299 research outputs found

    A region based approach to background modeling in a wavelet multi-resolution framework

    Get PDF
    In the field of detection and monitoring of dynamic objects in quasi-static scenes, background subtraction techniques where background is modeled at pixel-level, although showing very significant limitations, are extensively used. In this work we propose a novel approach to background modeling that operates at region-level in a wavelet based multi-resolution framework. Based on a segmentation of the background, characterization is made for each region independently as a mixture of K Gaussian modes, considering the model of the approximation and detail coefficients at the different wavelet decomposition levels. Background region characterization is updated along time, and the detection of elements of interest is carried out computing the distance between background region models and those of each incoming image in the sequence. The inclusion of the context in the modeling scheme through each region characterization makes the model robust, being able to support not only gradual illumination and long-term changes, but also sudden illumination changes and the presence of strong shadows in the scen

    ViBe: A universal background subtraction algorithm for video sequences

    Full text link
    This paper presents a technique for motion detection that incorporates several innovative mechanisms. For example, our proposed technique stores, for each pixel, a set of values taken in the past at the same location or in the neighborhood. It then compares this set to the current pixel value in order to determine whether that pixel belongs to the background, and adapts the model by choosing randomly which values to substitute from the background model. This approach differs from those based on the classical belief that the oldest values should be replaced first. Finally, when the pixel is found to be part of the background, its value is propagated into the background model of a neighboring pixel. We describe our method in full details (including pseudocode and the parameter values used) and compare it to other background subtraction techniques. Efficiency figures show that our method outperforms recent and proven state-of-the-art methods in terms of both computation speed and detection rate. We also analyze the performance of a downscaled version of our algorithm to the absolute minimum of one comparison and one byte of memory per pixel. It appears that even such a simplified version of our algorithm performs better than mainstream techniques. There is a dedicated web page for ViBe at http://www.telecom.ulg.ac.be/research/vibe

    A Universal Background Subtraction System

    Get PDF
    Background Subtraction is one of the fundamental pre-processing steps in video processing. It helps to distinguish between foreground and background for any given image and thus has numerous applications including security, privacy, surveillance and traffic monitoring to name a few. Unfortunately, no single algorithm exists that can handle various challenges associated with background subtraction such as illumination changes, dynamic background, camera jitter etc. In this work, we propose a Multiple Background Model based Background Subtraction (MB2S) system, which is universal in nature and is robust against real life challenges associated with background subtraction. It creates multiple background models of the scene followed by both pixel and frame based binary classification on both RGB and YCbCr color spaces. The masks generated after processing these input images are then combined in a framework to classify background and foreground pixels. Comprehensive evaluation of proposed approach on publicly available test sequences show superiority of our system over other state-of-the-art algorithms

    Moving cast shadows detection methods for video surveillance applications

    Get PDF
    Moving cast shadows are a major concern in today’s performance from broad range of many vision-based surveillance applications because they highly difficult the object classification task. Several shadow detection methods have been reported in the literature during the last years. They are mainly divided into two domains. One usually works with static images, whereas the second one uses image sequences, namely video content. In spite of the fact that both cases can be analogously analyzed, there is a difference in the application field. The first case, shadow detection methods can be exploited in order to obtain additional geometric and semantic cues about shape and position of its casting object (’shape from shadows’) as well as the localization of the light source. While in the second one, the main purpose is usually change detection, scene matching or surveillance (usually in a background subtraction context). Shadows can in fact modify in a negative way the shape and color of the target object and therefore affect the performance of scene analysis and interpretation in many applications. This chapter wills mainly reviews shadow detection methods as well as their taxonomies related with the second case, thus aiming at those shadows which are associated with moving objects (moving shadows).Peer Reviewe

    FPGA Implementation for Real-Time Background Subtraction Based on Horprasert Model

    Get PDF
    Background subtraction is considered the first processing stage in video surveillance systems, and consists of determining objects in movement in a scene captured by a static camera. It is an intensive task with a high computational cost. This work proposes an embedded novel architecture on FPGA which is able to extract the background on resource-limited environments and offers low degradation (produced because of the hardware-friendly model modification). In addition, the original model is extended in order to detect shadows and improve the quality of the segmentation of the moving objects. We have analyzed the resource consumption and performance in Spartan3 Xilinx FPGAs and compared to others works available on the literature, showing that the current architecture is a good trade-off in terms of accuracy, performance and resources utilization. With less than a 65% of the resources utilization of a XC3SD3400 Spartan-3A low-cost family FPGA, the system achieves a frequency of 66.5 MHz reaching 32.8 fps with resolution 1,024 × 1,024 pixels, and an estimated power consumption of 5.76 W

    Design Of Computer Vision Systems For Optimizing The Threat Detection Accuracy

    Get PDF
    This dissertation considers computer vision (CV) systems in which a central monitoring station receives and analyzes the video streams captured and delivered wirelessly by multiple cameras. It addresses how the bandwidth can be allocated to various cameras by presenting a cross-layer solution that optimizes the overall detection or recognition accuracy. The dissertation presents and develops a real CV system and subsequently provides a detailed experimental analysis of cross-layer optimization. Other unique features of the developed solution include employing the popular HTTP streaming approach, utilizing homogeneous cameras as well as heterogeneous ones with varying capabilities and limitations, and including a new algorithm for estimating the effective medium airtime. The results show that the proposed solution significantly improves the CV accuracy. Additionally, the dissertation features an improved neural network system for object detection. The proposed system considers inherent video characteristics and employs different motion detection and clustering algorithms to focus on the areas of importance in consecutive frames, allowing the system to dynamically and efficiently distribute the detection task among multiple deployments of object detection neural networks. Our experimental results indicate that our proposed method can enhance the mAP (mean average precision), execution time, and required data transmissions to object detection networks. Finally, as recognizing an activity provides significant automation prospects in CV systems, the dissertation presents an efficient activity-detection recurrent neural network that utilizes fast pose/limbs estimation approaches. By combining object detection with pose estimation, the domain of activity detection is shifted from a volume of RGB (Red, Green, and Blue) pixel values to a time-series of relatively small one-dimensional arrays, thereby allowing the activity detection system to take advantage of highly capable neural networks that have been trained on large GPU clusters for thousands of hours. Consequently, capable activity detection systems with considerably fewer training sets and processing hours can be built
    • …
    corecore