100,543 research outputs found

    Context-based Pseudonym Changing Scheme for Vehicular Adhoc Networks

    Get PDF
    Vehicular adhoc networks allow vehicles to share their information for safety and traffic efficiency. However, sharing information may threaten the driver privacy because it includes spatiotemporal information and is broadcast publicly and periodically. In this paper, we propose a context-adaptive pseudonym changing scheme which lets a vehicle decide autonomously when to change its pseudonym and how long it should remain silent to ensure unlinkability. This scheme adapts dynamically based on the density of the surrounding traffic and the user privacy preferences. We employ a multi-target tracking algorithm to measure privacy in terms of traceability in realistic vehicle traces. We use Monte Carlo analysis to estimate the quality of service (QoS) of a forward collision warning application when vehicles apply this scheme. According to the experimental results, the proposed scheme provides a better compromise between traceability and QoS than a random silent period scheme.Comment: Extended version of a previous paper "K. Emara, W. Woerndl, and J. Schlichter, "Poster: Context-Adaptive User-Centric Privacy Scheme for VANET," in Proceedings of the 11th EAI International Conference on Security and Privacy in Communication Networks, SecureComm'15. Dallas, TX, USA: Springer, June 2015.

    An A3P approach towards Image Privacy on Social Sites

    Get PDF
    Usage of social media’s has been considerably increasing in today’s world which enables the user to share their personal information like images with other users. This improved technology leads to privacy desecration where the users can share large number of images across the network. To provide security for the information, we put forward this paper consisting Adaptive Privacy Policy Prediction (A3P) framework to help users create security measures for their images. The role of images and its metadata are studied as a measure of user’s privacy preferences. The Framework defines the best privacy policy for the uploaded images. It includes an Image classification framework for association of images with similar policies and a policy prediction technique to automatically generate a privacy policy for user-uploaded images

    Secure and Private Cloud Storage Systems with Random Linear Fountain Codes

    Full text link
    An information theoretic approach to security and privacy called Secure And Private Information Retrieval (SAPIR) is introduced. SAPIR is applied to distributed data storage systems. In this approach, random combinations of all contents are stored across the network. Our coding approach is based on Random Linear Fountain (RLF) codes. To retrieve a content, a group of servers collaborate with each other to form a Reconstruction Group (RG). SAPIR achieves asymptotic perfect secrecy if at least one of the servers within an RG is not compromised. Further, a Private Information Retrieval (PIR) scheme based on random queries is proposed. The PIR approach ensures the users privately download their desired contents without the servers knowing about the requested contents indices. The proposed scheme is adaptive and can provide privacy against a significant number of colluding servers.Comment: 8 pages, 2 figure

    Secure big data ecosystem architecture : challenges and solutions

    Get PDF
    Big data ecosystems are complex data-intensive, digital–physical systems. Data-intensive ecosystems offer a number of benefits; however, they present challenges as well. One major challenge is related to the privacy and security. A number of privacy and security models, techniques and algorithms have been proposed over a period of time. The limitation is that these solutions are primarily focused on an individual or on an isolated organizational context. There is a need to study and provide complete end-to-end solutions that ensure security and privacy throughout the data lifecycle across the ecosystem beyond the boundary of an individual system or organizational context. The results of current study provide a review of the existing privacy and security challenges and solutions using the systematic literature review (SLR) approach. Based on the SLR approach, 79 applicable articles were selected and analyzed. The information from these articles was extracted to compile a catalogue of security and privacy challenges in big data ecosystems and to highlight their interdependencies. The results were categorized from theoretical viewpoint using adaptive enterprise architecture and practical viewpoint using DAMA framework as guiding lens. The findings of this research will help to identify the research gaps and draw novel research directions in the context of privacy and security in big data-intensive ecosystems. © 2021, The Author(s)

    CYCLOSA: Decentralizing Private Web Search Through SGX-Based Browser Extensions

    Get PDF
    By regularly querying Web search engines, users (unconsciously) disclose large amounts of their personal data as part of their search queries, among which some might reveal sensitive information (e.g. health issues, sexual, political or religious preferences). Several solutions exist to allow users querying search engines while improving privacy protection. However, these solutions suffer from a number of limitations: some are subject to user re-identification attacks, while others lack scalability or are unable to provide accurate results. This paper presents CYCLOSA, a secure, scalable and accurate private Web search solution. CYCLOSA improves security by relying on trusted execution environments (TEEs) as provided by Intel SGX. Further, CYCLOSA proposes a novel adaptive privacy protection solution that reduces the risk of user re- identification. CYCLOSA sends fake queries to the search engine and dynamically adapts their count according to the sensitivity of the user query. In addition, CYCLOSA meets scalability as it is fully decentralized, spreading the load for distributing fake queries among other nodes. Finally, CYCLOSA achieves accuracy of Web search as it handles the real query and the fake queries separately, in contrast to other existing solutions that mix fake and real query results

    Adaptive architecture: Regulating human building interaction

    Get PDF
    In this paper we explore regulatory, technical and interactional implications of Adaptive Architecture, a novel trend emerging in the built environment. We provide a comprehensive description of the emergence and history of the term, with reference to the current state of the art and policy foundations supporting it e.g. smart city initiatives and building regulations. As Adaptive Architecture is underpinned by the Internet of Things (IoT), we are interested in how regulatory and surveillance issues posed by the IoT manifest in buildings too. To support our analysis, we utilise a prominent concept from architecture, Stuart Brand’s Shearing Layers model, which describes the different physical layers of a building and how they relate to temporal change. To ground our analysis, we use three cases of Adaptive Architecture, namely an IoT device (Nest Smart Cam IQ); an Adaptive Architecture research prototype, (ExoBuilding); and a commercial deployment (the Edge). In bringing together Shearing Layers, Adaptive Architecture and the challenges therein, we frame our analysis under 5 key themes. These are guided by emerging information privacy and security regulations. We explore the issues Adaptive Architecture needs to face for: A – ‘Physical & information security’; B – ‘Establishing responsibility’; C – ‘occupant rights over flows, collection, use & control of personal data’; D- ‘Visibility of Emotions and Bodies’; & E – ‘Surveillance of Everyday Routine Activities’. We conclude by summarising key challenges for Adaptive Architecture, regulation and the future of human building interaction
    • …
    corecore