1,552 research outputs found

    Trajectory generation for multi-contact momentum-control

    Full text link
    Simplified models of the dynamics such as the linear inverted pendulum model (LIPM) have proven to perform well for biped walking on flat ground. However, for more complex tasks the assumptions of these models can become limiting. For example, the LIPM does not allow for the control of contact forces independently, is limited to co-planar contacts and assumes that the angular momentum is zero. In this paper, we propose to use the full momentum equations of a humanoid robot in a trajectory optimization framework to plan its center of mass, linear and angular momentum trajectories. The model also allows for planning desired contact forces for each end-effector in arbitrary contact locations. We extend our previous results on LQR design for momentum control by computing the (linearized) optimal momentum feedback law in a receding horizon fashion. The resulting desired momentum and the associated feedback law are then used in a hierarchical whole body control approach. Simulation experiments show that the approach is computationally fast and is able to generate plans for locomotion on complex terrains while demonstrating good tracking performance for the full humanoid control

    Integration of vertical COM motion and angular momentum in an extended Capture Point tracking controller for bipedal walking

    Get PDF
    In this paper, we demonstrate methods for bipedal walking control based on the Capture Point (CP) methodology. In particular, we introduce a method to intuitively derive a CP reference trajectory from the next three steps and extend the linear inverted pendulum (LIP) based CP tracking controller introduced in [1], generalizing it to a model that contains vertical CoM motions and changes in angular momentum. Respecting the dynamics of general multibody systems, we propose a measurement-based compensation of multi-body effects, which leads to a stable closed-loop dynamics of bipedal walking robots. In addition we propose a ZMP projection method, which prevents the robots feet from tilting and ensures the best feasible CP tracking. The extended CP controller’s performance is validated in OpenHRP3 [2] simulations and compared to the controller proposed in [1]

    Development of a Locomotion and Balancing Strategy for Humanoid Robots

    Get PDF
    The locomotion ability and high mobility are the most distinguished features of humanoid robots. Due to the non-linear dynamics of walking, developing and controlling the locomotion of humanoid robots is a challenging task. In this thesis, we study and develop a walking engine for the humanoid robot, NAO, which is the official robotic platform used in the RoboCup Spl. Aldebaran Robotics, the manufacturing company of NAO provides a walking module that has disadvantages, such as being a black box that does not provide control of the gait as well as the robot walk with a bent knee. The latter disadvantage, makes the gait unnatural, energy inefficient and exert large amounts of torque to the knee joint. Thus creating a walking engine that produces a quality and natural gait is essential for humanoid robots in general and is a factor for succeeding in RoboCup competition. Humanoids robots are required to walk fast to be practical for various life tasks. However, its complex structure makes it prone to falling during fast locomotion. On the same hand, the robots are expected to work in constantly changing environments alongside humans and robots, which increase the chance of collisions. Several human-inspired recovery strategies have been studied and adopted to humanoid robots in order to face unexpected and avoidable perturbations. These strategies include hip, ankle, and stepping, however, the use of the arms as a recovery strategy did not enjoy as much attention. The arms can be employed in different motions for fall prevention. The arm rotation strategy can be employed to control the angular momentum of the body and help to regain balance. In this master\u27s thesis, I developed a detailed study of different ways in which the arms can be used to enhance the balance recovery of the NAO humanoid robot while stationary and during locomotion. I model the robot as a linear inverted pendulum plus a flywheel to account for the angular momentum change at the CoM. I considered the role of the arms in changing the body\u27s moment of inertia which help to prevent the robot from falling or to decrease the falling impact. I propose a control algorithm that integrates the arm rotation strategy with the on-board sensors of the NAO. Additionally, I present a simple method to control the amount of recovery from rotating the arms. I also discuss the limitation of the strategy and how it can have a negative impact if it was misused. I present simulations to evaluate the approach in keeping the robot stable against various disturbance sources. The results show the success of the approach in keeping the NAO stable against various perturbations. Finally,I adopt the arm rotation to stabilize the ball kick, which is a common reason for falling in the soccer humanoid RoboCup competitions

    Motion Planning and Control of Dynamic Humanoid Locomotion

    Get PDF
    Inspired by human, humanoid robots has the potential to become a general-purpose platform that lives along with human. Due to the technological advances in many field, such as actuation, sensing, control and intelligence, it finally enables humanoid robots to possess human comparable capabilities. However, humanoid locomotion is still a challenging research field. The large number of degree of freedom structure makes the system difficult to coordinate online. The presence of various contact constraints and the hybrid nature of locomotion tasks make the planning a harder problem to solve. Template model anchoring approach has been adopted to bridge the gap between simple model behavior and the whole-body motion of humanoid robot. Control policies are first developed for simple template models like Linear Inverted Pendulum Model (LIPM) or Spring Loaded Inverted Pendulum(SLIP), the result controlled behaviors are then been mapped to the whole-body motion of humanoid robot through optimization-based task-space control strategies. Whole-body humanoid control framework has been verified on various contact situations such as unknown uneven terrain, multi-contact scenarios and moving platform and shows its generality and versatility. For walking motion, existing Model Predictive Control approach based on LIPM has been extended to enable the robot to walk without any reference foot placement anchoring. It is kind of discrete version of \u201cwalking without thinking\u201d. As a result, the robot could achieve versatile locomotion modes such as automatic foot placement with single reference velocity command, reactive stepping under large external disturbances, guided walking with small constant external pushing forces, robust walking on unknown uneven terrain, reactive stepping in place when blocked by external barrier. As an extension of this proposed framework, also to increase the push recovery capability of the humanoid robot, two new configurations have been proposed to enable the robot to perform cross-step motions. For more dynamic hopping and running motion, SLIP model has been chosen as the template model. Different from traditional model-based analytical approach, a data-driven approach has been proposed to encode the dynamics of the this model. A deep neural network is trained offline with a large amount of simulation data based on the SLIP model to learn its dynamics. The trained network is applied online to generate reference foot placements for the humanoid robot. Simulations have been performed to evaluate the effectiveness of the proposed approach in generating bio-inspired and robust running motions. The method proposed based on 2D SLIP model can be generalized to 3D SLIP model and the extension has been briefly mentioned at the end

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Motion Planning and Control for the Locomotion of Humanoid Robot

    Get PDF
    This thesis aims to contribute on the motion planning and control problem of the locomotion of humanoid robots. For the motion planning, various methods were proposed in different levels of model dependence. First, a model free approach was proposed which utilizes linear regression to estimate the relationship between foot placement and moving velocity. The data-based feature makes it quite robust to handle modeling error and external disturbance. As a generic control philosophy, it can be applied to various robots with different gaits. To reduce the risk of collecting experimental data of model-free method, based on the simplified linear inverted pendulum model, the classic planning method of model predictive control was explored to optimize CoM trajectory with predefined foot placements or optimize them two together with respect to the ZMP constraint. Along with elaborately designed re-planning algorithm and sparse discretization of trajectories, it is fast enough to run in real time and robust enough to resist external disturbance. Thereafter, nonlinear models are utilized for motion planning by performing forward simulation iteratively following the multiple shooting method. A walking pattern is predefined to fix most of the degrees of the robot, and only one decision variable, foot placement, is left in one motion plane and therefore able to be solved in milliseconds which is sufficient to run in real time. In order to track the planned trajectories and prevent the robot from falling over, diverse control strategies were proposed according to the types of joint actuators. CoM stabilizer was designed for the robots with position-controlled joints while quasi-static Cartesian impedance control and optimization-based full body torque control were implemented for the robots with torque-controlled joints. Various scenarios were set up to demonstrate the feasibility and robustness of the proposed approaches, like walking on uneven terrain, walking with narrow feet or straight leg, push recovery and so on
    • …
    corecore