
Wayne State University Wayne State University

Wayne State University Dissertations

January 2022

Design Of Computer Vision Systems For Optimizing The Threat Design Of Computer Vision Systems For Optimizing The Threat

Detection Accuracy Detection Accuracy

Sina Gholamnejad Davani
Wayne State University

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Gholamnejad Davani, Sina, "Design Of Computer Vision Systems For Optimizing The Threat Detection
Accuracy" (2022). Wayne State University Dissertations. 3540.
https://digitalcommons.wayne.edu/oa_dissertations/3540

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F3540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F3540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/3540?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F3540&utm_medium=PDF&utm_campaign=PDFCoverPages

DESIGN OF COMPUTER VISION SYSTEMS FOR OPTIMIZING THE THREAT
DETECTION ACCURACY

by

SINA GHOLAMNEJAD DAVANI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2022

MAJOR: COMPUTER ENGINEERING

Approved By:

———————————————————–
Advisor Date

———————————————————–

———————————————————–

———————————————————–

———————————————————–

DEDICATION

To all those who have been supportive of me in achieving my goals, especially my parents.

ii

ACKNOWLEDGEMENTS

This research could not have been possible without the support of many people. I would like to show

my sincere appreciation for my adviser Dr. Nabil Sarhan, whose guidance and directions were extremely

helpful during my research. He always walked me through the extra mile and shared with me his knowledge

and experience. I also would like to thank my committee members Dr. Mohammad Alhawari, Dr. Ekrem

Murat, and Dr. Le Wang for their precious feedback.

I would like to extend my heartfelt gratitude to my parents who keep encouraging and supporting me on

this track.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . iii

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1

1.1 Overview . 1

1.2 Main Challenges . 2

1.3 Main Research Objectives . 3

1.4 Detailed Research Plan . 4

1.4.1 Optimal Bandwidth Allocation in CV Systems 4

1.4.2 Enhanced YOLO Solution . 6

1.4.3 Activity Detection Recurrent Neural Network . 9

Chapter 2 Background and Related Work . 12

2.1 CV Systems and Cross-Layer Optimization . 12

2.2 CV Algorithms . 13

2.3 Neural Net Optimizations and Activity Detection . 13

Chapter 3 Experimental Analysis of Optimal Bandwidth Allocation in Computer Vision
Systems . 17

3.1 Developed Computer Vision System . 17

3.2 Proposed Cross-Layer Optimization Solution . 20

3.2.1 Cross-Layer Optimization Problem Formulation 20

3.2.2 Effective Airtime Estimation . 22

3.2.3 Cross-Layer Optimization Solution . 24

iv

3.2.4 Proposed Method for Determining the Constant Values of the Accuracy Error
Models . 25

3.3 Performance Evaluation Methodology . 26

3.3.1 Experimental Setup I: Using a Real Video Surveillance Data Set 27

3.3.2 Experimental Setup II: Live Laboratory Environment 28

3.3.3 Experimental Setup III: Using Videos from Janus Benchmark-B Face Challenge
Data Set . 29

3.4 Results Presentation and Analysis . 30

3.4.1 Tuning System Constants . 30

3.4.2 Comparing Effective Airtime Estimation under Different Solutions 31

3.4.3 Analysis of Cross-Layer Optimization for Face Detection 32

3.4.4 Analysis of Cross-Layer Optimization for Face Recognition 33

3.5 Conclusions . 36

Chapter 4 Enhanced YOLO Solution . 37

4.1 Introduction . 37

4.2 Brief Description of Background Subtraction/Motion Detection Techniques 38

4.2.1 Adaptive Background Learning . 39

4.2.2 Adaptive-Selective Background Learning . 39

4.2.3 Codebook . 40

4.2.4 Frame Difference . 40

4.2.5 Local Binary Similarity Segmenter (LOBSTER) 41

4.2.6 Mixture of Gaussian V2 . 42

4.2.7 Pixel-based Adaptive Word Consensus Segmenter (PAWCS) 42

4.2.8 SigmaDelta (
∑
−△) . 43

v

4.2.9 Static Frame Difference . 43

4.2.10 Flexible Background Subtraction with Self-Balanced Local Sensitivity (SuBSENSE) 44

4.2.11 TwoPoints . 45

4.2.12 ViBe . 45

4.2.13 Weighted Moving Mean . 46

4.2.14 Weighted Moving Variance . 46

4.3 Execution Complexity and the Visual Performance of Background Subtraction/Motion
Detection Techniques . 46

4.4 Brief Description of Clustering Techniques . 56

4.4.1 KMeans . 56

4.4.2 Affinity Propagation . 57

4.4.3 MeanShift . 57

4.4.4 Spectral . 58

4.4.5 Agglomerative . 58

4.4.6 DBSCAN . 59

4.4.7 OPTICS . 60

4.4.8 BIRCH . 60

4.4.9 MiniBatchKMeans . 61

4.5 Execution Time Complexity and the Visual Performance of Clustering Techniques . . . 62

4.6 Performance Evaluation Methodology . 70

4.7 Mean Average Precision (mAP) . 73

4.8 Results . 77

4.9 Conclusion . 94

Chapter 5 Activity Detection Recurrent Neural Network . 96

vi

5.1 Introduction . 96

5.2 Background . 97

5.2.1 Pose Estimation . 97

5.2.2 Different Building Layers of Our Activity Detection Network 100

5.3 Proposed Activity Detection RNN Solution . 100

5.3.1 Labeled Data Preparation . 100

5.3.2 Training/Test Sets Creation . 103

5.3.3 RNN Architecture . 105

5.3.4 RNN Training Procedure . 106

5.4 Activity Detection Results . 107

5.5 Conclusion . 109

Chapter 6 Summary and Future Work . 110

6.1 Summary . 110

6.2 List of Publications . 111

6.2.1 Published: . 111

6.2.2 Under Review: . 111

6.3 Future Work . 111

References . 112

Abstract . 123

Autobiographical Statement . 125

vii

LIST OF TABLES

Table 3.1 Summary of Experimental Characteristics and Parameters 26

Table 3.2 Summary of the Three Experimental Setups . 27

Table 3.3 Characteristics of the Real Surveillance Videos Used in Experimental Setup I 27

Table 3.4 Characteristics of the Videos Used in Experimental Setup III 29

Table 5.1 Summary of Activity Detection Training Parameters 107

viii

LIST OF FIGURES

Figure 1.1 An Illustration of the Considered Computer Vision System 5

Figure 1.2 Proposed Enhanced YOLOv4 System . 11

Figure 3.1 An Illustration of the Overall System Design Including Built-in Modules for Enabling
Performance Evaluation . 18

Figure 3.2 Simplified Algorithm for Dynamically Estimating the Effective Airtime 24

Figure 3.3 Sample Frames from the Videos in Experimental Setup I 28

Figure 3.4 Sample Concurrent Views of the Two Cameras in Experimental Setup II 29

Figure 3.5 Sample Frames from the Videos in Experimental Setup III 30

Figure 3.6 Effects of the Smoothing Constant and Delay Weight on Detection Accuracy [Exper-
imental Setup I, 15 Mbps Medium Bandwidth] . 31

Figure 3.7 Comparing Various Solutions in the Overall Effective Airtime [Experimental Setup I] 31

Figure 3.8 Comparing Various Solutions for All Video Categories and Each Category [Experi-
mental Setup I] . 34

Figure 3.9 Comparing Various Solutions in Detection Accuracy Using the Entire Video Data Set
[Experimental Setup I] . 34

Figure 3.10 Comparing Various Solutions in Accuracy . 35

Figure 3.11 Relationships Among Different System Metrics . 35

Figure 4.1 Background Subtraction Process Overview . 38

Figure 4.2 Overview of Adaptive Background Learning . 40

Figure 4.3 Simplified Algorithm for
∑
−△Motion Estimation Technique 44

Figure 4.4 Average Execution Time per Frame for Different Motion Detection Algorithms, Con-
sidering Different Input Videos . 48

Figure 4.5 Results from Motion Detection Algorithms, Running on the Input Video from Lamai,
Koh Samui, Thailand . 51

Figure 4.6 Results from Motion Detection Algorithms, Running on the Input Video from Saint
Petersburg, Russia . 52

ix

Figure 4.7 Results from Motion Detection Algorithms, Running on the Input Video from New
Orleans, Louisiana, United States . 53

Figure 4.8 Results from Motion Detection Algorithms, Running on the Input Video from Laramie,
Wyoming, United States . 54

Figure 4.9 Results from Motion Detection Algorithms, Running on the Input Video from Neath,
Wales . 55

Figure 4.10 Average Execution Time per Frame for Different Clustering Algorithms, Considering
Different Input Videos . 64

Figure 4.11 Results from Clustering Algorithms, Running on the Input Video from Lamai, Koh
Samui, Thailand . 65

Figure 4.12 Results from Clustering Algorithms, Running on the Input Video from Saint Peters-
burg, Russia . 66

Figure 4.13 Results from Clustering Algorithms, Running on the Input Video from New Orleans,
Louisiana, United States . 67

Figure 4.14 Results from Clustering Algorithms, Running on the Input Video from Laramie,
Wyoming, United States . 68

Figure 4.15 Results from Clustering Algorithms, Running on the Input Video from Neath, Wales . 69

Figure 4.16 Overview of Performance Evaluation Methodology 70

Figure 4.17 Visual Representation of IoU . 75

Figure 4.18 Image with a Triangle and an Oval Labeled with Ground Truth Bounding Boxes . . . 75

Figure 4.19 IoU of Predicted BB (cyan) and GT BB (black) > 0.5 with the Correct Classification 76

Figure 4.20 Illustrating the Different Scenarios a Predicted BB (cyan) Would be Considered as FP 76

Figure 4.21 Relative Performance Results for Enhanced YOLO Solution against the Raw YOLO
Considering the Input Video from Lamai, Koh Samui, Thailand 79

Figure 4.22 StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO
Solution against the Raw Yolo for the Input Video from Lamai, Koh Samui, Thailand 80

Figure 4.23 Relative Performance Results for Enhanced YOLO Solution against the Raw YOLO
Considering the Input Video from Saint Petersburg, Russia 82

x

Figure 4.24 StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO
Solution against the Raw YOLO for the Input Video from Saint Petersburg, Russia . 83

Figure 4.25 CodeBook Slice of Relative Performance Results for Enhanced YOLO Solution against
the Raw YOLO for the Input Video from Saint Petersburg, Russia 83

Figure 4.26 Relative Performance Results for Enhanced YOLO Solution against the Raw YOLO
Considering the Input Video from New Orleans, Louisiana, United States 85

Figure 4.27 StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO
Solution against the Raw YOLO for the Input Video from New Orleans, Louisiana,
United States . 86

Figure 4.28 CodeBook Slice of Relative Performance Results for Enhanced YOLO Solution against
the Raw YOLO for the Input Video from New Orleans, Louisiana, United States . . . 86

Figure 4.29 AdaptiveSelectiveBackgroundLearning Slice of Relative Performance Results for En-
hanced YOLO Solution against the Raw YOLO for the Input Video from New Or-
leans, Louisiana, United States . 87

Figure 4.30 Relative Performance Results for Enhanced YOLO Solution against the Raw YOLO
Considering the Input Video from Laramie, Wyoming, United States 88

Figure 4.31 StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO
Solution against the Raw YOLO for the Input Video from Laramie, Wyoming, United
States . 89

Figure 4.32 CodeBook Slice of Relative Performance Results for Enhanced YOLO Solution against
the Raw YOLO for the Input Video from Laramie, Wyoming, United States 89

Figure 4.33 Relative Performance Results for Enhanced YOLO Solution against the Raw YOLO
Considering the Input Video from Neath, Wales . 91

Figure 4.34 ViBe Slice of Relative Performance Results for Enhanced YOLO Solution against the
Raw YOLO for the Input Video from Neath, Wales 92

Figure 4.35 StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO
Solution against the Raw YOLO for the Input Video from Laramie, Wyoming, United
States . 92

Figure 4.36 StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO
Solution against the Raw YOLO for the Input Video from Laramie, Wyoming, United
States . 93

Figure 5.1 Location of 33 Pose Landmarks in MediaPipe Pose (Courtesy of Googblogs) 99

xi

Figure 5.2 Sample Frame from the Recorded Video for Labeled Data Generation 101

Figure 5.3 Sample Frames from the Recorded Video with the Related X/Input and Y/Target Values102

Figure 5.4 One-hot Representation of the Label "handbag" . 104

Figure 5.5 Converting a Labeled Record to a Training/Test Set Record 104

Figure 5.6 Architecture Overview for the Proposed Activity Detection Neural Network 106

Figure 5.7 Sample Frames When the Action is Being Detected by the Activity Detection Network 109

xii

1

CHAPTER 1 INTRODUCTION

1.1 Overview

Computer Vision (CV) is a science aimed at electronically perceiving and comprehending an image or

a sequence of images (i.e., a video) [64]. The detection, recognition, and tracking of objects and events are

common CV applications [71]. CV has been used in automated video surveillance [5, 40], Wireless Video

Sensor Networks (WVSN) [35, 56, 10, 22, 57], mobile surveillance systems [41], Advanced Driving Assis-

tance Systems (ADAS) [30], Vehicle-to-Vehicle/Vehicle-to-Infrastructure (V2V/V2I) video communication

[75], traffic monitoring systems, and other Intelligent Transportation Systems (ITS) [42, 29]. According to

Omdia [1], global CV market revenue is expected to grow across many use cases in different industries,

increasing from $2.9bn in 2018 to $33.5bn by 2025. In 2021, 770 million video surveillance cameras were

installed worldwide, according to Comparitech [2]. CV systems, including automated video surveillance,

enable the real-time detection of threats by running CV algorithms as opposed to human observation.

This dissertation considers CV systems in which a central monitoring station receives and analyzes the

video streams captured and delivered wirelessly by multiple cameras. It addresses how the bandwidth can

be allocated to various cameras by presenting a cross-layer solution that optimizes the overall detection or

recognition accuracy. In further contrast with prior work, it presents and develops a real CV system and

subsequently provides a detailed experimental analysis of cross-layer optimization. Other unique features

of the developed solution include employing the popular HTTP streaming approach, utilizing homogeneous

cameras as well as heterogeneous ones with varying capabilities and limitations, and developing a new algo-

rithm for estimating the effective medium airtime. The results show that the proposed solution significantly

improves the accuracy of CV.

Additionally, this dissertation presents an enhanced object detection neural network system, called En-

hanced YOLO, based on You Only Look Once Version 4 (YOLOv4) [17], which is one of the best per-

2

formers in object detection. By considering inherent video characteristics and employing different motion

detection and clustering algorithms, the proposed system focuses on the areas of importance in consecutive

video frames, thereby enabling the system to distribute the detection task dynamically and efficiently among

multiple deployments of object detection neural networks. Our extensive experimental results show that the

proposed solution is capable of providing improvements in mean average precision (mAP), execution time,

and required data transmissions to the object detector networks.

Finally, as detecting an activity provides significant automation opportunities in CV systems, we present

an efficient activity detection recurrent neural network (RNN) utilizing the object detection results of the

Enhanced YOLO solution and taking advantage of fast pose estimation solutions. By combining generated

object detection and pose estimation results, the domain of the activity detection problem moves from a

volume of red, green, and blue (RGB) pixel values to a time series of relatively small one-dimensional

arrays. This allows the activity detection solution to take advantage of competent neural networks that have

already been trained for object detection and pose estimation over thousands of hours on large GPU clusters.

As a result, activity detection solutions can be created with substantially fewer additional training sets and

training processing hours.

1.2 Main Challenges

Most research on CV has focused primarily on developing CV algorithms [17, 58, 25, 15], with far

fewer studies considering the design of CV systems. Bandwidth allocation, an important step in the CV

system design process, has been generally addressed in many-to-one video streaming systems by only a few

studies through cross-layer optimization [37, 7, 6]. However, these studies were all simulation-based. The

objective in [37, 7, 6] was to optimize video distortion. Although distortion may be appropriate for certain

systems, the detection/recognition accuracy is the most important metric in CV systems. The authors of

study [7] considered the accuracy but only for simple face detection tasks. In addition, the aforementioned

3

studies assumed real-time transfer protocol (RTP) streaming instead of HTTP streaming, and none used

H.264 encoding; they assumed MJPEG [7, 6] or abstract video data [37].

Object detection neural networks form a major portion of CV algorithms. YOLO [17] and ResNet

[33] could be considered as two major members of these networks. Studies on CV algorithms have mostly

focused on image object detection (considering every input image independently) but have avoided oppor-

tunities to research video (multiple sequential images/frames) design space [17, 34]. Image object detection

frameworks like YOLO and ResNet are not optimized to be incorporated in video object detection tasks.

Studies on activity detection in videos have mostly considered a design that ignores the advantage of

combining object detection neural networks and RNN [73, 19]. By not taking advantage of object detec-

tion results and designing the solution from scratch, these studies are prone to complex and long training

procedures. There are many effective neural networks designed and trained for thousands of hours on

enterprise-level hardware that could extract meaningful features from images. When the neural network is

designed from scratch, it will be required to be trained on large datasets for long hours before it can be useful

in any capacity as it has to learn how to extract features from input data (raw volume of RGB pixel values

in this case).

1.3 Main Research Objectives

In this dissertation, we seek to address the aforementioned challenges. The main research objectives can

be summarized as follows:

1. To optimize the bandwidth allocation to different wireless PTZ cameras in order to enhance the face

detection and recognition objectives.

2. To develop an enhanced object detection solution using motion detection and clustering algorithms

to reduce the computational resource requirements and enhance the detection results by incorporating

ROIs with higher resolutions.

4

3. To develop an RNN network to classify an activity based on the sequential detection results from the

object detection neural networks and the pose/limbs estimation results.

1.4 Detailed Research Plan

1.4.1 Optimal Bandwidth Allocation in CV Systems

This dissertation addresses the bandwidth allocation problem in many-to-one CV systems, which is a

primary step in the design process of a CV system. As illustrated in Figure 1.1, the considered system con-

sists of multiple video cameras capturing and delivering live video streams to a central monitoring station

over a single-hop Wi-Fi LAN. Such multiple cells can be utilized to construct a larger system. The moni-

toring station runs CV algorithms to detect potential threats in the monitored site. This station is generally

connected to the access point with a high-bandwidth wired link that is not deemed as a bottleneck. The main

challenge in the considered system is the limited available network bandwidth, which should be estimated

accurately and then distributed efficiently among various cameras.

In contrast with prior work, we build a real CV system for automated video surveillance to run actual

experiments. We also consider both face detection and face recognition applications. In further contrast to

prior studies, the system employs HTTP streaming and homogeneous cameras as well as heterogeneous ones

with varying capabilities (including resolutions and frame rates) to mimic varying deployment scenarios.

We primarily use H.264 but consider the co-existence of other encoders. We develop the system utilizing

a variety of open-source libraries, including FFmpeg, Simple DirectMedia Layer (SDL), Snappy, FaceNet,

and Curl. We also develop a customized video player to enable full control of the video decoding process

and will provide the statistics required by the optimization solution.

Moreover, we propose a cross-layer optimization solution for allocating bandwidth to various cameras in

a manner that optimizes the overall detection or recognition accuracy. The solution dynamically manages the

application rates and transmission opportunities of various cameras based on the current network conditions,

5

Figure 1.1: An Illustration of the Considered Computer Vision System

considering the capabilities and limitations of these cameras. Furthermore, the solution includes a new

algorithm for determining the effective airtime of the network based on a novel method for estimating data

dropping by using the smoothing calculations of the stream bitrates received by the monitoring station.

Research and development activities for our proposed bandwidth allocation solution can be categorized

into three main phases.

In the first phase, we set up the required framework for our system. Different camera models and

wireless access points should be considered in this phase to provide a development base for our proposed

solution. As controlling the pan, tilt, zoom, and data transfer rate of PTZ cameras are necessary, different

application interfaces should be implemented. A solution to limit the overall data transfer rate of an access

point is provided.

In the second phase, we build a real CV system for automated video surveillance to run the actual exper-

6

iments. We develop a new algorithm for determining the effective airtime of the network. We also consider

both face detection and face recognition applications. Our developed system employs HTTP streaming and

homogeneous cameras as well as heterogeneous ones with varying capabilities (including resolutions and

frame rates) to mimic varying deployment scenarios. The system is developed using a variety of open-source

libraries, including FFmpeg, Simple DirectMedia Layer (SDL), Snappy, FaceNet, TensorFlow, and Curl. A

customized video player is implemented to enable full control of the video decoding process.

In the third phase, we generate experimental results, using three different setups. The first experimental

setup utilizes a real video surveillance dataset from campus, office, store, and street environments, collected

from publicly available videos, while the second is based on a live laboratory environment, and the third

utilizes the IARPA Janus Benchmark-B Face Challenge (IJB-B) dataset [74]. The results demonstrate that

the proposed solution significantly improves CV accuracy.

1.4.2 Enhanced YOLO Solution

We develop an enhanced object detection solution based on YOLOv4 [17], which is one of the best

performers in object detection tasks. The solution consists of a pre-processing step before activation of the

inference tasks, as well as a YOLO deployment selection logic. This solution incorporates different methods

of video motion detection and clustering algorithms to determine the patches of the input frame that require

the inference call. This significantly reduces the volume of input pixels to the deep neural network, resulting

in considerable power/computational-load savings. Moreover, the deployment selection logic could activate

different YOLO inferences by using different network configurations (different input sizes). This enables

an extra optimization space by considering different conditions and requirements (for example, satisfying

minimum response time).

Additionally, to demonstrate the performance of the proposed Enhanced YOLO solution, we consider

recorded street camera videos from five different cities (Lamai, Koh Samui, Thailand; Saint Petersburg, Rus-

7

sia; New Orleans, Louisiana, United States; New Laramie, Wyoming, US; Neath, Wales). The performance

parameters are mAP, average execution time, and data transmission improvements, calculated by comparing

the measured Enhanced YOLO results against the standard YOLO results.

The research and development activities for this part can be summarized as follows.

We first conduct an extensive examination of the available motion detection techniques, including Adap-

tive Background Learning [63, 60], Adaptive Selective Background Learning [63], CodeBook [39], Frame

Difference [60], Local Binary Similarity Segmenter (LOBSTER) [65], Mixture Of Gaussian V2 [80], Pixel-

based Adaptive Word Consensus Segmenter (PAWCS) [67], SigmaDelta [45], Static Frame Difference

[63], Flexible Background Subtraction with Self-Balanced Local Sensitivity (SuBSENSE) [66], ViBe [13],

Weighted Moving Mean [63], and Weighted Moving Variance [63]. Initially, the benchmarking and compar-

ison of these different motion detection techniques are based on their performance independently, without

considering the performance when they are used as an element within the Enhanced YOLO solution.

The output from the motion detection unit is a series of binary (black/white) images, where each white

pixel represents a moving (foreground) pixel. By considering each white pixel as a single 2D data point

and applying a clustering algorithm to the image, multiple clusters could be generated wherein each cluster

represents a moving (foreground/region of interest) in the original video frame. In this stage, we run an ex-

tensive examination of the available clustering algorithms including KMeans [11], MiniBatch KMeans [59],

Affinity Propagation [28], Mean Shift [23], Spectral [44], Agglomerative [48], DBSCAN [27], OPTICS [9],

and Birch [79].

Scale reduction factors for video frames are considered in motion detection and clustering operations

for reducing workload and improving execution time. We employ BGSLibrary [62] and scikit-learn [52]

libraries to implement the motion detection and clustering functionalities, respectively.

After the region of interest (section containing the motion/patch) is determined by the clustering algo-

8

rithm, it can be fed to the YOLOv4 detection network as the input image. Because the patch size could be

considerably smaller than the entire frame, there are two opportunities for performance improvements in

the network operations. The YOLOv4 has a static input image size which could be smaller compared to the

video frames. For example, the video frame could have a size of 1920 × 1080 pixels while the YOLOv4

input image could be set at 608 × 608 pixels. The network then resizes each 1920 × 1080 video frame

to 608 × 608 and starts to operate on the image to produce the output detection results. Since a smaller

patch (region of interest) is fed to the network, the resizing result will have more detail in comparison to

the 608× 608 sized entire video frame. This can improve detection performance as the moving objects are

presented by more pixels to the network. The other opportunity for performance improvement comes from

multiple deployments of YOLOv4 with different input resolutions.

For example, three separate simultaneously deployed networks with input sizes of 960×960, 608×608,

and 304×304 could be considered. Based on the patch size to the original video frame size ratio and average

detection probability from previous frames, one of these networks is selected and activated. The detection

time of the network heavily depends on the input resolution, so by efficiently using a lower resolution

network for smaller patches of the original video frame, a significant amount of time and processing power

could be saved. We employ the Darknet [54] based implementation of the YOLOv4 from the original

authors.

Now that the detection results in the smaller patch region are available, we have to create an algo-

rithm/policy to deal with the combination of the detection results from the patch with the detection results

from other regions of the frame from previous network executions.

The final step is the extensive examination of the mentioned Enhanced YOLOv4 system by utilizing

different motion detection and clustering algorithms as input optimizers and also considering a configura-

tion for the deployment of the YOLOv4 detectors with different input sizes. Different videos and datasets

9

are used in benchmarking the system. By having the original YOLOv4 configured with an input size of

1056 × 1056 resolution and generating the detection results, the optimal output is generated and is used

as a comparison point against the results generated from the improved mentioned system. We measure the

complexity of the incorporated techniques as execution time will have a major impact on our system.

Figure 1.2 demonstrates our proposed enhanced YOLOv4 system and summarizes the operations in-

volved in each step.

1.4.3 Activity Detection Recurrent Neural Network

We implement an activity detection solution that exploits the video design space. This solution incor-

porates recurrent neural networks to efficiently determine the classification of an activity by considering

multiple sequential detection results from the YOLO inferencing tasks, as well as pose/limbs estimation

results.

The proposed activity detection RNN solution operates efficiently, considering the reduced/pruned input

volume. This is provided by the output from the YOLO inferences in addition to pose/limbs estimation

results. This capability is especially useful in surveillance monitoring stations to classify dangerous activities

like leaving baggage behind at airports, engaging in violence/fighting, committing theft, etc. Another use

case could be in sporting events, where the designed system could be incorporated to determine activities

like passing, shooting, and heading a ball. This will be a significant step toward having a fully autonomous

event-video-recording/directing agent.

The research and development activities for this part can be summarized as follows.

First, to train our proposed RNN for activity classification, we consider the action of leaving a backpack

unattended as our target activity as this would have serious security implications if left undetected. As no

suitable video dataset that covers this activity is publicly available, we create our own training data by having

a person conduct the act multiple times in different ways (e.g., using the left or right hand to lay the backpack

10

on the ground) and recording the actions with a camera. As our system emphasizes the benefits of employing

already well-designed and well-trained advanced neural networks, we consider only a single video file for

the training phase, containing only 103 instances of the desired action. After the video is recorded, it should

be labeled by marking the index number of the frame appearing after the targeted action is completed.

By doing so, 103 frame indexes are generated. The next step is to extract the YOLO detection results and

pose/limbs estimation results by feeding the consecutive video frames to the YOLO object detection network

and MediaPipe Pose estimation tool, respectively. Detection and pose/limbs estimation results are combined

and filtered for each frame. Our time-series data for training the activity detection network is composed of

these elements together with the marked frame indices.

Second, we focus on designing and implementing an RNN for handling the activity classification task.

We have selected TensorFlow [4] as our machine learning platform of choice to implement the RNN solu-

tion. Other options include Darknet [54] and PyTorch [51]. Sequential outputs from the YOLOv4 network

are fed to our designed RNN solution to produce a final output as an activity label that could be immensely

useful in many autonomous video-based activities like deploying security systems, autonomous driving,

sporting events narration, etc.

11

Size Reduction for Motion Detection

Motion Detection

Size Reduction for Clustering

Clustering

YOLOv4
960ˣ960

YOLOv4
608ˣ608

YOLOv4
304ˣ304

3 012

YOLOv4
Deployment

Selection

ROI to Global
Conversion

Figure 1.2: Proposed Enhanced YOLOv4 System

12

CHAPTER 2 BACKGROUND AND RELATED WORK

2.1 CV Systems and Cross-Layer Optimization

The Enhanced Distributed Channel Access (EDCA) mode of the 802.11e standard enables the provision

of different quality-of-service levels among different access categories within the same station by adjusting

parameters, such as the Transmission Opportunity Time (TXOP) [55].

Prior studies on cross-layer optimization in wireless video streaming have considered (i) systems in

which only one station streams a video at a time [36, 12, 72] (and references within); (ii) systems in which

a central video server streams to multiple stations [77] (and references within); and (iii) systems in which

multiple stations deliver video streams to a central station [38, 37, 6, 7, 32, 61]. The latter category is

most relevant to this thesis. In such many-to-one video streaming systems, the main objective has been

minimizing the sum of video distortion in all received video streams [6, 37], instead of identifying accuracy

error, which is the main concern in CV systems. Alsmirat and Sarhan in [7] explored optimizing only face

detection, which is among the simplest of CV tasks. In addition, the problem formulation did not consider

the limitation of the cameras in sending the encoded video streams. The aforementioned studies were

simulation-based, used RTP streaming, and assumed MJPEG or abstract data streams. Video streaming in

wireless ad-hoc networks was considered in [72].

As will be discussed in Subsection 3.2.1, the optimization solution requires an accurate estimation of the

effective airtime, which can be defined as the fraction of the network time that is used for delivering useful

data. Hsu and Hefeeda in [37] developed an analytical model for the effective airtime, whereas the authors

in [6] developed an online estimation algorithm, addressing the shortcomings of that analytical model. In

this thesis, we have enhanced the estimation algorithm by incorporating a novel method for estimating data

dropping via smoothing calculations.

13

2.2 CV Algorithms

We have experimented with both face detection and face recognition. Face recognition is a major CV

algorithm used in many applications, including authentication systems, personal photo enhancement, au-

tomated video surveillance, and photo search engines. Recent studies on face recognition employ deep

learning using convolutional neural networks [70], with major algorithms including FaceNet [58] and Arc-

Face [25].

2.3 Neural Net Optimizations and Activity Detection

The authors in [78] proposed an object detection method for videos based on YOLOv3 and FlowNet

2.0, using multiple consecutive frames around the target frame from the video stream. First, the difference

between the target frame and key frames (frames around the target frame) are calculated using optical flow

operations: frames with small differences are directly fed to Flow-guided Bounding Box Transitions (FGBT)

and skip running the YOLOv3 detection model, while frames with large differences pass through YOLOv3,

and the bounding boxes are produced for them. If the bounding boxes have low confidence values, the target

frame is sent to Flow-guided Feature Aggregation (FGFA) unit where multiple feature maps from multiple

key frames are aggregated to enhance the target frame features; the result then is sent to YOLOv3 again

to generate the final bounding boxes. The proposed technology is tested on three different videos, and the

results are visually compared with pure YOLOv3 outputs.

Lu in [43] combined deep neural object detection with traditional object motion estimation to satisfy the

real-time need for object tracking tasks. It is mentioned that slow computation speed limits the application

of deep learning methods, and by combining the output of deep neural networks and the traditional meth-

ods of object tracking, they have balanced the detection speed and mAP. This feat is essentially achieved

by reducing the frequency of deep neural network activations on the input images. This method was in-

spired by the natural way humans handle fast-moving object detection, namely by ignoring the details of

14

fast-moving objects but tracking objects by the movement laws and simple visual information at a glance.

In this methodology, deep learning detection methods can be said to use glaring to accurately locate an ob-

ject. Using traditional movement detection methods is like glimpsing a scene to locate an object. In other

words, the study tries to reduce the workload on the execution framework by balancing the mAP and speed

(marginally reducing mAP for higher speeds).

Alvar in [8] proposed a method whereby an object tracking task is accomplished by taking advantage

of encoded moving vector information in video streams. Encoded moving vectors already exist in the

compressed video bitstream, so the study attempted to use them to indicate the approximate location of

the target object. By combining the semantic object detector results (from the decoded video frame), the

object’s location could be refined by accurately providing a bounding box on the decoded frame. The focus

of the study was object tracking in already encoded video streams.

The authors in [76] suggested a method whereby the object detection task frequency at the edge was

dynamically managed by a unit that handles the difference detection among frames. Here the deep neural

net considers the whole image as ROI for the network input.

Oltean and Florea in [49] proposed a system that was used in traffic control related functions. It utilized

the tiny-YOLO network to detect vehicles in a predefined ROI in the video stream. It also took advantage

of motion estimation and tracking capabilities to account for cases where detection was not adequate in the

incorporated neural net.

The authors in [46] introduced a system that assists visually impaired people by utilizing YOLO for

handling the tracking and the occlusion compensation tasks. The system’s output is delivered to the user as

a warning through bone-conduction headphones.

In [73], the authors proposed a method for labeling an action by modifying YOLO and combining

the results with the standard YOLO detections. The modification was applied by removing the last fully-

15

connected layer in YOLO and replacing it with an LSTM unit. The computational complexity is increased

in comparison to the standard YOLO. The system, especially the training activities, has a dependency on

the internal parts of the YOLO framework.

The authors in [19] suggested a solution where the action was classified using two modules operating

and interconnecting simultaneously: a detection module which was based on the YOLOv2 and a recognition

module which was based on the C3D network. The solution has convolutional units only, and the input is

treated as a 3D stack of pixels.

In [50], the authors proposed an alternative method for visual tracking which incorporated a bi-directional

LSTM network. It used preliminary location information and the appearance features of the target, produced

by the YOLO algorithm, to improve space-temporal location predictions.

Piao and Inoshita in [53] introduced a method of carried object recognition and improved the perfor-

mance of the conventional CNNs by introducing the additional knowledge of location relation between

body parts and objects. The proposed method can help with the recognition task if carried objects are of

small size or low resolution or if they are occluded by people.

The authors in [18] surveyed the current state-of-the-art CNN-based detection methods. Mask R-CNN,

YOLO, and MOG were considered in the conducted experiments. YOLO was mentioned to have real-time

satisfying results, and it was a better performer than Mask R-CNN in case of occlusion.

In order to mitigate the performance issue in deep neural networks, Chen in [20] proposed to cut a deep

neural network in the mid-level and communicate between the two parts using a video encoder/decoder

pipeline. Although this method could reduce the required transmitted data for the task at hand, the lossy

nature of video encoding/decoding is unfavorable for neural network operations. Additionally, this method

distributes the amount of required processing power as opposed to reducing the computational cost of object

detection tasks.

16

Despite the contribution of the studies described above, the following two areas of research are needed:

• A general ROI-based method to reduce the input volume for a neural network, while simultaneously

improving the detection accuracy by providing an opportunity to concentrate on the areas of impor-

tance.

• A general activity classification algorithm by taking advantage of object detection networks to cate-

gorize activities, resulting in an algorithm that is efficiently trainable and could operate on the object

detection results.

In addition to providing an optimal bandwidth allocation solution for wireless cameras in CV systems,

our proposed work includes a solution called Enhanced YOLO as a major CV application. This solution

has an input filter for the neural network, reducing the input pixel volume which will invoke the inference

calls on the network. This enables the system to focus on the areas of importance by considering higher

resolution ROI patches. Additionally, it has multiple deployments of the YOLOv4 network with different

input resolutions and dynamically selects the appropriate deployment in inference operations, resulting in

significant execution time reductions. Our proposed work also includes an activity detection solution by

taking advantage of the output recognition results from the YOLOv4 network to classify activities. RNNs

are used to construct this unit.

17

CHAPTER 3 EXPERIMENTAL ANALYSIS OF OPTIMAL BANDWIDTH ALLOCATION
IN COMPUTER VISION SYSTEMS

3.1 Developed Computer Vision System

We built a real many-to-one CV system and analyzed the effectiveness of cross-layer optimization by

providing the results of actual experiments. As illustrated in Figure 1.1, the system consists of a moni-

toring station and various video cameras, including PTZ cameras, all of which are connected by a Wi-Fi

network. The cameras include four Pan/Tilt/Zoom (PTZ) surveillance cameras (IPCam 7210W), one wide-

angle camera (VivoTek IP7139), and two webcams (HP Truevision HD and Labtec PRO Webcam). The

system employs HTTP streaming for delivering videos from the cameras to the monitoring station. To cap-

ture realistic deployment scenarios, we used both homogeneous and heterogeneous cameras. Although we

primarily used H.264, we considered the co-existence of other encoders.

Figure 3.1 illustrates the overall system design, including built-in modules for performance evaluation.

In the extensive system development process, we used the following libraries for developing various system

aspects: FFmpeg, Simple DirectMedia Layer (SDL), Snappy, TensorFlow, and Curl. To turn the two web-

cams into functional IP cameras, we employed the VLC media streaming tool and developed a program in

Python to act as a virtual interface for these cameras. Hence, we refer to these cameras as virtualized IP

cameras. The virtual interface enables these two webcams to adjust their encoding bitrates according to the

received control messages from the monitoring station, thereby allowing their treatment as any regular IP

camera.

The monitoring station has the following main units.

• Parallel Video Decoder and Stream Analyzer – This unit receives video streams from IP cameras and

decodes them. It also analyzes the streams to accurately determine all the system parameters involved

in the effective airtime estimation, bitrate smoothing, and optimization solution. We developed a cus-

18

Virtual Interface
(Python)

Webcam
(HP True
Vision)

PTZ Cam
(IP7210W)

IP Cam
(VivoTek
IP3179)

Webcam
(Labtec

PRO)

PTZ Cam
(IP7210W)

PTZ Cam
(IP7210W)

PTZ Cam
(IP7210W)

Camera Adaptation Control (C++) Parallel Video
Decoder and Stream

Analyzer (C++)

H. 264MPEG4H. 264H. 264H. 264H. 264

Optimization Problem Solver (C++)

VLC Media
Streamer

VLC Media
Streamer

Hard Disk
Array

Parallel
Online

Compressor
and

Recorder
(C++)

H. 264

Frame Stream
Decompressor

(C++)

Monitoring Station

Camera Set

OpenCV Haar
Cascades Face
Detector (C++)

Face Detection
Performance

Results

FaceNet Face
Recognition on

TensforFlow (Python)

IARPA Janus
Benchmark-B

Dataset

Face Recognition
Performance

Results

Figure 3.1: An Illustration of the Overall System Design Including Built-in Modules for Enabling Perfor-
mance Evaluation

tomized multi-threaded video player in C++ using FFmpeg and SDL libraries to provide full control

over the video decoding process and offer all the statistics required by the optimization solution. As

SDL offers special multi-threading tools for media-rich applications, we incorporated it to handle

parallelism and thread creation and to enforce mutual exclusion for different resources.

• Optimization Problem Solver - Uses the estimated system parameters to determine the optimal dis-

tribution of the effective airtime among various cameras and then sends the allocations to the next

unit.

• Camera Adaptation Control – This unit receives the optimal portion of the effective airtime for each

19

camera, generates a properly-formatted HTTP control message, and delivers the message to each

camera. We utilized the HTTP message transfer function of Curl, a client-side URL data-transfer

library supporting various protocols, including HTTP.

• Parallel Online Compressor and Recorder – We devised this unit in C++ to implement an offline ap-

proach for (i) analyzing the received video stream by applying CV algorithms and (ii) facilitating the

comparative performance evaluation of various bandwidth allocation solutions. As expected, without

the use of a specialized distributed processing system, the simultaneous analysis of all video streams

can not be achieved in real-time, even when using a workstation with 8-core AMD Ryzen 7 running at

4 GHz with 32 GB of DDR4 RAM due to the aggregate computational complexity of CV algorithms.

The devised offline approach helps bypass this challenge. Specifically, it records the video streams

from various cameras for further analysis, without any video encoding or transcoding. However, this

raises a new challenge: no cost-effective storage device can provide the necessary capacity and per-

formance. Hence, we developed a recording process that performs fast lossless compression on the

received data and enables the simultaneous handling of writing the video streams on multiple hard

disk drives using the SDL and Snappy libraries. Snappy provides a toolkit for fast online compres-

sion. Note that the recording process and the offline examination approach are only for performance

evaluation purposes and are not imposed by the proposed optimization solution. Real deployments

of CV systems can address real-time detection and recognition by utilizing a distributed processing

system and/or powerful GPUs.

• Frame Stream Decompressor – We developed this unit in C++ to uncompress and analyze the com-

pressed recorded video streams. The uncompression task utilizes the Snappy library.

• Face Detection – We developed this unit in C++ using OpenCV to run the face detection function

using Haar feature-based cascade classifiers.

20

• Face Recognition – We developed this unit in Python using FaceNet on TensorFlow to run the face

recognition tasks. Specifically, we utilized the FaceNet 1.0.3 Python package, an open-source Ten-

sorFlow implementation of the face recognizer described in [58]. We used the pre-trained model

named 20180402-114759, which is trained on the VGGFace2 data set and has the Inception ResNet

v1 architecture.

When the cameras receive the HTTP control messages from the monitoring station, they act accordingly

to adjust their video capturing and encoding parameters.

3.2 Proposed Cross-Layer Optimization Solution

We developed an enhanced cross-layer optimization solution, which dynamically distributes and allo-

cates the wireless network bandwidth among various cameras in the considered many-to-one CV system,

illustrated in Figure 1.1, with the objective of optimizing either the overall detection or recognition accuracy.

The system includes S cameras and each one streams a different video at rate rs over a bandwidth-limited

WiFi medium to the access point, which in turn delivers the stream to the monitoring station typically

through a high bandwidth link. Different video sources may have dissimilar physical rates. The CV system

can be expanded by including and interconnecting such multiple cells.

3.2.1 Cross-Layer Optimization Problem Formulation

As in [7], the optimization problem can be formulated as the minimization of the sum of the accuracy

error (E) of all the video streams received by the central monitoring station. Since the wireless medium is

shared by all S cameras, the problem can be formulated as to how to find the optimal portion of the airtime fs

to be assigned to each camera s. The set of allocations is given by F ∗ = {f∗
s |s = 1, 2, 3, ..., S}, where each

allocation fs is between 0 and 1, inclusive, and the sum of all allocations is equal to the effective medium

airtime (Aeff). Hence, the application-layer transfer rate of camera s can be given by rs = fs × Y , where

Y is the total medium bandwidth (related to the access point). Subsequently, the optimization problem can

21

be formulated as follows:

F ∗ = argmin
F

S∑
s=1

E(rs), (3.1a)

Subject to

S∑
s=1

fs = Aeff , (3.1b)

0 ≤ fs ≤ 1, (3.1c)

rs = fs × Y, (3.1d)

fs ≤
ys
Y
, and (3.1e)

s = 1, 2, 3, ..., S. (3.1f)

Assigning fs and the resulting rs to each camera s minimizes the overall accuracy error. We enhanced the

formulation in [7] by (i) modifying Condition (3.1d) to consider the overall rate permitted by the access

point (as opposed to just that perceived by the camera) and (ii) introducing Condition (3.1e). The latter

guarantees that the assigned transfer rate for each camera s does not exceed that permitted by ys, where ys

is the maximum application-layer rate that is allowed by the perceived physical rate of camera s. Note that

channel fading and other reception conditions are inherently involved in the procedure determining Aeff

(Subsection 3.2.2) and ys. Note that rs, ys, and Y are all in terms of application-layer data.

As will be discussed in Subsection 3.4.3, by optimizing the accuracy, the system tries to increase the

frame rate to the extent allowed, thereby decreasing latency. In addition, cross-layer optimization effectively

decreases the latency, since each camera will send data at a rate that can be effectively received.

22

3.2.2 Effective Airtime Estimation

As required by the formulated optimization problem, we propose an enhanced algorithm for estimating

the effective medium airtime (Aeff). The algorithm employs a novel method for determining the overall data

dropping and corruption rate ds for camera s using the smoothing calculations of the bitrates of the streams

received by the monitoring station. The method uses only the video decoding statistics at the monitoring

station, thereby avoiding the need to obtain dropped data statistics, which would not be accessible using

standard APIs.

Figure 3.2 shows the simplified algorithm. First, with each camera sending data at a rate that is equal to

the medium bandwidth divided by the number of cameras, the algorithm determines the effective throughput

ts for the video stream for each camera s as received by the application layer of the monitoring station. The

algorithm then uses ts to provide the initial value of Aeff : Aeff =
∑S

s=1 ts/Y . Subsequently, during an

estimation period, the algorithm assesses the overall data dropping and corruption rate ds at the monitoring

station while receiving the video stream from camera s, and then adjusts the estimated effective airtime

accordingly. The algorithm determines ds as the measured corrupted data rate for the stream plus a value

capturing the difference between the announced frame rate for camera s and the frame rate that is actually

received by the monitoring station. Specifically, we developed and employed the following equation to

assess ds:

dS = [CorruptDatas + (SSDRs × SumFrameDelayV ars)×DW]/EP, (3.2)

where CorruptDatas is the total size of the received packets from source s that are corrupted; SSDRs

is the smoothed stream bitrate for source s; SumFrameDelayV ars is the sum of the variations between

the frames produced by source s and the corresponding one that is received by the monitoring station, with

the variation being measured in terms of the delays between consecutive frames; DW is the delay weight

23

constant providing flexibility in adjusting the estimated value of the dropped data during EP ; and EP is

the estimation period. By multiplying SumFrameDelayV ars with SSDRs, the size of the dropped data

during EP can be estimated.

Through a smoothing operation over the evaluation time, rather than just using the momentary bitrate

value, SSDR can be estimated more accurately as follows:

SSDR = SC × PSSDR+ (1− SC)×MSDR, (3.3)

where SC, PSSDR, and MSDR are the smoothing constant, previously estimated smoothed stream data

rate, and momentary stream data rate, respectively. The delay weight, smoothing constant, and previous

stream data rate help in estimating the dropping rate using the current observed frame rate.

The algorithm then determines the overall average corruption and dropping ratio perceived by the moni-

toring station for all streams as follows: A∆ =
∑S

s=1 ds/Y . This value is used to adapt the current value of

Aeff at the end of the current estimation period. If A∆ is 0, the algorithm increases Aeff by C × Athresh.

By contrast, if A∆ is greater than some threshold Athresh, it reduces Aeff by Ć × (A∆ − Athresh), where

Athresh controls the allowable data dropping in the network and Ć and C are network-related constants.

Otherwise, it increases Aeff by C̃ × (Athresh −A∆), where C̃ is also a constant value.

To ensure better convergence and stability, we set C, Ć, and C̃, respectively, to 20, 0.8, and 16 based on

extensive experiments. Using these three parameters rather than just one greatly accelerates the convergence

of Aeff . The algorithm, however, continues to update for the effective airtime value and does not stop upon

convergence because the network conditions change dynamically. In our system, convergence occurs within

40 seconds initially and within a few seconds thereafter.

24

Input: {t1, .., tS , PSSDR1, .., PSSDRS ,MSDR1, ..,MSDRS ,
CorruptData1, .., CorruptDataS ,
sumFrameDelayV ar1, .., sumFrameDelayV arS}
Output: {Aeff}
if this is the first time to run the algorithm

Aeff =
∑S

s=1 ts/Y ;
At the end of each estimation period{

For each source s = 1 to S{
SSDRs = SC × PSSDRs + (1− SC)×MSDRs;
dS = [CorruptDatas + (SSDRs ×

SumFrameDelayV ars)×DW]/EP ; } // For
A∆ =

∑S
s=1 ds/Y ;

if (A∆ == 0) // Increase Aeff by C ×Athresh

Aeff = Aeff + C ×Athresh;
else if (A∆ > Athresh) // Reduce Aeff by Ć × (A∆ −Athresh)

Aeff = Aeff − Ć × (A∆ −Athresh);
else // Increase Aeff till first decrement

Aeff = Aeff + C̃ × (Athresh −A∆); }// At

Figure 3.2: Simplified Algorithm for Dynamically Estimating the Effective Airtime

3.2.3 Cross-Layer Optimization Solution

Face Detection

According to [7], the accuracy error for face detection can be modeled as a linear function of the video

data rate (rs) for camera s: E(rs) = as× rbss + cs, where as, bs, and cs are camera-specific constants. Thus,

the optimization problem (Equation (3.1)) is a budget-constrained convex problem that can subsequently be

solved by Lagrangian Relaxation. Realistically assuming that the bs values are the same for all cameras and

equal to b, the solution can be given by:

f∗
s = (

−λ
asY bb

)(1/(b−1)), (3.4)

where

λ = (
Aeff∑S

s=1(
−1

asY bbys
)(1/(b−1))

)(b−1). (3.5)

25

We devised the following method to ensure that Condition (3.1e) is met: if f∗
s is larger than ys/Y , we restart

this solving process after setting fs to ys/Y , subtracting ys/Y from Aeff , and eliminating that source from

the problem domain.

Face Recognition

According to [31], the accuracy error for face recognition can be modeled as a sum of two exponentials

of the video data rate (rs): E(rs) = as × ebs×rs + cs × eds×rs , where as, bs, cs, and ds are constants.

Assuming bs = ds, the model can be simplified as E(rs) = as × ebs×rs , where as and bs are constants. As

rs can now be given as a function of the other parameters in the model, the optimization problem (Equation

(3.1)) can be solved by Lagrangian Relaxation. The simplified model yields results similar to the original;

based on actual experiments, the SSE, R-Square, Adjusted R-Square, and RMSE values in the original

model compared with the actual data are 0.006267, 0.995, 0.9931, and 0.02799, respectively. In contrast,

the values with the simplified model are 0.007374, 0.9941, 0.9935, and 0.02715, respectively. Assuming

again that all the bs values are the same for all cameras, the solution can be given by:

f∗
s =

ln(−λ
asb

)

b
, (3.6)

where

λ = −(e
Aeff

b

s∏
s=1

asb)
1
S . (3.7)

3.2.4 Proposed Method for Determining the Constant Values of the Accuracy Error Models

We presented the following method for determining the constant values of the analytical accuracy er-

ror models, namely as and b. These values are determined offline by first recording a video of the actual

environment during typical operation at the highest supported resolution and bitrate by the related surveil-

lance camera in the deployed system. Later, the video is transcoded to different combinations of resolution

26

and bitrate. Subsequently, the proportions of the detected/recognized faces relative to the original video are

computed to find the accuracy error (E) values. Finally, the values of the model constants are estimated

based on the analytical models of the accuracy error. The system needs to recompute the constants only in

the presence of significant changes in the system or environment. Furthermore, the readjustment of these

constant values is a relaxed requirement and thus can be performed during the normal system operation.

3.3 Performance Evaluation Methodology

Table 3.1 summarizes the main parameters. Extensive analysis indicates that setting Athresh and Esti-

mation Period to 0.0075 and 5 seconds, respectively, improves performance in terms of both stability and

convergence.

Table 3.1: Summary of Experimental Characteristics and Parameters
Parameter Model/Value(s)
Number of Video Cameras 4, 7
Recording Period (minutes) 10
Application Rate If not optimized: Max. Access Point Rate / # Cameras
Video Frame Rate (fps) Camera Dependent: 7.5, 10, 25
Physical Characteristics Extended Rate (802.11n)
Physical Data Rate (Mbps) 30, 25, 20, 15, 13, 10, 5
State Report Interval (seconds) 5
Detection Error Model b = −1.309, as = 3103 (IP7210W Cam)
Recognition Error Model b = −88.35× 10−5, as = 1.593 (IP7210W Cam)
Camera Video Resolutions 1280×720, 800×600, 640×480

We conducted experiments using three different setups, as summarized in Table 3.2 and detailed later

in this section. All experiments are performed using a TP-LINK TL-WR841N wireless router as the access

point and a workstation with 8-core AMD Ryzen 7 running at 4 GHz with 32 GB of DDR4 RAM as the

monitoring station. H.264 is used in all cameras except for VivoTek IP7139, which instead supports MPEG-

4.

We compared the proposed solution, referred to as New Optimization, with the solution in [7], referred

to as Existing Optimization. We also analyzed the case when the optimization is disabled, referred to as

No Optimization. The main analyzed metrics were face detection accuracy and face recognition accuracy,

27

Table 3.2: Summary of the Three Experimental Setups
Setup Recorded Resolution(s) Cams Video Content Application
I 1280×720, 800×600,

640×480
7 Surveillance videos Detection

II 1280×720 4 Live laboratory environment Detection
III 1280×720 4 IJB-B data set Recognition

measured in terms of the overall number of detected/correctly recognized faces. OpenCV was used to run the

Viola-Jones algorithm on the decoded video streams in Experimental Setups I and II. In contrast, FaceNet

was utilized to run face recognition in Experimental Setup III.

3.3.1 Experimental Setup I: Using a Real Video Surveillance Data Set

Experimental Setup I uses various types of cameras (discussed in Section 3.1) to capture real surveillance

videos rendered on separate monitors (model: Dell E2210Hc), thereby providing repeatable, realistic, and

diverse scenery. Table 3.3 summarizes the main characteristics of the video surveillance data set, which

were collected from YouTube and other sources and will be publicly available. The videos have different

characteristics (including resolution and frame rate) and come from different environments: office, campus,

stores, and busy streets. The original videos were truncated so that each category has nearly the same total

video duration. Figure 3.3 shows sample video frames from this data set.

Table 3.3: Characteristics of the Real Surveillance Videos Used in Experimental Setup I
Type Resolution Duration

(sec)
Frame
Rate (fps)

Bitrate
(Kbps)

Campus 1280 × 720 27 29 2704
Campus 1920 × 1080 44 23 3145
Campus 1280 × 720 77 30 2149
Office 1920 × 1080 10 30 2317
Office 480 × 360 8 30 343
Office 1280 × 720 57 30 2098
Office 1280 × 720 32 25 2088
Office 640 × 360 42 29 575
Store 480 × 360 57 6 355
Store 370 × 252 23 23 363
Store 1280 × 720 69 23 2550
Street 1280 × 720 14 30 768
Street 1920 × 1080 27 23 4215
Street 1920 × 1080 40 23 4035
Street 1280 × 720 68 29 2199

28

(a) Campus (b) Street

(c) Store (d) Office

Figure 3.3: Sample Frames from the Videos in Experimental Setup I

3.3.2 Experimental Setup II: Live Laboratory Environment

Experimental Setup II used our PTZ IP-Cam 7210W cameras to capture videos from a real lab envi-

ronment. As discussed in Section 3.1, the monitoring station runs the optimization solution and sends the

target bitrate to each camera, which in turn produces and transmits the adapted H.264 video stream. In this

setup, the monitoring station also provides a controlled patrol movement for each camera. To allow for fair

comparisons among various allocation solutions, a person in the lab acted according to a predefined script

in each evaluation session. The script specified the paths that must be traversed by the acting person; the

standing and walking directions; and the time spent on each path. Figure 3.4 shows sample concurrent views

from two PTZ cameras.

29

(a) Camera 1 (b) Camera 4

Figure 3.4: Sample Concurrent Views of the Two Cameras in Experimental Setup II

3.3.3 Experimental Setup III: Using Videos from Janus Benchmark-B Face Challenge Data Set

Experimental Setup III is similar to Setup I, except for the use of a different dataset. Since the dataset

used in Experimental Setup I did not contain any ground truth concerning the present faces, we utilized an

unconstrained face recognition dataset, specifically the IARPA Janus Benchmark-B Face Challenge (IJB-B)

dataset [74]. As the main objective of the face recognition experiment is to compare the performance of

different bandwidth allocation solutions competing for the available effective airtime, we used the follow-

ing criteria to select surveillance-like video files from the data set: (a) the presence of changing/moving

backgrounds, (b) the presence of multiple subjects, and (c) the presence of a wide range of facial expres-

sions/angles of the main subject in the scene. Table 3.4 summarizes the main characteristics of the selected

video files, and Figure 3.5 shows sample frames.

Table 3.4: Characteristics of the Videos Used in Experimental Setup III
Type File No. Resolution Length

(sec)
Frame Rate
(fps)

Bitrate
(Kbps)

Street/Crowd 626 1280 × 720 6 29.97 2620
Sports 847 1280 × 720 13 25 2607
Street/Interview 1038 1280 × 720 20 25 3006
Politician Visit 1058 640 × 360 5 25 917
Street/Person 1668 368 × 300 7 29.97 268

30

Figure 3.5: Sample Frames from the Videos in Experimental Setup III

3.4 Results Presentation and Analysis

3.4.1 Tuning System Constants

Let us first discuss how to select the values of the constants of effective airtime estimation, namely the

delay weight (DW) and smoothing constant (SC). Figure 3.6 illustrates how these constants impact face

detection accuracy. The number of detected faces increases initially with the DW because of the tendency

to produce higher frame rates, which reduces the stream bitrates and thus reduces both the contention for the

medium bandwidth and the data dropping and corruption rate. Ultimately, the perceived frame rate by the

monitoring station is increased. After a certain point, however, the generated high frame rates greatly reduce

the stream bitrates and, consequently, the video quality. Likewise, the number of detected faces increases

with SC up to a certain point and then starts to decrease. The increase occurs because the smoothing

operations enable the system to estimate the effective airtime more accurately, whereas the subsequent

decrease is due to aggressive smoothing, which greatly marginalizes the impacts of the momentary values

of the stream bitrates. The best values of the DW and the SC in the considered system configuration are

31

(a) Delay Weight (b) Smoothing Constant

Figure 3.6: Effects of the Smoothing Constant and Delay Weight on Detection Accuracy [Experimental
Setup I, 15 Mbps Medium Bandwidth]

Figure 3.7: Comparing Various Solutions in the Overall Effective Airtime [Experimental Setup I]

0.65 and 0.99, respectively.

3.4.2 Comparing Effective Airtime Estimation under Different Solutions

Figure 3.7 shows that the proposed solution produces the largest area under the effective airtime curve; its

area is 125% larger than that of the best existing solution and 8% larger than that with disabled optimization.

As discussed in Subsection 3.2.1, the existing solution causes the system to use only a portion of the available

bandwidth, thereby reducing the effective airtime to even lower values than those with disabled optimization.

32

3.4.3 Analysis of Cross-Layer Optimization for Face Detection

Let us now analyze the effectiveness of cross-layer optimization in terms of detection accuracy under

Experimental Setup I. Figure 3.8 shows the number of detected faces versus bandwidth capacity for the

entire video dataset and for each video category, as well as the percentage of false positives for each solu-

tion but for all categories. The proposed solution achieves 19%, 10%, 10%, and 10% higher accuracy than

the existing solution in campus, office, store, and street environments, respectively, and 54%, 45%, 72%,

and 69% higher accuracy than disabled optimization. As expected, the number of detected faces generally

increases with the medium capacity. The occasional dips in the case of the existing solution are due to the

aforementioned problem in utilizing the medium bandwidth. After a certain point, the proposed solution and

disabled optimization converge to similar values, when the medium capacity is large enough to accommo-

date the maximum supported bitrates of the cameras, thereby eliminating bandwidth contention. In actual

systems, the number of employed cameras and the supported bitrates are larger, thereby raising the medium

bandwidth at which convergence occurs. Interestingly, the existing solution performs worse than disabled

optimization when the contention among cameras falls below a certain level. Due to the lack of ground truth,

the false positive results (Figure 3.8(f)) are manually determined based on 500 randomly-selected recorded

frames from each camera in every experiment. The false positive percentage of the proposed solution is

within 4% and is generally better than the other solutions. Figure 3.9 compares various solutions in detec-

tion accuracy for each camera. Cam1, Cam2, Cam3, and Cam4 refer to the IPCam 7210W wireless PTZ

security cameras; Cam5 and Cam6 are the HP Truevision HD and Labtec PRO webcams, which are turned

into functioning IP cameras using the VLC media player; and Cam7 is the VivoTek IP7139 camera. The

proposed solution consistently performs the best, whereas the existing solution performs even worse than

the disabled optimization with certain cameras due to its aforementioned problem.

Figure 3.10(a) compares various solutions in terms of face detection accuracy under Experimental Setup

33

II. It shows the number of detected faces by the entire CV system and by each camera. Although there is

only one person in the scene, the person appears in multiple frames of the video streams. Therefore, having

higher quality video streams translates to a larger number of detected faces. The proposed solution achieves

123% higher accuracy than the existing solution and 148% higher than the disabled optimization.

Let us now discuss the dynamics of the system as a result of the interplay of various factors. Figure

3.11(a) demonstrates the relationships among different system metrics, namely the average received rate by

the monitoring station, effective airtime, frame rate, and the number of detected faces. To effectively display

the different values of attributes together in the same chart, attribute values are normalized. The number of

detected faces is the most important metric, and indeed the proposed solution continues to hold the lead in

that metric. Achieving a high value in this metric depends on two main factors: the effective airtime and the

average received frame rate. The proposed solution demonstrates a remarkable balance in improving these

two main factors, resulting in producing the highest face detection accuracy. The existing solution becomes

a viable choice only when the power consumption is of utmost significance and preferred over accuracy.

The results also demonstrate the high effectiveness of cross-layer optimization. As expected, disabled op-

timization leads to the smallest number of detected faces because when the available medium bandwidth

is limited and each camera sends at the highest rate without any governing policy, severe congestion in the

network will result, thereby greatly increasing the probability of data packet loss and frame dropping.

3.4.4 Analysis of Cross-Layer Optimization for Face Recognition

Figure 3.10(b) compares the numbers of correctly recognized faces achieved by various solutions in

Experimental Setup III. The proposed solution achieves 29% and 32% higher accuracy than the existing

solution and disabled optimization, respectively. Figure 3.11(b) demonstrates the relationships among dif-

ferent system metrics: the average received rate by the monitoring station, effective airtime, frame rate, and

the number of correctly recognized faces. The values are normalized.

34

(a) Overall (b) Campus Environment (c) Street Environment

(d) Store Environment (e) Office Environment (f) False Positives (All Environ-
ments)

Figure 3.8: Comparing Various Solutions for All Video Categories and Each Category [Experimental Setup
I]

(a) Combined Cameras 1-4
(IP7210W)

(b) Combined Cameras 5 and 6
(Virtualized Web-cams)

(c) Camera 7 (VivoTek IP7139)

Figure 3.9: Comparing Various Solutions in Detection Accuracy Using the Entire Video Data Set [Experi-
mental Setup I]

The proposed solution holds the lead in the number of correctly recognized faces, which is the most im-

portant metric. By balancing the average received frame rate, it significantly improves the effective airtime

and average received rate, resulting in the capture of high-quality frames and the highest face recognition

accuracy. The existing solution has the second-best results, with low medium bandwidth usage. Like Ex-

perimental Setup I, the existing optimization becomes a viable choice only when the power consumption

35

Overall Cam1 Cam2 Cam3 Cam4

Camera

0

0.5

1

1.5

2

2.5
N

u
m

b
e
r
 o

f
D

e
te

c
te

d
 F

a
c
e
s

10
4

New Optimization

Existing Optimization

No Optimization

(a) Detection Accuracy in the Live Lab Environment
(Experimental Setup II)

Overall Cam1 Cam2 Cam3 Cam4

Camera

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

N
o

.
o

f
C

o
rr

e
c
tl

y
 R

e
c
o

g
n

iz
e
d

 F
a
c
e
s New Optimization

Existing Optimization

No Optimization

(b) Recognition Accuracy (Setup III)

Figure 3.10: Comparing Various Solutions in Accuracy

Existing OptimizationNo Optimization New Optimization

Optimization Solution

0

0.2

0.4

0.6

0.8

1

N
o

rm
a
li
z
e
d

 V
a
lu

e

Average Received Rate

Effective Airtime

Frame Rate

Number of Detected Faces

(a) Experimental Setup I

Existing OptimizationNo Optimization New Optimization

Optimization Solution

0

0.2

0.4

0.6

0.8

1

N
o

rm
a
li
z
e
d

 V
a
lu

e

Average Received Rate

Effective Airtime

Frame Rate

Number of Correctly Recognized Faces

(b) Experimental Setup III

Figure 3.11: Relationships Among Different System Metrics

is of utmost significance and preferred over accuracy. The number of correctly recognized faces when the

optimization is disabled is lower than the two optimization solutions; however, the improvement by using

the existing optimization is marginal.

36

3.5 Conclusions

We have built a real computer vision system for automated video surveillance and have analyzed ex-

tensive results of the actual experiments using different video datasets as well as in a live laboratory envi-

ronment. This work is published in [24]. The main results can be summarized as follows. (1) Cross-layer

optimization in CV systems is highly effective in improving the detection/recognition accuracy. (2) By opti-

mally distributing the available medium bandwidth and increasing the effective medium airtime, the system

can successfully deliver high-quality video streams at high frame rates to the monitoring station. (3) The

proposed optimization solution significantly enhances face detection and face recognition accuracy. (4) By

properly assessing the overall data corruption and dropping rate through bitrate smoothing, the proposed ef-

fective airtime estimation algorithm achieves high accuracy. (5) The highest detection/recognition accuracy

is achieved when the packet-dropping and error rates are very small. (6) A distributed processing system,

or one with powerful GPUs, is required for the real-time detection of threats when a large number of video

sources are supported.

37

CHAPTER 4 ENHANCED YOLO SOLUTION

4.1 Introduction

The first step in the proposed video input optimization solution is motion detection. Motion detection is

also referred to as background subtraction (BS), which is an essential function in computer vision applica-

tions such as moving vehicles/people detection, multimedia applications, and video surveillance. BS essen-

tially involves the comparison of an image with another image, which is an estimation of the background

model. Moving foreground objects can be found in the image regions that have a significant difference from

the reference image (background model). The BS process generally consists of three tasks: 1) background

model initialization, 2) background model maintenance, and 3) foreground segmentation. Figure 4.1 shows

the diagram of the BS process mentioned here.

The second step in our proposed video input optimization solution is clustering of the foreground points

detected by the motion detection techniques described earlier. Clustering in general is the task of organizing

a set of objects into groups or clusters, based on their shared similarities in some selected characteristics.

This is a common technique for statistical data analysis and is employed in many fields, including pattern

recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics,

and machine learning.

Clustering can be done by various algorithms that differ significantly in what they define as a cluster

and how to efficiently form them. One main notion of clusters is groups with small distances between

cluster members. Clustering can be formulated as a multi-objective optimization problem. The appropriate

clustering algorithm and parameter settings depend on the individual data set and intended use of the results.

The parameters include, among others, the distance function to use, a density threshold, or the number of

expected clusters. Modifying data preprocessing and model parameters should often be considered until

the results demonstrate the desired properties. Although the problem of clustering is an NP-hard problem,

38

efficient heuristic algorithms converge quickly to a local optimum.

In our proposed solution, clustering is employed to determine a rectangular area in the current frames

containing the dynamic objects in the scene. The input is a list of pixels that are classified as foreground and

the output is a rectangular region of interest that will be fed to the YOLOv4 network to perform the object

detection task.

Background
Model

Current
Frame

BS
Operator

Foreground

Background
Model Init

Background
Model

Maintenance

Figure 4.1: Background Subtraction Process Overview

4.2 Brief Description of Background Subtraction/Motion Detection Techniques

There are many background subtraction/motion detection techniques including Adaptive Background

Learning [63, 60], Adaptive Selective Background Learning [63], CodeBook [39], Frame Difference [60],

Local Binary Similarity Segmenter (LOBSTER) [65], Mixture Of Gaussian V2 [80], Pixel-based Adap-

tive Word Consensus Segmenter (PAWCS) [67], SigmaDelta [45], Static Frame Difference [63], Flexible

Background Subtraction with Self-Balanced Local Sensitivity (SuBSENSE) [66], TwoPoints [3], ViBe [13],

Weighted Moving Mean [63], and Weighted Moving Variance [63]. We examine these techniques, start-

ing from Adaptive Background Learning, and measure their execution complexity and their performance in

suitable videos that are common in our proposed system.

39

4.2.1 Adaptive Background Learning

This technique computes the average of the previous N frames to create the background. This means that

to update the first background image, it considers new static objects in the video. The background image

calculation is done using equation 4.1.

Bt+1(x, y) = 1/N ×
t∑

T=t−N

IT , (4.1)

Eq. 4.1 suggests that this method consumes a large amount of memory, which is not ideal for real-time

implementations of the technique. To avoid this issue, it is better to compute the background using equation

4.2, where α ∈ [0, 1] is a constant that specifies how effective new information changes old observations.

Bt+1(x, y) = (1− α)×Bt(x, y) + α× It(x, y), (4.2)

Large values of α lead to the higher rates at which the background image is updated with new information

in the video. If α is set too large it may lead to tail artifacts behind moving objects. The α value should be

determined according to the observed scene and the size, speed, and distance of the moving objects from

the camera to prevent tail artifacts. The issue of constant movement in small background objects, especially

in outdoor environments (e.g., tree branches in a breeze), can be addressed by segmenting such objects with

the moving objects.

Figure 4.2 provides an overview of the process in Adaptive Background Learning technique.

4.2.2 Adaptive-Selective Background Learning

The main advantage of Adaptive Background Learning is the dynamic updating of the background image

while changes happen in the video. However, some foreground pixels tend to be included in the background

image updating process. To counter this issue, an adaptive-selective algorithm is proposed wherein regions

40

B(x,y) It(x,y)

+

1 - αα

-

dt(x,y)

Figure 4.2: Overview of Adaptive Background Learning

with no moving pixels are only considered for the background updating process. This method is referred to

as Adaptive-Selective Background Learning.

4.2.3 Codebook

This background subtraction/motion detection technique samples values over long periods while avoid-

ing parametric assumptions. This technique has an adaptive background model that is capable of handling

structural background motion over time while using a limited amount of memory. This model can also cope

with illumination changes in the scene, either locally or globally. Additionally, this method allows moving

foreground objects in the video during the initial training period where the background model is constructed.

Codebook technique allows layered modeling and detection, which makes it possible to have multiple layers

of background each representing a different background layer.

4.2.4 Frame Difference

The Frame Difference technique is one of the simplest ways to detect changes in pixel intensity in video

frames. In a gray-scale frame, for each pixel with (x, y) coordinates in frame It−1, the absolute difference

41

with its corresponding pixel in the next frame It is calculated using:

d(x, y) = |(It−1(x, y)− It(x, y)|, (4.3)

In an RGB image (colored image), this difference could be calculated by different methods, like Manhattan

distance (4.4), where ICt (x, y) is the pixel value/intensity in the C channel.

d(x, y) = |(IRt−1(x, y)− IRt (x, y)|+ |(IGt−1(x, y)− IGt (x, y)|+ |(IBt−1(x, y)− IBt (x, y)|, (4.4)

Despite its simplicity, this method offers many advantages. It performs well in dynamic video scenes and

operates quickly by satisfying the standard video frame rate. Additionally, the technique could be imple-

mented easily, and has relatively low design complexity. This makes Frame Difference suitable for real-time

systems.

4.2.5 Local Binary Similarity Segmenter (LOBSTER)

This spatiotemporal-based background subtraction/motion detection technique is based on the adapta-

tion and integration of the Local Binary Similarity Patterns (LBSP) to a set of rules about model building and

maintenance. This method starts off from the original ViBe [13] approach because it offered the prospect of

a flexible method with potential for future improvements. The straightforward approach for this adaptation

was to replace all pixel intensity-related concepts with their feature descriptor-based counterparts. As with

ViBe, this method is based on a reference model that uses N background samples per pixel to independently

determine which new pixels are foreground/moving. The difference is in the nature of these samples, which

is replaced by LBSP binary string descriptors. To calculate the difference between the background model

and the current frame, a Hamming distance operator is utilized. Additionally, there were multiple low-cost

improvements to both the model’s rules and the feature descriptor to improve performance.

42

4.2.6 Mixture of Gaussian V2

This method is an improvement on the background subtraction algorithm introduced by Stauffer and

Grimson [69]. Instead of explicitly modeling the values of the pixels as a single particular type of distribu-

tion, they model the values of a particular pixel as a mixture of Gaussians. Using the persistence and the

variance of each of the Gaussians in the mixture, they determine which Gaussians may be related to back-

ground colors. Pixel values that do not fit the background distributions will be categorized as foreground.

Foreground pixels will be considered background when there is a Gaussian model that includes them. Their

system handles the lighting changes, repetitive motions of elements in the scene, slow-moving objects, and

adding or removing objects from the video frames, robustly. In this technique, slow-moving objects tend to

take longer to be merged into the background. This is because their color has a greater variance than the

background colors. Additionally, repetitive variations are learned, and a model for the background distribu-

tion is generally maintained even if it is temporarily replaced by another distribution. This method has two

important parameters: the learning constant and the proportion of the data that should be accounted for by

the background. Without needing to change the default value of these parameters, their proposed algorithm

shows good performance in outdoor and indoor scenes.

4.2.7 Pixel-based Adaptive Word Consensus Segmenter (PAWCS)

This background subtraction/motion detection method can be utilized in a large variety of scenes without

the need to manually readjust parameters. This method has a persistence-based word dictionary scheme for

instance-based background modeling. Unlike the previously mentioned Codebook or other sample-sensitive

methods, this non-parametric background modeling policy leads to online principled learning of static and

dynamic background patches by having a low memory footprint. This is because it dynamically updates

the minimal number of background samples (or words) that is required to properly categorize all the pixels

in the scene. A word is an element consisting of RGB values and other items like brightness and the last

43

access time for that word. Persistence estimation is used to measure the importance of each background

word over time by incorporating local match counts. Persistence values have an effect on the rate at which

each word is updated. PAWCS requires no explicit training phase to generate its background models, and it

keeps updating the models while processing new video frames.

This technique improves segmentation coherence by spreading information between neighboring pixel

models. Additionally, it allows the capture of large-scale background change patterns. This method also

automatically adjusts its primary parameters by incorporating closed-loop controllers into each pixel-level

model. That way, each background region can exhibit its own modeling and classification behavior, which

can also evolve over the analyzed sequences. Primary parameters are automatically adjusted and are regu-

lated by monitoring multiple factors including segmentation noise; similarity between background models

and new frames; and region instability by considering the frequency of label changes.

4.2.8 SigmaDelta (
∑
−△)

The first step of the SigmaDelta (
∑
−△) method is to compute

∑
−△mean, after which the difference

between the image and the
∑
−△mean is calculated. The latter value is also referred to as motion likelihood

measure. The next step is to calculate the
∑
−△ variance which is defined as the

∑
−△ mean of N times

the non-zero differences. As the interest is in the pixels with a variation rate significantly higher than

their temporal activity, the difference is multiplied by N. Finally, the motion label is produced using the

comparison between the difference and the variance.

This algorithm is presented in Figure 4.3.

4.2.9 Static Frame Difference

This technique, also referred to as the basic model, manually sets a static image that represents the back-

ground. This image does not have any moving object. For each video frame, the absolute difference between

the current frame and the static background image is calculated. A static image is not the best choice, if the

44

Step 1:
Initialization

For each pixel x:
M0(x) = I0(x)

For each frame t:
For each pixel x:

Mt(x) = Mt−1(x) + sgn(It(x)−Mt−1(x))
Step 2:
For each frame t:

For each pixel x:
△t(x) = |Mt(x)− It(x)|

Step 3:
Initialization

For each pixel x:
V0(x) = △0(x)

For each frame t:
For each pixel x such that△t(x) ̸= 0 :

Vt(x) = Vt−1(x) + sgn(N ×△t(x)− Vt−1(x))
Step 4:
For each frame t:

For each pixel x:
if△t(x) < Vt(x) :

then Dt(x) = 0
else Dt(x) = 1

Figure 4.3: Simplified Algorithm for
∑
−△Motion Estimation Technique

ambient lighting changes, then the foreground segmentation may fail dramatically. It is possible to solve

this issue by using the previous frame rather than a static image. This enhanced technique is referred to as

Frame Difference, which works with some background changes but has a weak performance if the moving

object stops suddenly.

4.2.10 Flexible Background Subtraction with Self-Balanced Local Sensitivity (SuBSENSE)

This approach relies on the automatic adjustment of parameters, in addition to updating and pixel la-

beling rules for a non-parametric model. The goal is to achieve optimal segmentation results for different

types of scenarios. Color and Local Binary Similarity Patterns (LBSP) is the basis for change detection in

pixel values and is done by using spatiotemporal analyses [16, 68]. This leads to increased sensitivity for

the detection of changes in pixel values. This method’s flexibility is a result of its automatic adjustments of

local sensitivity. Decision thresholds and state variables are adjusted by pixel-level feedback loops.

45

This method allows for the identification and isolation of areas where segmentation is more difficult. It

is also capable of achieving excellent overall performance in difficult scenarios. The processing speed of

SuBSENSE is still acceptable for real-time applications, although it is generally more expensive than other

motion detection techniques.

4.2.11 TwoPoints

This method uses three frames to separate background and foreground pixels. These three frames are

the current and the previous two frames, named history frames 1 and 2. The first step is the calculation of

difference between the previous two frames. The result is used as a threshold value to determine moving

pixels by comparing the current frame against history frame 1 and history frame 2. The result from each

comparison is accumulated in the final output.

4.2.12 ViBe

This motion detection technique can be initialized with a single frame, eliminating the need to wait

for several frames to initialize the background model. This is an advantage for image processing solutions

embedded in digital cameras, which are required to work with short sequences. Instead of keeping samples

in the pixel models for a fixed amount of time, the insertion time of a pixel in the model is ignored and a

value is selected to be replaced randomly, resulting in a smooth fading lifespan for the pixel samples.

Additionally, this enables the technique to generate an efficient result for wider ranges of background

changing rates and simultaneously reduces the required stored number of samples needed for each pixel

model. The spatial consistency of the background model is guaranteed by allowing samples to diffuse

between neighboring pixel models. This makes it more resilient to camera motions, while simultaneously

eliminating the need to post-process segmentation maps in order to produce spatially coherent results. There

is a strictly conservative update scheme in this method which dictates that no foreground pixel value should

ever be merged into any background model.

46

4.2.13 Weighted Moving Mean

In this motion detection algorithm, the foreground/moving pixels is/are calculated using the following

steps:

First, the weighted average of the previous l frames is calculated by Equation 4.5

Meanl =
1

l

l∑
t=1

Wt × Ft (4.5)

Ft is the frame at timestamp t in the video; Wt is the considered weight for each frame, which is

generally higher for frames closer to the current frame being processed for foreground extraction (frame

Fl).

Then the foreground is calculated by employing Equation 4.6.

Foregroundl =

√√√√ l∑
t=1

(Wt × |Ft −Meant|2) (4.6)

The main advantage of this method is the adaptive maintenance of the background model while changes

occur in the scene.

4.2.14 Weighted Moving Variance

This motion detection algorithm is similar to the Weighted Moving Mean approach. The difference is

that it incorporates a weighted moving variance to directly calculate the foreground pixels.

4.3 Execution Complexity and the Visual Performance of Background Subtraction/Motion Detection
Techniques

Figure 4.4 shows the execution time of different background/motion detection techniques for five dif-

ferent videos recorded from live street/traffic cameras in different cities. Figure 4.4(f) displays the average

execution time over all the video files. As can be observed in this figure, three methods, namely LOBSTER,

47

PAWCS, and SuBSENSE, are significantly more time-consuming and complex to execute than the rest of

demonstrated methods. Therefore, these methods are not appropriate for use in our solution as they are more

time-consuming than running the high-resolution YOLOv4 neural network on the input images without the

application of any pre-processing. Thus, we have removed these methods from Figure 4.4(g) to properly

display the average execution time per frame for other motion detection methods as the scaling is appropriate

with the exclusion of the mentioned complex methods.

As demonstrated in this figure, all the methods except for Weighted Moving Variance are fairly light

to execute and could reach frame rates of over 50fps running on a single thread on a regular CPU. This

translates to easy implementation of these methods on edge devices without throttling the operating frame

rate of these devices.

Figures 4.5, 4.6, 4.7, 4.8, and 4.9 illustrate the results/output of different motion detection algorithms on

different input videos from live street/traffic cameras in multiple cities. In these figures, Subfigure x.a shows

the original frame used as an input for the motion detection algorithm while the other subfigures show the

output of different motion detection algorithms, with black pixels representing background and white pixels

repressing foreground/motion.

The detected foregrounds in Weighted Moving Variance and Weighted Moving Mean methods mostly

consist of edge pixels of the moving objects in the scene. This can be seen in Figures 4.5(b), 4.5(c), 4.6(b),

4.6(c), 4.7(b), 4.7(c), 4.8(b), 4.8(c), 4.9(b), and 4.9(c). The Weighted Moving Mean method seems to be

less sensitive in generating the foreground image than the Weighted Moving Variance method.

The foreground pixels in the ViBe method consist of the edge and internal pixels of the moving objects.

By looking at Figures 4.5(d), 4.6(d), 4.7(d), 4.8(d), and 4.9(d), it can be observed that this method is more

sensitive to moving pixels in comparison to Weighted Moving Average and Weighted Moving Variance and

tends to produce more scattered white pixels in the results. The TwoPoint method behaves similarly to the

48

Adaptiv
eBack

gro
undLearn

ing

Adaptiv
eSelecti

ve
BgLearn

ing

CodeBook

Fra
meDiffe

re
nce

LOBSTER

Mixt
ure

OfG
auss

ianV2

PAW
CS

SigmaDelta

Static
Fra

meDiffe
re

nce

SuBSENSE

TwoPoints
ViB

e

W
eightedMovin

gMean

W
eightedMovin

gVaria
nce

Motion Detection/Background Subtraction Algorithm

0

0.2

0.4

0.6

0.8

1

E
x
e
.
T

im
e
 p

e
r

F
rm

.
(s

e
c
)

(a) Lamai, Koh Samui, Thailand

Adaptiv
eBack

gro
undLearn

ing

Adaptiv
eSelecti

ve
BgLearn

ing

CodeBook

Fra
meDiffe

re
nce

LOBSTER

Mixt
ure

OfG
auss

ianV2

PAW
CS

SigmaDelta

Static
Fra

meDiffe
re

nce

SuBSENSE

TwoPoints
ViB

e

W
eightedMovin

gMean

W
eightedMovin

gVaria
nce

Motion Detection/Background Subtraction Algorithm

0

0.2

0.4

0.6

0.8

1

E
x
e
.
T

im
e
 p

e
r

F
rm

.
(s

e
c
)

(b) Saint Petersburg, Russia

Adaptiv
eBack

gro
undLearn

ing

Adaptiv
eSelecti

ve
BgLearn

ing

CodeBook

Fra
meDiffe

re
nce

LOBSTER

Mixt
ure

OfG
auss

ianV2

PAW
CS

SigmaDelta

Static
Fra

meDiffe
re

nce

SuBSENSE

TwoPoints
ViB

e

W
eightedMovin

gMean

W
eightedMovin

gVaria
nce

Motion Detection/Background Subtraction Algorithm

0

0.2

0.4

0.6

0.8

1

E
x
e
.
T

im
e
 p

e
r

F
rm

.
(s

e
c
)

(c) New Orleans, Louisiana, United States

Adaptiv
eBack

gro
undLearn

ing

Adaptiv
eSelecti

ve
BgLearn

ing

CodeBook

Fra
meDiffe

re
nce

LOBSTER

Mixt
ure

OfG
auss

ianV2

PAW
CS

SigmaDelta

Static
Fra

meDiffe
re

nce

SuBSENSE

TwoPoints
ViB

e

W
eightedMovin

gMean

W
eightedMovin

gVaria
nce

Motion Detection/Background Subtraction Algorithm

0

0.2

0.4

0.6

0.8

1

E
x
e
.
T

im
e
 p

e
r

F
rm

.
(s

e
c
)

(d) Laramie, Wyoming, United States

Adaptiv
eBack

gro
undLearn

ing

Adaptiv
eSelecti

ve
BgLearn

ing

CodeBook

Fra
meDiffe

re
nce

LOBSTER

Mixt
ure

OfG
auss

ianV2

PAW
CS

SigmaDelta

Static
Fra

meDiffe
re

nce

SuBSENSE

TwoPoints
ViB

e

W
eightedMovin

gMean

W
eightedMovin

gVaria
nce

Motion Detection/Background Subtraction Algorithm

0

0.2

0.4

0.6

0.8

1

E
x
e
.
T

im
e
 p

e
r

F
rm

.
(s

e
c
)

(e) Renesse, Netherlands

Adaptiv
eBack

gro
undLearn

ing

Adaptiv
eSelecti

ve
BgLearn

ing

CodeBook

Fra
meDiffe

re
nce

LOBSTER

Mixt
ure

OfG
auss

ianV2

PAW
CS

SigmaDelta

Static
Fra

meDiffe
re

nce

SuBSENSE

TwoPoints
ViB

e

W
eightedMovin

gMean

W
eightedMovin

gVaria
nce

Motion Detection/Background Subtraction Algorithm

0

0.2

0.4

0.6

0.8

1

E
x
e
.
T

im
e
 p

e
r

F
rm

.
(s

e
c
)

(f) Average of all locations

Adaptiv
eBack

gro
undLearn

ing

Adaptiv
eSelecti

ve
BgLearn

ing

CodeBook

Fra
meDiffe

re
nce

Mixt
ure

OfG
auss

ianV2

SigmaDelta

Static
Fra

meDiffe
re

nce

TwoPoints
ViB

e

W
eightedMovin

gMean

W
eightedMovin

gVaria
nce

Motion Detection/Background Subtraction Algorithm

0

0.02

0.04

0.06

E
x
e
.
T

im
e
 p

e
r

F
rm

.
(s

e
c
)

(g) Average of all locations (without the computationally com-
plex motion detection methods)

Figure 4.4: Average Execution Time per Frame for Different Motion Detection Algorithms, Considering
Different Input Videos

49

Vibe method, but has considerably more white scattered pixels around the scene when no desired moving

object exists. This fact can be observed by looking at Figures 4.5(e), 4.6(e), 4.7(e), 4.8(e), and 4.9(e).

The results from SuBSENSE, PAWCS, and LOBSTER motion detection techniques have clean and

clearly defined patches of white pixels, with sharp edges, for the moving objects in the video frame. This

is observable in Figures 4.5(f), 4.6(f), 4.7(f), 4.8(f), 4.9(f), 4.5(i), 4.6(i), 4.7(i), 4.8(i), 4.9(i), 4.5(k), 4.6(k),

4.7(k), 4.8(k), and 4.9(k). However, it should be noted that these three methods are extensively expensive to

execute and would not be suitable for our proposed enhanced detection system; the LOBSTER method has

more defined edges in comparison to SuBSENSE and PAWCS methods.

The Static Frame Difference method has loosely similar results to the TwoPoints method but with a

larger amount of scattered white pixels around the scene. This can be seen in Figures 4.5(g), 4.6(g), 4.7(g),

4.8(g), and 4.9(g).

Trailing white pixels behind moving objects can be observed in the SigmaDelta motion detection results.

By looking at Figures 4.5(h), 4.6(h), 4.7(h), 4.8(h), and 4.9(h) it can be deducted that the performance of

the SigmaDelta method is similar to the TwoPoints method but with less scattered white pixels around the

scene.

The Mixture of Gaussian V2 method has the most fluctuating performance in producing the foreground

image, depending on the scene from the input video file. By comparing Figures 4.5(j), 4.6(j), 4.7(j), 4.8(j),

and 4.9(j), it can be observed that this method on occasion produces a highly noisy image with a significant

amount of scattered white pixels, while in other cases results in images with barely any white pixels visible

in the scene.

The Frame Difference method (Figs. 4.5(l), 4.6(l), 4.7(l), 4.8(l), and 4.9(l)) has a performance similar

to Weighted Moving Mean, while mostly being less sensitive to moving objects (less defined edges on the

foreground image) and showing a higher number of scattered white pixels.

50

The highest number of scattered white pixels in the generated foreground images can be observed in the

results collected from the CodeBook motion detection method. Figures 4.5(m), 4.6(m), 4.7(m), 4.8(m), and

4.9(m) show how noisy the results are compared to the results from other methods.

Adaptive Selective Background Learning has well-defined patches of white pixels, representing the mov-

ing objects in the scene; however, this method is prone to showing foreground pixels erroneously selected

from previous frames. This causes a ghost object to be present in some results, chasing the moving object.

Figures 4.5(n), 4.6(n), 4.7(n), 4.8(n), and 4.9(n) display the output of this method generated from different

input video files.

Finally, Adaptive Background Learning (Figs. 4.5(o), 4.6(o), 4.7(o), 4.8(o), and 4.9(o)) can be observed

to have the highest number of trailing white pixels dragging around the moving objects.

51

(a) Input Frame (b) Weighted Moving Variance (c) Weighted Moving Mean

(d) ViBe (e) TwoPoints (f) SuBSENSE

(g) Static Frame Difference (h) SigmaDelta (i) PAWCS

(j) Mixture Of Gaussian V2 (k) LOBSTER (l) Frame Difference

(m) CodeBook (n) Adaptive Selective Background
Learning

(o) Adaptive Background Learning

Figure 4.5: Results from Motion Detection Algorithms, Running on the Input Video from Lamai, Koh
Samui, Thailand

52

(a) Input Frame (b) Weighted Moving Variance (c) Weighted Moving Mean

(d) ViBe (e) TwoPoints (f) SuBSENSE

(g) Static Frame Difference (h) SigmaDelta (i) PAWCS

(j) Mixture Of Gaussian V2 (k) LOBSTER (l) Frame Difference

(m) CodeBook (n) Adaptive Selective Background
Learning

(o) Adaptive Background Learning

Figure 4.6: Results from Motion Detection Algorithms, Running on the Input Video from Saint Petersburg,
Russia

53

(a) Input Frame (b) Weighted Moving Variance (c) Weighted Moving Mean

(d) ViBe (e) TwoPoints (f) SuBSENSE

(g) Static Frame Difference (h) SigmaDelta (i) PAWCS

(j) Mixture Of Gaussian V2 (k) LOBSTER (l) Frame Difference

(m) CodeBook (n) Adaptive Selective Background
Learning

(o) Adaptive Background Learning

Figure 4.7: Results from Motion Detection Algorithms, Running on the Input Video from New Orleans,
Louisiana, United States

54

(a) Input Frame (b) Weighted Moving Variance (c) Weighted Moving Mean

(d) ViBe (e) TwoPoints (f) SuBSENSE

(g) Static Frame Difference (h) SigmaDelta (i) PAWCS

(j) Mixture Of Gaussian V2 (k) LOBSTER (l) Frame Difference

(m) CodeBook (n) Adaptive Selective Background
Learning

(o) Adaptive Background Learning

Figure 4.8: Results from Motion Detection Algorithms, Running on the Input Video from Laramie,
Wyoming, United States

55

(a) Input Frame (b) Weighted Moving Variance (c) Weighted Moving Mean

(d) ViBe (e) TwoPoints (f) SuBSENSE

(g) Static Frame Difference (h) SigmaDelta (i) PAWCS

(j) Mixture Of Gaussian V2 (k) LOBSTER (l) Frame Difference

(m) CodeBook (n) Adaptive Selective Background
Learning

(o) Adaptive Background Learning

Figure 4.9: Results from Motion Detection Algorithms, Running on the Input Video from Neath, Wales

56

4.4 Brief Description of Clustering Techniques

We are considering many clustering techniques including KMeans [11], Affinity Propagation [28], Mean

Shift [23], Spectral [44], Agglomerative [48], DBSCAN [27], OPTICS [9], Birch [79], and MiniBatch

KMeans [59]. We will examine these techniques, starting from KMeans, and measure their execution com-

plexity and their performance in suitable videos that are common in our proposed system. By using a

single motion detection algorithm and running our application and then measuring the execution time and

recording the output from different clustering algorithms, this undertaking could be accomplished. We have

selected the Frame Difference motion detection technique as the fixed algorithm in performing the related

experiments.

4.4.1 KMeans

k-means clustering is a method that aims to partition n observations/points into k clusters. Each obser-

vation/point belongs to the cluster with the nearest mean. The mean is also called the cluster center or cluster

centroid. This result of clustering is a partitioning of the data space into Voronoi cells. k-means clustering

minimizes within-cluster variances.

The problem of clustering is an NP-hard problem; however, efficient heuristic algorithms converge

quickly to a local optimum.

The most common implementation of this algorithm is an iterative refinement technique. This technique

is also referred to as Lloyd’s algorithm, particularly in the computer science community.

Given an initial set of k means m(1)
1 ,..., m(1)

k , the algorithm proceeds by alternating between two steps

[26]:

Assignment step: Assign each point to the cluster with the nearest mean/center; the one with the

least squared Euclidean distance. Mathematically, this translates to partitioning the points according to

the Voronoi diagram generated by the means/centers.

57

S
(t)
i =

{
xp :

∥∥∥xp −m
(t)
i

∥∥∥2 ≤ ∥∥∥xp −m
(t)
j

∥∥∥2 ∀j, 1 ≤ j ≤ k

}
,

where each xp is assigned to exactly one S(t), even if it could be assigned to two or more of them.

Update step: Recalculate means (centroids) for observations assigned to each cluster.

m
(t+1)
i = 1∣∣∣S(t)

i

∣∣∣
∑

xj∈S
(t)
i

xj

The algorithm is converged when the assignments no longer change. The algorithm is not guaranteed to

find the optimum solution.

4.4.2 Affinity Propagation

This clustering algorithm is based on the concept of message passing between data points [28]. This

method does not require the number of clusters to be determined or estimated before running the algorithm.

This is unlike other clustering algorithms such as k-means. Affinity propagation finds exemplar members of

the input set that are representative of clusters.

The algorithm proceeds by alternating between two message-passing steps, which update two matrices.

The responsibility matrix R has values r(i, k) that quantify how well suited data point xk is to serve as the

exemplar for data point xi, relative to other candidate exemplars for data point xi. The availability matrix

A contains values a(i, k) that represent how appropriate it would be for data point xi to pick data point

xk as its exemplar, taking into account other points’ preference for xk as an exemplar. Both matrices are

initialized to all zeroes and could be considered as log-probability tables.

Iterations are executed until either the cluster boundaries remain unchanged, or some predetermined

number of iterations is reached.

4.4.3 MeanShift

MeanShift clustering aims to discover blobs in a smooth density of data points. It is a centroid-based

algorithm and operates by updating candidates for centroids to be the mean of the points inside a given

region. These candidates are then filtered in a post-processing step to remove near-duplicates to produce the

58

final set of centroids.

Given a candidate centroid x for iteration t, the candidate is updated according to the following equation:

xt+1 = m(xt)

Where m is the weighted mean of the density in the window and is calculated using the following

equation: m(x) =

∑
xi∈N(x) K(xi−x)xi∑
xi∈N(x) K(xi−x) where K function measures the distance to the current estimate and

N(x) is the neighborhood of centroid x, a set of points for which K(xi) ̸= 0. The mean-shift algorithm

now sets x← m(x) and repeats the estimation until m(x) converges.

4.4.4 Spectral

Spectral clustering is a popular algorithm due to its simple implementation and performance in many

graph-based clustering applications. It can be solved efficiently by standard linear algebra software and

is mostly capable of outperforming traditional algorithms such as the k-means. Spectral clustering is per-

formed in these main steps:

• Create a similarity graph between the N data points to cluster.

• Compute the Laplacian L (or the normalized Laplacian) of the graph.

• Compute the first k eigenvectors (the eigenvectors corresponding to the k smallest eigenvalues of L).

This defines a feature vector for each data point.

• Cluster the graph nodes based on these features.

4.4.5 Agglomerative

This is a hierarchical clustering algorithm. These clustering algorithms build nested clusters by merging

or splitting them successively. These clusters could be represented as a tree. The root of the tree is the main

cluster that gathers all the samples. The leaves in this tree are the clusters with only one data point. This

59

clustering method performs a hierarchical clustering using a bottom-up approach. Each data point starts as

a single cluster, and clusters are successively merged together.

Different metrics could be employed for the merge strategy, including minimization of the sum of

squared differences within all clusters. This is a variance-minimizing approach and it is similar to the

k-means objective function but tackled with an agglomerative hierarchical approach.

Agglomerative clustering is capable of scaling to a large number of samples/data points when used

jointly with a connectivity matrix, although it is computationally expensive when no connectivity constraints

are considered between data points. If there is no connectivity constraint, it considers at each step all the

possible merges.

4.4.6 DBSCAN

The DBSCAN algorithm assumes clusters are areas of high density separated by areas of low density.

This generic assumption will lead to clusters found by DBSCAN to be of any shape. This is as opposed

to k-means which assumes that clusters are convex shaped. The main component of the DBSCAN is the

concept of core samples, which are samples that are in high density regions. A cluster is a set of core

samples that are close to each other and a set of non-core samples which are close to a core sample but

are not themselves core samples. Two parameters are configurable for this algorithm, min samples and eps.

These two parameters formally define how dense the data points/samples should be in a cluster. Higher min

samples or lower eps indicate higher density necessary to form a cluster.

Formally, a core sample is a sample in the data set wherein there exist min samples other samples within

a distance of eps. These are called neighbors of the core sample. This indicates the core sample is in a

dense area of the vector space. A cluster is a set of core samples that is built by recursively picking a core

sample, finding all its neighbors that are core samples, finding all their neighbors that are core samples, etc.

A cluster also has a set of non-core samples. These are samples that are neighbors of a core sample in the

60

cluster but are not core samples themselves. These samples are on the edges of a cluster.

By definition, any core sample is part of a cluster. Any sample/data point that is not a core sample, while

being at least eps in distance from any core sample, is considered an outlier by the algorithm.

The min samples primarily controls how tolerant the algorithm is with respect to noise. The eps pa-

rameter is crucial to choose appropriately for the data set and the employed distance function and mostly

should not be left at the default value. When chosen too small, most data points will not be clustered and

will be considered as noise. When chosen too large, close clusters will be merged into a single cluster, and

eventually, the entire data set will be considered as a single cluster.

4.4.7 OPTICS

OPTICS is short for Ordering Points to Identify Cluster Structure. This clustering method is closely

related to the DBSCAN clustering algorithm. It adds two more terms to the concepts of DBSCAN cluster-

ing. The first one is the core distance, which is the minimum value of radius required to classify a given

point/sample as a core point. If the given point is not a core point, then its core distance is undefined. The

second term is reachability distance, which is defined with respect to another data point q. The reachability

distance between a point p and a point q is the maximum of the core distance of p and the distance between

p and q (Euclidean distance or some other distance metric). It should be noted that the reachability distance

is not defined if q is not a core point.

This technique does not explicitly segment the data into clusters. Instead, it produces a visualization of

reachability distances then uses this visualization to cluster the samples. This makes it different from other

clustering techniques.

4.4.8 BIRCH

The BIRCH clustering algorithm stands for Balanced Iterative Reducing and Clustering using Hierar-

chies. It builds a tree called the Clustering Feature Tree (CFT) for the given data/samples. By using this

61

algorithm, the data is lossy compressed to a set of Clustering Feature nodes (CF Nodes). The CF nodes have

a number of subclusters called Clustering Feature (CF) subclusters, which can have CF nodes as children.

The CF subclusters hold the required information for clustering. This eliminates the need to hold the

entire input data in memory. This information includes:

• Number of samples in a subcluster.

• Linear Sum: an n-dimensional vector holding the sum of all samples.

• Squared Sum: sum of the squared L2 norm of all samples.

• Centroids: this helps avoid the recalculation of linear sum/number of samples.

• Squared norm of the centroids.

The BIRCH algorithm has two parameters. The first parameter is the branching factor which limits the

number of subclusters in a node. The second parameter is the threshold which limits the distance between

the entering sample and the existing subclusters.

This algorithm can be considered as a data reduction method since it reduces the input data to a set of

subclusters that are obtained directly from the leaves of the CFT.

4.4.9 MiniBatchKMeans

The MiniBatchKMeans algorithm is a variation of the KMeans algorithm which reduces computation

time by using mini-batches while still attempting to optimize the same objective function. In each training

cycle, mini-batches are subsets of the input data that are randomly sampled. These mini-batches dramatically

reduce the amount of processing required to converge to a local solution. MiniBatchKMeans delivers results

that are just marginally worse than the conventional method, in contrast to other techniques that shorten the

convergence time of k-means.

62

Similar to vanilla k-means, the algorithm iterates between two major phases. To generate a mini-batch,

samples are randomly selected from the dataset in the first phase. These are then assigned to the centroid

that is closest to them. The centroids are updated in the second phase. Unlike k-means, this is performed

on a per-sample basis. The allocated centroid is updated for each sample in the mini-batch by taking the

streaming average of the sample and all previous samples assigned to that centroid. As a result, the rate of

change for a centroid over time is reduced. These steps are repeated until convergence or a set number of

iterations has been reached.

MiniBatchKMeans converges faster than KMeans, but the results are of worse quality. In practice, the

quality difference might be relatively minimal.

4.5 Execution Time Complexity and the Visual Performance of Clustering Techniques

Figure 4.10 shows the execution time of different clustering techniques for five different videos recorded

from live street/traffic cameras in different cities.

The average execution time over all the video files is shown in Figure 4.10(f). As shown in this dia-

gram, Affinity Propagation takes substantially longer and is more complicated to implement than the other

approaches. As a result, this method will not be suitable for use in our solution because it will consume

a significant percentage of the overall time required to run the enhanced YOLO solution. Therefore, this

method has been deleted from Figure 4.10(g) to appropriately display the average execution time per frame

for other clustering methods, as the scaling is appropriate with the exclusion of the sophisticated approach

stated. Although the Spectral and OPTICS clustering methods are still considerably more time consuming

than the rest, we have included them in our experiments as they could still achieve decent frame rates while

being utilized in our enhanced YOLO solution.

All the methods, with the exception of Affinity Propagation, are rather light to execute and may achieve

frame rates of above 30fps when performed on a single thread on a regular CPU, as seen in this figure. As

63

a result, these methods can be easily implemented on edge devices without restricting their working frame

rate.

Figures 4.11, 4.12, 4.13, 4.14, and 4.15 illustrate the results/output of different clustering algorithms on

different input videos from live street/traffic cameras in multiple cities. In these figures, Subfigure x.a shows

the original frame used as an input for the clustering algorithm while the other subfigures show the output

of different clustering algorithms, with red rectangles representing the encompassed area of formed single

clusters, blue rectangles repressing the encompassing area of all the clusters, and magenta rectangles rep-

resenting the extended area calculated from the blue rectangles that would be fed to the deployed YOLOv4

object detection solution.

Visually, most of the employed clustering methods behave similarly on the selected frame picked for

comparison. There are some subtle differences, particularly in the generated individual clusters (red rect-

angles). For example, the DBSCAN method shown in Figures 4.11(j) and 4.15(j) generates clusters that

encompass the entire frame, while other methods result in a small portion of the frame being selected as the

region of interest. Another example could be the generated clusters in Figures 4.11(g) vs. 4.11(h), 4.12(b)

vs. 4.12(c), 4.12(g) vs. 4.12(h), and 4.13(b) vs. 4.13(c) which are not generated similarly.

64

KMeans

Affin
ity

Pro
pagatio

n

Spectr
al

Agglomera
tiv

e

DBSCAN

OPTIC
S

Birc
h

MiniB
atch

KMeans

Sim
pleCluste

rin
g

Clustering Algorithm

0

0.02

0.04

0.06

0.08

0.1

E
x

e
.

T
im

e
 p

e
r

F
rm

.
(s

e
c

)

(a) Lamai, Koh Samui, Thailand

KMeans

Affin
ity

Pro
pagatio

n

Spectr
al

Agglomera
tiv

e

DBSCAN

OPTIC
S

Birc
h

MiniB
atch

KMeans

Sim
pleCluste

rin
g

Clustering Algorithm

0

0.02

0.04

0.06

0.08

0.1

E
x

e
.

T
im

e
 p

e
r

F
rm

.
(s

e
c

)

(b) Saint Petersburg, Russia

KMeans

Affin
ity

Pro
pagatio

n

Spectr
al

Agglomera
tiv

e

DBSCAN

OPTIC
S

Birc
h

MiniB
atch

KMeans

Sim
pleCluste

rin
g

Clustering Algorithm

0

0.02

0.04

0.06

0.08

0.1

E
x

e
.

T
im

e
 p

e
r

F
rm

.
(s

e
c

)

(c) New Orleans, Louisiana, United States

KMeans

Affin
ity

Pro
pagatio

n

Spectr
al

Agglomera
tiv

e

DBSCAN

OPTIC
S

Birc
h

MiniB
atch

KMeans

Sim
pleCluste

rin
g

Clustering Algorithm

0

0.02

0.04

0.06

0.08

0.1

E
x

e
.

T
im

e
 p

e
r

F
rm

.
(s

e
c

)

(d) Laramie, Wyoming, United States

KMeans

Affin
ity

Pro
pagatio

n

Spectr
al

Agglomera
tiv

e

DBSCAN

OPTIC
S

Birc
h

MiniB
atch

KMeans

Sim
pleCluste

rin
g

Clustering Algorithm

0

0.02

0.04

0.06

0.08

0.1

E
x

e
.

T
im

e
 p

e
r

F
rm

.
(s

e
c

)

(e) Renesse, Netherlands

KMeans

Affin
ity

Pro
pagatio

n

Spectr
al

Agglomera
tiv

e

DBSCAN

OPTIC
S

Birc
h

MiniB
atch

KMeans

Sim
pleCluste

rin
g

Clustering Algorithm

0

0.02

0.04

0.06

0.08

0.1

E
x

e
.

T
im

e
 p

e
r

F
rm

.
(s

e
c

)

(f) Average of all locations

KMeans

Spectr
al

Agglomera
tiv

e

DBSCAN

OPTIC
S

Birc
h

MiniB
atch

KMeans

Sim
pleCluste

rin
g

Motion Detection/Background Subtraction Algorithm

0

0.02

0.04

0.06

E
x

e
.

T
im

e
 p

e
r

F
rm

.
(s

e
c

)

(g) Average of all locations (without the computationally com-
plex clustering detection methods)

Figure 4.10: Average Execution Time per Frame for Different Clustering Algorithms, Considering Different
Input Videos

65

(a) Input Frame (b) KMeans (c) Affinity Propagation

(d) Spectral (e) Agglomerative (f) OPTICS

(g) Birch (h) MiniBatchKMeans (i) Simple Clustering

(j) DBSCAN

Figure 4.11: Results from Clustering Algorithms, Running on the Input Video from Lamai, Koh Samui,
Thailand

66

(a) Input Frame (b) KMeans (c) Affinity Propagation

(d) Spectral (e) Agglomerative (f) OPTICS

(g) Birch (h) MiniBatchKMeans (i) Simple Clustering

(j) DBSCAN

Figure 4.12: Results from Clustering Algorithms, Running on the Input Video from Saint Petersburg, Russia

67

(a) Input Frame (b) KMeans (c) Affinity Propagation

(d) Spectral (e) Agglomerative (f) OPTICS

(g) Birch (h) MiniBatchKMeans (i) Simple Clustering

(j) DBSCAN

Figure 4.13: Results from Clustering Algorithms, Running on the Input Video from New Orleans, Louisiana,
United States

68

(a) Input Frame (b) KMeans (c) Affinity Propagation

(d) Spectral (e) Agglomerative (f) OPTICS

(g) Birch (h) MiniBatchKMeans (i) Simple Clustering

(j) DBSCAN

Figure 4.14: Results from Clustering Algorithms, Running on the Input Video from Laramie, Wyoming,
United States

69

(a) Input Frame (b) KMeans (c) Affinity Propagation

(d) Spectral (e) Agglomerative (f) OPTICS

(g) Birch (h) MiniBatchKMeans (i) Simple Clustering

(j) DBSCAN

Figure 4.15: Results from Clustering Algorithms, Running on the Input Video from Neath, Wales

70

4.6 Performance Evaluation Methodology

Figure 4.16 illustrates an overview of the performance evaluation methodology used in conducting dif-

ferent experiments and producing the comparison results.

 Input Video File

1056 x 1056
YOLOv4

Deployment

608 x 608
YOLOv4

Deployment
Motion Detection

Size Reduction

Size Reduction

Clustering

ROI Selection

416 x 416
YOLOv4

Deployment

608 x 608
YOLOv4

Deployment

YOLOv4
Deployment

Selection

Ground Truth

ROI Detection
Results

mAP Calculator

Detection Results

608 x 608
YOLOv4

mAP

mAP Calculator

Enhanced
YOLOv4

mAP
Comparison

En
ha

nc
ed

 Y
O

LO
 S

ys
te

m

ROI to Global
Conversion

Detection Results

Figure 4.16: Overview of Performance Evaluation Methodology

First, the frames from the input video file are fed to a YOLOv4 deployment configured with a high

resolution (e.g., 1056× 1056) input. The generated detection results from each individual frame are stored

in a file to be used later for comparison. These detection results will be considered as ground truth in our

experiments. The frames from the same video file are fed to another YOLOv4 deployment configured with

a lower resolution input (e.g., 608 × 608). Similarly, the detection results from each individual frame are

71

stored in a file.

The mentioned input video file will also be used in our proposed Enhanced YOLO system. Each frame

from the video file will be reduced in size to be prepared for the motion detection algorithm. The execution

time required for this algorithm is reduced substantially by reducing the size of the original input frame.

Not only is a reduced size input image detailed enough for our intended application, but the reduction

in the number of pixels and miniature movements also contributes to a better and cleaner result in the

motion/background-foreground detection algorithm.

After generating the motion detection image (a binary image where each white pixel represents a mov-

ing/foreground element), another size reduction operation is applied to the result to prepare it for the cluster-

ing algorithm. As was the case with the motion detection step, the execution time required for the clustering

algorithm is reduced substantially by reducing the size of binary background/foreground input frame. Simi-

larly, a reduced size input frame is sufficiently detailed for our intended application and the reduction in the

number of pixels/samples contributes to a better and cleaner result in the clustering algorithm.

Using the clustering results, the region of interest (ROI) could be calculated by considering an area that

covers all generated clusters. We also consider an additional configurable border that expands the selected

ROI calculated from the formed clusters. The calculated ROI is used in cropping the original input image.

The next step in the process is to decide which YOLOv4 deployment to select as the object detector. We

are making this decision based on two factors. The first is the ratio of the cropped region/ROI to the original

input image and the second is the previous average recognition probability values calculated from previous

input images fed to the YOLOv4 deployments. This calculation is done using the following equations.

IndexIndicator = C × CA

IA
+ (1− C)× (1− SRPt), (4.7)

72

SRPt = S × SRPt−1 + (1− S)×RPt (4.8)

Where C, CA, IA, SRP , S, and RP are constant, Cropped Area, Image Area, Smoothed Recognition

Probability, constant, and Recognition Probability, respectively. C and S values are between 0 and 1 and

Recognition Probability is calculated by averaging all the recognition probability values of all objects in the

ROI extracted from the YOLOv4 detection results.

A larger CA means a larger CA
IA which contributes to a higher IndexIndicator. Similarly, a lower

SRP increases the value for 1 − SRPt which leads to a higher IndexIndicator. IndexIndicator value

is between 0 and 1. The closer the value to 1, the higher the input resolution for the selected deployed

YOLOv4 detector. After determining the IndexIndicator value and assuming ThresholdV alues =

[th1, th2, th3, ..., thn] (n + 1 being the number of deployed YOLOv4 detectors), the following equation

could be used to find the selection index for the deployed YOLOv4 detectors.

Index = x where thx <= IndexIndicator and thx+1 > IndexIndicator (4.9)

where th1, th2, ..., thn are constant threshold values assigned to control the distribution of the cropped

images between different YOLOv4 deployments with different input resolutions. thx is greater than thx−1

and smaller than or equal to 1.

As an example, by deploying two YOLOv4 detectors (n + 1 = 2), one with a higher resolution, the

ThresholdV alues array could be assumed as [0.5]. This means that if the calculated IndexIndicator

value is for instance 0.42, the YOLOv4 deployment with index 0 will be selected as the object detector for

the current cropped image. On the other hand, if the calculated value is 0.68, the YOLOv4 deployment with

index 1 will be selected as the object detector (the one with a higher input resolution). It should be noted

that inclusion th0 = 0 is implicit in calculating the index value.

73

After selecting the proper YOLOv4 deployment and feeding the cropped ROI image to it, the detection

result in the ROI is generated. This is still not the desired final detection result as it only covers the ROI

region (the region containing the motion/foreground). This regional detection result needs to be converted to

the global detection result. The conversion takes advantage of the previous detection results to populate the

entire current frame with the detected objects. Here we check every detected object bounding box from the

previous frame by considering the ROI bounding box and calculating the intersection over union value. If

the calculated value is smaller than a configurable threshold, it will be transferred to the new frame detection

results. The ROI detection result is converted to the whole frame coordinates and is also added to the new

frame detection result. This calculated detection result is stored in a file to be used later for comparison.

By using a mAP (described in the next section) calculation module and the stored ground truth detection

results, the mAP results for both 608 × 608 YOLOv4 deployment and our Enhanced YOLO system are

generated. The mAP calculation module takes two input arguments. One is the ground truth detection

results and the other is the stored detection results from an object detection system. The generated mAP

results determine how close the results from the object detection system are to the ground truth information.

By comparing the mAP results from our Enhanced YOLO solution and the mAP results from the 608×

608 YOLOv4 deployment, the performance of our proposed solution is demonstrated.

Additionally, we are reporting the average execution time per frame and the number of pixels delivered

to the YOLOv4 deployment as these two items are important in any object detection system. The first

item directly translates to the processing power requirements and the second item is directly related to the

required bandwidth and data transferring to a cloud-based neural network deployment.

4.7 Mean Average Precision (mAP)

The mean average precision (mAP), often known as AP, is a widely used metric for assessing the per-

formance of models handling document/information retrieval and object detection tasks. Wikipedia defines

74

the mean average precision (mAP) of a group of queries as follows:

mAP =

∑Q
q=1AveP (q)

Q
(4.10)

where Q is the total number of queries in the set and AveP (q) denotes the average precision (AP) for a

single query, q.

The algorithm basically says that for each query, q, we calculate its corresponding AP, and then take the

mean of all of these AP scores to get a single value, termed the mAP, which measures how well our model

performs on the query.

Precision and recall are two regularly used metrics to assess the effectiveness of a classification model.

To comprehend mAP, we must first examine precision and recall.

The precision of a particular class in classification, also known as positive predicted value, is defined as

the ratio of true positives (TP) to the total number of predicted positives in the field of statistics and data

science. The formula is as follows:

Precision =
TP

TP + FP
(4.11)

Similarly, the recall of a particular class in classification is defined as the ratio of true positive rate (TP)

to the total of ground truth positives. The formula is as follows:

Recall =
TP

TP + FN
(4.12)

We would need to reduce our number of FP to achieve high precision, which would reduce our recall.

Similarly, lowering the number of FN would boost recall while lowering precision. In many circumstances,

such as information retrieval and object detection, we want our precision to be great (our predicted positives

75

to be TP).

We must first grasp IoU to calculate AP for object detection. The IoU is defined as the ratio of the area

of intersection over the area of union for the predicted and ground truth bounding boxes. Figure 4.17 shows

a visual representation of IoU.

Area of Intersection

Area of Union
IoU =

Figure 4.17: Visual Representation of IoU

To establish if a predicted bounding box (BB) is TP, FP, or FN, the IoU would be employed. The TN is

not calculated because each image is presumed to include an object. Consider Figure 4.18:

Triangle

Oval

Figure 4.18: Image with a Triangle and an Oval Labeled with Ground Truth Bounding Boxes

A triangle and an oval are depicted in the image, together with their ground truth bounding boxes. For

the time being, we will disregard the oval. On this image, we run our object detection model and get a

predicted bounding box for the triangle. If the IoU is more than 0.5, we call a prediction a TP. Figure 4.19

76

describes a possible scenario for TP.

Triangle

Triangle

Figure 4.19: IoU of Predicted BB (cyan) and GT BB (black) > 0.5 with the Correct Classification

There are two instances in which a BB could be classified as FP: when IoU < 0.5 and when the predicted

BB is duplicated.

Figure 4.7 shows these two instances.

Triangle

Triangle

(a) IOU < 0.5

Triangle

Tr
ia
ng
le

Triangle

(b) Duplicated BB

Figure 4.20: Illustrating the Different Scenarios a Predicted BB (cyan) Would be Considered as FP

77

When our object detection model fails to detect the target, we call it a false negative. Two scenarios

could occur: when there is no detection at all and when the predicted BB has an IoU > 0.5 but the wrong

classification.

We can now calculate the precision and recall of our detection for a particular class over the test set

because the TP, FP, and FN have been clearly established. The confidence level of each BB, which is

normally determined by its Softmax layer, would be used to rank/score the output.

The precision-recall curve is calculated using the model’s detection output for a specific class (e.g.,

"person") by adjusting the model score threshold that specifies what is counted as a model-predicted positive

detection of the class.

To find a point on the precision-recall curve, treat all objects above a specified model score threshold as

positive predictions, then calculate the precision and recall for that threshold.

The average precision value across all recall values is the final step in computing the AP score. This

is the single value that sums up the precision-recall curve’s form. The AP score is defined as the mean

precision at a set of 11 equally spaced recall levels; for clarification, recall values = [0, 0.1, 0.2,..., 1.0]. As

a result, the precision at recalli is assumed to equal the highest precision measured at a recall that is greater

than recalli.

The mean Average Precision or mAP score is calculated by taking the mean AP over all classes.

4.8 Results

Figures 4.21 to 4.35 compares mAP, the average execution time per frame, and the transferred data

from our proposed Enhanced YOLO solution against the results generated from the raw YOLO solution as

described in Figure 4.16. This means if a bar has a positive value and occupies the right-hand portion of

the figure, the performance related to that bar in our proposed solution is better in comparison to the raw

solution; on the other hand, if a bar has a negative value and occupies the left-hand portion of the figure,

78

the performance related to that bar in our proposed solution is worse than the raw solution. By considering

all combinations of different motion detection algorithms and different clustering techniques, all the tuples

of blue, orange, and red bars are generated. The first and the second word in each y-axes label determines

the employed motion detection algorithm and the clustering technique, respectively. As an example, Stat-

icFrameDifference MinbatchKmeans indicates that the results are related to the Enhanced YOLO system

where the configured motion detection algorithm is Static Frame Difference, while the employed clustering

algorithm is Min-batch Kmeans.

Figure 4.21 shows the relative results for our Enhanced YOLO solution by considering the input video

from Lamai, Koh Samui, Thailand. As can be seen in the figure, the overwhelming portion of the bars and

the area occupied by the bars belong to the right-hand portion of the graph, meaning the Enhanced YOLO

solution generally outperforms the raw solution by a considerable margin. As an example, by looking at

the methods with WeightedMovingMean as the selected motion detection algorithm, generally more than

1200% (12 times) reduction in the required data transmissions to the object detection neural network could

be achieved. Furthermore, the execution time reduction is around 800% which means that only one eighth of

the processing power will be required to run the enhanced YOLO solution in comparison to the raw method.

These large improvements come by some comparatively minor reduction in mAP results (around 20%).

The StaticFrameDifference motion detection method could be of interest if strictly no decrement in

mAP performance is desired. Figure 4.22 is a slice of Figure 4.21. It displays the relative results for Stat-

icFrameDifference methods. StaticFrameDifference AgglomerativeClustering combination provides around

24% improvement in both data transmission and execution time metrics while enabling 2% improvement

in mAP results; a win on all three fronts. Another interesting option is StaticFrameDifference DBSCAN

as for less than 1% decrement in mAP results, more than 75% improvement in execution time and data

transmission metrics are achieved.

79

-200 0 200 400 600 800 1000 1200 1400 1600

Time, mAP, Data Transmission Improvements (percent)

AdaptiveBackgroundLearning KMeans
AdaptiveBackgroundLearning SpectralClustering

AdaptiveBackgroundLearning AgglomerativeClustering
AdaptiveBackgroundLearning DBSCAN
AdaptiveBackgroundLearning OPTICS

AdaptiveBackgroundLearning Birch
AdaptiveBackgroundLearning MiniBatchKMeans
AdaptiveBackgroundLearning SimpleClustering
AdaptiveSelectiveBackgroundLearning KMeans

AdaptiveSelectiveBackgroundLearning SpectralClustering
AdaptiveSelectiveBackgroundLearning AgglomerativeClustering

AdaptiveSelectiveBackgroundLearning DBSCAN
AdaptiveSelectiveBackgroundLearning OPTICS

AdaptiveSelectiveBackgroundLearning Birch
AdaptiveSelectiveBackgroundLearning MiniBatchKMeans

AdaptiveSelectiveBackgroundLearning SimpleClustering
CodeBook KMeans

CodeBook SpectralClustering
CodeBook AgglomerativeClustering

CodeBook DBSCAN
CodeBook OPTICS

CodeBook Birch
CodeBook MiniBatchKMeans

CodeBook SimpleClustering
FrameDifference KMeans

FrameDifference SpectralClustering
FrameDifference AgglomerativeClustering

FrameDifference DBSCAN
FrameDifference OPTICS

FrameDifference Birch
FrameDifference MiniBatchKMeans
FrameDifference SimpleClustering

MixtureOfGaussianV2 KMeans
MixtureOfGaussianV2 SpectralClustering

MixtureOfGaussianV2 AgglomerativeClustering
MixtureOfGaussianV2 DBSCAN
MixtureOfGaussianV2 OPTICS

MixtureOfGaussianV2 Birch
MixtureOfGaussianV2 MiniBatchKMeans
MixtureOfGaussianV2 SimpleClustering

SigmaDelta KMeans
SigmaDelta SpectralClustering

SigmaDelta AgglomerativeClustering
SigmaDelta DBSCAN
SigmaDelta OPTICS

SigmaDelta Birch
SigmaDelta MiniBatchKMeans
SigmaDelta SimpleClustering

StaticFrameDifference KMeans
StaticFrameDifference SpectralClustering

StaticFrameDifference AgglomerativeClustering
StaticFrameDifference DBSCAN
StaticFrameDifference OPTICS

StaticFrameDifference Birch
StaticFrameDifference MiniBatchKMeans
StaticFrameDifference SimpleClustering

TwoPoints KMeans
TwoPoints SpectralClustering

TwoPoints AgglomerativeClustering
TwoPoints DBSCAN
TwoPoints OPTICS

TwoPoints Birch
TwoPoints MiniBatchKMeans

TwoPoints SimpleClustering
ViBe KMeans

ViBe SpectralClustering
ViBe AgglomerativeClustering

ViBe DBSCAN
ViBe OPTICS

ViBe Birch
ViBe MiniBatchKMeans
ViBe SimpleClustering

WeightedMovingMean KMeans
WeightedMovingMean SpectralClustering

WeightedMovingMean AgglomerativeClustering
WeightedMovingMean DBSCAN
WeightedMovingMean OPTICS

WeightedMovingMean Birch
WeightedMovingMean MiniBatchKMeans

WeightedMovingMean SimpleClustering
WeightedMovingVariance KMeans

WeightedMovingVariance SpectralClustering
WeightedMovingVariance AgglomerativeClustering

WeightedMovingVariance DBSCAN
WeightedMovingVariance OPTICS

WeightedMovingVariance Birch
WeightedMovingVariance MiniBatchKMeans

WeightedMovingVariance SimpleClustering

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.21: Relative Performance Results for Enhanced YOLO Solution against the Raw YOLO Consider-
ing the Input Video from Lamai, Koh Samui, Thailand

80

-10 0 10 20 30 40 50 60 70 80

Time, mAP, Data Transmission Improvements (percent)

StaticFrameDifference KMeans

StaticFrameDifference SpectralClustering

StaticFrameDifference AgglomerativeClustering

StaticFrameDifference DBSCAN

StaticFrameDifference OPTICS

StaticFrameDifference Birch

StaticFrameDifference MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.22: StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO Solution
against the Raw Yolo for the Input Video from Lamai, Koh Samui, Thailand

Figure 4.23 demonstrates the relative results for our Enhanced YOLO solution by considering the input

video from Saint Petersburg, Russia. It can be observed that, similarly to the results from the previous input

video file, the vast majority of the bars and the area occupied by the bars are located on the righthand side of

the graph, implying that the Enhanced YOLO solution outperforms the raw solution by a significant margin.

Let us again consider the methods with WeightedMovingMean as the selected motion detection algorithm.

These methods generally reduce the required data transmissions to the object detection neural network by

more than 1200% (12 times). Furthermore, the execution time reduction is around 1000%. In comparison to

the raw technique, only a tenth of the computing power will be required to run the enhanced YOLO solution.

As was the case before, these large improvements come by some comparatively minor reduction in mAP

results (around 20%).

The StaticFrameDifference and CodeBook motion detection methods could be considered if strictly no

decrement in mAP performance is desired. Figure 4.24 is a slice of Figure 4.23 and displays the relative

81

results for StaticFrameDifference methods. StaticFrameDifference DBSCAN combination provides around

14% improvement in both data transmission and execution time metrics while improving the mAP results by

24%, improving all the metrics simultaneously. Figure 4.25 is another slice of Figure 4.23 and displays the

results related to the CodeBook combination methods. Here, all the combinations lead to great performance

improvements in all the three measured metrics of mAP, execution time, and data transmission. Especially,

the CodeBook DBSCAN combination improves the mAP, execution time, and required data transmission by

150%, 113%, and 23%, respectively.

Figure 4.26 shows the relative results for our Enhanced YOLO solution by considering the input video

from New Orleans, Louisiana, United States. Like all previous input video files, it can be observed that the

vast majority of the bars and the area occupied by the bars are located on the right-hand side of the graph,

meaning the Enhanced YOLO solution largely outperforms the raw solution. By considering the methods

with WeightedMovingMean as the selected motion detection algorithm, the required data transmissions to the

object detection neural network are reduced by more than 1600% (16 times). The execution time reduction

is around 1200% which indicates that only 8% of the computing power will be required to run the Enhanced

YOLO solution. Again, these large improvements come by a small reduction in mAP results (around 10%).

Similarly, here the StaticFrameDifference, CodeBook, and AdaptiveSelectiveBackgroundLearning mo-

tion detection methods could be considered if strictly no decrement in mAP performance is desired. Fig-

ure 4.27 is a slice of Figure 4.26 and demonstrates the relative results for StaticFrameDifference methods.

StaticFrameDifference DBSCAN combination provides around 8% improvement in data transmission, 4%

improvement in execution time, and 5% improvement in mAP results. This means that improvements are

present in all metrics simultaneously. Figure 4.28 is another slice of Figure 4.26 and displays the results

related to the CodeBook combination methods. As was the case with CodeBook in the previous input video

file, here all the combinations lead to great performance improvements in the three measured metrics of

82

-200 0 200 400 600 800 1000 1200 1400 1600

Time, mAP, Data Transmission Improvements (percent)

AdaptiveBackgroundLearning KMeans
AdaptiveBackgroundLearning SpectralClustering

AdaptiveBackgroundLearning AgglomerativeClustering
AdaptiveBackgroundLearning DBSCAN
AdaptiveBackgroundLearning OPTICS

AdaptiveBackgroundLearning Birch
AdaptiveBackgroundLearning MiniBatchKMeans
AdaptiveBackgroundLearning SimpleClustering
AdaptiveSelectiveBackgroundLearning KMeans

AdaptiveSelectiveBackgroundLearning SpectralClustering
AdaptiveSelectiveBackgroundLearning AgglomerativeClustering

AdaptiveSelectiveBackgroundLearning DBSCAN
AdaptiveSelectiveBackgroundLearning OPTICS

AdaptiveSelectiveBackgroundLearning Birch
AdaptiveSelectiveBackgroundLearning MiniBatchKMeans

AdaptiveSelectiveBackgroundLearning SimpleClustering
CodeBook KMeans

CodeBook SpectralClustering
CodeBook AgglomerativeClustering

CodeBook DBSCAN
CodeBook OPTICS

CodeBook Birch
CodeBook MiniBatchKMeans

CodeBook SimpleClustering
FrameDifference KMeans

FrameDifference SpectralClustering
FrameDifference AgglomerativeClustering

FrameDifference DBSCAN
FrameDifference OPTICS

FrameDifference Birch
FrameDifference MiniBatchKMeans
FrameDifference SimpleClustering

MixtureOfGaussianV2 KMeans
MixtureOfGaussianV2 SpectralClustering

MixtureOfGaussianV2 AgglomerativeClustering
MixtureOfGaussianV2 DBSCAN
MixtureOfGaussianV2 OPTICS

MixtureOfGaussianV2 Birch
MixtureOfGaussianV2 MiniBatchKMeans
MixtureOfGaussianV2 SimpleClustering

SigmaDelta KMeans
SigmaDelta SpectralClustering

SigmaDelta AgglomerativeClustering
SigmaDelta DBSCAN
SigmaDelta OPTICS

SigmaDelta Birch
SigmaDelta MiniBatchKMeans
SigmaDelta SimpleClustering

StaticFrameDifference KMeans
StaticFrameDifference SpectralClustering

StaticFrameDifference AgglomerativeClustering
StaticFrameDifference DBSCAN
StaticFrameDifference OPTICS

StaticFrameDifference Birch
StaticFrameDifference MiniBatchKMeans
StaticFrameDifference SimpleClustering

TwoPoints KMeans
TwoPoints SpectralClustering

TwoPoints AgglomerativeClustering
TwoPoints DBSCAN
TwoPoints OPTICS

TwoPoints Birch
TwoPoints MiniBatchKMeans

TwoPoints SimpleClustering
ViBe KMeans

ViBe SpectralClustering
ViBe AgglomerativeClustering

ViBe DBSCAN
ViBe OPTICS

ViBe Birch
ViBe MiniBatchKMeans
ViBe SimpleClustering

WeightedMovingMean KMeans
WeightedMovingMean SpectralClustering

WeightedMovingMean AgglomerativeClustering
WeightedMovingMean DBSCAN
WeightedMovingMean OPTICS

WeightedMovingMean Birch
WeightedMovingMean MiniBatchKMeans

WeightedMovingMean SimpleClustering
WeightedMovingVariance KMeans

WeightedMovingVariance SpectralClustering
WeightedMovingVariance AgglomerativeClustering

WeightedMovingVariance DBSCAN
WeightedMovingVariance OPTICS

WeightedMovingVariance Birch
WeightedMovingVariance MiniBatchKMeans

WeightedMovingVariance SimpleClustering

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.23: Relative Performance Results for Enhanced YOLO Solution against the Raw YOLO Consider-
ing the Input Video from Saint Petersburg, Russia

83

-20 -15 -10 -5 0 5 10 15 20 25

Time, mAP, Data Transmission Improvements (percent)

StaticFrameDifference KMeans

StaticFrameDifference SpectralClustering

StaticFrameDifference AgglomerativeClustering

StaticFrameDifference DBSCAN

StaticFrameDifference OPTICS

StaticFrameDifference Birch

StaticFrameDifference MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.24: StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO Solution
against the Raw YOLO for the Input Video from Saint Petersburg, Russia

0 50 100 150

Time, mAP, Data Transmission Improvements (percent)

CodeBook KMeans

CodeBook SpectralClustering

CodeBook AgglomerativeClustering

CodeBook DBSCAN

CodeBook OPTICS

CodeBook Birch

CodeBook MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s
te

ri
n

g
 A

lg
o

ri
th

m
s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.25: CodeBook Slice of Relative Performance Results for Enhanced YOLO Solution against the
Raw YOLO for the Input Video from Saint Petersburg, Russia

mAP, execution time, and data transmission. Especially, the CodeBook DBSCAN combination improves the

execution time and required data transmission by more than 155% and 125%, respectively. This consid-

84

erable performance improvement comes at a negligible cost of 1% degradation in mAP results. Another

interesting combination in this graph is CodeBook AgglomerativeClustering. This method improves the

mAP, execution time, and required data transmission by 2%, 65%, and 80%, respectively.

Lastly, the relative results for AdaptiveSelectiveBackgroundLearning methods are displayed in Figure

4.29 which is a slice from 4.26. Here, the two combinations with DBSCAN and AgglomerativeClustering

as clustering algorithms improve the mAP, execution time, and required data transmission by 6%, 6%, and

3%, respectively.

Figure 4.30 shows the relative results for our Enhanced YOLO solution by considering the input video

from Laramie, Wyoming, US. It can be observed that, similarly to the previous results, the vast majority

of the bars and the area occupied by the bars are located on the righthand side of the graph, indicating that

the Enhanced YOLO solution outperforms the raw solution by a large margin. By considering the methods

with WeightedMovingMean as the selected motion detection algorithm, the required data transmissions to the

object detection neural network are reduced by more than 1600% (16 times). The execution time reduction is

around 1000%, which indicates that only 10% of the computing power will be required to run the Enhanced

YOLO solution. Again, these substantial improvements come by a small reduction in mAP results (around

13%).

As was the case in previous input video files, here the StaticFrameDifference and CodeBook motion

detection methods could be considered if strictly no decrement in mAP performance is desired. Figure 4.31

is a slice of Figure 4.30 where it focuses on the relative results for StaticFrameDifference methods. Stat-

icFrameDifference DBSCAN combination provides around 8% improvement in execution time and around

2% improvement in mAP. Another ideal combination is StaticFrameDifference AgglomerativeClustering,

which provides around 9% improvement in execution time and around 2% improvement in mAP, while at

the same time not decrementing the data transmission results. Figure 4.32 is another slice of Figure 4.30

85

-200 0 200 400 600 800 1000 1200 1400 1600 1800

Time, mAP, Data Transmission Improvements (percent)

AdaptiveBackgroundLearning KMeans
AdaptiveBackgroundLearning SpectralClustering

AdaptiveBackgroundLearning AgglomerativeClustering
AdaptiveBackgroundLearning DBSCAN
AdaptiveBackgroundLearning OPTICS

AdaptiveBackgroundLearning Birch
AdaptiveBackgroundLearning MiniBatchKMeans
AdaptiveBackgroundLearning SimpleClustering
AdaptiveSelectiveBackgroundLearning KMeans

AdaptiveSelectiveBackgroundLearning SpectralClustering
AdaptiveSelectiveBackgroundLearning AgglomerativeClustering

AdaptiveSelectiveBackgroundLearning DBSCAN
AdaptiveSelectiveBackgroundLearning OPTICS

AdaptiveSelectiveBackgroundLearning Birch
AdaptiveSelectiveBackgroundLearning MiniBatchKMeans

AdaptiveSelectiveBackgroundLearning SimpleClustering
CodeBook KMeans

CodeBook SpectralClustering
CodeBook AgglomerativeClustering

CodeBook DBSCAN
CodeBook OPTICS

CodeBook Birch
CodeBook MiniBatchKMeans

CodeBook SimpleClustering
FrameDifference KMeans

FrameDifference SpectralClustering
FrameDifference AgglomerativeClustering

FrameDifference DBSCAN
FrameDifference OPTICS

FrameDifference Birch
FrameDifference MiniBatchKMeans
FrameDifference SimpleClustering

MixtureOfGaussianV2 KMeans
MixtureOfGaussianV2 SpectralClustering

MixtureOfGaussianV2 AgglomerativeClustering
MixtureOfGaussianV2 DBSCAN
MixtureOfGaussianV2 OPTICS

MixtureOfGaussianV2 Birch
MixtureOfGaussianV2 MiniBatchKMeans
MixtureOfGaussianV2 SimpleClustering

SigmaDelta KMeans
SigmaDelta SpectralClustering

SigmaDelta AgglomerativeClustering
SigmaDelta DBSCAN
SigmaDelta OPTICS

SigmaDelta Birch
SigmaDelta MiniBatchKMeans
SigmaDelta SimpleClustering

StaticFrameDifference KMeans
StaticFrameDifference SpectralClustering

StaticFrameDifference AgglomerativeClustering
StaticFrameDifference DBSCAN
StaticFrameDifference OPTICS

StaticFrameDifference Birch
StaticFrameDifference MiniBatchKMeans
StaticFrameDifference SimpleClustering

TwoPoints KMeans
TwoPoints SpectralClustering

TwoPoints AgglomerativeClustering
TwoPoints DBSCAN
TwoPoints OPTICS

TwoPoints Birch
TwoPoints MiniBatchKMeans

TwoPoints SimpleClustering
ViBe KMeans

ViBe SpectralClustering
ViBe AgglomerativeClustering

ViBe DBSCAN
ViBe OPTICS

ViBe Birch
ViBe MiniBatchKMeans
ViBe SimpleClustering

WeightedMovingMean KMeans
WeightedMovingMean SpectralClustering

WeightedMovingMean AgglomerativeClustering
WeightedMovingMean DBSCAN
WeightedMovingMean OPTICS

WeightedMovingMean Birch
WeightedMovingMean MiniBatchKMeans

WeightedMovingMean SimpleClustering
WeightedMovingVariance KMeans

WeightedMovingVariance SpectralClustering
WeightedMovingVariance AgglomerativeClustering

WeightedMovingVariance DBSCAN
WeightedMovingVariance OPTICS

WeightedMovingVariance Birch
WeightedMovingVariance MiniBatchKMeans

WeightedMovingVariance SimpleClustering

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.26: Relative Performance Results for Enhanced YOLO Solution against the Raw YOLO Consider-
ing the Input Video from New Orleans, Louisiana, United States

86

-30 -25 -20 -15 -10 -5 0 5 10

Time, mAP, Data Transmission Improvements (percent)

StaticFrameDifference KMeans

StaticFrameDifference SpectralClustering

StaticFrameDifference AgglomerativeClustering

StaticFrameDifference DBSCAN

StaticFrameDifference OPTICS

StaticFrameDifference Birch

StaticFrameDifference MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.27: StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO Solution
against the Raw YOLO for the Input Video from New Orleans, Louisiana, United States

-20 0 20 40 60 80 100 120 140 160

Time, mAP, Data Transmission Improvements (percent)

CodeBook KMeans

CodeBook SpectralClustering

CodeBook AgglomerativeClustering

CodeBook DBSCAN

CodeBook OPTICS

CodeBook Birch

CodeBook MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s
te

ri
n

g
 A

lg
o

ri
th

m
s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.28: CodeBook Slice of Relative Performance Results for Enhanced YOLO Solution against the
Raw YOLO for the Input Video from New Orleans, Louisiana, United States

and displays the results related to the CodeBook combination methods. Similar to previous input video files,

here all the combinations lead to substantial performance improvements in the two measured metrics of exe-

87

-30 -25 -20 -15 -10 -5 0 5 10

Time, mAP, Data Transmission Improvements (percent)

AdaptiveSelectiveBackgroundLearning KMeans

AdaptiveSelectiveBackgroundLearning SpectralClustering

AdaptiveSelectiveBackgroundLearning AgglomerativeClustering

AdaptiveSelectiveBackgroundLearning DBSCAN

AdaptiveSelectiveBackgroundLearning OPTICS

AdaptiveSelectiveBackgroundLearning Birch

AdaptiveSelectiveBackgroundLearning MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.29: AdaptiveSelectiveBackgroundLearning Slice of Relative Performance Results for Enhanced
YOLO Solution against the Raw YOLO for the Input Video from New Orleans, Louisiana, United States

cution time and data transmission. Especially, the CodeBook DBSCAN combination improves the execution

time and required data transmission by more than 269% and 304%, respectively. Furthermore, it improves

the mAP results by more than 6%.

The last figure in this section is Figure 4.33 which shows the relative results for our Enhanced YOLO

solution by considering the input video from Neath, Wales. The vast majority of the bars and the area

occupied by the bars are located on the righthand side of the graph, indicating that the Enhanced YOLO

solution outperforms the raw solution by a large margin as was the case with previous input video files. By

choosing the methods with WeightedMovingMean as the employed motion detection algorithm, the required

data transmissions to the object detection neural network are reduced by around 500% (5 times). The

execution time reduction is around 400% which means that only 25% of the computing power will be

required to run the Enhanced YOLO solution. Again, these large improvements come by a small reduction

in mAP results (around 20%). This mAP reduction is only 5% in the WeightedMovingMean DBSCAN

88

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time, mAP, Data Transmission Improvements (percent)

AdaptiveBackgroundLearning KMeans
AdaptiveBackgroundLearning SpectralClustering

AdaptiveBackgroundLearning AgglomerativeClustering
AdaptiveBackgroundLearning DBSCAN
AdaptiveBackgroundLearning OPTICS

AdaptiveBackgroundLearning Birch
AdaptiveBackgroundLearning MiniBatchKMeans
AdaptiveBackgroundLearning SimpleClustering
AdaptiveSelectiveBackgroundLearning KMeans

AdaptiveSelectiveBackgroundLearning SpectralClustering
AdaptiveSelectiveBackgroundLearning AgglomerativeClustering

AdaptiveSelectiveBackgroundLearning DBSCAN
AdaptiveSelectiveBackgroundLearning OPTICS

AdaptiveSelectiveBackgroundLearning Birch
AdaptiveSelectiveBackgroundLearning MiniBatchKMeans

AdaptiveSelectiveBackgroundLearning SimpleClustering
CodeBook KMeans

CodeBook SpectralClustering
CodeBook AgglomerativeClustering

CodeBook DBSCAN
CodeBook OPTICS

CodeBook Birch
CodeBook MiniBatchKMeans

CodeBook SimpleClustering
FrameDifference KMeans

FrameDifference SpectralClustering
FrameDifference AgglomerativeClustering

FrameDifference DBSCAN
FrameDifference OPTICS

FrameDifference Birch
FrameDifference MiniBatchKMeans
FrameDifference SimpleClustering

MixtureOfGaussianV2 KMeans
MixtureOfGaussianV2 SpectralClustering

MixtureOfGaussianV2 AgglomerativeClustering
MixtureOfGaussianV2 DBSCAN
MixtureOfGaussianV2 OPTICS

MixtureOfGaussianV2 Birch
MixtureOfGaussianV2 MiniBatchKMeans
MixtureOfGaussianV2 SimpleClustering

SigmaDelta KMeans
SigmaDelta SpectralClustering

SigmaDelta AgglomerativeClustering
SigmaDelta DBSCAN
SigmaDelta OPTICS

SigmaDelta Birch
SigmaDelta MiniBatchKMeans
SigmaDelta SimpleClustering

StaticFrameDifference KMeans
StaticFrameDifference SpectralClustering

StaticFrameDifference AgglomerativeClustering
StaticFrameDifference DBSCAN
StaticFrameDifference OPTICS

StaticFrameDifference Birch
StaticFrameDifference MiniBatchKMeans
StaticFrameDifference SimpleClustering

TwoPoints KMeans
TwoPoints SpectralClustering

TwoPoints AgglomerativeClustering
TwoPoints DBSCAN
TwoPoints OPTICS

TwoPoints Birch
TwoPoints MiniBatchKMeans

TwoPoints SimpleClustering
ViBe KMeans

ViBe SpectralClustering
ViBe AgglomerativeClustering

ViBe DBSCAN
ViBe OPTICS

ViBe Birch
ViBe MiniBatchKMeans
ViBe SimpleClustering

WeightedMovingMean KMeans
WeightedMovingMean SpectralClustering

WeightedMovingMean AgglomerativeClustering
WeightedMovingMean DBSCAN
WeightedMovingMean OPTICS

WeightedMovingMean Birch
WeightedMovingMean MiniBatchKMeans

WeightedMovingMean SimpleClustering
WeightedMovingVariance KMeans

WeightedMovingVariance SpectralClustering
WeightedMovingVariance AgglomerativeClustering

WeightedMovingVariance DBSCAN
WeightedMovingVariance OPTICS

WeightedMovingVariance Birch
WeightedMovingVariance MiniBatchKMeans

WeightedMovingVariance SimpleClustering

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.30: Relative Performance Results for Enhanced YOLO Solution against the Raw YOLO Consider-
ing the Input Video from Laramie, Wyoming, United States

89

-20 -15 -10 -5 0 5 10

Time, mAP, Data Transmission Improvements (percent)

StaticFrameDifference KMeans

StaticFrameDifference SpectralClustering

StaticFrameDifference AgglomerativeClustering

StaticFrameDifference DBSCAN

StaticFrameDifference OPTICS

StaticFrameDifference Birch

StaticFrameDifference MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.31: StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO Solution
against the Raw YOLO for the Input Video from Laramie, Wyoming, United States

-50 0 50 100 150 200 250 300 350

Time, mAP, Data Transmission Improvements (percent)

CodeBook KMeans

CodeBook SpectralClustering

CodeBook AgglomerativeClustering

CodeBook DBSCAN

CodeBook OPTICS

CodeBook Birch

CodeBook MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s
te

ri
n

g
 A

lg
o

ri
th

m
s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.32: CodeBook Slice of Relative Performance Results for Enhanced YOLO Solution against the
Raw YOLO for the Input Video from Laramie, Wyoming, United States

method, while the improvements in the required data transmissions and execution time are 568% and 721%,

respectively.

90

The ViBe, StaticFrameDifference, and CodeBook motion detection methods could be considered if

strictly no decrement in mAP performance is desired. Figure 4.34 is a slice of Figure 4.33 and focuses

on the relative results for ViBe methods. ViBe DBSCAN combination enables around 255% improvement

in required data transmissions, 204% in execution time, and around 8% in mAP. If a higher mAP improve-

ment is desired, the ViBe AgglomerativeClustering method could be considered, resulting in improvements

in required data transmissions, execution time, and mAP of 13%, 138%, and 173%, respectively.

Figure 4.35 is a slice of Figure 4.33 and focuses on the relative results for StaticFrameDifference meth-

ods. StaticFrameDifference AgglomerativeClustering combination provides around 4%, 12%, and 26%

improvements in required data transmissions, execution time, and mAP, respectively. Figure 4.35 is another

slice of Figure 4.33 and displays the results related to the AdaptiveSelectiveBackgroundLearning combina-

tion methods. AdaptiveSelectiveBackgroundLearning AgglomerativeClustering combination improves the

execution time and required data transmission by more than 10% and 2%, respectively. Furthermore, it

improves the mAP results by 35%.

91

-100 0 100 200 300 400 500 600 700 800

Time, mAP, Data Transmission Improvements (percent)

AdaptiveBackgroundLearning KMeans
AdaptiveBackgroundLearning SpectralClustering

AdaptiveBackgroundLearning AgglomerativeClustering
AdaptiveBackgroundLearning DBSCAN
AdaptiveBackgroundLearning OPTICS

AdaptiveBackgroundLearning Birch
AdaptiveBackgroundLearning MiniBatchKMeans
AdaptiveBackgroundLearning SimpleClustering
AdaptiveSelectiveBackgroundLearning KMeans

AdaptiveSelectiveBackgroundLearning SpectralClustering
AdaptiveSelectiveBackgroundLearning AgglomerativeClustering

AdaptiveSelectiveBackgroundLearning DBSCAN
AdaptiveSelectiveBackgroundLearning OPTICS

AdaptiveSelectiveBackgroundLearning Birch
AdaptiveSelectiveBackgroundLearning MiniBatchKMeans

AdaptiveSelectiveBackgroundLearning SimpleClustering
CodeBook KMeans

CodeBook SpectralClustering
CodeBook AgglomerativeClustering

CodeBook DBSCAN
CodeBook OPTICS

CodeBook Birch
CodeBook MiniBatchKMeans

CodeBook SimpleClustering
FrameDifference KMeans

FrameDifference SpectralClustering
FrameDifference AgglomerativeClustering

FrameDifference DBSCAN
FrameDifference OPTICS

FrameDifference Birch
FrameDifference MiniBatchKMeans
FrameDifference SimpleClustering

MixtureOfGaussianV2 KMeans
MixtureOfGaussianV2 SpectralClustering

MixtureOfGaussianV2 AgglomerativeClustering
MixtureOfGaussianV2 DBSCAN
MixtureOfGaussianV2 OPTICS

MixtureOfGaussianV2 Birch
MixtureOfGaussianV2 MiniBatchKMeans
MixtureOfGaussianV2 SimpleClustering

SigmaDelta KMeans
SigmaDelta SpectralClustering

SigmaDelta AgglomerativeClustering
SigmaDelta DBSCAN
SigmaDelta OPTICS

SigmaDelta Birch
SigmaDelta MiniBatchKMeans
SigmaDelta SimpleClustering

StaticFrameDifference KMeans
StaticFrameDifference SpectralClustering

StaticFrameDifference AgglomerativeClustering
StaticFrameDifference DBSCAN
StaticFrameDifference OPTICS

StaticFrameDifference Birch
StaticFrameDifference MiniBatchKMeans
StaticFrameDifference SimpleClustering

TwoPoints KMeans
TwoPoints SpectralClustering

TwoPoints AgglomerativeClustering
TwoPoints DBSCAN
TwoPoints OPTICS

TwoPoints Birch
TwoPoints MiniBatchKMeans

TwoPoints SimpleClustering
ViBe KMeans

ViBe SpectralClustering
ViBe AgglomerativeClustering

ViBe DBSCAN
ViBe OPTICS

ViBe Birch
ViBe MiniBatchKMeans
ViBe SimpleClustering

WeightedMovingMean KMeans
WeightedMovingMean SpectralClustering

WeightedMovingMean AgglomerativeClustering
WeightedMovingMean DBSCAN
WeightedMovingMean OPTICS

WeightedMovingMean Birch
WeightedMovingMean MiniBatchKMeans

WeightedMovingMean SimpleClustering
WeightedMovingVariance KMeans

WeightedMovingVariance SpectralClustering
WeightedMovingVariance AgglomerativeClustering

WeightedMovingVariance DBSCAN
WeightedMovingVariance OPTICS

WeightedMovingVariance Birch
WeightedMovingVariance MiniBatchKMeans

WeightedMovingVariance SimpleClustering

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.33: Relative Performance Results for Enhanced YOLO Solution against the Raw YOLO Consider-
ing the Input Video from Neath, Wales

92

0 50 100 150 200 250 300

Time, mAP, Data Transmission Improvements (percent)

ViBe KMeans

ViBe SpectralClustering

ViBe AgglomerativeClustering

ViBe DBSCAN

ViBe OPTICS

ViBe Birch

ViBe MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s
te

ri
n

g
 A

lg
o

ri
th

m
s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.34: ViBe Slice of Relative Performance Results for Enhanced YOLO Solution against the Raw
YOLO for the Input Video from Neath, Wales

-20 -15 -10 -5 0 5 10 15 20 25 30

Time, mAP, Data Transmission Improvements (percent)

StaticFrameDifference KMeans

StaticFrameDifference SpectralClustering

StaticFrameDifference AgglomerativeClustering

StaticFrameDifference DBSCAN

StaticFrameDifference OPTICS

StaticFrameDifference Birch

StaticFrameDifference MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.35: StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO Solution
against the Raw YOLO for the Input Video from Laramie, Wyoming, United States

93

-20 -10 0 10 20 30 40

Time, mAP, Data Transmission Improvements (percent)

AdaptiveSelectiveBackgroundLearning KMeans

AdaptiveSelectiveBackgroundLearning SpectralClustering

AdaptiveSelectiveBackgroundLearning AgglomerativeClustering

AdaptiveSelectiveBackgroundLearning DBSCAN

AdaptiveSelectiveBackgroundLearning OPTICS

AdaptiveSelectiveBackgroundLearning Birch

AdaptiveSelectiveBackgroundLearning MiniBatchKMeans

M
o

ti
o

n
 D

e
te

c
ti

o
n

 +
 C

lu
s

te
ri

n
g

 A
lg

o
ri

th
m

s

Data Transmission Imp.

Execution Time Imp.

mAP Imp.

Figure 4.36: StaticFrameDifference Slice of Relative Performance Results for Enhanced YOLO Solution
against the Raw YOLO for the Input Video from Laramie, Wyoming, United States

94

4.9 Conclusion

By taking advantage of video (related consecutive frames) characteristics, Enhanced YOLO could focus

on the areas of importance in video frames and reduce the pixel volume delivered to the object detection

neural network. This substantially reduces the required data transmission for cloud-based object detection

neural network deployment. Additionally, the focus on areas of importance in video frames enables the

system to represent an important object with more pixel information to the object detection neural network.

This in turn gives the flexibility to choose a lower input resolution object detection deployment and, as

a result, substantially reduces the required processing power for object detection tasks. Another effect

of having more pixel information to represent an important object in video frames is enabling the object

detection task to generate better and more accurate results.

To determine the performance of our proposed Enhanced YOLO solution, we have conducted 445 ex-

periments by considering different motion detection algorithms, clustering techniques, and input video files.

We have measured the mAP, average per-frame execution time, and transmitted data to the YOLO object

detection neural network as performance-determining parameters. These numbers are compared by the re-

sults generated from the raw YOLO solution where no input filter was employed in the data input pipeline

for the network.

The extracted results from our experiments show that the proposed Enhanced YOLO solution provides

significant improvements in object detection tasks, especially in the required execution time (processing

power) and data transmissions. We observed that by employing WeightedMovingMean as the motion de-

tection algorithm and DBSCAN as the clustering technique, the improvement in required data transmissions

is between 540% and 1810%. This means that the application of the Enhanced YOLO solution in object

detection tasks could reduce the amount of data transmissions by a significant 94%.

By employing the aforementioned combination, the improvement in required execution time (processing

95

power) is between 400% and 1300%. This means the amount of required processing power could be cut

by a significant 92% if the Enhanced YOLO solution is utilized in object detection tasks. These substantial

improvements in the stated combination come with a relatively small cost of 8 to 30% in mAP results.

We have also observed that the Enhanced YOLO solution could be employed if strictly no decrement

in mAP results is desired. In these cases, StaticFrameDifference and CodeBook could be considered as the

selected motion detection algorithms. In some cases, AdaptiveSelectiveBackgroundLearning could also be

considered. DBSCAN as the clustering technique is an excellent choice for improving the performance of

object detection operations. By considering the mentioned combinations, it can be seen from the reported

results that up to 35% improvement in mAP performance could be achieved. Furthermore, up to 304%

improvement in the required data transmissions and up to 270% improvement in the required execution time

(processing power) could be provided by these combinations.

96

CHAPTER 5 ACTIVITY DETECTION RECURRENT NEURAL NETWORK

5.1 Introduction

By taking advantage of the framework provided by Enhanced YOLO, object detection results could be

efficiently generated for an input video file. Having access to consecutive video frames and the related de-

tection results for each individual frame provides an excellent opportunity for an activity detection solution.

This solution could treat the generated results with different timestamps (from different frames in the video)

as time-series input data.

There are two elements involved in determining an activity. The first one is where each limb is located

and how different limbs are moving during the activity. The second element is the objects around the

involved person. What these objects are and where they are located are the two essential questions that

clarify the second element in determining an activity. As an example, we can consider the act/activity of

heading a ball where a soccer player jumps in the air and strikes the soccer ball with their head. First, the

player prepares for the jump by bending their knees, bringing their hands toward their chest, and raising

their elbows. When in the air, they move their head toward the ball and strike it. The object, namely the

soccer ball, gets close to the player with a relatively high altitude, collides with their head (most probably the

forehead), and gets away with a sudden change in direction and speed. These two mentioned elements (1:

limb/joint positions and movements; 2: objects’ classes, locations, and movements) are the most defining

and important entities that could clearly classify an activity. Here, it is not important what the player is

wearing or what haircut they have, what pattern is printed on the ball, or what kind of field the game is

happening on (grass, in-door, asphalt, etc.).

If an RNN could be designed to take advantage of these two sources of information/data, not only can

it process significantly less raw input data (as opposed to dealing with a high volume of pixels presented

as multiple multi-channel frames), but it can also be trained with a significantly smaller amount of training

97

data as many variables are hidden from the equation/solution. For example, the previously mentioned soccer

player’s clothes are not important. So, by not considering this factor in the training process, the required

labeled data to represent different clothing will be eliminated.

It is worth mentioning that we are not claiming that this is the way the human brain operates in deter-

mining an activity. This is our best guess in providing a highly efficient method for classifying different

activities.

The second element in detecting an activity (objects’ classes, locations, and movements) could be pro-

vided by our Enhanced YOLO (or any other object detection) solution. On the other hand, the first element

should be provided by a pose estimation solution.

In this thesis, we have designed and implemented the aforementioned RNN solution. Section 5.2 de-

scribes different concepts and employed items in the design process. There, we describe the MediaPipe

pose estimation toolkit from Google in addition to other building units of our RNN activity detection solu-

tion (like Convolution, GRU, Dropout, BatchNormalization, etc.). Next, in the Proposed Activity Detection

RNN Solution section (5.3), we describe data preparation and the training processes in detail. Finally, we

visually demonstrate some output samples of our proposed network in the Results section (5.4).

5.2 Background

5.2.1 Pose Estimation

In applications like measuring physical activities, sign language recognition, and full-body gesture con-

trol, human position estimation from a video is crucial. It can be used as the foundation for yoga, dance, and

fitness applications, to name a few examples. In augmented reality, it can also enable the overlay of digital

content and information on top of the physical world.

We have utilized MediaPipe Pose as our limbs/joints position and movement detector. As previously

described, this satisfies the need for the first element involved in determining/classifying an activity. Me-

98

diaPipe is a set of cross-platform, customizable machine learning solutions for live and streaming media.

Using Google BlazePose research [14], which also drives the ML (Machine Learning) Kit Pose Detection

API in Android and IOS, MediaPipe Pose is a machine learning solution for high-fidelity body pose track-

ing, inferring 33 3D landmarks and a background segmentation mask on the full body from RGB video

frames. For inference, most current state-of-the-art algorithms rely on powerful desktop environments,

whereas Google’s method delivers real-time performance on most recent mobile phones, desktops/laptops,

in Python, and even on the web.

A two-step detector-tracker ML pipeline is used in the solution, which has been demonstrated to be

effective in their MediaPipe Hands and MediaPipe Face Mesh solutions. The pipeline initially locates the

person/pose region-of-interest (ROI) within the frame using a detector. Using the ROI-cropped frame as

input, the tracker then predicts the pose landmarks and segmentation mask within the ROI. It’s worth noting

that in video use cases, the detector is only used when necessary, such as for the first frame, and when the

tracker cannot detect body pose presence in the preceding frame. For other frames, the pipeline simply

calculates the ROI based on the pose landmarks from the previous frame.

The detector is based on Google’s lightweight BlazeFace model, which is utilized as a proxy for a human

detector in MediaPipe Face Detection. It predicts two more virtual key points that accurately characterize

the human body’s center, rotation, and scale as a circle. Inspired by Leonardo da Vinci’s Vitruvian Man,

they forecast the midpoint of a person’s hips; the radius of a circle circumscribing the entire person; and the

incline angle of the line linking the shoulder and hip midpoints.

The landmark model in MediaPipe Pose estimates the location of 33 pose landmarks, as shown in Figure

5.1.

We have incorporated two different outputs from MediaPipe Pose in our activity detection network. The

first one is POSE LANDMARKS which is a list of pose landmarks. Each landmark consists of the

99

Figure 5.1: Location of 33 Pose Landmarks in MediaPipe Pose (Courtesy of Googblogs)

following:

• x and y: Landmark coordinates normalized to [0.0, 1.0] by the image width and height respectively.

• z: Defines the depth of a landmark, with the origin being the depth at the midpoint of the hips; the

smaller the value, the closer the landmark is to the camera. The magnitude of z is measured using a

scale that is similar to that of x.

• visibility: The likelihood of the landmark being seen (present and not obstructed) in the image is

expressed as a number between 0.0 and 1.0.

The second output is POSE WORLD LANDMARKS. This is another set of world coordinates

for pose landmarks. The following are the components of each landmark:

• x, y, and z: Three-dimensional real-world coordinates in meters, with the origin being in the middle

of the hips.

• visibility: Identical to the visibility defined in the related pose landmarks.

100

5.2.2 Different Building Layers of Our Activity Detection Network

1D convolution (temporal convolution): This layer creates a convolution kernel (a window/array of

weights) that is convolved with the layer input over a single spatial (or temporal) dimension to produce a

tensor of outputs.

Batch normalization: This layer normalizes its inputs. Batch normalization is a transformation that

keeps the mean output close to 0 and the standard deviation of the output close to 1.

ReLU Activation: Applies the rectified linear unit activation function. This returns the typical ReLU

activation: max(x, 0), the element-wise maximum of 0, and the input tensor.

Dropout: The Dropout layer, which helps minimize overfitting, sets input units to 0 at random with a

configurable frequency at each step during training time. Inputs that aren’t set to 0 are scaled up so that the

total sum remains the same for the layer.

GRU: One of the three built-in RNN layers in Keras, as introduced in [21]. Essentially, this unit could

facilitate the traverse of a feature throughout different time steps. Keras is an open-source software library

for artificial neural networks that provides a Python interface. It serves as a user interface for TensorFlow.

Dense: Regular densely connected Neural Networks layer. Dense implements the following operation:

output = activation (dot(input, kernel) + bias), where activation is the element-wise activation function

supplied as the activation parameter, kernel is the layer’s weights matrix, and bias is the layer’s bias vector.

5.3 Proposed Activity Detection RNN Solution

5.3.1 Labeled Data Preparation

The first step in creating our activity detection network is generating labeled data for a desired activity.

Leaving a bag/baggage unattended is a sensitive activity that, if detected, could have important implica-

tions. As so, we have decided to select this activity as an example to show how preparation, training, and

post-processing procedures are done. We have recorded a video of a person leaving a backpack unattended

101

multiple (precisely 103) times, each time in a slightly different way while walking in a different direc-

tion. The main directions are rear to front, front to rear, rear-left to front-right, and rear-right to front-left;

additional angles between these main walking directions were also considered in the movement patterns.

Different backpack holding positions (using a single shoulder strap or the top handle) and operating arms

(left or right) were used in conducting the activity. Furthermore, different bending angles towards left or

right was considered when leaving the backpack unattended. The total length of the recorded video file is 15

minutes and 26 seconds. The frame width and height are 1920 and 1080 pixels, respectively, and the video

was recorded using a Panasonic DMC-LF1 camera. Figs. 5.2 and 5.3 show sample frames from this video.

The video file will be publicly accessible online.

Figure 5.2: Sample Frame from the Recorded Video for Labeled Data Generation

We have recorded/stored the object detection results in addition to the pose estimation results for each

individual frame in this video (x/input values). When that person completes an activity (leaving the bag

unattended), we have marked the frame for that specific timestamp using our labeling tool. A single frame

could have a target value of 0 or 1: 0 means that a specific frame/timestamp is not marking the completion of

102

the activity, while 1 means the opposite, indicating that a specific frame/timestamp is marking the completion

of the activity (y/target values). Figure 5.3 shows some sample frames from the recorded video with the

related x/input and y/target values stored as our labeled data. Starting from the left, the first frame is right

after the activity is complete. In other words, it is right after the bag is left unattended. Accordingly,

we consider the y/target value of 1 for this frame. The x/input values are detection and pose estimation

results. The detection results are a set of detection records, each containing the label of the object, detection

probability, and the bounding box encompassing the object. As was mentioned earlier, the pose estimation

results are pose landmarks and pose world landmarks. Each contains 33 points, each of which in turn

includes four values determining the location (in two different ways) and the visibility of the point. The

second frame is not related to the completion of the desired activity. Therefore, the selected y/target values

for this frame should be 0. The pose estimation in the last frame from the left is failing to produce any

results. Because of this, we simply ignore this frame and do not include the related object detection results

in the labeled data, despite the presence of detection results.

person, '96.57', (1120, 508, 288, 691)
handbag, 28.75, (993, 870, 236, 151)
sofa, '74.59', (251, 851, 490, 453)
bed, '32.47', (251, 851, 497, 449)
chair, '62.76', (1468, 648, 196, 600)

 Pose Landmarks:
x0, y0, z0, vis0, …, x32, y32, z32, vis32

 Pose World Landmarks:
x0, y0, z0, vis0, …, x32, y32, z32, vis32

x

y

D
et

ec
tio

n
R

es
ul

ts
P

os
e

E
st

im
at

io
n

R
es

ul
ts

1

person, '98.92', (1152, 522, 247, 694)
suitcase, '27.99', (989, 886, 249, 120)
sofa, '76.39', (252, 777, 504, 592)
bed, '33.13', (252, 779, 510, 587)
chair, '43.65', (1467, 642, 184, 572)

 Pose Landmarks:
x0, y0, z0, vis0, …, x32, y32, z32, vis32

 Pose World Landmarks:
x0, y0, z0, vis0, …, x32, y32, z32, vis32

x

y

D
et

ec
tio

n
R

es
ul

ts
P

os
e

E
st

im
at

io
n

R
es

ul
ts

0

chair, '59.04', (1479, 636, 213, 545)
sofa, '76.91', (248, 777, 501, 635)
person, '97.6', (836, 529, 528, 1062)

 Pose Landmarks:

 Pose World Landmarks:

x

y

D
et

ec
tio

n
R

es
ul

ts
P

os
e

E
st

im
at

io
n

R
es

ul
ts

_

Figure 5.3: Sample Frames from the Recorded Video with the Related X/Input and Y/Target Values

103

5.3.2 Training/Test Sets Creation

We have created a tool to convert our labeled data to training/test sets. By using this conversion tool, we

have generated our training/test sets using the following two-step process.

In the first step, each recorded datum (stored x/input and y/target values related to a single frame) is

converted to a training/test record using the following operations:

1. Find the center of the hip in the 2D frame using the Pose Landmark points index 23 and 24.

2. Sort the detected objects in the frame using their distance from the hip center as the sorting key.

3. Consider the top N (configurable number of objects to include) objects in the sorted detection list.

4. Calculate the one-hot representation of each object label in the considered top N objects.

5. Use the Pose World Landmarks points with index 0, 11, 12, 13, 14, 15, 16, 23, 24, 25, 26, 27, and 28

to create an array consisting of x,y,z values from these world points.

6. Concatenate the top N one-hot representation of detected objects from the sorted detection list and the

array created in the previous operation as input array for the detection network.

7. Consider y to be the target value for the array generated in the previous step.

A one-hot representation of an object label is calculated by finding the index value for that label in the

list of the supported classes in YOLO and then creating a zero vector with a length of the mentioned list

and setting the found index item in the zero vector to 1. Figure 5.4 shows an example of turning a label

(handbag) to a one-hot representation.

The mentioned indexes for Pose World Landmarks are corresponding to the points representing nose,

shoulders, elbows, wrists, hips, knees, and ankles (Figure 5.1).

104

Label
‘handbag’

List of Labels
0: 'person'
1: 'bicycle'
2: 'car'
3: 'motorbike'
4: 'aeroplane'

26: ‘handbag’

78: 'hair drier'
79: 'toothbrush'

Index: 26
0 1 2 3 4 23 24 25 26 27 28 76 77 78 79

One-hot Vector
0,0,0,0,0, ,0,0,0,1,0,0, ,0,0,0,0

Figure 5.4: One-hot Representation of the Label "handbag"

Figure 5.5 demonstrates how stored x/input and y/target values related to a single frame are converted

to a record suitable for training/test sets. Here the N (configurable number of objects to include) value is

3. As can be observed, the length of the x/input values for a single frame is 279. This length is calculated

by multiplying N (3) with the length of a single one-hot vector (80) and adding the length of the array

representing the item number 5 in the previous numbered list (13× 3 = 39).

person, '96.57', (1120, 508, 288, 691)
handbag, 28.75, (993, 870, 236, 151)
sofa, '74.59', (251, 851, 490, 453)
bed, '32.47', (251, 851, 497, 449)
chair, '62.76', (1468, 648, 196, 600)

 Pose Landmarks:
x0, y0, z0, vis0, …, x32, y32, z32, vis32

 Pose World Landmarks:
x0, y0, z0, vis0, …, x32, y32, z32, vis32

x

y

D
et

ec
tio

n
R

es
ul

ts
P

os
e

E
st

im
at

io
n

R
es

ul
ts

1

0,0,...,0,1,0,...,0,0,...,0,1,0,0,...,0,0,...,0,1,0,0,...,0,0.56,0.35,-0.94,1.04,...,0.76,0.78
1st object 2nd object 3rd object xi, yi, zi values from 13 selected points in Pose World

Landmarks

3 × 80 = 240 13 × 3 = 39

240 + 39 = 279

Xnetwork=

ynetwork= 1

Figure 5.5: Converting a Labeled Record to a Training/Test Set Record

The second step handles the y/target values in the converted labeled data, now that our stored labeled

data are converted to a proper format for the network consumption. The number of zeros in the set containing

all the y/target values (Y) is significantly higher than the number of ones in that set. This is because a value

of 1 for y/target represents the completion of the desired activity, meaning that every other frame that is not

marked with completion of the desired task will have a target value of zero in the converted labeled data set.

Having a significantly higher number of zeros in Y will pose a challenge in the training and deployment

of an RNN network that has to work with the mentioned data set. It should be noted that since the RNN will

105

consider the converted labeled data set as a time-series, the number of timestamps with y value as 1 will be

very small in intended output from the network.

To mitigate this problem, as is the convention with time-series and RNN networks, we have to adjust our

converted labeled data. The adjustment is done by iterating through the Y set and, whenever a y value of 1 is

encountered, converting a fixed number of y values to 1. For example, if the Y set is {0,0,0,0,0,0,1,0,0,0,0,0}

and the fixed number is set to 3, after adjustment, the Y set will be {0,0,0,0,0,0,1,1,1,1,0,0}.

After adjusting the Y set, the only item left is to distribute our labeled, converted, and adjusted data

between a training and a test set (sometimes test set is referred to as development set if only two sets are

considered in the programming process). Here, because our data is a time-series (the order of x/input and

y/target values related to the consecutive frames is important in drawing conclusions from the data set), we

cannot shuffle our items in the data set and distribute them between the training and test collections.

5.3.3 RNN Architecture

Figure 5.6 shows our implemented network architecture to determine the occurrence of an activity from

the input time-series. This network is an RNN with a many-to-many configuration. The length of the input

time-series is equal to the length of the output layer. This network is structurally similar to the networks that

could be used in voice activation features [47]. The first convolution layer extracts low-level features from

the input while reducing the number of required calculations for the remaining layers. Batch normalization

operations are helpful in balancing the output values from each layer. This is especially important in our

case, as we concatenate one-hot vectors related to detected objects with pose estimation results. Dropout

layers help prevent the network from over-fitting the training set during the training procedure. GRU units

are incorporated as the network has to process and make sense of time-series. It should be noted that the last

layer (Dense + Sigmoid) is time-distributed, where all the units with different timestamps share the same

parameters.

106

Input

x<0> x<1> x<2> x<3> x<4> x<5> x<window_length>

BatchNorm

ReLU

Dropout

Conv1D(num filters=40, kernel size=3, strides=1, padding="same")

BatchNorm

ReLU

Dropout

BatchNorm

ReLU

Dropout

BatchNorm

ReLU

Dropout

BatchNorm

ReLU

Dropout

BatchNorm

ReLU

Dropout

BatchNorm

ReLU

Dropout

Dropout

BatchNorm

Dropout

BatchNorm

Dropout

BatchNorm

Dropout

BatchNorm

Dropout

BatchNorm

Dropout

BatchNorm

GRU

Dropout

BatchNorm

GRU GRU GRU GRU GRU GRU

Dropout

BatchNorm

Dropout

BatchNorm

Dropout

BatchNorm

Dropout

BatchNorm

Dropout

BatchNorm

Dropout

BatchNorm

GRU

Dropout

BatchNorm

GRU GRU GRU GRU GRU GRU

Dropout Dropout Dropout Dropout Dropout Dropout Dropout

Dense Dense Dense Dense Dense Dense Dense

Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid

ŷ<0> ŷ<1> ŷ<2> ŷ<3> ŷ<4> ŷ<5> ŷ<window_length>

Figure 5.6: Architecture Overview for the Proposed Activity Detection Neural Network

5.3.4 RNN Training Procedure

By having access to the properly formatted training set and the implemented RNN architecture detailed

in the previous section, the training procedure could be undertaken. As our input is a time-series and our

network is designed as an RNN, a window/sample size should be considered. This window slides on the

training data set and the present items in the window are fed to the network to be used in the training.

The sliding window requires a sequence stride as well, where the value determines how many timestamps

(different frames) the window should slide between two consecutive activations of the forward propagation

in the network. Table 5.1 summarizes the parameters and their values involved in the training process.

107

Table 5.1: Summary of Activity Detection Training Parameters
Parameter Model/Value(s)
Window/Sample Length 40
Sequence Stride 10
Optimizer Adam with lr=0.001, β1=0.9, β2=0.999, decay=0.01
Loss Function Binary Crossentropy
Model Accuracy After 100 Epochs 0.9447
Model Loss After 100 Epochs 0.1822
Dropouts Rate 0.8
Number of Units in GRU 128
Total Number of Parameters in the Network 199,185
Number of Trainable Parameters 198,593
Number of Non-trainable Parameters 592

5.4 Activity Detection Results

The same sliding and sequence stride mechanism mentioned in the training procedure is utilized in the

deployment of the proposed RNN. The output is generated from the forward propagation operation on the

sliding window. The length of the generated output array is 40 (the same as the window/sample length).

Each item inside this array is a floating-point number with a value between 0 and 1 (sigmoid activation

output).

By iterating through the output array and considering a threshold value, a new array could be generated

where each element is 1 if the corresponding item in the output array is greater than the threshold value, and

is 0 otherwise. We could consider this operation as an adjusted Hardmax function. By summing the numbers

in this new array, a single integer value is generated. The larger this number, the higher the probability that

the desired action was conducted in the time window used to generate the forward propagation output. By

using a configurable threshold value and comparing it against the calculated sum value, the system can

decide if the desired activity was conducted during the time window.

We have set the first threshold value used in the adjusted Hardmax function to 0.2 and the second

threshold value used in the adjusted output array’s sum evaluation to be 1.

To test our network, we have recorded a video with different clothing and lightning conditions from the

108

video used in the training procedure. The same movement patterns described earlier in Subsection 5.3.1

were used to record this video. The length of the video is 60 seconds and the frame width and height are

1280 and 720 pixels, respectively. The same Panasonic DMC-LF1 camera used in the training phase was

utilized to record the evaluation video. The video file will be publicly available online.

The results show that our network is capable of correctly recognizing the activity with 86% accuracy.

Here, the accuracy was calculated by counting the number of times the activity was correctly categorized,

divided by the total number of activities in the video that were covered by the camera. Unlike the percentage

of correctly estimated y/target values for individual frames which yield a higher accuracy value, this is a

realistic measurement. The former measurement could have a higher value as the target values are dominated

by the number of zeros.

The achieved accuracy value is very promising, especially when considering that our network was

trained on only a single training video. Additionally, our TensorFlow implementation of the network took

less than 4 minutes to be trained for this activity on an average consumer-level desktop PC (Ryzen 7 2700x

and GTX 1080). Solutions that consider a volume of raw pixel values to provide the detection results are

simply incapable of attaining these accuracy values when trained on as much data as we have utilized in

our solution. We have intentionally chosen to train our presented network with just a single video file to

demonstrate the benefits of using powerful and already trained neural networks to design and implement

a solution. Figure 5.7 shows four sample frames when the network is detecting the activity (leaving a

bag/backpack unattended). Each frame shows a different walking direction when the activity is being de-

tected. Figures 5.7(a), 5.7(b), 5.7(c), and 5.7(d) are related to the rear to front, rear-left to front-right, front

to rear, and rear-right to front-left walking directions, respectively.

109

(a) Rear to Front Walking Direction (b) Rear-Left to Front-Right Walking Direction

(c) Front to Rear Walking Direction (d) Rear-Right to Front-Left Walking Direction

Figure 5.7: Sample Frames When the Action is Being Detected by the Activity Detection Network

5.5 Conclusion

Detection results from object detection neural networks can provide an opportunity for building efficient

solutions for activity detection tasks. By using fast pose estimation frameworks like MediaPipe Pose in

addition to captured detection results, the domain of the activity detection problem shifts from a volume

of RGB pixel values to a time-series of relatively small one-dimensional arrays. This enables the activity

detection solution to take advantage of very capable neural networks being backed by thousands of hours of

training on massive clusters of GPUs. Thus, it is possible to create capable activity detection solutions by

adopting significantly smaller training sets and training processing hours.

110

CHAPTER 6 SUMMARY AND FUTURE WORK

6.1 Summary

This dissertation considers computer vision (CV) systems in which a central monitoring station receives

and analyzes video streams captured and transmitted wirelessly by multiple cameras. It addresses how

bandwidth can be allocated to different cameras by presenting a cross-layer solution that improves overall

detection or recognition accuracy. In addition, unlike previous work, it presents and develops a real CV

system before providing a detailed experimental analysis of cross-layer optimization. Other distinguishing

characteristics of the developed solution include the use of the popular HTTP streaming approach, the use of

homogeneous as well as heterogeneous cameras with varying capabilities and limitations, and the inclusion

of a new algorithm for estimating the effective medium airtime. The results show that the proposed solution

improves CV accuracy significantly.

Furthermore, because neural networks are a major component of CV algorithms, this dissertation in-

cludes an improved object detection neural network system. The proposed system focuses on the areas of

importance in consecutive frames by considering inherent video characteristics and employing different mo-

tion detection and clustering algorithms, allowing the system to distribute the detection task dynamically and

efficiently among multiple deployments of object detection neural networks. Our thorough experimental re-

sults suggest that our proposed solution can improve mAP, execution time, and necessary data transmissions

to object detector networks.

Finally, we present an effective activity detection RNN by having access to object detection results and

taking advantage of quick posture estimation techniques, as identifying an activity provides considerable

automation prospects in computer vision systems. The domain of activity detection shifts from a volume

of RGB (red, green, and blue) pixel values to a time-series of relatively small one-dimensional arrays by

integrating object detection and pose estimation results. This enables the activity detection system to use

111

highly capable neural networks that have been trained over thousands of hours on massive GPU clusters.

As a result, capable activity detection methods can be developed with far fewer training sets and processing

hours.

6.2 List of Publications

6.2.1 Published:

• Experimental Analysis of Optimal Bandwidth Allocation in Computer Vision Systems. IEEE Trans-

actions on Circuits and Systems for Video Technology, Accepted in December 2020.

• Experimental analysis of bandwidth allocation in automated video surveillance systems. ACM Multi-

media, pages 1457-1464, October 2017.

• A clustering approach for controlling PTZ cameras in automated video surveillance. IEEE Interna-

tional Symposium on Multimedia, pages 333 – 336, December 2016.

6.2.2 Under Review:

AWARE: An Autonomous System for Optimal Control of PTZ Cameras. Second Revision submitted to

ACM Transactions on Autonomous and Adaptive Systems in October 2021.

6.3 Future Work

There are areas in our proposed solutions that could be additionally investigated to further improve the

performance of our system:

• In the Enhanced YOLO project, rather than a singular region of interest (ROI) in video frames, mul-

tiple ROIs could be investigated (with each one fed to a YOLO deployment with a relatively lower

input resolution compared to the singular case).

• Using word embedding in the activity detection network as opposed to one-hot vectors for different

classes of objects.

112

• Experimenting with other network architectures for activity detection (including tuning hyperparam-

eters like the window width and the gap size for time-series).

• Multiple activity detection on a single network by expanding the output to a one-hot vector form.

113

REFERENCES

[1] Computer vision technologies and markets. https://omdia.tech.informa.com/

OM011959/Computer-Vision-Technologies-and-Markets. Accessed: 2021-10-01.

[2] Surveillance camera statistics: Which city has the most CCTV cameras? https://www.

comparitech.com/vpn-privacy/the-worlds-most-surveilled-cities. Ac-

cessed: 2021-06-01.

[3] TwoPoints background subtraction algorithm. https://github.com/andrewssobral/

bgslibrary/tree/master/src/algorithms/TwoPoints. Accessed: 2021-02-01.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning

on heterogeneous systems, 2015. Software available from tensorflow.org.

[5] M. S. Al-Hadrusi, N. J. Sarhan, and S. G. Davani. A clustering approach for controlling PTZ cameras

in automated video surveillance. In 2016 IEEE International Symposium on Multimedia (ISM), pages

333–336, 2016.

[6] M. Alsmirat and N. Sarhan. Cross-layer optimization for many-to-one wireless video streaming sys-

tems. Multimedia Tools and Applications, 77(19):24789–24811, 2018.

[7] M. Alsmirat and N. J. Sarhan. Intelligent optimization for automated video surveillance at the edge: A

cross-layer approach. Simulation Modelling Practice and Theory, 105:102171, 2020.

[8] S. R. Alvar and I. V. Bajić. MV-YOLO: Motion vector-aided tracking by semantic object detection.

In Proceeding of IEEE 20th International Workshop on Multimedia Signal Processing (MMSP), pages

https://omdia.tech.informa.com/OM011959/Computer-Vision-Technologies-and-Markets
https://omdia.tech.informa.com/OM011959/Computer-Vision-Technologies-and-Markets
https://www.comparitech.com/vpn-privacy/the-worlds-most-surveilled-cities
https://www.comparitech.com/vpn-privacy/the-worlds-most-surveilled-cities
https://github.com/andrewssobral/bgslibrary/tree/master/src/algorithms/TwoPoints
https://github.com/andrewssobral/bgslibrary/tree/master/src/algorithms/TwoPoints

114

1–5, 2018.

[9] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the

clustering structure. In Proceedings of the 1999 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’99, page 49–60, New York, NY, USA, 1999. Association for Computing

Machinery.

[10] A. Arar, A. A. El-Sherif, A. Mohamed, and V. C. M. Leung. Optimum power and rate allocation in

cluster based video sensor networks. In 2015 International Conference on Computing, Networking

and Communications (ICNC), pages 183–188, 2015.

[11] D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In Proceedings of

the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, page 1027–1035,

USA, 2007. Society for Industrial and Applied Mathematics.

[12] Y. S. Baguda. Energy-efficient biocooperative video-aware QoS-based multiobjective cross-layer op-

timization for wireless networks. IEEE Access, 8:127034–127047, 2020.

[13] O. Barnich and M. Van Droogenbroeck. ViBe: A universal background subtraction algorithm for video

sequences. IEEE Transactions on Image processing, 20(6):1709–1724, 2010.

[14] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang, and M. Grundmann. BlazePose:

On-device real-time body pose tracking. 2020.

[15] M. Benetti, M. Gottardi, T. Mayr, and R. Passerone. A low-power vision system with adaptive back-

ground subtraction and image segmentation for unusual event detection. IEEE Transactions on Circuits

and Systems I: Regular Papers, 65(11):3842–3853, 2018.

[16] G.-A. Bilodeau, J.-P. Jodoin, and N. Saunier. Change detection in feature space using local binary

similarity patterns. In 2013 International Conference on Computer and Robot Vision, pages 106–112,

2013.

115

[17] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. YOLOv4: Optimal speed and accuracy of object

detection. arXiv, 2004.10934, 2020.

[18] M. Burić, M. Pobar, and M. Ivašić-Kos. Object detection in sports videos. In Proceeding of 41st

International Convention on Information and Communication Technology, Electronics and Microelec-

tronics (MIPRO), pages 1034–1039, 2018.

[19] X. Chen and Y. Han. Multi-task CNN model for action detection. In Proceeding of IEEE Visual

Communications and Image Processing (VCIP), pages 1–4, 2018.

[20] Z. Chen, K. Fan, S. Wang, L.-Y. Duan, W. Lin, and A. Kot. Lossy intermediate deep learning feature

compression and evaluation. In Proceedings of the 27th ACM International Conference on Multimedia,

MM ’19, page 2414–2422, New York, NY, USA, 2019. Association for Computing Machinery.

[21] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.

Learning phrase representations using RNN encoder-decoder for statistical machine translation, 2014.

[22] S.-P. Chuah, Y.-P. Tan, and Z. Chen. Rate and power allocation for joint coding and transmission in

wireless video chat applications. IEEE Transactions on Multimedia, 17(5):687–699, 2015.

[23] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE

Transactions on pattern analysis and machine intelligence, 24(5):603–619, 2002.

[24] S. G. Davani and N. J. Sarhan. Experimental analysis of optimal bandwidth allocation in computer

vision systems. IEEE Transactions on Circuits and Systems for Video Technology, 31(10):4121–4130,

2021.

[25] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. ArcFace: Additive angular margin loss for deep face

recognition. In Proceeding of IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4685–4694, 2019.

[26] W. Deng, R. Patil, L. Najjar, Y. Shi, and Z. Chen. Incorporating community detection and cluster-

116

ing techniques into collaborative filtering model. Procedia Computer Science, 31:66–74, 2014. 2nd

International Conference on Information Technology and Quantitative Management, ITQM 2014.

[27] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in

large spatial databases with noise. In KDD, 1996.

[28] B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science,

315(5814):972–976, 2007.

[29] A. Guan, S. H. Bayless, and R. Neelakantan. Connected vehicle insights. Trends in computer vision.

Technology scan series, 2012, 2011.

[30] M. Guo, M. Ammar, and E. Zegura. V3: a vehicle-to-vehicle live video streaming architecture. In

Third IEEE International Conference on Pervasive Computing and Communications, pages 171–180,

2005.

[31] H. R. Hamandi and N. J. Sarhan. Novel analytical models of face recognition accuracy in terms of

video capturing and encoding parameters. In Proceedings of the 2020 IEEE International Conference

on Multimedia and Expo (ICME), pages 1–6, 2020.

[32] J. He, D. Wu, X. Xie, M. Chen, Y. Li, and G. Zhang. Efficient upstream bandwidth multiplexing for

cloud video recording services. IEEE Transactions on Circuits and Systems for Video Technology,

26(10):1893–1906, 2016.

[33] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,

abs/1512.03385, 2015.

[34] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[35] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu. Power-rate-distortion analysis for wireless video

communication under energy constraints. IEEE Transactions on Circuits and Systems for Video Tech-

117

nology, 15(5):645–658, 2005.

[36] Z. He and D. Wu. Resource allocation and performance analysis of wireless video sensors. IEEE

Transactions on Circuits and Systems for Video Technology, 16(5):590–599, 2006.

[37] C.-H. Hsu and M. Hefeeda. A framework for cross-layer optimization of video streaming in wireless

networks. ACM Transactions on Multimedia Computing Communications and Applications, 7:5:1–

5:28, 2011.

[38] J. Huang, Z. Li, M. Chiang, and A. K. Katsaggelos. Pricing-based rate control and joint packet schedul-

ing for multi-user wireless uplink video streaming. In Proceeding of 15th International Packet Video

Workshop (PV2006), Dec 2006.

[39] K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis. Real-time foreground–background segmenta-

tion using codebook model. Real-Time Imaging, 11:172–185, 2005.

[40] P. Korshunov. Rate-accuracy tradeoff in automated, distributed video surveillance systems. In Pro-

ceedings of the 14th ACM International Conference on Multimedia, MM ’06, page 887–889, New

York, NY, USA, 2006. Association for Computing Machinery.

[41] W. A. Latif and C. C. Tan. SmartArgos: Improving mobile surveillance systems with software defined

networks. In 2015 IEEE Conference on Communications and Network Security (CNS), pages 763–764,

2015.

[42] B.-F. Lin, Y.-M. Chan, L.-C. Fu, P.-Y. Hsiao, L.-A. Chuang, S.-S. Huang, and M.-F. Lo. Integrating

appearance and edge features for sedan vehicle detection in the blind-spot area. IEEE Transactions on

Intelligent Transportation Systems, 13(2):737–747, 2012.

[43] Y. Lu, Y. Chen, D. Zhao, and H. Li. Hybrid deep learning based moving object detection via motion

prediction. In Proceeding of Chinese Automation Congress (CAC), pages 1442–1447, 2018.

118

[44] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: a survey.

IEEE/ACM transactions on computational biology and bioinformatics, 1(1):24–45, 2004.

[45] A. Manzanera and J. C. Richefeu. A new motion detection algorithm based on sigma-delta background

estimation. Pattern Recognition Letters, 28(3):320–328, 2007.

[46] B. Mocanu, R. Tapu, and T. Zaharia. Seeing without sight — an automatic cognition system dedicated

to blind and visually impaired people. In Proceeding of IEEE International Conference on Computer

Vision Workshops (ICCVW), pages 1452–1459, 2017.

[47] A. Ng, K. Katanforoosh, and Y. B. Mourri. Sequence models [MOOC]. Coursera. https://www.

coursera.org/learn/nlp-sequence-models/home/info, 2019.

[48] F. Nielsen. Hierarchical Clustering, pages 195–211. 02 2016.

[49] G. Oltean, C. Florea, R. Orghidan, and V. Oltean. Towards real time vehicle counting using YOLO-

tiny and fast motion estimation. In Proceeding of IEEE 25th International Symposium for Design and

Technology in Electronic Packaging (SIITME), pages 240–243, 2019.

[50] C. Pan, D. Shi, N. Guan, Y. Zhang, L. Wang, and S. Jin. Learning to track by bi-directional long short-

term memory networks. In Proceeding of IEEE SmartWorld, Ubiquitous Intelligence Computing,

Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing,

Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),

pages 783–790, 2019.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep

learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,

https://www.coursera.org/learn/nlp-sequence-models/home/info
https://www.coursera.org/learn/nlp-sequence-models/home/info

119

Inc., 2019.

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,

12:2825–2830, 2011.

[53] J. Piao, T. Inoshita, and K. Iwamoto. Carried object recognition via location relation with body parts.

In Proceeding of IEEE International Conference on Image Processing (ICIP), pages 3058–3062, 2019.

[54] J. Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/darknet/,

2013–2016.

[55] M. H. Sanan, K. A. Alam, M. Z. Rafique, and B. Khan. Quality of service enhancement in wireless

LAN: A systematic literature review. In Proceeding of 13th International Conference on Mathematics,

Actuarial Science, Computer Science and Statistics (MACS), pages 1–8, 2019.

[56] B. A. B. Sarif, M. Pourazad, P. Nasiopoulos, and V. C. M. Leung. A study on the power consumption

of H.264/AVC-based video sensor network. International Journal of Distributed Sensor Networks,

11(10):304787, 2015.

[57] B. A. B. Sarif, M. T. Pourazad, P. Nasiopoulos, and V. C. M. Leung. Analysis of power consumption

of H.264/AVC-based video sensor networks through modeling the encoding complexity and bitrate. In

ICDS 2014, 2014.

[58] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and

clustering. CoRR, abs/1503.03832, 2015.

[59] D. Sculley. Web-scale k-means clustering. In Proceedings of the 19th International Conference on

World Wide Web, WWW ’10, page 1177–1178, New York, NY, USA, 2010. Association for Computing

Machinery.

http://pjreddie.com/darknet/

120

[60] K. Sehairi, F. Chouireb, and J. Meunier. Comparative study of motion detection methods for video

surveillance systems. Journal of Electronic Imaging, 26(2):1–29, 2017.

[61] H. Shiang and M. van der Schaar. Information-constrained resource allocation in multicamera wireless

surveillance networks. IEEE Transactions on Circuits and Systems for Video Technology, 20(4):505–

517, 2010.

[62] A. Sobral and T. Bouwmans. BGS library: A library framework for algorithm’s evaluation in fore-

ground/background segmentation. In Background Modeling and Foreground Detection for Video

Surveillance. CRC Press, Taylor and Francis Group, 2014.

[63] A. Sobral and A. Vacavant. A comprehensive review of background subtraction algorithms evaluated

with synthetic and real videos. Computer Vision and Image Understanding, 122:4–21, 2014.

[64] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision. 2014.

[65] P. St-Charles and G. Bilodeau. Improving background subtraction using local binary similarity pat-

terns. In IEEE Winter Conference on Applications of Computer Vision, pages 509–515, 2014.

[66] P. St-Charles, G. Bilodeau, and R. Bergevin. Flexible background subtraction with self-balanced local

sensitivity. In 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages

414–419, 2014.

[67] P. St-Charles, G. Bilodeau, and R. Bergevin. Universal background subtraction using word consensus

models. IEEE Transactions on Image Processing, 25(10):4768–4781, 2016.

[68] P.-L. St-Charles and G.-A. Bilodeau. Improving background subtraction using local binary similarity

patterns. In IEEE Winter Conference on Applications of Computer Vision, pages 509–515, 2014.

[69] C. Stauffer and W. Grimson. Adaptive background mixture models for real-time tracking. In Proceed-

ings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No

PR00149), volume 2, pages 246–252, 1999.

121

[70] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, Inception-ResNet and the impact

of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial

Intelligence, pages 4278–4284, 2017.

[71] R. Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer

London, 2010.

[72] J. Tian, H. Zhang, D. Wu, and D. Yuan. Interference-aware cross-layer design for distributed video

transmission in wireless networks. IEEE Transactions on Circuits and Systems for Video Technology,

26(5):978–991, 2016.

[73] R. Vial, H. Zhu, Y. Tian, and S. Lu. Search video action proposal with recurrent and static YOLO. In

Proceeding of IEEE International Conference on Image Processing (ICIP), pages 2035–2039, 2017.

[74] C. Whitelam, E. Taborsky, A. Blanton, B. Maze, J. Adams, T. Miller, N. Kalka, and A. K. Jain. IARPA

Janus benchmark-b face dataset. In Proceeding of IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), pages 592–600, 2017.

[75] E. Yaacoub and F. Filali. Cluster based V2V communications for enhanced QoS of SVC video stream-

ing over vehicular networks. In 2014 International Wireless Communications and Mobile Computing

Conference (IWCMC), pages 678–683, 2014.

[76] Y. Yang, K. Han, S. Lee, and J. Lee. Temporal difference based adaptive object detection (ToDo)

platform at edge computing system. In Proceeding of IEEE 17th Annual Consumer Communications

Networking Conference (CCNC), pages 1–2, 2020.

[77] H. Zhang, Y. Zheng, M. A. Khojastepour, and S. Rangarajan. Cross-layer optimization for streaming

scalable video over fading wireless networks. IEEE Journal on Selected Areas in Communications,

28(3):344–353, 2010.

[78] S. Zhang, T. Wang, C. Wang, Y. Wang, G. Shan, and H. Snoussi. Video object detection base on RGB

122

and optical flow analysis. In Proceeding of 2nd China Symposium on Cognitive Computing and Hybrid

Intelligence (CCHI), pages 280–284, 2019.

[79] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large

databases. ACM SIGMOD Record, 25(2):103–114, 1996.

[80] Z. Zivkovic and F. Van Der Heijden. Efficient adaptive density estimation per image pixel for the task

of background subtraction. Pattern Recognition Letters, 27(7):773–780, 2006.

123

ABSTRACT

DESIGN OF COMPUTER VISION SYSTEMS FOR OPTIMIZING THE
THREAT DETECTION ACCURACY

by

SINA GHOLAMNEJAD DAVANI

May 2022

Advisor: Dr. Nabil Sarhan

Major: Computer Engineering

Degree: Doctor of Philosophy

This dissertation considers computer vision (CV) systems in which a central monitoring station receives

and analyzes the video streams captured and delivered wirelessly by multiple cameras. It addresses how

the bandwidth can be allocated to various cameras by presenting a cross-layer solution that optimizes the

overall detection or recognition accuracy. The dissertation presents and develops a real CV system and

subsequently provides a detailed experimental analysis of cross-layer optimization. Other unique features

of the developed solution include employing the popular HTTP streaming approach; utilizing homogeneous

cameras as well as heterogeneous ones with varying capabilities and limitations; and including a new algo-

rithm for estimating the effective medium airtime. The results show that the proposed solution significantly

improves the CV accuracy.

Additionally, the dissertation features an improved neural network system for object detection. The pro-

posed system considers inherent video characteristics and employs different motion detection and clustering

algorithms to focus on the areas of importance in consecutive frames, allowing the system to distribute the

detection task dynamically and efficiently among multiple deployments of object detection neural networks.

Our experimental results indicate that our proposed method can enhance the mAP (mean average precision),

execution time, and required data transmissions to object detection networks.

124

Finally, as recognizing an activity provides significant automation prospects in CV systems, the dis-

sertation presents an efficient activity-detection recurrent neural network that utilizes fast pose/limbs esti-

mation approaches. By combining object detection with pose estimation, the domain of activity detection

is shifted from a volume of RGB (red, green, and blue) pixel values to a time-series of relatively small

one-dimensional arrays, thereby allowing the activity detection system to take advantage of highly capable

neural networks that have been trained on large GPU clusters for thousands of hours. Consequently, capable

activity detection systems with considerably fewer training sets and processing hours can be built.

125

AUTOBIOGRAPHICAL STATEMENT

Sina G. Davani is an ADAS Senior Software Engineer at CONTINENTAL AG. While working in the

automotive industry, he has been tasked with developing software solutions for advanced driver assistance

systems. He received his B.S. degree in Computer Engineering from Isfahan University of Technology in

2012 and his M.S. degree in the same field from Wayne State University in 2017. His main research interests

are automated video surveillance; systems simulation; bandwidth adaptations for video streaming systems;

machine learning; computer vision; and parallel and distributed system design and implementation.

	Design Of Computer Vision Systems For Optimizing The Threat Detection Accuracy
	Recommended Citation

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Overview
	Main Challenges
	Main Research Objectives
	Detailed Research Plan
	Optimal Bandwidth Allocation in CV Systems
	Enhanced YOLO Solution
	Activity Detection Recurrent Neural Network

	Background and Related Work
	CV Systems and Cross-Layer Optimization
	CV Algorithms
	Neural Net Optimizations and Activity Detection

	Experimental Analysis of Optimal Bandwidth Allocation in Computer Vision Systems
	Developed Computer Vision System
	Proposed Cross-Layer Optimization Solution
	Cross-Layer Optimization Problem Formulation
	Effective Airtime Estimation
	Cross-Layer Optimization Solution
	Proposed Method for Determining the Constant Values of the Accuracy Error Models

	Performance Evaluation Methodology
	Experimental Setup I: Using a Real Video Surveillance Data Set
	Experimental Setup II: Live Laboratory Environment
	Experimental Setup III: Using Videos from Janus Benchmark-B Face Challenge Data Set

	Results Presentation and Analysis
	Tuning System Constants
	Comparing Effective Airtime Estimation under Different Solutions
	Analysis of Cross-Layer Optimization for Face Detection
	Analysis of Cross-Layer Optimization for Face Recognition

	Conclusions

	Enhanced YOLO Solution
	Introduction
	Brief Description of Background Subtraction/Motion Detection Techniques
	Adaptive Background Learning
	Adaptive-Selective Background Learning
	Codebook
	Frame Difference
	Local Binary Similarity Segmenter (LOBSTER)
	Mixture of Gaussian V2
	Pixel-based Adaptive Word Consensus Segmenter (PAWCS)
	SigmaDelta (-)
	Static Frame Difference
	Flexible Background Subtraction with Self-Balanced Local Sensitivity (SuBSENSE)
	TwoPoints
	ViBe
	Weighted Moving Mean
	Weighted Moving Variance

	Execution Complexity and the Visual Performance of Background Subtraction/Motion Detection Techniques
	Brief Description of Clustering Techniques
	KMeans
	Affinity Propagation
	MeanShift
	Spectral
	Agglomerative
	DBSCAN
	OPTICS
	BIRCH
	MiniBatchKMeans

	Execution Time Complexity and the Visual Performance of Clustering Techniques
	Performance Evaluation Methodology
	Mean Average Precision (mAP)
	Results
	Conclusion

	Activity Detection Recurrent Neural Network
	Introduction
	Background
	Pose Estimation
	Different Building Layers of Our Activity Detection Network

	Proposed Activity Detection RNN Solution
	Labeled Data Preparation
	Training/Test Sets Creation
	RNN Architecture
	RNN Training Procedure

	Activity Detection Results
	Conclusion

	Summary and Future Work
	Summary
	List of Publications
	Published:
	Under Review:

	Future Work

	References
	Abstract
	Autobiographical Statement

