220,570 research outputs found

    Accelerating HEP simulations with Neural Importance Sampling

    Full text link
    Many high-energy-physics (HEP) simulations for the LHC rely on Monte Carlo using importance sampling by means of the VEGAS algorithm. However, complex high-precision calculations have become a challenge for the standard toolbox, as this approach suffers from poor performance in complex cases. As a result, there has been keen interest in HEP for modern machine learning to power adaptive sampling. While previous studies have shown the potential of normalizing-flow-powered neural importance sampling (NIS) over VEGAS, there remains a gap in accessible tools tailored for non-experts. In response, we introduce Z\"uNIS, a fully automated NIS library designed to bridge this divide, while at the same time providing the infrastructure to customise the algorithm for dealing with challenging tasks. After a general introduction on NIS, we first show how to extend the original formulation of NIS to reuse samples over multiple gradient steps while guaranteeing a stable training, yielding a significant improvement for slow functions. Next, we introduce the structure of the library, which can be used by non-experts with minimal effort and is extensivly documented, which is crucial to become a mature tool for the wider HEP public. We present systematic benchmark results on both toy and physics examples, and stress the benefit of providing different survey strategies, which allows higher performance in challenging cases. We show that Z\"uNIS shows high performance on a range of problems with limited fine-tuning.Comment: 31 pages, 11 figure

    Metropolis Sampling

    Full text link
    Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms are a well-known class of MC methods which generate a Markov chain with the desired invariant distribution. In this document, we focus on the Metropolis-Hastings (MH) sampler, which can be considered as the atom of the MCMC techniques, introducing the basic notions and different properties. We describe in details all the elements involved in the MH algorithm and the most relevant variants. Several improvements and recent extensions proposed in the literature are also briefly discussed, providing a quick but exhaustive overview of the current Metropolis-based sampling's world.Comment: Wiley StatsRef-Statistics Reference Online, 201

    On the flexibility of the design of Multiple Try Metropolis schemes

    Full text link
    The Multiple Try Metropolis (MTM) method is a generalization of the classical Metropolis-Hastings algorithm in which the next state of the chain is chosen among a set of samples, according to normalized weights. In the literature, several extensions have been proposed. In this work, we show and remark upon the flexibility of the design of MTM-type methods, fulfilling the detailed balance condition. We discuss several possibilities and show different numerical results

    Bayesian Methods for Analysis and Adaptive Scheduling of Exoplanet Observations

    Full text link
    We describe work in progress by a collaboration of astronomers and statisticians developing a suite of Bayesian data analysis tools for extrasolar planet (exoplanet) detection, planetary orbit estimation, and adaptive scheduling of observations. Our work addresses analysis of stellar reflex motion data, where a planet is detected by observing the "wobble" of its host star as it responds to the gravitational tug of the orbiting planet. Newtonian mechanics specifies an analytical model for the resulting time series, but it is strongly nonlinear, yielding complex, multimodal likelihood functions; it is even more complex when multiple planets are present. The parameter spaces range in size from few-dimensional to dozens of dimensions, depending on the number of planets in the system, and the type of motion measured (line-of-sight velocity, or position on the sky). Since orbits are periodic, Bayesian generalizations of periodogram methods facilitate the analysis. This relies on the model being linearly separable, enabling partial analytical marginalization, reducing the dimension of the parameter space. Subsequent analysis uses adaptive Markov chain Monte Carlo methods and adaptive importance sampling to perform the integrals required for both inference (planet detection and orbit measurement), and information-maximizing sequential design (for adaptive scheduling of observations). We present an overview of our current techniques and highlight directions being explored by ongoing research.Comment: 29 pages, 11 figures. An abridged version is accepted for publication in Statistical Methodology for a special issue on astrostatistics, with selected (refereed) papers presented at the Astronomical Data Analysis Conference (ADA VI) held in Monastir, Tunisia, in May 2010. Update corrects equation (3

    Split Sampling: Expectations, Normalisation and Rare Events

    Full text link
    In this paper we develop a methodology that we call split sampling methods to estimate high dimensional expectations and rare event probabilities. Split sampling uses an auxiliary variable MCMC simulation and expresses the expectation of interest as an integrated set of rare event probabilities. We derive our estimator from a Rao-Blackwellised estimate of a marginal auxiliary variable distribution. We illustrate our method with two applications. First, we compute a shortest network path rare event probability and compare our method to estimation to a cross entropy approach. Then, we compute a normalisation constant of a high dimensional mixture of Gaussians and compare our estimate to one based on nested sampling. We discuss the relationship between our method and other alternatives such as the product of conditional probability estimator and importance sampling. The methods developed here are available in the R package: SplitSampling
    • …
    corecore