122 research outputs found

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication

    A Robust Adaptive MMSE Rake Receiver for DS-CDMA System in a Fast Multipath Fading Channel

    Get PDF
    In this paper, we propose a robust adaptive minimum mean square error (MMSE) Rake receiver for asynchronous DS-CDMA systems. The receiver uses the modified MMSE criterion that incorporates the differential detection and the amplitude compensation for interference cancellation in a time-varying multipath fading channel. We investigate that the proposed Rake receiver can achieve the higher output signal to interference plus noise ratio (SINR) than the conventional adaptive Rake receiver, since the modified MMSE criterion does not attempt to track the time-varying MMSE solution. Computer simulations verify that the performance of the proposed Rake receiver is better than those of the conventional and the adaptive Rake receiver

    Channel estimation and signal enhancement for DS-CDMA systems

    Get PDF
    This dissertation focuses on topics of Bayesian-based multiuser detection, space-time (S-T) transceiver design, and S-T channel parameter estimation for direct-sequence code-division multiple-access (DS-CDMA) systems. Using the Bayesian framework, various linear and simplified nonlinear multiuser detectors are proposed, and their performances are analyzed. The simplified non-linear Bayesian solutions can bridge the performance gap between sub-optimal linear multiuser detectors and the optimum multiuser detector. To further improve the system capacity and performance, S-T transceiver design approaches with complexity constraint are investigated. Novel S-T receivers of low-complexity that jointly use the temporal code-signature and the spatial signature are proposed. Our solutions, which lead to generalized near-far resistant S-T RAKE receivers, achieve better interference suppression than the existing S-T RAKE receivers. From transmitter side, we also proposed a transmit diversity (TD) technique in combination with differential detection for the DS-CDMA systems. It is shown that the proposed S-T TD scheme in combination with minimum variance distortionless response transceiver (STTD+MVDR) is near-far resistant and outperforms the conventional STTD and matched filter based (STTD+MF) transceiver scheme. Obtaining channel state information (CSI) is instrumental to optimum S-T transceiver design in wireless systems. Another major focus of this dissertation is to estimate the S-T channel parameters. We proposed an asymptotic, joint maximum likelihood (ML) method of estimating multipath channel parameters for DS-CDMA systems. An iterative estimator is proposed to further simplify the computation. Analytical and simulation results show that the iterative estimation scheme is near-far resistant for both time delays and DOAs. And it reaches the corresponding CRBs after a few iterations

    Adaptive interference suppression for DS-CDMA systems based on interpolated FIR filters with adaptive interpolators in multipath channels

    Get PDF
    In this work we propose an adaptive linear receiver structure based on interpolated finite impulse response (FIR) filters with adaptive interpolators for direct sequence code division multiple access (DS-CDMA) systems in multipath channels. The interpolated minimum mean-squared error (MMSE) and the interpolated constrained minimum variance (CMV) solutions are described for a novel scheme where the interpolator is rendered time-varying in order to mitigate multiple access interference (MAI) and multiple-path propagation effects. Based upon the interpolated MMSE and CMV solutions we present computationally efficient stochastic gradient (SG) and exponentially weighted recursive least squares type (RLS) algorithms for both receiver and interpolator filters in the supervised and blind modes of operation. A convergence analysis of the algorithms and a discussion of the convergence properties of the method are carried out for both modes of operation. Simulation experiments for a downlink scenario show that the proposed structures achieve a superior BER convergence and steady-state performance to previously reported reduced-rank receivers at lower complexity

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam
    corecore