873 research outputs found

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Interactive inspection of complex multi-object industrial assemblies

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1016/j.cad.2016.06.005The use of virtual prototypes and digital models containing thousands of individual objects is commonplace in complex industrial applications like the cooperative design of huge ships. Designers are interested in selecting and editing specific sets of objects during the interactive inspection sessions. This is however not supported by standard visualization systems for huge models. In this paper we discuss in detail the concept of rendering front in multiresolution trees, their properties and the algorithms that construct the hierarchy and efficiently render it, applied to very complex CAD models, so that the model structure and the identities of objects are preserved. We also propose an algorithm for the interactive inspection of huge models which uses a rendering budget and supports selection of individual objects and sets of objects, displacement of the selected objects and real-time collision detection during these displacements. Our solution–based on the analysis of several existing view-dependent visualization schemes–uses a Hybrid Multiresolution Tree that mixes layers of exact geometry, simplified models and impostors, together with a time-critical, view-dependent algorithm and a Constrained Front. The algorithm has been successfully tested in real industrial environments; the models involved are presented and discussed in the paper.Peer ReviewedPostprint (author's final draft

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware

    Interactive rendering of massive geometric models

    Get PDF
    Booklet2005-02Conference held in Pisa, ItalyTutorial notes, Eurographics Italy. Conference held in Pisa, Italy, February 17--18, CDROM Proceedings, February 200

    CGAMES'2009

    Get PDF

    Massive model visualization: An investigation into spatial partitioning

    Get PDF
    The current generation of visualization software is incapable of handling the interactive rendering of arbitrarily large models. While many solutions have been proposed for Massive Model Visualization, very few are able to achieve the full capabilities needed for a computer visualization solution. In most cases this is due to overly complex approaches that, while achieving impressive frame rates, make it virtually impossible to implement features like part manipulation. What is needed is a simple approach with rendering performance bounded by screen complexity not model size, with primitive traceability to the original model to facilitate part manipulation, and capability to be modified in near-real-time. This thesis introduces MMDr, a simple system to achieve interactive frame rates on extremely large data sets, while retaining support for most if not all the features required for a computer visualization solution

    Emergency crowd simulation for outdoor environments

    Get PDF
    Cataloged from PDF version of article.We simulate virtual crowds in emergency situations caused by an incident, such as a fire, an explosion, or a terrorist attack. We use a continuum dynamics-based approach to simulate the escaping crowd, which produces more efficient simulations than the agent-based approaches. Only the close proximity of the incident region, which includes the crowd affected by the incident, is simulated. We use a model-based rendering approach where a polygonal mesh is rendered for each agent according to the agent's skeletal motion. To speed up the animation and visualization, we employ an offline occlusion culling technique. We animate and render a pedestrian model only if it is visible according to the static visibility information computed. In the pre-processing stage, the navigable area is decomposed into a grid of cells and the from-region visibility of these cells is computed with the help of hardware occlusion queries. (C) 2009 Elsevier Ltd. All rights reserved

    View space linking, solid node compression and binary space partitioning for visibility determination in 3D walk-throughs

    Get PDF
    Today\u27s 3D games consumers are expecting more and more quality in their games. To enable high quality graphics at interactive rates, games programmers employ a technique known as hidden surface removal (HSR) or polygon culling. HSR is not just applicable to games; it may also be applied to any application that requires quality and interactive rates, including medical, military and building applications. One such commonly used technique for HSR is the binary space partition (BSP) tree, which is used for 3D ‘walk-throughs’, otherwise known as 3D static environments or first person shooters. Recent developments in 3D accelerated hardware technology do not mean that HSR is becoming redundant; in fact, HSR is increasingly becoming more important to the graphics pipeline. The well established potentially visible sets (PSV) BSP tree algorithm is used as a platform for exploring three enhanced algorithms; View Space Lighting, Solid Node Compression and hardware accelerated occlusion are shown to reducing the amounts of nodes that are traversed in a BSP tree, improving tree travel efficiency. These algorithms are proven (in cases) to improve overall efficiency
    corecore