
HAL Id: hal-01882430
https://hal.inria.fr/hal-01882430

Submitted on 27 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CYCLOSA: Decentralizing Private Web Search Through
SGX-Based Browser Extensions

Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara Bouchenak, Antoine
Boutet, Pascal Felber, Rüdiger Kapitza, Marcelo Pasin, Valerio Schiavoni

To cite this version:
Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara Bouchenak, Antoine Boutet, et al.. CY-
CLOSA: Decentralizing Private Web Search Through SGX-Based Browser Extensions. ICDCS 2018
- 38th IEEE International Conference on Distributed Computing Systems, Jul 2018, Vienne, Austria.
pp.467-477, �10.1109/ICDCS.2018.00053�. �hal-01882430�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/163008787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01882430
https://hal.archives-ouvertes.fr

CYCLOSA: Decentralizing Private Web Search
Through SGX-Based Browser Extensions

Rafael Pires†, David Goltzsche‡, Sonia Ben Mokhtar∗, Sara Bouchenak∗,
Antoine Boutet§, Pascal Felber†, Rüdiger Kapitza‡, Marcelo Pasin† and Valerio Schiavoni†

∗INSA Lyon, CNRS, LIRIS, Lyon, France, {firstname.lastname}@insa-lyon.fr
†University of Neuchâtel, Switzerland, {firstname.lastname}@unine.ch

‡TU Braunschweig, Germany, {lastname}@ibr.cs.tu-bs.de
§Univ Lyon, INSA Lyon, Inria, CITI, F-69621 Villeurbanne, France, {firstname.lastname}@insa-lyon.fr

Abstract—By regularly querying Web search engines, users
(unconsciously) disclose large amounts of their personal data
as part of their search queries, among which some might
reveal sensitive information (e.g. health issues, sexual, political
or religious preferences). Several solutions exist to allow users
querying search engines while improving privacy protection.
However, these solutions suffer from a number of limitations:
some are subject to user re-identification attacks, while others
lack scalability or are unable to provide accurate results.

This paper presents CYCLOSA, a secure, scalable and accurate
private Web search solution. CYCLOSA improves security by
relying on trusted execution environments (TEEs) as provided
by Intel SGX. Further, CYCLOSA proposes a novel adaptive
privacy protection solution that reduces the risk of user re-
identification. CYCLOSA sends fake queries to the search engine
and dynamically adapts their count according to the sensitivity
of the user query. In addition, CYCLOSA meets scalability as
it is fully decentralized, spreading the load for distributing fake
queries among other nodes. Finally, CYCLOSA achieves accuracy
of Web search as it handles the real query and the fake queries
separately, in contrast to other existing solutions that mix fake
and real query results.

INTRODUCTION

Search engines have become an essential service for finding
content on the Internet. However, by regularly querying these
services, users disclose large amounts of their personal data,
comprising privacy-sensitive information such as their health
status, religious, political or sexual preferences as shown
during the AOL scandal when this search engine released a
pseudomized dataset of search queries [1], [2].

To limit the disclosure of personal information, many pri-
vate Web search solutions have been proposed in the last
decade. They can be classified in two categories. The first
category of solutions enforce unlinkability between users and
their queries by hiding users’ identity through anonymous
communication [3]–[5].

However, studies have shown that anonymously sending
queries to the search engine is not sufficient to actually
protect users’ privacy [6], [7]. Indeed, a search engine that
has prior knowledge about users (e.g., user profiles built
from past user queries) can link back a large proportion of
anonymous search queries to their originating user by running
re-identification attacks. In order to mitigate this risk, a second
category of solutions have been proposed. These solutions
enforce indistinguishability of the user interests by sending
fake queries on behalf of the user [8], [9]. Other solutions
combine unlinkability and indistinguishability [10], [11].

Additionally, existing privacy protection solutions suffer
from the following limitations: (i) their scalability is limited;
(ii) their protection level is set in a static way; and (iii) their
Web responses are inaccurate. In fact, relying on centralized
proxies or relays, existing systems do not scale with the
number of connected clients. The reality is even worse, not
only do centralized proxies not scale, but they literally fall
short in front of the request rate limitation strategies adopted
by search engines to block bots. Furthermore, search results
are not always accurate as the system may fail in filtering
related to fake queries. Finally, existing systems protect all
search queries with a similar and static protection level, by
sending the same amount of fake queries for all user queries.
This strategy is not always effective as user queries may have
different levels of sensitivity thus, non-sensitive queries may
be overprotected, while sensitive information about the user
may be under protected.

Hence, from our analysis of the state of the art (see
Section II), proposing effective private Web search mecha-
nisms requires dealing with essential challenges among which:
(i) enforcing user privacy by actually protecting against re-
identification attacks through unlinkability and indistinguisha-
bility; (ii) enforcing accuracy by providing the users with
similar responses to those they would get while querying the
search engine directly; and (iii) being scalable to millions of
users while enforcing service availability in presence of query
rate limitation strategies set up by search engines.

In this paper, we present CYCLOSA, the first decentralized
private Web search solution that deals with the above chal-
lenges as follows.
ä Enforcing privacy. CYCLOSA enforces unlinkability be-
tween queries and their originating users as well as indis-
tinguishability between real and fake queries. Specifically, to
enforce unlinkability between a query and her sender, each
node participating in CYCLOSA acts both as a client when
sending own requests and as a proxy by forwarding requests
on behalf of other nodes. As nodes are controlled by other
users, they are regarded as untrusted, i.e. query information
is not leaked to them. Therefore, CYCLOSA utilises trusted
execution environments (TEEs) as provided by Intel SGX (see
Section II-B). Furthermore, it uses secured connections for
securing inter-enclave communications and interactions with
the search engine.

To mitigate user re-identification attacks, CYCLOSA sends

both fake queries and the real user query through multiple
paths to the search engine. However, instead of blindly send-
ing the same amount of fake queries regardless of the real
query, CYCLOSA is the first private Web search mechanism
leveraging query sensitivity. In CYCLOSA, query sensitivity is
defined using two dimensions (i) linkability, which is related
to the similarity of the current request with the user local
profile (the higher the similarity the higher the risk of user
re-identification); and (ii) semantic sensitivity, which relates
to the topic of the query. Users pick a subset of topics they
consider as sensitive of a predefined set.

Hence, each time a user sends a query to the search engine,
CYCLOSA checks whether the query is linkable to her profile
and whether the topic of the query belongs to the sensitive
topics declared by the her. It then accordingly adjusts the
amount of fake queries sent to better protect the request.
As such, and contrary to state-of-the-art solutions, CYCLOSA
strongly protects sensitive queries while avoiding to overload
the system with fake queries for non-sensitive ones.
ä Providing accurate results. In order to be able to collect
accurate responses for the client, CYCLOSA sends fake queries
using different forwarding relays than the ones used for
forwarding the real query. This simplifies the filtering of re-
sponses corresponding to fake queries and enables CYCLOSA
to return the same responses to the user as when directly
querying the search engine, hence reaching a perfect accuracy.
ä Reaching scalability. In contrast to its closest competitors
that rely on centralized proxies, CYCLOSA’s decentralised
architecture consisting of nodes of equal roles leads the system
scaling well with growing number of clients. In practice,
we show in Section VIII that centralized private Web search
mechanisms (e.g., PEAS [10] and X-SEARCH [11]) are not
realistic as they get easily blocked by search engines that have
aggressive anti-bot strategies. Instead, CYCLOSA can easily
overcome this limitation as the load gets evenly distributed
between the participating nodes.

We implemented CYCLOSA and exhaustively evaluate it
on physical machines and using a real workload of query
logs extracted from the AOL dataset [12]. Results show that
CYCLOSA meets expectations. Specifically, we show that:
(i) CYCLOSA resists re-identification attacks better than its
competitors with a low re-identification rate of 4%; (ii) CY-
CLOSA enables sub-second response times, which is on av-
erage 13× faster than using TOR; (iii) CYCLOSA peers can
sustain a throughput higher than 40,000 req/s, enabling parallel
users to securely browse the search engine; and (iv) in a
complementary simulated deployment involving the 100 most
active clients from the AOL dataset, CYCLOSA fairly balances
the load between the participating nodes enabling all users to
securely query the search engine without reaching the rate
limitation of the search engine.

The remainder of the paper is structured as follows: Sec-
tion II reports on background and related work while Sec-
tion III describes our system model. Sections IV and V then
present CYCLOSA. Further, Sections VI, VII and VIII present
the security analysis, our evaluation setup and the results of

Web
Client

Relay 1 Relay N
RRRRQ Q Q Q

Search
Engine

Fig. 1: Enforcing unlinkability using TOR

our experiments. Finally, Section IX concludes this paper and
draws some future research directions.

RELATED WORK AND BACKGROUND

In this section, we first analyse the related work on private
Web search solutions (Section II-A), and then give background
information on SGX operation principles and system support
(Section II-B).

In the past, several approaches have been proposed to
protect data privacy. Homomorphic encryption schemes [13]
allow computations on encrypted data, without needing access
to its plaintext. In multi-party computations [14], computations
are cooperatively conducted among multiple parties while
protecting each party’s input. Private Web search solutions
that rely on these techniques have previously been proposed in
the literature (e.g., [15]). However, we do not consider these
solutions as they require the users to use a novel privacy-
preserving search engine (e.g., that would rely on homomor-
phic encryption to answer queries in a privacy preserving
way), while our aim is to build techniques enabling users to
benefit from their favourite search engine while preserving
their privacy. We review this last category of research work in
the following section.
Related Work on Private Web Search Solutions
Private Web search has been at the heart of active research in
the past decade. In this section we analyse existing solutions by
starting with the privacy guarantees they offer (Section II-A1
and II-A2) followed by a discussion about their accuracy
(Section II-A3) and scalability (Section II-A4). We will then
conclude with a set of open challenges (Section II-A5).

Enforcing Unlinkability
The first solutions that have been used for privately querying

search engines rely on the use anonymous communication
protocols to enforce unlinkability between a query and her
sender. In this context, the most widely used solution is
TOR [3], which implements the onion routing protocol [16].
As shown Figure 1, each query in TOR is routed through
multiple relays using a cryptographic protocol (not shown in
the figure).

Specifically, each query is encrypted using the public keys
of a set of nodes randomly selected to act as relays creating
an onion with multiple encryption layers. This onion is then
successively routed through the selected relays. Upon receiv-
ing the onion, each relay deciphers its outer layer using its
private key and forwards the inner onion to the following
relay, until the onion reaches the exit node. The exit node
retrieves the query and sends it to the search engine on behalf
of the user. Other protocols increasing the security of TOR
(e.g., against relays acting selfishly) have been proposed in the
literature (e.g., Dissent [17], RAC[5]) but we do not discuss
these alternatives as their cost (mainly due to the use of all-to-

Web
Client

Rk

R2
R1Q1

Qk

Q2

Search
Engine

(a) TRACKMENOT

Web
Client

Q1 OR Q2 OR

OR Qk
...

Search
Engine

(b) GOOPIR

Web
Client

Proxy Issuer

R R

Q1 OR Q2 OR

OR Qk
...

Q1 Q1

Search
Engine

(c) PEAS

Web
Client

Proxy

SGX

Web
Client

Web
Client

Q1
Q1 OR Q2 OR

OR Qk
...

Q'1

Q''1

Search
Engine

(d) X-SEARCH

Fig. 2: Systems enforcing indistinguishability (a,b) and combining unlinkability and indistinguishability (c,d)

all communication primitives and heavy cryptography) makes
them impractical for private Web search.

Most importantly, all these protocols, including TOR (see
Section VIII) are not resilient to re-identification attacks [6],
[7]. These attacks work as follows: assuming a set of user pro-
files built from user past queries, user re-identification attacks
try to link anonymous queries to a profile corresponding to
their originating user. These attacks are successful even when
the users rely on anonymous communication protocols because
users tend to look for similar things even when they have a
different identity (i.e., IP address) on the Internet. Additionally,
as we show in Section VIII, TOR induces a high end-to-
end latency of several seconds, which heavily impacts user
experience.

Enforcing Indistinguishability
Alternative private Web solutions have been proposed (e.g.,

TrackMeNot [8], GooPIR [9]). These solutions depicted in
Figure 2 aim at making real user interests indistinguishable
from fake ones. Specifically, TrackMeNot (Figure 2a) is a
browser extension, which periodically sends fake queries to the
search engine on behalf of the user. Hence, eventually, the user
profile stored at the search engine gets obfuscated mixing the
user real interests with fake ones. Instead, GooPIR (Figure 2b)
obfuscates each user query by aggregating k− 1 fake queries
with the real one using the logical OR operator. As such, the
search engine can not distinguish the real query from fake
ones. However, these solutions suffer from two limitations:
(i) the identity of the user is known to the search engine;
and (ii) they have been subject to attacks (see Section VIII)
as the fake queries they generate (based on RSS feeds and
dictionaries) are easily distinguishable from real ones.

To overcome these limitations two recent solutions combin-
ing unlinkability and indistinguishability have been proposed
in the literature. The first one called PEAS [10] (Figure 2c) is
based on two non-colluding servers. The first server, called
the proxy, has access to the identity of the requester but
has not access to the content of the query as the latter is
encrypted with the public key of the second server. Instead,
the second server, called the issuer, has access to the query but
does not know the originating user. In addition to forwarding
the query on behalf of the user, the issuer generates k − 1
fake queries and aggregates them with the original query to
enforce indistinguishability. Differently from GOOPIR and
TRACKMENOT, PEAS’s fake queries are generated using a
co-occurrence matrix of terms built by the issuer from other
users past queries. Hence, PEAS better resists re-identification
attacks as its fake queries are syntactically closer to real ones.

More recently, a novel solution to private Web search

called X-SEARCH (Figure 2d), improving PEAS has been
proposed. X-SEARCH enforces both unlinkability and indistin-
guishability and builds upon Intel SGX enclaves to run query
obfuscation on untrusted proxy nodes.

One of the limitations of the above solutions is that all
user queries get obfuscated with the same intensity (e.g., by
generating k − 1 fake queries in GOOPIR, PEAS and X-
SEARCH) regardless of their sensitivity. Indeed, a small value
of k may lead to under protecting sensitive queries, which
increases the risk that they get linked back to the original user
while a large value of k may unnecessarily generate a large
amount of traffic.

Accuracy of Query Results
Enforcing privacy always comes at a cost. In the context

of private Web search, enforcing indistinguishability by ag-
gregating the user query with fake queries (e.g., using the
OR operator) generates noise in the responses sent by the
search engine as the responses corresponding to fake queries
get merged with those corresponding to the real one. This
noise is generally filtered out at the client side (in PEAS and
GOOPIR) or by the proxy (for X-SEARCH) by removing the
responses that do not contain words composing the original
query. However, as further quantified in Section VIII, despite
this filtering process, relevant responses of the original query
may be lost, while noise coming from fake queries may be
returned to the user. Furthermore, the logical OR operator for
multiword-based queries is not natively supported by all search
engines and is impractical as the search engine returns results
only related to the exact query, with a direct impact on the
accuracy of the corresponding private Web search mechanism.

Scalability
Web search is with no doubt one of the most used service

over the Internet. Hence, it is not possible to aim for a
private Web search mechanism to be used in practice if it
does not scale to millions of users. This is not the case
of centralized mechanisms such as PEAS or X-SEARCH
even though their authors discuss the possibility to move to
distributed deployments. In addition to the ability of private
Web search to sustain the load coming from Internet users,
a more concrete problem comes from the rate limitations
imposed by search engines to counter bots and other attacks.
For instance, our experience with querying Google from
the used prototype shows that after a high flow of queries,
Google’s bot protection triggers and asks to fill a captcha.
Another problem of approaches like PEAS and X-SEARCH
is the deployment of proxies that generate costs. In contrast,
CYCLOSA leverages client machines, thus, no deployment is
necessary. These concrete limitations motivate the distributed

TOR TMN GOOPIR PEAS X-SEARCH CYCLOSA

Unlinkability X × × X X X
Indistinguishability × X X X X X

Accuracy X X × × × X
Scalability X X X × × X

TABLE I: Comparison of private Web search mechanisms.

design of CYCLOSA as further discussed in Section IV.
Summary of Open Challenges for Private Web Search
From the analysis of state of the art private Web search

solutions (also summarized in Table I), it appears that there
is no solution for enforcing privacy (both unlinkability and
indistinguishability) and scalability while providing accurate
responses to the users. Before describing how CYCLOSA
addresses these challenges (in Section IV), we first introduce
preliminaries about Intel SGX enclaves that we leverage in this
work for preventing information leakage on untrusted nodes.
Background on Intel SGX and System Support
CYCLOSA uses Intel SGX to establish trust in usually
untrusted nodes. SGX provides trusted execution environ-
ments (TEEs) called enclaves firstly introduced by Intel with
the Skylake architecture. Applications create such enclaves to
protect the integrity and the confidentiality of the data and the
code being executed.

Memory pages associated with enclaves are stored in the
enclave page cache (EPC) and are integrity-protected and
encrypted by the memory encryption engine (MEE) [18]. Thus,
SGX withstands even physical attacks on enclave memory: a
memory dump will always produce encrypted data. However,
the EPC is limited to 128 MB due to hardware restrictions. If
this limit is exceeding, enclave pages are subject to a swapping
mechanism implemented in the Intel SGX driver, resulting in a
severe performance penalty [19], [20]. Note that future releases
of SGX might relax this limitation [21]. Furthermore, Intel
SGX provides remote attestation, allowing a remote third party
to verify that an enclave runs on a genuine Intel processor with
SGX. After successful remote attestation, secrets such as keys
can securely be injected into the enclave.

Intel provides a software development kit (SDK) [22] to
support developers writing SGX applications. The SDK can
manage the life cycle of enclaves and introduces the notion
of ecalls (calls into enclaves) and ocalls (calls out of
enclaves). Figure 3 depicts the basic execution flow of SGX.
First, an enclave is created Ê. As the program must execute
a trusted function Ë, it performs an ecall Ì, passing the
SGX call gate to bring the execution flow inside the enclave.
The trusted function is then executed by one of the enclave’s
threads Í. The result is encrypted and returned Î to give back
the control to the untrusted main thread.

Current web browsers lack system support for trusted exe-
cution of the one offered by SGX. However, this support can
be retrofitted using browser extensions that have the ability to
call native code, thus also invoke calls into and handle ocalls
from SGX enclaves. The authors of TrustJS [23] follow this
approach to enable client-side trusted execution of JavaScript.
They modify a JavaScript interpreter to run inside an SGX
enclave and integrate it using a browser extension into the

Create enclave

Call trusted function

…

Execute

Return

Call gate Trusted function
Untrusted Code Trusted Code

➊

➋

➏

➎

➍➌

➐
Enclave

Fig. 3: SGX operating principles.

Firefox browser. CYCLOSA follows a similar direction and
integrates SGX enclaves into commodity browsers. Instead
of protecting JavaScript execution from potentially malicious
users, it targets privacy preserving decentralized web search
as a service carried out by users for users.

SYSTEM AND ADVERSARY MODEL

Before presenting the design principles of CYCLOSA in Sec-
tion IV, we describe our assumptions and the adversary model
against which our protocol is designed.

First, we assume that each CYCLOSA node supports the
use of Intel SGX instructions. Given the plan of Intel to
include the SGX technology in all major future Core CPU
releases [24], we believe this is a reasonable assumption.
However, we assume that SGX behaves correctly, i.e., there
are no bugs or backdoors. Additionally, we do not deal with
side-channel attacks against SGX [25], [26]. We consider such
attacks as outside the scope of this paper and that the research
community provides solutions [27], [28] that might eventually
be incorporated in SGX. Furthermore, we are also aware
that denial-of-service (DoS) attacks cannot be prevented, e.g.
malicious clients might not initialise the enclave, invoke calls
into enclaves or drop all queries. Finally, we assume that all
the used cryptographic primitives and libraries are trusted and
can not be forged.

The computations performed by CYCLOSA for each user
query go through three premises, namely: (i) the client ma-
chine; (ii) a set of remote peers; and (iii) the search engine.
These are subject to different levels of trust:

First, we assume that the client machine issuing search
requests is trusted. This includes all the computations per-
formed locally outside of enclaves and that involve client
information (e.g., locally assessing the sensitivity degree of a
query). Furthermore, we assume that the local communication
between a human user and CYCLOSA is trusted: that is an
adversary can not modify the query that the human user has
typed, nor it can modify the local configuration of CYCLOSA
that the human user has set up (i.e., the set of topics she
considers as semantically sensitive). Note that it is possible to
relax or even remove this assumption by integrating the work
from [29] for trusted I/O.

Second, however, users do not trust the remote peers used
as relays to forward their queries. Specifically, we assume that
remote peers can act in a Byzantine manner [30], [31]: they
can behave arbitrarily by crashing, being subject to bugs or
being under the control of malicious adversaries.

Third, we assume that the search engine is honest but
curious. That means, it faithfully replies to search queries

GET /search?
q=Query

Past queries

Sensitivity
Analysis
Sex

Health
Politics
Religion

✅

➊

SGX Enclave

Peer
Discovery

➋

Forwarding
➌

Browser Extension

Past queries

SGX Enclave

Peer
Discovery

Forwarding

Browser Extension

➎

➍

Past queries

SGX Enclave

Peer
Discovery

Forwarding

Browser Extension

➎

➍

search …

➏

➐

➏

➐

➑

➒

➑

Fig. 4: CYCLOSA architecture and operating flow.

while gathering information from incoming queries, but is able
to build user profiles and run re-identification attacks [7].

CYCLOSA IN A NUTSHELL

To efficiently protect users during Web search, CYCLOSA
combines both unlinkability and indistinguishability, two com-
plementary properties described in Section II. The former
hides the identity of the requesting user by routing her queries
to the search engine through other nodes in the system. The
latter makes the real query indistinguishable among other fake
queries. We briefly introduce in this section how these two
properties are enforced in CYCLOSA before giving details in
Section V.

To use CYCLOSA, a user has to install the CYCLOSA
browser extension. As such, users seamlessly get protected
without changing their browsing habits, i.e., using a Web
browser. Then, each time the user formulates a query Qu, the
latter is processed as follows (and also depicted in Figure 4).

First, the CYCLOSA browser extension evaluates the sensi-
tivity of the query (step ¶ in the figure). To do so, CYCLOSA
follows a user-driven approach, and combines a semantic-
based approach and a linkability analysis (Section V-A).

The sensitivity analysis produces a score k, that is the
number of fake queries used to make the real user query Qu

indistinguishable from others queries.
Then, by relying on a peer discovery component (step · in

the figure also discussed in Section V-E), CYCLOSA selects
k+1 random peers Pp0, Pp1, ..., Ppk to which it sends k fake

queries Qp1, ..., Qpk and the real query (step ¸ in the figure).
In CYCLOSA, fake queries are generated from past queries
issued by other users in the system and that are stored in a
local table each time a node acts as a relay for other nodes.
Using past user queries as fake queries makes them look more
real than those generated by systems such as TRACKMENOT
or GOOPIR where fake queries are generated using RSS feeds
or dictionaries.

Then, when a request is received by a peer acting as a relay,
the latter is stored in the local table of past queries (step º)
before it is sent to the search engine (step »). In CYCLOSA,
real queries and fake ones are processed similarly by the
relays. Hence, an external observer analysing the (encrypted)
network traffic has no clue whether a node is sending out a real
query, a fake one or whether he is forwarding someone else’s
query, which is not the case of systems where fake queries are
generated at the relays (e.g., X-SEARCH or PEAS). In these
systems, even though the traffic is encrypted, an adversary
can infer whether an outgoing message is a real query or
an obfuscated one from the request size (e.g., messages
containing obfuscated queries using the OR operator are larger
than messages containing the real query). Query forwarding
is further described in Section V-C.

Upon receiving a request from the node acting as a relay, the
search engine sends the answers to the latter node (step ¼),
which routes the responses to the initial sender ½. Finally,
the CYCLOSA forwarding component drops the responses
corresponding to fake queries (step ¾) before the browser
extension displays the result of the real query to the user.

To avoid information leakage, all components of CYCLOSA
that process sensitive data (in our context queries issued by
other users) are located within the enclave. Instead, in order to
minimize the amount of trusted code, components that process
data related to the user who owns the machine are run outside
the enclave. For instance, the part in charge of assessing the
sensitivity of queries issued by the local user is performed
outside the enclave as we trust the client machine where the
search queries are issued (see Section III). This allows to
drastically minimise the amount of trusted code, which reduces
the risk of having of critical bugs. However, as we do not
trust remote peers, parts that handle the queries of other users
in plain text are located inside the enclave. Furthermore, all
messages being exchanged by these parts between different
CYCLOSA nodes are encrypted and decrypted within the
enclave. More precisely, peer discovery, query forwarding as
well as en- and decryption are executed within the enclave.
Finally, as CYCLOSA stores past user queries to generate fake
queries, these are stored in enclave memory.

DETAILED DESCRIPTION OF CYCLOSA

In this section, we first present the sensitivity assessment
performed in CYCLOSA (Section V-A). We then present the
dynamic query protection and the forwarding scheme (Sec-
tions V-B and V-C). Finally, we present how a client bootstraps
CYCLOSA and the peer discovery protocol before presenting
implementation details Section V-F).

Sensitivity Analysis in CYCLOSA

To improve indistinguishability of queries while not overload-
ing the network at the same time, CYCLOSA dynamically
protects user queries according to their actual sensitivity.
To measure the sensitivity of a query, CYCLOSA relies on
two risk assessment measures computed outside the enclave:
(i) the semantic assessment; and (ii) the linkability assessment.
As further discussed in SectionsV-A1 and V-A2, the former
analyses the actual topic of the query with respect to sensitive
topics declared by the user while the latter assesses the risk that
the query gets linked back to its originating user by comparing
it with other queries previously sent by the user.

Semantic-based Analysis
The semantic-based assessment aims at identifying

semantically-sensitive queries. As semantic sensitivity is
subjective (one query might be considered as sensitive by one
user and non-sensitive by another user), CYCLOSA proposes
a user-centric approach where each user selects a set of topics
that she considers as sensitive. To define sensitive topics,
we use the privacy policy of Google which defines sensitive
personal information as ”confidential medical facts, racial or
ethnic origins, political or religious beliefs or sexuality” [32].
Consequently, by default a user in CYCLOSA can select
sensitive categories among health, politics, sex, and religion.
Nevertheless, a user can import dictionaries to create other
sensitive topics as described below.

The semantic-based assessment is binary and defines if
the query belongs to at least one topic marked as sensitive.
To achieve that, we use two complementary information
retrieval approaches to build a dictionary of terms associated
to each identified sensitive topics. The first approach uses two
libraries: (i) WordNet, a lexical database, and (ii) eXtended
WordNet Domains, a mapping of WordNet synsets to domain
labels. A synset is a set of synonym words. We use the
categories defined in the eXtended WordNet Domains library
which are related to our privacy-sensitive topics. We then
use the mapping of these categories with WordNet synsets to
identify all keywords related to each sensitive topic. The dic-
tionaries built for each sensitive topic gather these keywords.

The second approach captures statistical correlations among
words and sensitive topics represented using latent topic
models (i.e., Latent Dirichlet Allocation, LDA [33]). This
generative probabilistic model is well adapted for modelling
text corpora. In the LDA model, a sensitive topic is described
through different thematic vectors that indicate the latent
dimensions of the topic. Once this model is trained with a text
corpora associated to the considered sensitive topics, we build
the dictionary by gathering all terms of all thematic vectors.
Section V-F gives implementation details for the semantic-
based assessment based on WordNet and LDA.

Linkability Analysis
The goal of the linkability assessment is to determine if the

query is vulnerable to a re-identification attack. In such attacks,
an adversary tries to link an anonymous query to a specific
user by measuring the distance between the query and a set of
user profiles built from past user queries (e.g., collected when

the users were not using private Web search mechanisms).
Concretely, the linkability assessment, which is performed
on the client side, provides a score in [0, 1] measuring the
proximity of the current query to past user queries already
sent to the search engine. To do that, we first represent the
query q in a binary vector where each element of the vector
is a term in the query. We then compute the cosine similarity
between the vector associated to the query and the vector of
each past queries issued by the user. Finally, to give more
importance to past requests that are similar to the current user
request compared to non-similar ones, the results of the cosine
similarities are ordered and an aggregated value is computed
using exponential smoothing.
Adaptive Query Protection
CYCLOSA leverages the sensitivity analysis to dynamically
adapt the query protection. More precisely, both the semantic-
based and the linkability assessments control the obfuscation
scheme of CYCLOSA, the more sensitive a query is, the more
protected it will get. Specifically, if the query includes at
least one term which belongs to a dictionary related to a
sensitive topic defined by the user, the number of fake queries
is maximal, as defined by kmax. This behaviour minimizes the
risk of re-identification for queries related to sensitive topics.

For queries that are not semantically sensitive, the number
of fake queries (value of k) is defined according to a linear
projection between the score returned by the linkability assess-
ment in [0, 1] and the maximum number of fake queries, kmax.
This scheme dynamically adapts the protection according to
the actual risk of re-identification attack.
Query Forwarding
Once the number of fake queries (noted k) is decided ac-
cording to the actual sensitivity of the user query, the process
continues in the SGX enclave as it involves remote peers. More
precisely, CYCLOSA makes the real query indistinguishable
by choosing fake ones and unlinkable by routing them to
the search engine through different paths. CYCLOSA uses
peer discovery to dynamically maintain a random view of
other alive nodes in the system running CYCLOSA as further
described in Section V-E. Then, CYCLOSA picks random k+1
nodes of this random view to act as proxies for the k fake
queries and the original one. By using this random view, we
additionally ensure a load balancing over all nodes in the
system.

Then for each of the k + 1 random nodes, a query is
randomly selected in the table of past queries excepted once
where the original query is selected. Then each of their k+1
queries are respectively forwarded to their k + 1 selected
proxies. The identity of the proxy dealing with the original
query is maintained in a table. All forwarded queries are
encrypted before being send to other peers.

Once a proxy receives a query forwarding request, it adds
this query in its local table of past queries and routes this query
to the search engine. The received answers from the search
engine are returned to the original user. Finally, on the original
client, the answers received from the proxy that managed its

original query are presented to the user. The answers received
from other proxies are silently dropped.
Bootstrapping CYCLOSA

Besides declaring its sensitive topics, there are three key
elements that need to be bootstrapped when CYCLOSA is first
launched by a given user. First, when the system is first started,
there are no past queries stored in the enclave to be used
as fake queries. Hence, CYCLOSA fills the fake queries table
using popular Google queries [34]. Queries extracted from this
Web site reasonably look as real queries as they are issued
by real users regarding trendy topics. Then, the CYCLOSA
browser extension has to bootstrap peer discovery. We assume
that bootstrapping the peer discovery protocol is done as in
classical peer-2-peer systems using a public repository of IP
addresses (e.g., as in TOR) from which a CYCLOSA instance
can select a first sample of random peers. This sample with
then be periodically shuffled using the peer discovery protocol
(Section V-E). Finally, the remote attestation mechanism need
to be initialized. Remote attestation facilities provided by Intel
SGX are used by CYCLOSA to authenticate remote enclaves
to each other. This ensures that (i) nodes only talk to genuine
Intel SGX enclave; and (ii) all enclaves are known imple-
mentations. To do so, while bootstrapping, a CYCLOSA client
challenges every connecting enclave to send a so-called quote.
This data structure contains the a hash of the enclave code
and a secret for applying encryption. The quote is checked
for a known hash value and is transferred to the trusted Intel
attestation service (IAS) for verification if it originates from a
genuine SGX platform.
Peer Discovery in CYCLOSA

Peer discovery in CYCLOSA is done using classical algorithms
and contributions to this field fall outside the scope of the
paper. Specifically, the selection and maintanance of random
views is using the random-peer-sampling protocol [35] which
ensures connectivity between nodes by building and maintain-
ing a continuously changing random topology.
Implementation Details
To allow end users to integrate CYCLOSA seamlessly into
their workflow, we designed it as an extension to the Firefox
browser. The JavaScript-based extension integrates the CY-
CLOSA SGX enclave using js-ctypes, allowing asynchronous
calls to and from the enclave into the untrusted extension code.

CYCLOSA uses TLS connections to search engines. These
connections need to be established from within enclaves in or-
der to not disclose queries of other user to untrusted machines.
CYCLOSA implements this by linking the enclave code to an
SGX-compatible version of mbedTLS [36]. Adding this library
results in an enclave of only 1.7 MB, thus, CYCLOSA does
not suffer from EPC paging.

To automatically detect semantically sensitive queries, CY-
CLOSA relies on both WordNet libraries and LDA statistical
modelling. WordNet’s machine-readable lexical database is
organized by meanings, where words are grouped into sets
of synonyms called synsets [37]. The eXtended WordNet
Domains library maps every WordNet synset to 170 domain

labels. For the experiments described in this paper, we consider
sexuality as an example of sensitive subject in user queries. We
trained a LDA statistical model using the Mallet toolkit [38],
with 200 topics on 2M of titles and descriptions of videos
related to the sensitive subject [39]. Finally, every query
including a term present in at least one LDA topic or linked
to WordNet domain related to sensitive subject is identified as
semantically sensitive.

SECURITY ANALYSIS

This section presents our security analysis of CYCLOSA. We
consider threats, either from the point of view of a client, a
CYCLOSA proxy, or from the web search engine perspective.

On the client side
Clients can not bypass the SGX enclave. Indeed, CY-

CLOSA relies on keys being generated during start-up in the
enclave. The keys are only exchanged with other genuine
SGX enclaves after successful remote attestation. Therefore,
clients that attempt to bypass enclaves cannot create correctly
encrypted/signed requests. The threat model of CYCLOSA
(Section III) assumes the client node as trusted. If the client
is compromised, the sensitivity analysis could be subverted.
However, the choice of the proxies and the forwarding process
as well as the table of past queries can not be subverted as
they are inside the SGX enclave.

On the proxy side
Inter-enclave traffic as well as the traffic between the

enclave and the search engine are protected through encrypted
channels. In addition, all forwarding performed by the proxy is
done inside the SGX enclave. Consequently, a malicious proxy
cannot hamper CYCLOSA, as we do not consider side-channel
attacks as described in Section III. However, a malicious
process could replay user past queries on the proxy. This
threat can be limited by including a random identifier in each
message to detect a replay. Also, a malicious proxy can deny
initialization or calls into enclaves. CYCLOSA solves this by
letting clients blacklisting peers that do not respond within a
given period of time.

On the search engine side
As shown in Section VIII-A, the capability of the search

engine to re-identify users is very limited. However, as fake
queries are in fact real past ones, the search engine could
identify a real query when it receives this query for the first
time. But in this case, the identity of the requesting user is
still hidden by the proxy.

EXPERIMENTAL SETUP

This section first presents the experimental setup used to
evaluate CYCLOSA, which includes competitors, datasets and
metrics.
Comparison Baselines
We compare CYCLOSA against five state-of-the-art private
Web search approaches (e.g TOR [3], TRACKMENOT [8],
GOOPIR [9], PEAS [10], X-SEARCH [11]), and a protection-
free Web search scenario. These approaches are further de-
scribed in Section II.

Data Sources
We use a dataset of real queries from the AOL query log
dataset [12]. This dataset contains approximately 21 million
queries formulated by 650,000 users over a three month
period. We use the same methodology as described in [40]
to evaluate Web-search privacy by considering a subset of the
most active users. These users are the ones that exposed the
most information through their past queries, which makes them
also the most difficult to protect. Here, we manually extracted
198 users among the subset of users who sent at least one
semantically sensitive query.

As described in Section VII-E, an adversary needs a prior
knowledge about each user to perform a re-identification
attack. We split queries into two sets: a training set that
represents prior knowledge held by the adversary about the
users (2/3 of the dataset), and a testing set that represents
new user queries that are protected (the remaining 1/3 of the
dataset). On average this represents i.e. 487.6 queries per user
for the training set over a total of 96, 547 queries.
Crowd-Sourcing Campaign for Query Sensitivity
To determine user-perceived sensitivity with regard to Web
queries, we conducted a crowd-sourcing campaign using
Crowdflower [41]. We selected the first 10, 000 queries over all
user queries in the testing set (c.f., Section VII-B), and asked
the crowd-sourcing workers to determine if these queries are
related to sensitive topics. We considered different sensitive
topics (i.e., health, politics, religion, sexuality, others), and
each query was annotated by 5 different workers to obtain
multiple opinions. The result of the campaign is that only
15.74% of the queries are related to sensitive topics. This
motivates the adaptive approach followed by CYCLOSA that
applies a dynamic protection scheme to sensitive queries.
Measuring Accuracy of CYCLOSA’s Query Categorizer
To measure the accuracy of CYCLOSA’s query categorizer that
automatically determines if a query belongs to a sensitive
topic, we consider the precision and the recall metrics. The
recall calculates the proportion of queries detected as sensitive
by CYCLOSA among all actually sensitive queries. And the
precision calculates the proportion of actual sensitive queries
among queries detected as sensitive by CYCLOSA. Let Q be
the set of queries, Qs the set of actually sensitive queries (i.e.,
related to sensitive topics), and Qm the set of queries that are
identified as sensitive by CYCLOSA’s query categorizer. Recall
and precision are respectively defined as follows:

Recall =
|Qm ∩Qs|
|Qs|

, P recision =
|Qm ∩Qs|
|Qm|

Measuring Privacy of Web Search
To evaluate privacy, we use the SimAttack user re-
identification attack to measure the robustness of privacy
preservation solutions [7]. Here, we assume an adversary
that intercepts queries arriving to the search engine, and that
has prior knowledge about each user in the form of a user
profile containing user’s past queries (i.e., from the training
set of the dataset presented in Section VII-B). Then, based on

the sensitive topics chosen by the users and the linkability,
the queries of the testing set are adaptively protected by
CYCLOSA, before sending them to the search engine through
different paths.

SimAttack measures the similarity between a query q and
a user profile Pu, where Pu contains queries that belong to
the training set of user u, and the additional knowledge of the
attacker when intercepting queries. This metric accounts the
cosine similarity of q and all queries part of the user profile Pu,
and returns the exponential smoothing of all these similarities
ranked in ascending order. Given a query q, the metric is
calculated for all users’ profiles. If the metric is higher than
0.5 to ensure a certain confidence, and if only one user profile
has the highest similarities, SimAttack returns the association
between that user profile and the query q. If that user profile
actually corresponds to the profile of the user that issued the
query q, re-identification is successful. Otherwise, SimAttack
responds that re-identification is unsuccessful.

Thus, to evaluate the level of privacy provided by a Web
search privacy protection solution, we use SimAttack to cal-
culate the overall re-identification success rate, that is the
proportion of queries for which the user profile is successfully
re-identified to all queries sent to the Web search when running
queries from the testing set (c.f., Section VII-B). Obviously,
the lower re-identification success rate, the better privacy level.
Measuring Accuracy of Private Web Search
By design, CYCLOSA returns to users results associated to its
search query. However, as described in Section VII-A, other
protection mechanisms such as X-SEARCH and PEAS include
an obfuscation scheme that impacts the results returned by
a search engine. Consequently, we evaluate the capacity of
considered candidates to return results to the user only related
to its initial query. To achieve that, for a given initial query, we
compare results returned by the search engine for this query
and the results returned to the user. To measure the accuracy,
we consider the correctness and the completeness as below:

Correctness =
|Ror ∩Rxs|
|Rxs|

, Completeness =
|Ror ∩Rxs|
|Ror|

where Ror is the set of results returned by the search engine
for the original query, and Rxs the set of results returned to the
user. Both metrics are in [0, 1]. The best accuracy is provided
with a correctness and a completeness at 1. We used the same
methodology as described in [10] to conduct the experiment.
System Metrics
To evaluate the behavior of CYCLOSA from a systems per-
spective, we consider the following metrics. First, we measure
the end-to-end latency which is the time spent to serve search
results back to users once they send their queries. Second,
we measure the throughput (requests/second) to assess the
capability of CYCLOSA to properly act as proxy even with
a growing number of nodes requesting the same proxy.

EVALUATION

We now present the results in term of sensitivity, privacy and
system performance obtained by CYCLOSA under the exper-

0

10

20

30

40

50

TOR TrackMeNot GooPIR PEAS X−SEARCH CYCLOSA

R
e
−

Id
e
n

ti
fi
c
a
ti
o
n
 R

a
te

 (
%

)

Fig. 5: Comparison of CYCLOSA’s privacy
level with competitors – The lower re-
identification rate, the better privacy.

 0

 20

 40

 60

 80

 100

TOR TrackMeNot GooPIR PEAS X−SEARCH CYCLOSA

A
c
c
u
ra

c
y

Correctness
Completeness

Fig. 6: Accuracy of results returned to users for
CYCLOSA and state-of-the-art competitors.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7

C
D

F
 (

%
)

k

Fig. 7: Actual number of
fake queries in CYCLOSA.

imental setup of the previous section. Our results show that
CYCLOSA efficiently detects sensitive queries while limiting
the number of overprotected queries actually not sensitive. We
also show that CYCLOSA provides a slightly better protection
than state-of-the-art competitors and drastically reduces the
end-to-end latency without any impact on the accuracy.
Privacy: Robustness Against Re-Identification Attack
This section evaluates the capacity of CYCLOSA to protect the
user privacy by measuring its robustness against an adversary
conducting a re-identification attack. Figure 5 depicts the
re-identification rate for CYCLOSA, TOR, TRACKMENOT,
GOOPIR, PEAS, and X-SEARCH with k = 7.

Without query obfuscation (i.e., TOR), an adversary is
ensured that every received query has been issued by a user.
Consequently, the challenge in this case consists to map each
received query to preliminary information collected about
users. Results show that an adversary using past queries of
users as prior knowledge is able to re-affiliate around 36% of
the new queries to their original users. Interesting enough,
result for TOR also represents the re-identification rate of
PEAS, X-SEARCH and CYCLOSA with k = 0.

Without unlinkability (i.e., TRACKMENOT and GOOPIR),
the re-identification rate corresponds to retrieve the real queries
from the fake ones. Results show that the adversary is able
to retrieve a large proportion of real queries, 45% and 50%
for TRACKMENOT and GOOPIR, respectively. This high re-
identification rate mainly comes to the fake query generation
process which uses RSS feeds to build fake queries. If the
content of these RSS is far from the interests of the user, the
adversary can easily dissociate them.

Combining query obfuscation and unlinkability drastically
drops the re-identification rate. Indeed, the challenge for the
adversary becomes harder and consists to retrieve both the
identity of the user and the real queries from the fake ones.
Generate fake queries is challenging. These fake queries have
to be indistinguishable from real ones. By using real past
queries as fake ones, X-SEARCH and CYCLOSA provide
a lower re-identification rate than PEAS which generate
fakes queries using a graph of co-occurence of terms built
from past queries. Finally, CYCLOSA slightly reduces this
re-identification rate compared to X-SEARCH (e.g., 6% for
X-SEARCH compared to 4% for CYCLOSA). This difference
comes from the obfuscation scheme of these solutions. For X-
SEARCH, the adversary receives a group of (k+1) queries and

has to identify the real one among this group. For CYCLOSA,
as the adversary receives individually each query whether it
is a real query or a fake one, the re-identification process is
much harder and creates more confusion for the adversary.
Accuracy of Private Web Search
We evaluate the accuracy of CYCLOSA, i.e., its ability to
return to protected user queries the same answers from the
search engine as the ones of non-protected queries. Figure 6
depicts the correctness and completeness of answers returned
by CYCLOSA, and by its competitors TOR, TRACKMENOT,
GOOPIR, PEAS, and X-SEARCH with k = 3. There are two
sets of solutions. CYCLOSA as well as TRACKMENOT provide
perfect accuracy, because either they do not apply obfuscation
(e.g., TOR), or they differentially handle real and fake queries’
responses. The other solutions provide lower accuracy because
they are not able to distinguish between answers of fakes
queries or real query. They try to extract the answer to the real
query by filtering the union of answers to all (fake and real)
queries, with an imperfect result. Here, the precision reaches
65% for a recall of 70% for k = 3. These values decrease for
a larger k as reported in [11].
Adaptive Query Protection
CYCLOSA dynamically and adaptively protects queries ac-
cording to their sensitivity. Figure 7 reports the Cumulative
Distribution Function (CDF) of the actual number of fake
queries induced by CYCLOSA to protect queries in our testing
set when the maximum value of k is defined at 7. Results show
that 25% of queries do not need fake queries, and 50% of them
use less than 3 fake queries. The sharp increase reported for
k = 7 corresponds to queries identified as highly sensitive,
and consequently requiring the maximum protection level. In
the underlying workload, only 35% of queries require that
maximum number of fake queries. In contrast, X-SEARCH
would have generated, for each user query, that maximum
number of fake queries .
System Evaluation
We begin by showing the observed end-to-end latency of
the queries issued to the search engine by a client. In this
benchmark, we compare the results of CYCLOSA against X-
SEARCH and TOR. We further include the measuraments
achived without any protection and contacting directly the
search engine. Figure 8a presents our results. On the x-axis
(log-scale) we show the measured latencies, on the y-axis the
respective CDF. As expected, TOR is the slowest of them,

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

C
D

F
 (

%
)

Seconds (log scale)

Direct X-S Cycl. TOR

(a) End-to-end delays for 200
queries, k = 3.

 0

 20

 40

 60

 80

 100

0 0.5 1 1.5

C
D

F
 (

%
)

Seconds

k=0 k=1 k=3 k=5 k=7

(b) Impact of k on observed la-
tency.

 0

 0.5

 1

 1.5

 2

1000 2500 5000 10000 20000 40000

5.3s

L
a
te

n
c
y
 (

s
)

Throughput (req/s)

Cyclosa X−Search

(c) Throughput/Latency of CY-
CLOSA and X-SEARCH.

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90

Limit

#
q

u
e
ri
e

s
/n

o
d
e

Time (minutes)

Cycl. X−S (adm.) X−S (rej.)

(d) Query protection vs. users
blocked by search engine

Fig. 8: Multiple measurement results for X-SEARCH (X-S) and CYCLOSA (Cycl.)

with a median latency of 62.28 seconds. We observe how both
CYCLOSA and X-SEARCH allow for sub-seconds results for
the large majority of the queries, with a median of 0.876 and
0.577 seconds respectively. We explore the impact of changing
the number of issued fake queries in Figure 8b. We observe
that by more than doubling the issued fake queries (from k=3
to k=7), the system still returns the results to the clients in
less than 1.5 seconds in the worst case (median latency at
1.226 seconds). These performances allow CYCLOSA to offer
a usable web browsing experience without negatively affecting
the web publishers’ revenue model [42].

We also evaluate the capacity for a CYCLOSA node to sub-
stain very high rates of request/seconds. Figure 8c presents our
results against X-SEARCH. We submit requests at increasingly
high constant rates, and measure the latency to return a reply
to the client from the next hop in the workflow chain (the
X-SEARCH proxy or a CYCLOSA relay), but without actually
submitting the requests to the search engine. CYCLOSA is able
to handle very high requests rates with sub-seconds response
delays. In our evaluation, we achieved a 40, 000 requests/sec
with a 0.23s median response delay while X-SEARCH starts
straggling at 30, 000 requests/sec.

Note that such rates, although possible, cannot be observed
in practice without being immediately blocked by a smart
search engine’s malicious user detection system. In our ex-
periments, this happened very soon. Although some services
offer high read rates [43], users submit searches at rates orders
of magnitude slower: the 100 most active users from the AOL
dataset only submit 31.23 queries/hour. For protecting such
queries, X-SEARCH induces 10,500 req/hour among real and
fake ones for k = 3; and hence, it is eventually blocked by the
search engine. CYCLOSA follows a more practical approach
by spreading the load among the nodes with up to 94 req/hour
per node for k = 3, as shown in the simulation-based results
presented in Figure 8d.
Accuracy of CYCLOSA’s Automatic Query Categorizer
In this section we evaluate how CYCLOSA is able to identify
semantically sensitive queries. As defined in Section V-A,
the sensitivity of a query is evaluated over two dimensions
capturing the linkability of the query and if it belongs to a topic
defined as sensitive by the user. The semantically sensitive
query detection is based on both WordNet libraries and a
trained LDA statistical model (see Section V-A1). Table II
reports the precision and the recall of the detection of queries

Semantic tool Precision Recall
WordNet 0.53 0.83
LDA 0.84 0.89
WordNet + LDA 0.86 0.85

TABLE II: Detection of semantically sensitive queries

belonging in the sensitive topic related to sexuality.
Overall, most of queries related to the sensitive topic are

detected, with a recall between 0.83 for WordNet to 0.89
for LDA. Here, the precision can vary from 0.53 to 0.86 for
WordNet, and when combining WordNet and LDA. Precision
captures the number of queries marked as sensitive according
to the number of actually sensitive queries. The closest to 1,
the better to avoid to overprotecting non-sensitive ones. Results
show a trade-off between precision and recall. Combining
WordNet and LDA provides the better trade-off by identifying
most of the sensitive queries while limiting the number of
overprotected queries.

CONCLUSION

This paper presented CYCLOSA, the first decentralized, private
and accurate Web search solution that protects Web users
against the risk of re-identification. CYCLOSA provides adap-
tive privacy protection, leveraging different query sensitivity
levels by combining the analysis of user query linkability
and query semantic. CYCLOSA follows a fully decentralized
architecture for higher scalability, and is based on Intel SGX
trusted execution environments for preventing from user data
leakage between the nodes of the decentralized architecture.
CYCLOSA reaches perfect accuracy of results of protected Web
queries in comparison with non-protected queries.

Our implementation, evaluation results and comparison with
state-of-the-art solutions show that CYCLOSA is the most
robust system against user re-identification, provides the most
accurate results of Web search, in an efficient and scalable
way. Future work will investigate other datasets and workloads
with different query sensitivity levels. Although the protection
solution presented in the paper addresses Web search, we
believe that other application areas could be considered.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme and was
supported by the Swiss State Secretariat for Education, Re-
search and Innovation under grant agreement No 690111
(SecureCloud). This work was also partially funded by ANR-
DFG project PRIMaTE (ANR-17-CE25-0017, KA 3171/9-1).

REFERENCES
[1] AOL Search Log Special., https://goo.gl/nhWvQv, 2007.
[2] AOL Search Data Shows Users Planning to commit Murder.,

https://goo.gl/F7wsPo, 2007.
[3] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the

second-generation onion router,” DTIC Document, Tech. Rep.,
2004.

[4] H. Corrigan-Gibbs and B. Ford, “Dissent: accountable anony-
mous group messaging,” in CCS, 2010, pp. 340–350.

[5] S. Ben Mokhtar, G. Berthou, A. Diarra, V. Quéma, and
A. Shoker, “Rac: a freerider-resilient, scalable, anonymous
communication protocol,” in ICDCS, 2013, pp. 520–529.

[6] S. T. Peddinti and N. Saxena, “Web search query privacy: eval-
uating query obfuscation and anonymizing networks,” Journal
of Computer Security, vol. 22, no. 1, pp. 155–199, 2014.

[7] A. Petit, T. Cerqueus, A. Boutet, S. B. Mokhtar, D. Coquil,
L. Brunie, and H. Kosch, “Simattack: Private web search under
fire,” Journal of Internet Services and Applications, vol. 7, no.
1, p. 2, 2016.

[8] D. C. Howe and H. Nissenbaum, “Trackmenot: resisting
surveillance in web search,” Lessons from the Identity Trail:
Anonymity, Privacy, and Identity in a Networked Society, vol.
23, pp. 417–436, 2009.

[9] J. Domingo-Ferrer, A. Solanas, and J. Castellà-Roca, “H(k)-
private information retrieval from privacy-uncooperative
queryable databases,” Online Information Review, vol. 33, no.
4, pp. 720–744, 2009.

[10] A. Petit, T. Cerqueus, S. B. Mokhtar, L. Brunie, and H. Kosch,
“Peas: Private, efficient and accurate web search,” in Trustcom,
vol. 1, 2015, pp. 571–580.

[11] S. Ben Mokhtar, A. Boutet, P. Felber, M. Pasin, R. Pires, and
V. Schiavoni, “X-search: revisiting private web search using
intel sgx,” in Middleware, Dec. 2017, pp. 198–208.

[12] G. Pass, A. Chowdhury, and C. Torgeson, “A picture of
search,” in InfoScale, 2006.

[13] C. Gentry, “Fully homomorphic encryption using ideal lat-
tices,” in Proceedings of the Forty-first Annual ACM Sym-
posium on Theory of Computing, ser. STOC ’09, Bethesda,
MD, USA: ACM, 2009, pp. 169–178. DOI: 10.1145/1536414.
1536440.

[14] W. Du and M. J. Atallah, “Secure multi-party computation
problems and their applications: A review and open prob-
lems,” in Proceedings of the 2001 workshop on New security
paradigms, ACM, 2001, pp. 13–22.

[15] H. Pang, X. Ding, and X. Xiao, “Embellishing text search
queries to protect user privacy,” Proc. VLDB Endow., vol. 3,
no. 1-2, pp. 598–607, Sep. 2010. DOI: 10 .14778 /1920841 .
1920918.

[16] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing,”
Communications of the ACM, vol. 42, no. 2, pp. 39–41, 1999.

[17] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson,
“Dissent in numbers: making strong anonymity scale.,” in
OSDI, 2012, pp. 179–182.

[18] S. Gueron, “A memory encryption engine suitable for general
purpose processors.,” IACR Cryptology ePrint Archive, vol.
2016, pp. 197–204, 2016.

[19] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz,
C. Fetzer, P. R. Pietzuch, and R. Kapitza, “Securekeeper:
confidential zookeeper using intel sgx.,” in Middleware, 2016,
14:1–14:13.

[20] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C.
Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell,
et al., “Scone: secure linux containers with intel sgx.,” in
OSDI, 2016, pp. 689–703.

[21] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas, “Intel R© software guard exten-
sions (intel R© sgx) support for dynamic memory management
inside an enclave,” in HASP, 2016, 10:1–10:9.

[22] Intel Corp., https:/ /01.org/intel- software- guard- extensions,
2016.

[23] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck, P. Piet-
zuch, and R. Kapitza, “Trustjs: trusted client-side execution of
javascript,” in EuroSec, 2017, 7:1–7:6.

[24] Press Release 8th Generation Intel Core, https://goo.gl/hy1anz,
2017.

[25] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza,
“Asyncshock: exploiting synchronisation bugs in intel sgx
enclaves,” in ESORICS, 2016, pp. 440–457.

[26] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
deterministic side channels for untrusted operating systems,”
in S&P, 2015, pp. 640–656.

[27] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: erad-
icating controlled-channel attacks against enclave programs,”
in NDSS, 2017.

[28] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “Sgx-lapd:
thwarting controlled side channel attacks via enclave verifiable
page faults,” in RAID, 2017, pp. 357–380.

[29] S. Weiser and M. Werner, “Sgxio: generic trusted i/o path for
intel sgx,” in CODASPY, 2017, pp. 261–268.

[30] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement
in the presence of faults,” Journal of the ACM, vol. 27, no. 2,
pp. 228–234, 1980.

[31] L. Lamport, R. Shostak, and M. Pease, “The byzantine gener-
als problem,” ACM Transactions on Programming Languages
and Systems, vol. 4, no. 3, pp. 382–401, 1982.

[32] Google Privacy & Terms, https://www.google.com/policies/
privacy/key-terms/, 2017.

[33] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 3,
pp. 993–1022, Mar. 2003.

[34] Google Trends, https://trends.google.com, 2017.
[35] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and

M. van Steen, “Gossip-based peer sampling,” ACM Transac-
tions Computing System, vol. 25, no. 3, Aug. 2007.

[36] mbedtls-SGX: a port of mbedtls to SGX, https://goo.gl/ujiSBr,
2017.

[37] C. Fellbaum, Ed., WordNet: an electronic lexical database.
MIT Press, 1998.

[38] A. K. McCallum, Mallet: A machine learning for language
toolkit, http://mallet.cs.umass.edu.

[39] A. Mazieres, M. Trachman, J.-P. Cointet, B. Coulmont, and
C. Prieur, “Deep tags: toward a quantitative analysis of online
pornography,” Porn Studies, vol. 1, no. 1, pp. 80–95, 2014.

[40] A. Gervais, R. Shokri, A. Singla, S. Capkun, and V. Lenders,
“Quantifying web-search privacy,” in CCS, 2014, pp. 966–977.

[41] CrowdFlower, http://www.crowdflower.com, 2017.
[42] How mobile latency impacts publisher revenue, https://goo.gl/

dmLAkn, 2017.
[43] Knowledge Graph Search API, https://goo.gl/iJQ8xH, 2017.

