the estimated faults signal. Since the estimation 

provides the time profile of the fault signal all important features of the fault become 

known, even if the fault estimation is subject to certain robustness requirements. It 

therefore can be argued that the fault estimation approach to FDI has significant advantages 

over the residual-based FDI method in which a residual signal is only used to determine 

whether or not a fault has occurred, by using a threshold. The fault estimation can be used 

to make some decision about the system operation, e.g. to change or adapt the controller, 

reconfigure the system or to use a form of hardware or analytical redundancy to recover 

normal system operation. The concept of an actuator fault or indeed of actuator “failure” 

can be appropriate for inter-connected, distributed or networked systems. 

However, as for the residual-based approach to FDI the fault estimation methods also have 

accompanying robustness problems arising from the effects of non-linear uncertainty, 

modelling uncertainty, inter-connections and exogenous disturbances. All of these 

uncertain system effects can lead to errors in the fault estimation signals that can give rise 

to false alarms. The robustness problem for the residual-based approaches to FDI is also 

very well known, but it is very hard to achieve satisfactory robustness using this approach. 

Consequently, a significant number of FDI approaches now focus on robust fault 

estimation methods. 

Clearly, early and prompt detection and isolation (and even identification) of faults can 

provide reliable alarm systems to prevent system damage, economic loss and even 

dangerous catastrophes. For example if a fault occurs in a system actuator so that it is 

unable to deliver the control system to actuate the system, the stability and performance of 
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the closed-loop system can be severely affected and the fault effect may continue to 

develop until a system failure or catastrophe occurs. Once the fault is detected and isolated 

(and its severity determined) a special type of FTC system can be used to mitigate the 

effect of the fault either using hardware redundancy or software redundancy based on 

observer or estimation methods. The idea of the FTC scheme is thus to make the closed-

loop system “fault tolerant”, i.e. to mitigate the effects of the faults and maintain good 

system operation and performance (Patton, 1997a, Chen and Patton, 1999, Patton et al., 

2007, Halim,Edwards and Chee, 2011). 

Several observer-based approaches have been proposed in fault estimation, such as 

unknown input observers (Aldeen,Lau and Marsh, 1998), sliding mode observers 

(Edwards,Spurgeon and Patton, 2000, Yan and Edwards, 2008, Orani,Pisano and Usai, 

2009, Sharma and Aldeen, 2010), higher order sliding (Davila,Fridman and Levant, 2005, 

Orani,Pisano and Usai, 2009), the adaptive observer (Zhang,Jiang and Cocquempot, 2008, 

Challouf et al., 2010) , fuzzy observers (Patton,Chen and Lopez-Toribio, 1998, Lopez-

Toribio and Patton, 1999), H∞ observers (Huang and Kiong, 2009) and proportional 

multiple integral observers (Ibrir, 2004, Witczak, 2007, Gao,Ding and Ma, 2007, Gao and 

Ding, 2007), and the non-linear observer (Maoa,Jianga and Shi, 2010).This Chapter focuses 

on the use of the proportional and multi-integral (PMI) observer approach (Ibrir, 2004, 

Gao,Ding and Ma, 2007) to estimate actuator faults in non-linear inter-connected systems 

with unknown exogenous disturbances. 

It is assumed that an actuator fault signal is added to the system or the model as an 

unknown external signal (Chen and Patton, 1999). That can be classified according to: 

1- Stuck at a specific value: means that the actuator remains at a certain value reached 

at a certain moment. 

2- Complete failure: means that the actuator is unable to make any action at a given 

moment and stop completely. 

3-  Fault of performance: means that the actuator gives a signal less or higher than the 

required at a given moment (Witczak, 2007, Halim,Edwards and Chee, 2011). 

The main contribution in this Chapter is the design of a Proportional Multiple Integral 

Observer (PMIO) to estimate or reconstruct actuator faults in non-linear inter-connected 
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subsystems, including an approach to combining each fault estimation observer within the 

appropriate subsystem. 

The Chapter is structured as follows. Section 7.2 describes the problem formulation. Then 

section 7.3 considered the proposed observer design to estimate the actuator faults. Section 

7.4 illustrates a numerical example contains three inter-connected subsystems to show the 

design approach and simulation responses of different chosen parameters design. Finally, a 

conclusion is presented in Section 7.5. 

 

7.2 Problem statement and preliminaries 

The way in which actuator faults influence the dynamics of a non-linear inter-connected 

system can be described in state-space form via a Lipschitz non-linear system 

representation as follows: 

𝑥 𝑖 𝑡 = 𝐴𝑖𝑥𝑖 𝑡 + 𝐵𝑖𝑢𝑖 𝑡 + 𝑍𝑖 𝑡 + 𝑊𝑖 𝑥𝑖 , 𝑡 + 𝐸𝑖𝑑𝑖 𝑡 + 𝐵𝑖𝑓𝑖 𝑡  

𝑦𝑖 𝑡 = 𝐶𝑖𝑥𝑖 𝑡             𝑖 = 1, … … , 𝑁 

 

( 7-1) 

where 𝑥𝑖(𝑡) ∈ ℝ𝑛 is the state vector, 𝑢𝑖(𝑡) ∈ ℝ𝑚 is are the control inputs and 𝑦𝑖(𝑡) ∈ ℝ𝑝 is 

the vector of system outputs.  𝐴𝑖 ∈ ℝ𝑛×𝑛 is a subsystem characteristic matrix, 𝐵𝑖 ∈ ℝ𝑛×𝑚  is 

the subsystem control input matrix, 𝐶𝑖 ∈ ℝ𝑝×𝑛  is the subsystem output matrix and 𝐸𝑖 ∈

ℝ𝑛×𝑞  is the subsystem external disturbance matrix, all these matrices are known.  𝑍𝑖(𝑡) 

denotes the interactions between subsystems.𝑊𝑖 𝑥𝑖 , 𝑡  denotes the uncertainties that satisfy 

the matching condition 𝑊𝑖(𝑥𝑖 , 𝑡) = 𝐵𝑖𝑄𝑖(𝑥𝑖 , 𝑡) are unknown . 𝑑𝑖(𝑡) represents an unknown 

bounded disturbance. 

𝑓𝑖(𝑡) ∈ ℝ𝑘  denotes the actuator faults where 𝑓𝑖 = −𝐾(𝑡)𝑢𝑖  and for which 𝐾 𝑡 = 𝑑𝑖𝑎𝑔(𝐾𝑖) 

and 0 ≤ 𝐾𝑖 ≤ 1. 𝐾𝑖 = 0 . That means the actuator is working perfectly and if 𝐾𝑖 = 1 the 

actuator has failed completely, otherwise the fault is present. 

Assumption: 

The pair (𝐴𝑖 , 𝐵𝑖) is controllable and (𝐶𝑖 , 𝐴𝑖) is an observable. 
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7.3 Proportional and multi-integral observer design 

As mentioned in Section 7.1 the estimation or reconstruction of a fault is a more powerful 

approach to FDI than the use of an FDI residual. The famous observer that is used to 

estimate faults in inter-connected systems is the sliding mode observer (the Walcott-Żak 

observer (Kalsi,Lian,Hui and Zak, 2009) and the Edwards and Spurgeon observer (Edwards 

and Spurgeon, 1998)). The main differences between these two observers are: the Walcott-

Żak observer has simpler structure and it is easier to understand while the Edwards and 

Spurgeon observer requires a triple state transformation but on the other hand gives more 

system information. The main disadvantage of using the SMC observer is the sliding 

surface reachability problem which means that the observer does not provide sliding 

motion until the sliding surface is reached in state space. As a consequence if faults occur 

during the reaching phase the observer may be sensitive to the fault even if during the 

reaching phase the fault cannot be estimated. The disadvantage of the Walcott-Żak 

observer is that there is less design freedom when compared with the Edwards and 

Spurgeon observer. On the other hand the Edwards and Spurgeon observer requires a triple 

state transformation during the design procedure that can appear over-complicated. A 

consequence of the use of the triple transformation is that after designing the observer gain 

matrices the state system must be transferred back into the original coordinates which make 

the algorithm complicated and not easy to understand. 

The SMC fault estimation observers clearly have some drawbacks and in this Chapter a 

good alternative approach is used based on the Proportional and Multi-Integral Observer 

(PMIO) of (Ibrir, 2004, Gao and Ding, 2007). In this work a robust approach to the PMIO 

has been developed to minimize the effects of subsystem interactions and uncertainties. 

It is shown that this estimation approach is relatively easy to design and implement and it is 

also not limited by a reachability problem and does not require switching observer 

feedback.  

Figure  7-1 illustrates the idea of the use of actuator fault estimation in non-linear inter-

connected systems where it is assumed that every subsystem has a state observer for 

combined state and fault estimation. It is also assumed that the subsystem observers are de-

centralised meaning that there are not connections between the various subsystem 

observers. 
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Figure  7-1: Fault estimation in inter-connected system via subsystem observers 

 

To estimate the actuator fault assume that the r
th

 derivative of this fault is bounded 

according to: 

𝔉𝑖𝑗  𝑡 = 𝑓𝑖
 𝑟−1 

 𝑡                  𝑗 = 1, … … , 𝑟 
( 7-2) 

From Eq.( 7-2) the following relationships hold: 

𝔉 𝑖1(𝑡) = 𝑓𝑖
𝑟 𝑡  

𝔉 𝑖2 𝑡 = 𝔉𝑖1 𝑡  

𝔉 𝑖3 𝑡 = 𝔉𝑖2 𝑡  

𝔉 𝑖𝑟 (𝑡) = 𝔉𝑖𝑟−1 𝑡  

( 7-3) 

Combining the subsystem faults with the subsystem dynamics, i.e. by combining Eq. ( 7-1) 

and Eq. ( 7-3) the resulting augmented system corresponding to each subsystem can be 

written as: 

𝑥  𝑖 𝑡 = 𝒜𝑖𝑥 𝑖 𝑡 + ℬ𝑖𝑢𝑖 𝑡 + 𝒬𝑖𝒟𝑖(𝑡) + ℒ𝑖𝑓𝑖
𝑟 𝑡  

𝑦𝑖 𝑡 = 𝒞𝑖𝑥 𝑖 𝑡                         𝑖 = 1, … … , 𝑁 

( 7-4) 

where:  
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𝑥 𝑖 𝑡 = [𝑥𝑖
𝑇 𝑡   , 𝔉1

𝑇  , 𝔉2
𝑇  , … … . ,  𝔉𝑟

𝑇] ∈ ℝ𝑛   

𝒜𝑖 =

 
 
 
 
 
𝐴𝑖

0
0
⋮
0

     

0
0
𝐼𝑖  
⋮
0

⋯
⋯

   ⋯    
⋱
⋯

 

0
0
0
⋮
𝐼𝑖

    

𝐵𝑖

0
0
⋮
0  

 
 
 
 

∈ ℝ𝑛 ×𝑛 , ℬ𝑖 =

 
 
 
 
 
𝐵𝑖

0
0
⋮
0  

 
 
 
 

∈ ℝ𝑛 ×𝑚 , 𝒬𝑖 =

 
 
 
 
 
𝐼𝑖
0
0
⋮
0

      

𝐵𝑖

0
0
⋮
0

      

𝐸𝑖

0
0
⋮
0  

 
 
 
 

∈

ℝ𝑛 ×(𝑛 +𝑚+), ℒ𝑖 =

 
 
 
 
 

 

0
𝐼𝑟𝑖
0
⋮
0

 

 
 
 
 
 

∈ ℝ𝑛 ×𝑟  , 𝒞𝑖 =    𝑐𝑖
     0     0  ⋯    0   ∈ ℝ𝑝×𝑛    , 𝒟𝑖 𝑡 =  

𝑍𝑖 𝑡 

𝑄𝑖(𝑥𝑖 , 𝑡)
𝑑𝑖(𝑡)

     and  

𝑛 = 𝑛 + 𝑟 

where it is assumed that the (𝒜𝑖 ,𝒞𝑖  ) is observerable. 

Consider a classical Luenberger observer to estimate the combined subsystem state and 

actuator fault simultaneously as: 

𝑥  𝑖
  𝑡 = 𝒜𝑖𝑥  𝑖 𝑡 + ℬ𝑖𝑢𝑖 𝑡 + 𝐿𝑖(𝑦𝑖 𝑡 − 𝒞𝑖𝑥  𝑖 𝑡 ) 

( 7-5) 

where 𝑥  𝑖 𝑡  is the estimate of the augmented state 𝑥 𝑖 𝑡  and 𝐿𝑖  is observer gain.  This gain 

is designed to decrease the effect of 𝒟𝑖 𝑡  which contains interconnections, uncertainties 

and disturbances. 

In the ideal case the steady error between the state and its estimation is zero but the effect 

of interconnections, uncertainties and disturbances may still be present, i.e. there is some 

residual difference between the actual and estimated state as the components in 𝒟𝑖 𝑡   

prevent the steady state estimation error from reaching zero value. 

According to the design algorithm proposed by (Ibrir, 2004, Gao,Ding and Ma, 2007), 

suppose there is a positive-definite matrix 𝑃𝑖 > 0  that is the solution of the Lyapunov 

equation: 

−(𝜂𝑖𝐼 + (𝒜𝑖 − 𝐿𝑖𝒞𝑖))𝑇𝑃𝑖 − 𝑃𝑖 𝜂𝑖𝐼 + (𝒜𝑖 − 𝐿𝑖𝒞𝑖) = −𝒞𝑖
𝑇𝒞𝑖  

( 7-6) 

where − 𝜂𝑖𝐼 + (𝒜𝑖 − 𝐿𝑖𝒞𝑖)  are Hurwitz.  𝜂𝑖  are positive tuning parameters and the gain of 

the subsystem observer 𝐿𝑖  can be computed as: 

𝐿𝑖 = 𝑃𝑖
−1𝒞𝑖

𝑇
 

( 7-7) 

Proof: 
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The steady-errors between the state and estimated state of each observer are 𝑒𝑖 𝑡 =

𝑥 𝑖 𝑡 − 𝑥  𝑖 𝑡  which leads to the estimation error dynamic system (from Eqs. ( 7-4) and 

( 7-5)) as: 

𝑒 𝑖 = (𝒜𝑖 − 𝐿𝑖𝒞𝑖)𝑒𝑖 𝑡 + 𝒬𝑖𝒟𝑖(𝑡) + ℒ𝑖𝑓𝑖
𝑟 𝑡  

( 7-8) 

For the case of  𝒟𝑖(𝑡) ≠ 0 and  𝑓𝑖
𝑟 𝑡 ≠ 0 , the stability of the state estimation error system 

can be verified as follows: 

Consider a Lyapunov function candidate as: 

𝑉𝑖 𝑒𝑖 = 𝑒𝑖
𝑇(𝑡)𝑃𝑖𝑒𝑖 𝑡  

( 7-9) 

The time-derivative of 𝑉𝑖 𝑒𝑖  is given by: 

𝑉 
𝑖 𝑒𝑖 = 𝑒𝑖

𝑇 (𝑡)𝑃𝑖𝑒𝑖 𝑡 + 𝑒𝑖
𝑇(𝑡)𝑃𝑖𝑒𝑖 (𝑡) 

( 7-10) 

Substituting Eq. ( 7-8) into Eq. ( 7-10) this yields: 

𝑉 
𝑖 𝑒𝑖 = [(𝒜𝑖 − 𝐿𝑖𝒞𝑖)𝑒𝑖 𝑡 + 𝒬𝑖𝒟𝑖(𝑡) + ℒ𝑖𝑓𝑖

𝑟 𝑡 ]𝑇𝑃𝑖𝑒𝑖 𝑡 + 

𝑒𝑖
𝑇 𝑡 𝑃𝑖[(𝒜𝑖 − 𝐿𝑖𝒞𝑖)𝑒𝑖 𝑡 + 𝒬𝑖𝒟𝑖(𝑡) + ℒ𝑖𝑓𝑖

𝑟 𝑡 ] 

( 7-11) 

The Eq.( 7-11) can be re-arranged as follows: 

𝑉 
𝑖 𝑒𝑖 = 𝑒𝑖

𝑇 𝑡  (𝒜𝑖 − 𝐿𝑖𝒞𝑖 
𝑇𝑃𝑖 + 𝑃𝑖(𝒜𝑖 − 𝐿𝑖𝒞𝑖)]𝑒𝑖 𝑡 + 2𝑒𝑖

𝑇 𝑡 𝑃𝑖(𝒬𝑖𝒟𝑖(𝑡)

+ ℒ𝑖𝑓𝑖
𝑟 𝑡 ) 

( 7-12) 

According to the Cauchy-Schwarz inequality  𝑥.  𝑦  ≤  𝑥 .  𝑦  the term: 

2𝑒𝑖
𝑇 𝑡 𝑃𝑖 𝒬𝑖𝒟𝑖 𝑡 + ℒ𝑖𝑓𝑖

𝑟 𝑡  ≤ 2  𝑒𝑖
𝑇(𝑡)𝑃

𝑖

1
2 .  𝑃

𝑖

1
2(𝒬𝑖𝒟𝑖(𝑡) + ℒ𝑖𝑓𝑖

𝑟 𝑡 )  
( 7-13) 

where    𝑃𝑖 = 𝑃
𝑖

1
2 . 𝑃

𝑖

1
2 > 0 

The Eq.( 7-13) can be re-formulated as: 

ℜ[𝜆𝑗 ,𝑖(𝒜𝑖 − 𝐿𝑖𝒞𝑖)] < −𝜂𝑖       ∀𝑗 ∈ (1,2, … . . , 𝑛 ) ( 7-14) 

Where  𝜆𝑗 ,𝑖  are the eigenvalues of (𝒜𝑖 − 𝐿𝑖𝒞𝑖) and: 

ℜ[𝜆𝑚𝑎𝑥 ,𝑖(𝒜𝑖 − 𝐿𝑖𝒞𝑖)] < −𝜂𝑖    
( 7-15) 

This leads to 𝑒𝑖
𝑇 𝑡 (𝒜𝑖 − 𝐿𝑖𝒞𝑖)

𝑇𝑃𝑖𝑒𝑖 𝑡 ≤ −𝜂𝑖𝑉𝑖 𝑒𝑖  
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According to Eq. ( 7-13) and Eq. ( 7-15) the time-derivative of 𝑉𝑖 𝑒𝑖 , i.e. 𝑉 
𝑖 𝑒𝑖  satisfies: 

𝑉 
𝑖 𝑒𝑖 ≤ −2𝜂𝑖𝑉𝑖 𝑒𝑖 + 2  𝑒𝑖

𝑇(𝑡)𝑃
𝑖

1
2 .  𝑃

𝑖

1
2(𝒬𝑖𝒟𝑖(𝑡) + ℒ𝑖𝑓𝑖

𝑟 𝑡 )  
( 7-16) 

Multiplying both sides of Eq. ( 7-16) by 
1

2
𝑒𝑖

−𝑇(𝑡)𝑃
𝑖

−1
2  yields: 

1

2
𝑒𝑖

−𝑇(𝑡)𝑃
𝑖

−1
2 𝑉 

𝑖 𝑒𝑖 ≤ −𝜂𝑖𝑒𝑖
−𝑇(𝑡)𝑃

𝑖

−1
2 𝑉𝑖 𝑒𝑖 +  𝑃

𝑖

1
2(𝒬𝑖𝒟𝑖(𝑡) + ℒ𝑖𝑓𝑖

𝑟 𝑡 )  
( 7-17) 

Now suppose that 𝑉 𝑖 𝑒𝑖 =  𝑉𝑖 𝑒𝑖 = (𝑒𝑖
𝑇 𝑡 𝑃𝑖𝑒𝑖 𝑡 )1/2 and 

𝑉  𝑖 𝑒𝑖 =
1

2
[𝑒𝑖

𝑇 𝑡 𝑃𝑖𝑒𝑖 𝑡 ]−1/2 𝑒𝑖 𝑉 
𝑖 𝑒𝑖  then Eq. ( 7-17) can be rewritten as: 

𝑉  𝑖 𝑒𝑖 ≤ −𝜂𝑖𝑉 𝑖 𝑒𝑖 +  𝑃
𝑖

1
2(𝒬𝑖𝒟𝑖(𝑡) + ℒ𝑖𝑓𝑖

𝑟 𝑡 )  
( 7-18) 

The stability of the system Eq. ( 7-18) requires that 𝑉  𝑖 𝑒𝑖 ≤ 0 this leads to: 

𝜂𝑖𝑉 𝑖 𝑒𝑖 = 𝜂𝑖𝑒𝑖
𝑇(𝑡)𝑃

𝑖

1
2  ≥  𝑃

𝑖

1
2(𝒬𝑖𝒟𝑖(𝑡) + ℒ𝑖𝑓𝑖

𝑟 𝑡 )  
( 7-19) 

From Eq. ( 7-19) the upper bound of the steady error is: 

 𝑒𝑖 ≤
1

𝜂𝑖
[ 𝒬𝑖  𝒟𝑖(𝑡) +  ℒ𝑖  𝑓𝑖

𝑟 𝑡  ] ( 7-20) 

That means the effect of interconnections, uncertainties and disturbances on the state error 

can be made as small as possible by increasing the value of the  𝜂𝑖  . Hence, by choosing the 

values of 𝜂𝑖  and solving Eq. ( 7-6) the observer will then become insensitive to any 

interconnections, uncertainties and disturbances. 

From Eq. ( 7-20), the higher the value of the  𝜂𝑖 , the less the impact of the interconnections, 

uncertainties and disturbances. From Eq. ( 7-6) as the values of 𝜂𝑖  are increased the 

computed values of 𝑃𝑖  decrease so that the value of the gains 𝐿𝑖  increase, as a consequence 

of the gain equation 𝐿𝑖 = 𝑃𝑖
−1𝒞𝑖

𝑇
 

To summarize this procedure: Increasing the 𝜂𝑖  leads to decreasing values of the Euclidean 

norm   𝑃𝑖  , leading to increased values of the Euclidean norm  𝐿𝑖  . 

 

 



187 
 

Note: 

From these results it can be observed that the design of a subsystem observer with high 

state tracking accuracy requires the use of high values of observer gain norm values, since 

the observer estimates the state of the system and the actuator fault simultaneously. 

 

7.4 Numerical example 

Consider the following numerical example consisting of three inter-connected non-linear 

subsystems, adapted from (Chou and Cheng, 2000): 

 

1
st
 Subsystem: 

𝐴1 =  
0

−2   
   
1
3
  , 𝐵1 =  

0
1
  , 𝐶1 =  

1
 0  

   
0
1
  , 𝐸1 =  

0.1
0.3

 , 𝑧1 = ( 
0

 1  
   
0
1
  

𝑥21

𝑥22
 +  

0
 1  

   
0
1
  

𝑥31

𝑥32
 ) 

𝑊1 𝑥1, 𝑡 =  
0

4 cos 2𝑡 𝑥11 − 2 sin(𝑡)𝑥12
  , 𝑥1(0) =  

 0.4
0.1

  and 𝑥1(𝑡) =  
𝑥11(𝑡)
𝑥12(𝑡)

  

 

2
nd

 Subsystem: 

𝐴2 =  
0  
2   

    
1
2
  , 𝐵2 =  

0
1
  , 𝐶2 =  

1
 0  

    
0
1
  , 𝐸2 =  

0.1
0.3

 , 𝑧2 = ( 
0

 1  
   
0
2
  

𝑥11

𝑥12
 +  

0
 1  

    
0
2
  

𝑥31

𝑥32
 ) 

𝑊2 𝑥2, 𝑡 =  
0

2 sin 𝑡 𝑥21 + 4 cos(2𝑡)𝑥22
  , 𝑥2(0) =  

0.3
−0.2

   and 𝑥2(𝑡) =  
𝑥21(𝑡)
𝑥22(𝑡)

  

 

3
rd

 Subsystem: 

𝐴3 =  
0

−4    
   
1
5
  , 𝐵3 =  

0
 1 

  , 𝐶3 =  
1

 0  
     

0
1
  , 𝐸3 =  

0.1
0.3

 , 𝑧3 = ( 
0

 2  
    

0
1
  

𝑥11

𝑥12
 +

 
0

−2  
    

0
−1

   
𝑥21

𝑥22
 ) 

𝑊3 𝑥3, 𝑡 =  
0

6 sin 𝑡 𝑥31 + 2 cos(2𝑡)𝑥32
  , 𝑥3(0) =    

−0.3 
−0.3

   and 𝑥3(𝑡) =  
𝑥31(𝑡)
𝑥32(𝑡)
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The subsystems without controls are unstable after using state integral sliding mode to deal 

with any matched components and the continuous control designed via an LMI framework 

as described in Section 3.3.1. Using approach the control of each subsystem within the 

inter-connected system is designed and the system stability and achievement of a required 

performance are verified. 

Figure  7-2 shows the response of all subsystems with control and without any actuator 

fault. According to this Figure the three subsystems are stable with the controllers (LMI-

based on state and ISMC). 

 

Figure  7-2: Control of inter-connected systems via LMI + ISMC each subsystem 

individually without any actuator faults  

 

Suppose that a fault occurs in the actuator of the 1
st
 subsystem and the observer is 

constructed with  𝑟 = 2  , the parameters of the corresponding subsystem observer are as 

follows: 

𝒜1 =   

0
−2
 0

   0   

    

1
3
0
0

   

  0  
 0 
 0 
 0

   

0
1
0
0

  ∈ ℝ4×4 , ℬ1 =   

0
1
 0 
0

  ∈ ℝ4×1 and 𝒞𝑖 =   
1
0
     

 0 
1

 
  0 
 0

  
 0
  0

  ∈ ℝ2×4 

By choosing η1=10 and solving Eq. ( 7-6), the gain of the observer is obtained as: 

𝐿1 =  

20
1

 1.8
   37.1   

          

1
66

9.2 ∗ 103

1.4 ∗ 103
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Figure  7-3: Zero actuator fault value and its estimation in 1
st
 subsystem ( 𝜼𝟏=10 ) 

 

However, the norm of the observer gain  𝐿1  is high but all the responses of the 1
st
 

subsystem when 𝜂1=10 are excellent. Figures 7-3 &Figure  7-4 show the responses of the 1
st
 

estimated subsystem actuator fault and estimated subsystem states when no faults act in the 

other subsystems. 

 

Figure  7-4: Estimated state with no faults in actuator of 1
st
 subsystem ( 𝜂1=10 ) 

 

Figure  7-5 corresponds to the situation when a 50% fault occurs in the actuator of the 1
st
 

subsystem. The time responses show that apart from a reasonable transient the observer can 

estimate the fault with high accuracy. 



190 
 

 

 

Figure  7-5 : Estimated fault with 50% of 1
st
 subsystem actuator fault ( 𝜼𝟏=10 ) 

  

Figure  7-6 shows the comparison between the 1
st
 subsystem states and their estimates with 

with the 50% actuator fault. 

 

Figure  7-6: Estimated state for 50% of 1
st
 subsystem actuator fault ( 𝜼𝟏=10 ) 

  

Figures 7-7, 7-8 & 7-9 show that the observer is still working well even when the actuator 

fault is increased to 80% with 𝜂1 =10. Although the fault increased, all the subsystems 

remain stable and the observers estimate the faults with good accuracy.  However, the norm 

of the observer gain  𝐿1   is unacceptably high. 
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The Figures 7-7, 7-8 & 7-9  show the estimated actuator fault in the 1
st
 subsystem together 

with the corresponding control force and estimated states, respectively. 

 

Figure  7-7: Estimated fault for 80% of 1
st
 subsystem actuator fault ( 𝜼𝟏=10 ) 

 

Figure  7-8: Control signal for 80% of 1
st
 subsystem actuator fault ( 𝜼𝟏=10 ) 
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Figure  7-9 : Estimated state for 80% of 1
st
 subsystem actuator fault ( 𝜂1=10 ) 

However, the accuracy of the fault and state estimation remains unchanged, albeit with a 

small transient. However, the norm of the observer gain  𝐿1   is considered too high for 

real application. To overcome this problem 𝜂1 must be decreased in value. This is done by 

choosing a new value of 𝜂1 ,  for example 𝜂1= 4.5 and by solving Eq. ( 7-6) the gain of the 

observer then becomes: 

𝐿1 =  

9.1
0.99
 1.62

   15.32   

           

0.99
32.89
978

296.7

    

It is clear that the gain  𝐿1   has a lower norm compared with the previous gain 

 𝐿1  computed for 𝜂1=10. The estimated signals of the actuator fault and the states of the 

1
st
 subsystem with no faults in any subsystem are shown in Figures 7-10 & 7-11.  

 

Figure 7-10: Zero actuator fault value and its estimation in 1
st
 subsystem  ( 𝜂1=4.5 ) 
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Figure 7-11: Estimated state with no faults in 1
st
 subsystem actuator  ( 𝜂1=4.5 ) 

 

The same scenario of actuator faults from 50% to 80 % actuator fault with 𝜂1=4.5 are 

applied to the 1
st
 subsystem, the estimated actuator faults and estimated states compared to 

the original faults and original states of 1
st
 subsystem are shown from Figure  7-12 to 

Figure  7-15. 

 

Figure  7-12: Estimated fault for 50% of 1st
 subsystem actuator fault ( 𝜂1= 4.5 ) 

 

Figure  7-12 shows some delays at the beginning of the actuator fault estimation if this 

result is compared with the result with the same faults but with different 𝜂1 as shown in 

Figure  7-5. It can be seen that the deviation between the fault and its estimated value is 

caused by the disturbance and interactions. This deviation is small and hence it can be 

argued that the tuning parameter  𝜂1=4.5 gives acceptable estimation results. 
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Figure 7-13: Estimated state for 50% of 1
st
 subsystem actuator fault  ( 𝜂1=4.5 ) 

 

From Figure  7-14 there is some delay in fault estimated where the fault increased to 80% 

also the same is happened in the estimated states. 

 

Figure  7-14: Estimated fault for 80% of 1st
 subsystem actuator fault ( 𝜂1=4.5 ) 
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Figure 7-15: Estimated state for 80% of 1

st
 subsystem actuator fault  ( 𝜂1=4.5 ) 

 

 

7.5 Conclusion  

This Chapter has considered the problem of actuator fault estimation for non-linear inter-

connected systems. Furthermore, this Chapter is concerned with the development of a 

suitable framework for observer design for de-centralized inter-connected systems, using 

an augmented observer based on the Proportional Multiple Integral Observer (PMIO) as an 

estimator for subsystem actuator faults. Each augmented observer is applied to a subsystem 

of the de-centralized system to estimate the local system states as well as the bounded 

actuator faults. Each subsystem observer is designed via an appropriate tuning parameter 𝜂𝑖  

used to tune the observer gain and control the accuracy of the actuator fault estimation. 

According to application requirements the values of the observer gains can be designed 

according to the choice of parameters  𝜂𝑖 . On-line estimation of actuator faults in inter-

connected systems offers the operator an opportunity to take the most appropriate decision. 

Although fault estimation can be done with high accuracy the operator must define the 

threshold levels on the fault estimates so that when thresholds are exceeded decisive 

actions can be taken to reconfigure the system using available (redundant) actuators. The 

disadvantage of this method is that it can lead to high gain observer implementation with 

the possibility of unacceptable transients in the estimation errors. On the hand it is easy to 
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design as well as easy to implement compared to SMO because it is needed only the 

observer‟s gain. 

This approach is considered as the fault diagnosis and fault estimation can be used to 

monitor the actuator faults. This gives a freedom to choose any control design method to 

control the stability of subsystems and verify the desired performances. 

Finally, a numerical example is used to illustrate the proposed modification to the PMIO 

observer where actuator fault estimation algorithms are applied in turn in this model to 

illustrate the validity of using this approach. 
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Chapter 8 : Conclusions and future work 
 

8.1 Conclusions and summary 

This thesis focuses on a study and development of control design (passive fault-tolerant 

control) and fault estimation based on a requirement to guarantee the stability of each 

subsystem as well as the whole system or compact system for linear and non-linear inter-

connected systems. 

The main topics of this thesis are presented as follows: 

a- Hierarchical optimization control by using a two-level control strategy (Interaction 

Prediction Approach) in distributed systems. 

b- Tackling matched components in non-linear inter-connected systems by ISMC in 

different cases where states, estimated states or output information are available. 

c- Minimizing the effects of unmatched components and achieve specific performance 

as well as the stability. 

d- Estimate actuator faults to take a right decision and control these faults by passive 

fault tolerant control. 

e- Apply different control strategies to application studies and simulate the different 

faults scenarios. 

The work presented has made some contributions within each of the topics outlined above. 

The thesis deals with the passive fault-tolerant control approach, based on on-line fault 

control depending on the ability of the controller. 

A review of the literature of inter-connected or large-scale systems has been given in 

Chapter 1, in addition to providing the definitions and the significance of the faults, failures 

and the relationships between them. 

Chapter 2 presents an introduction and summary of a hierarchical approach to optimization 

control based on liner models of inter-connected systems. Whereas the interaction 

prediction approach is applied to high building structure and test this method when some 

actuator fault accrued. Hence, this Chapter focus on the dynamic behaviour of the overall 

subsystems. 
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In Chapter 3, the new composition of ISMC and liner controller is designed by LMIs tool 

to control non-linear inter-connected systems based on the availability to measure all the 

subsystem‟s states. Although the subsystems are connected to each other the method can be 

applied to individual subsystem or whole system as one large-scale system. The topology 

of the subsystem can help to chose between the individual and the compact methods. 

The same techniques have been applied to inter-connected systems but where the 

measurements of the sates are not available. That leads to use new observer based control 

method to estimate the states and use them to control and decrease the effects of faults, 

disturbances and uncertainties. The new observer based control method has been 

investigated in Chapter 4; also this Chapter provides a through derivation of the stability 

conditions that apply to the system with observer. From a practical point of view this new 

technique can be realized using simple gain that means easy to implement. 

Although, most studies consider that all the states of the system are available but in some 

cases outputs are only obtainable. That leads to use it to implement static output feedback 

control to verify the stability in inter-connected systems. As mentioned that the non-linear 

system contain matched components, to use ISMC to deal with this components and 

decrease their effects the upper-bound of these components must be known. To overcome 

this problem adaptive ISMC is used in Chapter 5. In addition to use LMI directly with use 

output signals is not solved because the non-linear part , new technique is proposed to 

tackle this problem is discussed in Chapter 5. A discussion of this problem is given using 

the example of single power system with different values of actuator faults. 

Although benefits of using dynamic control to gives freedom of design but in some case of 

control problems is not easy to calculate the gains of this controller especially in inter-

connected systems. Chapter 6 proposed a new method to design dynamic controller depends 

on output signals where the same theory that is used in Chapter 5 is used but the difference 

is to argument the dynamic controller with the original system. The tutorial application is 

shown through the example of  non-linear two inverted pendula, the controller gains are 

calculated using LMIs, whilst the faults and matched compounds that is contains 

disturbance and uncertainties are controlled by output ISMC. However the controller can 

deal with any actuators faults in specific range where the faults must be bounded. 
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Finally Chapter 7 presented method to estimate the actuators faults by combined an 

observer to each subsystem that gives the freedom to choose any suitable method to control 

inter-connected systems and verify the whole stability. Where the observer needs only 

output and control signals but during the observer design the gain observer can be tuned 

according to the accuracy of fault estimation. As a result high accuracy estimation needs 

high gain observer that gives the chose to designer according to the application. 

 

8.2 Suggestions for future work 

Although in this thesis new methods and techniques have been proposed to overcome 

several challenges in linear and non-linear inter-connected systems including actuator fault-

tolerant control and actuator faults estimation, some developments are still required to deal 

with further challenges. The future work is listed below in terms of these new challenges: 

1- Study active FTC in inter-connected or large-scale systems and compare it with the 

passive one. Also the effects of changing the controller on the whole stability. 

2- Model reference de-centralized ISMC using the proposed LMI framework where in 

modern industrial the model reference control is more appropriate than regulating 

control. 

3- Realize the new different methods that depend on ISMC and LMI framework in 

discrete time because discrete controllers are used in the real industrial application. 

4- Although actuator faults have been studied in this these but sensor faults in inter-

connected are needed to be considered in FTC and sensor faults estimation and study 

sensor faults and their influence on the subsystem itself and the other connected 

systems. 

5- Find a new approach to estimate simultaneous actuator and sensor fault, which gives 

a comprehensive look at the behaviour of the subsystem and his stability. 

6- Design a control which can handle the effects of actuator and sensor faults which can 

occur simultaneous. 

7- Control reconfiguration techniques can be applied to inter-connected systems to give 

on-line FTC to deal with different types of faults. 

8- The combination of (actuator and sensor) faults estimation and compensation 

together can be used to improve on-line FTC. 
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Finally, the thesis has demonstrated that a passive approach to FTC can be used in a 

powerful way to achieve good robustness and stability for both local subsystems and the 

overall structure of the inter-connected system. This has been achieved by choosing 

appropriate tools to minimize the effects of the subsystem interactions, de-coupling the 

effects of disturbances and isolating each subsystem from fault propagation between 

subsystems. 
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