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Abstract— In this paper, we demonstrate methods for bipedal
walking control based on the Capture Point (CP) methodology.
In particular, we introduce a method to intuitively derive a CP
reference trajectory from the next three steps and extend the
linear inverted pendulum (LIP) based CP tracking controller
introduced in [1], generalizing it to a model that contains
vertical CoM motions and changes in angular momentum.
Respecting the dynamics of general multibody systems, we
propose a measurement-based compensation of multi-body
effects, which leads to a stable closed-loop dynamics of bipedal
walking robots. In addition we propose a ZMP projection
method, which prevents the robots feet from tilting and ensures
the best feasible CP tracking. The extended CP controller’s
performance is validated in OpenHRP3 [2] simulations and
compared to the controller proposed in [1].

I. INTRODUCTION

New robotic application areas, such as the exploration of
distant planets or the development of modern service robots,
increasingly generate the demand on mobile machines, capa-
ble of moving over uneven terrain and in the natural human
environment. In this context, the ability to step over obstacles
as well as the relatively small stance area motivate the use
of leg-based robots instead of wheeled systems.

From a control point of view, leg-based systems in par-
ticular require the consideration of variable constraints, as
well as, depending on the current contact state, the handling
of underactuated system equations. To reduce complexity,
often simplified models are used, which describe only some
essential aspects of the complex multi-body dynamics. The
fundamentals of balancing on a limited support area can be
investigated using conceptually simple models, which are
based on the center of mass (CoM) dynamics and its interplay
with the ground reaction forces.

Vukobratovic [3] introduced the Zero Moment Point
(ZMP) as an abstract description of the vertical pressure
distribution between foot and ground. In spite of their
limited validity, simplified models, that correlate the ZMP
and the CoM motion, have turned out to be useful for
trajectory generation and walking stabilization of several
walking machines [4]–[8]. An often used model is the
linear inverted pendulum (LIP) model [9], which describes
the ’macroscopic’ dynamical behavior of bipedal walking
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Fig. 1. Illustration of Capture Point Fig. 2. DLR Biped

machines with constant CoM height astonishingly well. It
could be shown that the same model can also be used for
walking on slopes and stairs [4].

Based on the LIP model, Kajita et al. [4] proposed an
extension of the LQR controller by future reference values
for the generation of walking trajectories. This approach
was extended to a linear model-predictive control (MPC) by
Diedam et. al. [10], which allows an explicit consideration
of the ZMP limits as well as an adaption of footprint
positions. Although formulated as a feedback control task,
these approaches are usually applied for trajectory genera-
tion. In addition to the above mentioned pattern generators,
Choi et al. [7] presented a proof of stability for a ZMP-
based walking stabilizer. In [5] the influence of a non-ideal
ZMP dynamics onto the design of a tracking controller was
examined. Sugihara [6] considers the limited support area in
the parameterization of his stabilizing controller. While often
the CoM height is assumed to be constant, a changing CoM
height was considered for trajectory generation methods that
aimed for ZMP-based running [11]–[13]. In addition to the
ZMP-based walking stabilization, the modification of the
footstep locations allows for a discrete control of the LIP
dynamics [14]–[16].

Based on the system equations of the LIP, the particular
ZMP can be calculated that brings the motion of the CoM
to a stop. This point was called ’Capture Point’ (CP) by
Pratt et. al. [17] and ’extrapolated center of mass’ by Hof
[18]. It is important to notice that in spite of its name
”Capture Point”, the CP cannot only be used, to bring a robot
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Fig. 3. Robot models discussed in this paper:
(a) linear inverted pendulum (LIP) (b) Multi-body model

to a stop, but also to control an arbitrary walking motion.
By means of the CP, Pratt introduced ’n-step-Capturability
Regions1’, whereas Hof describes simple step-to-step con-
trollers2, which are based on the CP dynamics. Koolen et al.
propose a Capture Point based method for walking control,
which allows for a footstep adaptation, in [19], [20].

In [21] a real-time walking pattern generation based on
an eigenvalue decomposition of the LIP dynamics was pro-
posed, which leads to the definition of a ’converging’ and a
’diverging’ component. It can be shown that the ’diverging’
component from [21] is equivalent to the CP.

In this paper, the CP-based methodology for walking
control proposed in [1] is extended to a more general model.
We show, that using the CP methodology, the planning of
reference trajectories for the CP is very simple and it is
sufficient to only stabilize the unstable part of the system
dynamics. The previous version of a corresponding CP con-
troller was restricted to walking with constant CoM height. In
this paper we show that the CP control can be extended to a
nonlinear dynamics, in which the vertical motion of the CoM
as well as a varying angular momentum are considered. This
allows for better tracking of the CP reference trajectories.

The paper is structured as follows. In section II we intro-
duce a method for finding a desired CP reference trajectory
based on the preview of the next three footprints and analyze
its convergence. In section III we extend the originally LIP-
based CP controller from [1] to a general multi-body model.
In section IV we describe a method for projecting the desired
ZMP onto the support polygon (convex hull of foot contact
area) in order to avoid tilting of the robots feet. Section V
describes the position-based ZMP controller used in this
work. Section VI gives an overview of the overall control
structure and outlines simulation results, which validate the
proposed extended CP controller. Section VII summarizes
the proposed method and concludes the paper.

1regions to which the robot has to step, to come to a stop after n steps
2controllers with only one control action per step

II. LIP-BASED GENERATION OF CP REFERENCE

TRAJECTORIES AND TRACKING CONTROL

A. Background: basic CP dynamics and control

The first sections in this paper build up on the linear
inverted pendulum (LIP) model (Fig. 3(a)) and the Capture
Point (CP) [1], [17], [18]. For simplicity, in this section
we derive all equations only for the x-direction (y-direction
is equivalent and independent). The LIP model uses the
assumption, that the robot consists of a point mass (corre-
sponding to the robots center of mass (CoM)) and the CoM is
kept at a constant height. The robots ZMP px is equivalent to
the torque-free base joint of the LIP. With these assumptions,
the horizontal acceleration (see [9]) can be found as

ẍ = ω2(x− px) , (1)

where ω =
√

g/z. The Capture Point ξ was derived in [17]
and is defined as

ξx = x+
ẋ
ω
. (2)

Using the CP as state variable, we can write the overall
system dynamics in the form[

ẋ
ξ̇x

]
=

[
−ω ω

0 ω

][
x
ξx

]
+

[
0

−ω

]
px. (3)

We find that the CoM has a stable first order dynamics,
whereas the CP has an unstable first order dynamics with
the ZMP px as input. Our approach is to stabilize only the
unstable CP dynamics, while utilizing the natural stability
of the CoM dynamics. Therefore, we derive the solution in
time for the CP dynamics assuming a constant ZMP px :

ξx(T ) = eωT ξx(0)+ (1− eωT) px , (4)

where T denotes an arbitrary time difference. Solving (4) for
px and inserting the current CP ξx as the initial CP leads us
to a CP feedback control law

px,d =
1

1− eτ︸ ︷︷ ︸
kd

ξx,target −
eτ

1− eτ︸ ︷︷ ︸
kd−1

ξx , (5)

where τ = ωTech (ech = ”end of control horizon”). Equa-
tion (5) gives the desired ZMP px,d , which asymptotically
controls the CP from the initial CP ξx to a target-CP ξx,target .
This derivation is primarily based on the assumption that both
the target-CP ξx,target and the input ZMP px,d are constant.
However, we use (5) as feedback control law and we will
show in section II-C that the control law (5) results in a
very convenient behavior of the (nonconstant) CP and ZMP
trajectories for the tracking of a (nonconstant) target-CP
trajectory. With (5) the closed loop dynamics is[

ẋ
ξ̇x

]
=

[
−ω ω

0 kd ω

][
x
ξx

]
+

[
0

−kd ω

]
ξx,target . (6)

As kd < 0 holds for Tech > 0, for a constant ω > 0 the
eigenvalues of (6) are stable. In [1], the robustness of (5)
w.r.t. CoM modeling errors and ZMP-lag was analyzed.
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Fig. 4. Two-dimensional Capture Point manipulation:
(a) Foot to foot shift (b) Preview of next three steps for CP reference

B. CP reference trajectory generation

The basics of Capture Point control were introduced in the
last section, only considering the x-direction for simplicity.
We will now introduce the two-dimensional CP dynamics,
which allows us to control the robots CoM in both horizontal
directions (x and y). Extending (4) to 2D leads to

ξ(t) = p+ eωt (ξo − p) , (7)

where ξ = [ξx,ξy]
T , ξo = [ξx,o,ξy,o]

T and p= [px, py]
T . For a

constant ZMP p the CP ξ moves away from the ZMP on a
straight line. With the two-dimensional CoM dynamics

ẋ =−ω (x−ξ) , (8)

we find that the CoM follows the CP, its velocity vector ẋ

always pointing towards the CP.
The basic idea used in this section is to produce a walking

pattern by shifting the CP during a step from one footprint
to the next (Fig. 4(a)). As the CoM automatically follows the
CP (dotted curve), only the CP dynamics (blue lines) has to
be considered. This way, the CP and CoM are shifted from
the initial CoM position xo to the final CoM position xend .
The goal CP at the end of each step is denoted by ξeos

(“eos” = “end of step”).
In this paper we propose the computation of ξeos based on

a backward calculation (in [1] ξeos was chosen heuristically
as a hand-tuned offset from the foot center). With the final
CP position ξeos,i at the end of each step and the desired ZMP
position (here chosen to be in the center of the stance foot
pi) we can calculate a desired initial CP ξini,i for each step
with ξini,i =pi +(ξeos,i−pi)/(eω tstep), where tstep denotes the
total time per step. This desired initial CP ξini,i is then used
as the desired final CP position ξeos for the previous step, so
ξeos,i−1 =ξini,i. In that way, from the final step (after which
the robot usually comes to a stop) until the current step, all
ξeos,i as well as the whole future desired trajectory of the
CP (blue lines in Fig. 4(a)) can be calculated. In practice,
we limit ourselves to the use of the current footprint (p1)

and the three next footprints (p2, p3 and p4, see Fig. 4(b))
for the calculation of the CP tracking reference, instead of
using the whole list of future footprints (if available). We use
the assumption ξini,4 = p4, to start the backward calculation.
This reduces the computational effort while the deviation
from the trajectory generation using all future footprints is
marginal. With (7), we find the reference trajectory

ξd(t) = eωtξini,1 +(1− eωt)p1 . (9)

corresponding to the first blue line section (ξini,1 to ξeos,1,
→ first step) in Fig. 4(b). Note that ξd(tstep) = ξeos,1. In the
unperturbed case all ZMPs are always located in the foot
centers, which decreases the likelihood of tilting.

The proposed method is not restricted to the use of
predefined footsteps (such as a predefined list of future
steps). The use of a continuously changing set of future steps
is content of our current research (not included in this paper).

C. Convergence analysis for CP tracking

In [1] a Capture Point tracking controller (CPT) was
derived, which turned out to be very robust. In the CPT ap-
proach, the parameter Tech in (5) is kept constant whereas the
target-CP ξtarget follows the CP reference trajectory ξd(t).
The basic idea is to shift the CP during a time span Tech to
the position where also the reference CP ξd(t) will be located
after the time span Tech. By setting ξtarget (t) = ξd(t +Tech)
we find the target-CP as

ξtarget (t) = eω(t+Tech)ξini,1 +(1− eω(t+Tech))p1 . (10)

Inserting ξtarget (t) and the CP control law (5) into the sec-
ond row of (3) and solving this time-dependent differential
equation, results (for a constant time parameter Tech) in the
following CP trajectory:

ξ(t) = eωtξini,1 +(1− eωt)p1︸ ︷︷ ︸
ξd(t)

+(ξo −ξini,1)e
kd ωt︸ ︷︷ ︸

→0

. (11)

The first part of the right hand side of (11) is equivalent
to the reference CP trajectory ξd(t), whereas the second part
correlates to the error between the initial desired CP ξini,1 and
the initial real CP ξo. As kd < 0, this error term converges
to zero and ξ converges to the desired CP trajectory ξd(t).
The solution of the ZMP has the following form:

p(t) = p1 +(kd − 1)(ξini,1 −ξo)e
kd ωt︸ ︷︷ ︸

→0

. (12)

From (11) and (12) it is obvious that the CP error
Δξ(t) = ξ(t)−ξd(t) and ZMP error Δp(t) = p(t)−p1

converge to zero (the ZMP p(t) converges on a straight line
towards p1). Of course this ideal tracking behavior can only
be guaranteed, if there are no modeling errors, there is no
lag in the generated ZMP and the physical limitations, such
as support polygon (see section IV), are not violated.
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III. EXTENDED CP CONTROL, ACCOUNTING FOR

VARIATIONS IN COM HEIGHT AND ANGULAR MOMENTUM

As we saw in the last sections, the dynamics of a LIP
can be solved analytically which simplifies the design of
walking algorithms for bipedal robots. Though, as robots are
usually affected by multi-body effects, for example produced
by the swing leg motion, it is often tried [4], [22]–[24]
to find ZMP controllers that compensate for such multi-
body effects. The 3-mass-model [22] in combination with
preplanned foot trajectories is one possible attempt. Usually,
the goal is to track the precomputed ZMP reference trajectory
more exactly. In this section, we introduce an extension of the
CP control for measurement-based compensation of multi-
body effects, such as variations in CoM height and angular
momentum.

In the following section, we will limit ourselves to the
sagittal plane (x-z-plane), as the dynamics in the y-z-plane
is equivalent and independent. The variables in this section
may be time-varying, which is omitted in some cases for
better readability. Considering the full multi-body dynamics,
we can write the horizontal CoM acceleration as

ẍ =
g+ z̈

z
(x− px)+

L̇y

m z
, (13)

where L̇y denotes the change in angular momentum. Con-
trolling a robots ZMP, assuming it behaves like a LIP (→
px,d = x− ẍd z/g, see (1)), leads to the following falsified
horizontal CoM acceleration:

ẍ = (1+
z̈
g
) ẍd +

L̇y

m z
, (14)

where ẍd denotes the desired and ẍ the achieved horizontal
acceleration. This motivates the consideration of the multi-
body effects in the design of feedback controllers for bipedal
walking machines.

The definition of the CP ξ (2) was originally motivated
by the LIP dynamics. Nevertheless, we use the state variable
ξx = x + ẋ/ω(t) also for the control of the more general
model (13). The originally constant ω is now a function of
time: ω(t) =

√
g/z(t). Therefore, the CP dynamics is now

ξ̇x = ẋ+
ω(t) ẍ− ω̇(t) ẋ

ω(t)2 . (15)

Using (2), (13) and ω̇(t) =−
ω(t) ż

2 z the overall system dy-
namics can be written as[

ẋ
ξ̇x

]
=

[
−ω(t) ω(t)
z̈

ω(t) z −
ż

2 z ω(t)+ ż
2 z

][
x
ξx

]
+

+

[
0

−
g+z̈

ω(t) z

]
px +

[
0
L̇y

mω(t) z

]
.

(16)
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Fig. 5. Support polygon projection of the desired ZMP pd

To transform this system into a cascaded form, we use the
control law

px,d =
g p̂x,d +(z̈− ω(t)ż

2 ) x+ ω(t)ż
2 ξx +

L̇y
m

g+ z̈
, (17)

with an intermediate control input p̂x,d . For stabilizing the
time-varying system we make use of the CP control law (5)

p̂x,d =
1

1− eτ̂(t)︸ ︷︷ ︸
kd(t)

ξx,target −
eτ̂(t)

1− eτ̂(t)︸ ︷︷ ︸
kd(t)−1

ξx , (18)

where τ̂(t) := ω(t)Tech is now time-varying. The use of
(17)-(18) results in the following closed-loop dynamics[

ẋ
ξ̇x

]
=

[
−ω(t) ω(t)

0 kd(t) ω(t)

][
x
ξx

]
+

[
0

−kd(t) ω(t)

]
ξx,target .

(19)
In contrast to (6) the closed-loop dynamics is time-varying.
Its stability is proven in the appendix by a Lyapunov analysis.

In the presented work, instead of a precompensation
of beforehand known multi-body influences (e.g. 3-mass-
model [22]), we propose measurement-based estimation and
compensation of beforehand unknown multi-body influences.
Therefore, we estimate the vertical acceleration ˆ̈z = Fz/m−g
and the change in angular momentum ˆ̇Ly = Fx z−Fz(x− px)
(see [23]), where F = [Fx,Fz] denotes the measured ground
reaction force and px is the measured ZMP. Inserting these
estimates into the control law (17)-(18) returns the desired
ZMP px,d , which results in the stable closed-loop CP dy-
namics (19).

It has to be noted, that although in the LIP based planning
we assume constant ZMP positions (for the unperturbed
case), the control law (17)-(18) produces non-constant de-
sired ZMPs, which are not always located within the support
polygon. To ensure feasibility, we propose a projection
method in the next section.
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IV. TILTING AVOIDANCE

The desired ZMP pd = [px,d , py,d ], produced by the CP
control, is not necessarily located within the support polygon.
To avoid tilting around an edge of the support polygon, pd is
projected onto the support polygon. We choose a projection
method, which minimizes the Euclidean distance between
pd and the projected ZMP pp (see Fig. 5). We use this
projection method deliberately, as it can be shown that it
leads to the least possible deviation (in the Euclidean sense)
of the real CP from the target-CP trajectory ξtarget (t). As
shown in Fig. 5, for each point on the support polygon
(e.g. A) a corresponding final CP (A*) can be found via a
projection over the current CP ξ (assuming p= const):

ξ(Tech) = ξ+(eωTech − 1)(ξ−p) . (20)

This corresponding final CP ξ(Tech) will be reached by the
real CP after the time span Tech, if the according ZMP is
chosen. Consequently, via the described forward projection
we can calculate the corresponding reachable CP region
(RCPR, see Fig. 5), which is reachable within the time span
Tech. As this projection over the current CP ξ is a linear
mapping (scaled point reflection w.r.t. the CP ξ), all aspect
ratios within the two regions stay equal. It can be shown
that the reflection of a vector is equivalent to a dilation by
a negative constant factor. Therefore, the minimization of
the CP error (Euclidean projection of ξtarget onto the RCPR,
→ ξp) is equivalent to the minimization of the ZMP error
(Euclidean projection of pd onto the support polygon, →pp).
The possibility of explicitly avoiding tilting of the feet by a
direct limitation of the ZMP to the support polygon is an
advantage compared to other control approaches [4], [7].

It has to be pointed out, that for strong perturbations
(more precisely: when the CP leaves the support polygon)
the proposed ZMP stabilizer is no longer sufficient to stop
the CoM from diverging. It such cases, other methods, such
as an appropriate foot placement (e.g. described by Stephens
et al. in [25]) or the direct use of a torque around the CoM
for stabilizing the robot, have to be used additionally.

V. POSITION BASED ZMP CONTROL

To produce the desired ZMP from (17) on a position
controlled robot, an underlying ZMP control loop is required
(shown for x-direction). Using (13), we relate the desired
ZMP px,d to a desired force Fx,d = m ẍd = (x− px,d) Fz/z+
L̇y/z, which should act on the COM. A desired force can be
generated by a proportional controller of the form [26]:

ẍd = k f (Fx,d −Fx), (21)

with k f > 0. Since we are interested in a ZMP controller
rather than a force controller, we insert Fx,d and the equiva-
lent relation between the force Fx and px into (21) to obtain
a desired change in CoM velocity

ẍd = k f Fz/z (px − px,d) . (22)

The desired CoM position and velocity xd and ẋd result
from integration of (22) and are commanded to the robot
(y-direction equivalent).

VI. OVERALL STRUCTURE OF THE CP CONTROL AND

SIMULATION RESULTS

Figure 6 gives an overview of the overall structure of the
proposed control algorithm. From a set of future footprints, a
target-CP reference ξtarget (t) is calculated (section II-B). The
CP is calculated from the current robot state (x, ẋ) and the
ZMP p from the wrenches Wl,r in the left and right foot. ˆ̇L
and ˆ̈z are estimated and used in the extended CP controller
(section III), which returns a desired ZMP pd . The desired
ZMP is (if necessary) projected onto the support polygon (SP,
section IV) to avoid tilting of the robot. The projected ZMP
pp is then transferred to a ZMP controller, which receives
the measured ZMP p as feedback, and commands a desired
COM position and velocity to the robot.

The support state (single/double support) is detected online
over force-torque sensors in the robots feet and the SP is
calculated online, knowing the foot geometry. Therefore, the
control can handle both single and double support states (cur-
rent SP is used for ZMP projection) although the planning
is based only on single support phases.

To validate the performance of the proposed extended
CP control, simulations in OpenHRP3 [2] were carried out.
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Fig. 7. Open HRP Simulation of LIP-based CP control (5) and extended CP control (section III) for a straight walk (lstep = 20cm, tstep = 0.8s),
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Figure 7 shows a simulation of a straight walk (step length
20cm, tstep 0.8s) during which the DLR Biped (see fig. 2)
performed four steps and then came to a rest. Here, the LIP-
based CP controller (5) (proposed in [1]) and the extended
CP controller (III), proposed in this paper, were compared.
Both algorithms show a quite good tracking of the desired
CP trajectory (red curve). The tracking in x-direction shows
to be more perturbed than the y-direction, which is caused
by the acceleration of the feet in the sagittal plane (x-z-
plane) and the corresponding higher deviations from the LIP
dynamics. We find that the proposed extended CP controller
shows smaller deviations from the CP tracking reference
than the LIP-based controller. The second graph shows
the CP tracking error in x-direction. The mean absolute
tracking error of the CP in x-direction was 7.3mm for the
LIP-based CP controller (5) and 3.2mm for the proposed
extended CP controller (17)-(18), which motivates the use of
measurement-based compensation of multi-body effects. For
both controllers the ZMPs stay within the support polygon
(brown line) during the whole simulation.

The choice of a straight walk for the simulation was made
to keep the shown trajectories and directional dependencies
(e.g. tracking in x and y direction, Fig. 7) as simple as
possible. The proposed control algorithm can manage walks
including both arbitrary step positions and orientations, with-
out any increase of complexity compared to a straight walk.

VII. SUMMARY AND CONCLUSIONS

The Capture Point methodology describes the dynamics
of a linear inverted pendulum (LIP) as two cascaded first
order systems, by what the system dynamics becomes very
intuitively comprehendible. The ZMP p is used as the
input variable of the system, which stabilizes the robot and
allows for a direct manipulation of the CP. Through the
intrinsic stability of the CoM dynamics the CP methodology
allows for an effective and robust control of bipedal walking
machines. In this paper, we introduced a method to intuitively
derive a CP reference trajectory from the next three steps

for the CP tracking controller proposed in [1]. We extended
our control to the measurement-based compensation of 3D-
effects (vertical CoM motion and varying angular momentum
of the robot), which allows for more accurate tracking of
the desired CP reference. Although the original control laws
proposed in [1] perform well for standard walking cases,
we could show the even better performance of the extended
control laws proposed in this paper. The extension considers
the whole multi-body dynamics of the robot, which can
be seen as a clearly more thorough theoretical treatment
compared to the LIP model. Therefore, for more advanced
bipedal locomotion we expect a way better performance of
the extended control method compared to LIP based ones.

In addition to the extended CP control laws, we proposed
a ZMP projection method, which prevents the robot from tilt-
ing and ensures the best feasible CP tracking. The robustness
of the proposed control strategy was validated in simulations
using OpenHRP3 [2]. All computations for the proposed
CP control algorithm can be performed online (at a 1ms
sampling time in our system). Compared to model predictive
control [8] the far lower computation effort of CP control
proves to be advantageous. Furthermore, preview controllers
and model predictive controllers are usually primarily used
for trajectory generation with subsequent stabilizing con-
troller, whereas the CP methodology is a self-contained
solution for CP reference generation (feed-forward) and
CP tracking control (feed-back). Another advantage of CP
control over some other concepts [4], [7] is, that it allows
for an explicit limitation of the ZMP to the support polygon,
which decreases the danger of tilting.

Based on the presented methods, we intend to develop
methods for (i) online footprint adjustment and (ii) force
controlled walking (based on [27]).
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APPENDIX

Lemma 1: Given a linear time-varying second order sys-
tem in cascaded form

ẋ1 = −a(t)x1 + a(t)x2 (23)

ẋ2 = −b(t)x2 (24)

with the state variables x1 ∈ R and x2 ∈ R. If the scalar
functions a(t) and b(t) are strictly positive, i.e. ∃am > 0,
bm > 0, ∀t, a(t) > am, b(t) > bm, and a(t) is bounded
above, i.e. ∀t, a(t)< aM, the system is exponentially stable.

Proof: Since the system is time-varying the stability
proof cannot be based on linear analysis. Instead, we uti-
lize the Lyapunov function V (x1,x2) = x2

1/2+ εx2
2/2, with

ε > a2
M/(4δ 2ambm) and 0 < δ < 1. The derivative of the

Lyapunov function along the systems solutions is given by

V̇ (x1,x2) = −a(t)x2
1 + a(t)x1x2 − εb(t)x2

2

= −

(
x1

x2

)T

(M1 +M2)

(
x1

x2

)
M1 =

[
am(1− δ ) 0

0 εbm(1− δ )

]

M2 =

[
a(t)− am(1− δ ) −

1
2 a(t)

−
1
2 a(t) ε(b(t)− bm(1− δ ))

]
Since matrix M1 is a constant positive definite term, we
only need to show, that also matrix M2 stays positive
definite for concluding exponential stability. M2 is posi-
tive definite, if the two conditions a(t)− am(1− δ )> 0 and

ε > 1
4

a(t)2

(a(t)−am(1−δ ))(b(t)−bm(1−δ )) hold (see [28]). The former
condition is fulfilled since a(t)> am is strictly positive. The

latter condition is ensured by the choice ε > 1
4

a2
M

δ 2ambm
.
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