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Abstract—Vehicular adhoc networks allow vehicles to share
their information for safety and traffic efficiency. However,
sharing information may threaten the driver privacy because
it includes spatiotemporal information and is broadcast pub-
licly and periodically. In this paper1, we propose a context-
adaptive pseudonym changing scheme which lets a vehicle
decide autonomously when to change its pseudonym and how
long it should remain silent to ensure unlinkability. This scheme
adapts dynamically based on the density of the surrounding
traffic and the user privacy preferences. We employ a multi-
target tracking algorithm to measure privacy in terms of
traceability in realistic vehicle traces. We use Monte Carlo
analysis to estimate the quality of service (QoS) of a forward
collision warning application when vehicles apply this scheme.
According to the experimental results, the proposed scheme
provides a better compromise between traceability and QoS
than a random silent period scheme.

Keywords-context-adaptive privacy; safety application; for-
ward collision warning; random silent period;

I. INTRODUCTION

Vehicular adhoc networks (VANET) are those networks
formed among vehicles and roadside units (RSUs) to provide
diverse traffic-related and infotainment applications. VANET
are envisioned to enhance traffic safety and efficiency by
increasing the awareness of vehicles about their surrounding
traffic. To attain this awareness in real-time, vehicles are
required to broadcast periodically their current state (posi-
tion, speed, heading, etc.) in authenticated beacon messages.
These messages may threaten the driver location privacy
when they are collected by an external eavesdropper be-
cause vehicle trajectories can be reconstructed from these
messages. Subsequent beacon messages are linkable whether
through matching similar identifiers (i.e., pseudonyms) and
tracking the subsequent spatiotemporal information [2]–[4].
Although the exchanged beacons contain no identifying
information, a de-anonymization of the reconstructed anony-
mous traces is achievable using work/home pairs [5] or top
N locations [6] and with the help of geosocial networks [7].

There are many pseudonym changing schemes (i.e., pri-
vacy schemes) proposed in literature that address this link-
ability issue. The main stream of these schemes suggests to
preload vehicles with a pool of pseudonyms where a single

1This paper is an extended version of a previous publication [1].

pseudonym is used at a time and changed periodically [8].
However, in order to be effective, a vehicle must change
its pseudonym simultaneously with other nearby vehicles
since a sole change within an area can be easily linked
to the old pseudonym. Although simultaneous pseudonym
changes are required, they are not sufficient to guarantee
unlinkability. An adversary can utilize the spatiotemporal
information to relink messages of new and old pseudonyms
originating from the same vehicle using multi-target tracking
techniques [3], [4].

Therefore, it is required to change pseudonyms in an
unobserved zone in which the adversary cannot monitor
the vehicle movements. This zone is often realized by a
silent period [9] or in a predetermined location (i.e., mix-
zone) [10]. On the one hand, the silent period scheme
lets a vehicle stop sending messages for a random period
before changing its pseudonym. After this period, the ve-
hicle resumes broadcasting beacon messages with a new
pseudonym. When the silent period is sufficiently long and
several vehicles were simultaneously silent, an adversary
cannot link old and new pseudonyms of each vehicle. How-
ever, long silent periods negatively affect the accuracy of
safety applications. On the other hand, Freudiger et al. [10]
proposed placing cryptographic mix-zones (CMIX) in road
intersections where pseudonyms are forced to be changed in
these regions. When passing by a mix-zone, vehicles obtain
a symmetric key from the RSU and encrypt all messages
exchanged within this zone. However, the mix-zone suffer
from several shortcomings due to its fixed placement. Firstly,
its effectiveness depends on the number of vehicles that
enters the zone and changes their pseudonyms. Secondly,
mix-zones are prone to timing and transition attacks where
the adversary has knowledge of the probabilities of the
exit direction and the time spent within the zone for each
entering vehicle. Although these attacks can reduce the
effectiveness of the mix-zone significantly, several works
considered this problem such as [11]. Thirdly, mix-zones
are basically depending on RSUs in its operations, although
it is not expected that RSUs will be widely spread in the
initial deployment of VANET.

In this paper, we propose a context-adaptive privacy
scheme (CADS) that utilizes silent periods to deliver un-
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linkability among subsequent pseudonyms. This scheme is
a significant improvement of our recent work, context-aware
privacy scheme (CAPS) [12]. The CAPS allows a vehicle to
monitor its context and choose when to switch to silence
and change the pseudonym. Additionally, the CADS allows
the driver to choose her privacy preference whether low,
normal or high levels. It optimizes the internal parameters
dynamically according to the density of the surrounding
traffic and the driver’s privacy preference. It also preserves
the vehicle pseudonyms pool for a longer time if the
pseudonym is already changed with a probable confusion.
Our contributions in this paper can be summarized as
follows:
• Propose a context-adaptive and user-centric privacy

scheme for VANET (CADS)
• Evaluate the gained privacy of CADS against both

passive and active adversaries using a well-defined
traceability-based metric.

• Evaluate the quality of service (QoS) of forward col-
lision warning (FCW) application when applying the
CADS.

The rest of the paper is organized as follows. We discuss
related work in Section II. In Section III, we describe the
system and adversary models, explain how the privacy and
the quality of service of a FCW application are evaluated,
and present the vehicle traces. We explain CAPS briefly in
Section IV while we propose and evaluate CADS in Section
V. Finally, we show conclusions and future work in Section
VI.

II. RELATED WORK

On the one hand, preserving location privacy gained a
significant attention in the past decade. The silent period
scheme was first proposed by Huang et al. [13] and applied
in VANET by Sampigethaya et al. [9]. Li et al. [14] proposed
Swing and Swap schemes for wireless networks that are
based on silent period. In Swing scheme, a node changes its
identifier and enters silence only when changing its speed
and direction and there is at least one nearby node. The
node broadcasts an update message to inform its neighbors
which may initiate an update process if their privacy is less
than the desired. In Swap scheme, nodes can exchange their
identifiers with probability 0.5 after informing the authenti-
cation server. Furthermore, Gerlach and Guttler [15] propose
the concept of mix context in VANET where a vehicle
changes its pseudonym if there are N neighbors within a
small distance after maintaining the pseudonym for stable
time. The vehicle assesses the situation after each change
to ensure the change was successful by measuring if other
vehicles changed their pseudonyms in the same time step. If
this is not the case, the change cycle is repeated. Buttyán et
al. [16] propose to stop sending messages when the vehicle
speed drops to low speeds, for example at intersections. The
idea behind choosing low speed is that fatal accidents are

less likely to occur at low speed and places like intersections
are natural mix areas where many vehicles are located in
close proximity. Wei and Chen [17] propose to obfuscate
position, speed and heading of vehicle within the radius of
safe distance calculated by safety analysis algorithm. They
also propose changing the length of the silent period based
on the distance from other vehicles. Thus, the closer the
vehicles are to one each other, the shorter the silent period.

On the other hand, Calandriello et al. [18] were one of
the first to measuring the impact of changing pseudonyms
on safety. They evaluated the reception timing of the new
pseudonym at several distances and relative speeds. Lefevre
et al. [19] analyzed the influence of the duration of silent
period on the effectiveness of intersection collision avoid-
ance (ICA) systems. They proposed an ICA system and
evaluated a silent period scheme in terms of missed and
avoided collisions. They claim that the ICA system can
function well with silent periods of less than two seconds.

Our proposed scheme is inspired by but more advanced
than the previously mentioned techniques. Firstly, CADS
does not rely on fixed heuristics, such as a changing velocity
[16] or a density threshold [15], to identify the adequate
mix context to change pseudonyms. The dynamic context-
based technique of CADS allows short but efficient silence
periods so that the quality of safety applications is not
significantly affected and also conserves pseudonyms when
vehicle privacy is probably preserved. Secondly, CADS
considers the driver preferences regarding privacy so that
it can maximize the privacy level when the driver goes
to a sensitive place. Thirdly, we employed traceability as
a privacy metric rather than the size of anonymity set or
entropy. The traceability metric expresses on the correctness
of an adversary to reconstruct vehicle traces from beacons.
The uncertainty-based metrics, such as entropy, mis-estimate
the location privacy of users, as shown by Shokri et al.
[20]. Fourthly, we considered the trade-off between privacy
and safety by measuring the QoS of a FCW application.
Last but not least, we employed realistic large-scale vehicle
traces along with a robust vehicle tracker based on multi-
target tracking technique in evaluation which confirms the
scheme practicability, applicability and scalability in real-
world situations.

III. METHODOLOGY

A. System Model

We assume each vehicle is equipped with an on board unit
(OBU) which it uses to communicate with other vehicles
and broadcast beacon messages periodically (1-10 Hz). The
beacon information includes a pseudonym, a timestamp and
the current vehicle state (i.e., position, speed and heading).
Vehicles use a state-of-the-art pseudonym issuing process
such as [21] to retrieve a pool of pseudonyms to be used
one by one in the V2X communication. Pseudonyms have a
minimum pseudonym time during which they must be kept



unchanged to ensure stable communication. After that time,
a vehicle changes the pseudonym according to the adopted
privacy scheme. The European standard ETSI TS 102 867
recommends changing a pseudonym every five minutes
[22] while the American SAE J2735 standard recommends
changing it every 120 s or 1 km, whichever comes last [23].
Since beacons are essentially used by safety applications, the
broadcast information has to be as precise as possible. Thus,
we assume each vehicle is equipped with a GPS receiver
and combines the obtained measurements with its internal
sensors to minimize the position error up to 50 cm. This
small error is recommended in [24] and also realized in
systems such as [25] to be able to achieve useful Coop-
erative Collision Warning applications (CCW). We assume
that a vehicle maintains the states of its nearby vehicles
located within its communication range (e.g., 300 m) using
a multi-target tracking (MTT) algorithm. The utilization of
a MTT algorithm for neighbor states maintenance is two-
fold. First, it allows a vehicle to predict, with the help of a
Kalman filter, the state of neighbors even if their beacons
are delayed or missed due to a communication error or a
silence period. As a result, the MTT algorithm can enhance
the effectiveness of safety applications. Second, the MTT
algorithm supports the vehicle in choosing the appropriate
situation to change pseudonyms that increases the likelihood
of tracker confusion, as will be explained in Sections IV and
V.

B. Adversary Model

We concern protecting vehicles from both (i) a global
passive adversary (GPA) and (ii) a local active adversary
(LAA). The GPA deploys low-cost receivers over a large
part of the road network and eavesdrops on all exchanged
messages. Having an external adversary that can cover
the whole network may seem challenging, but we assume
the worst case scenario. Also, this model is realizable,
for example, by an untrusted service provider through its
deployed roadside units. The main objective of the adversary
is a tracking attack or reconstructing all vehicle traces
from their beacon messages. Thus, we assume that the
driver’s location privacy is determined by the protection
level against this attack. Although breaching the driver’s
location privacy requires de-anonymization of the recon-
structed traces, the de-anonymization process is out of the
paper scope. However, we assume that the more complete
and correct the reconstructed traces, the more successful the
de-anonymization process.

The adversary achieves its objective by correlating the
beacons of a vehicle by pseudonym matching. When a vehi-
cle changes its pseudonym, the adversary uses a multi-target
tracking algorithm, such as NNPDA [26], to correlate the
messages of the old and new pseudonyms. If the adversary
covers only a small part of the road network, it can still
track vehicles within this limited area, but such tracking

may not be valuable regarding de-anonymization as it does
not reflect complete traces. Although powerful adversaries
can track vehicles using already-deployed cameras spread
over the road network, the cost and inefficiency of global
camera-based attacks will be much higher than those for
global beacon-based attacks [10].

The LAA can send authenticated messages to the network
through a limited amount of compromised vehicles driving
in the road network. It is assumed that it is extremely
difficult for an active adversary to be global. The LAA
aims mainly to deplete the pseudonym pools of the victim
vehicles by forcing repeated pseudonym changes. If its pool
is depleted, the victim will attempt to refill its pseudonym
pool by initiating a pseudonyms issuing process with a
trusted service provider, which is not always accessible. This
adversary tries to mimic conditions that make its surrounding
vehicles change their pseudonyms by exploiting the proce-
dures of the privacy scheme. Since our proposed scheme
depends on the vehicle context to change the pseudonym,
it is important to evaluate active internal adversaries. The
encryption-based privacy schemes (such as CMIX [10]) fails
in protecting vehicles from this adversary model because
the compromised vehicles can obtain symmetric keys from
RSUs and decrypt all exchanged messages. This gives
another advantage for our proposed scheme.

C. Privacy Evaluation

In privacy evaluation, we use the vehicle tracker proposed
in [3], [26] to measure the traceability of vehicles. However,
we tuned this tracker to accommodate silent periods used
by privacy schemes. Originally, the tracker holds a vehicle
track without update until time-to-live time steps and deletes
it after that time from its tracks list. We included an
additional parameter of the maximum silence period (max-
silence) allowed by a privacy scheme. The tuned tracker only
marks a vehicle track as inactive after time-to-live time steps
and keeps it for additional max-silence time steps. When
the tracker assigns messages of unmatched pseudonyms
to its tracks list, only inactive tracks are considered. This
modification increases the traceability of the tracker since
it eliminates matching messages of new pseudonyms with
unrelated tracks.

When evaluating a privacy scheme, we alter vehicle traces
according to the operations of this scheme to generate
pseudonymous beacons. To avoid synchronization among
vehicles, they enter the road network with a pseudonym of a
random life time ranges from one second up to the minimum
pseudonym time. The pseudonymous beacons are provided
to the tuned tracker to measure the vehicle traceability.

We explain the traceability metric more thoroughly since
comparing the reconstructed tracks with the original vehicle
traces is not trivial, as illustrated in Figure 1. In this example,
there are three traces V1, V2 and V3 (drawn as solid lines
on the left) that are reconstructed into three tracks T1, T2
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Figure 1. Traceability metric illustration

and T3 (drawn as dashed lines on the middle). By visually
comparing both sets, it is clear that each track is recon-
structed from partial segments of the original traces. For
example, T1 is reconstructed from segments of V1, V2 and
V3. Most of traceability metrics proposed in literature [13],
[27], [28] may fail to reflect the actual traceability level of
this adversary. The main issue of their operation is that they
assign tracks to vehicle traces during the tracking process.
In other words, they assume the track firstly assigned to
a vehicle trace should continue with this trace till its end.
However, this early assignment underestimates the length of
the reconstructed tracks. For example, if the traceability of
V1 is measured by assigning T1 to V1, then this metric
shows a very short tracking time, although V1 is reasonably
reconstructed by T3. Therefore, it will be more effective if
tracks are assigned to the vehicle traces globally after the
tracking process is complete.

The track-to-trace assignment is basically a nonlinear
assignment problem where the total benefit should be max-
imized. The benefit represents the tracking period when
a track t assigned to a vehicle trace v continuously. Let
l(v, t),∀v, t ∈ V, T be the maximum continuous tracking
period when the track t is assigned to the vehicle trace
v. Note that t can be assigned to v for disconnected
segments at different times. In this case, l(v, t) represents
the longest segment. The disconnected segments are not
summed together because the tracking is discontinued and
the track may be assigned to another vehicle trace during
this discontinuity. The adversary cannot reconnect these
segments and filter out this wrong assignment period because
the adversary does not know if he is confused or not. Let τv
be the maximal tracking period of v; and it can be obtained
by solving the following assignment problem:

maximize
∑
v∈V

τv

subject to τv =
∑
t∈T

l(v, t) · av,t, av,t ∈ {0, 1}, (1)∑
v∈V

av,t ≤ 1 ∀t ∈ T and∑
t∈T

av,t ≤ 1 ∀v ∈ V.

Here, av,t is the assignment function which equals one if the
track t should be assigned to the vehicle trace v and equals
zero otherwise. Note that not all tracks must be assigned

to a vehicle trace because the number of tracks can be
greater than the number of vehicle traces as some tracks
are reconstructed from partial vehicle traces. Also, not all
vehicle traces must be assigned to a track because its l(v, t)
may not contribute to the maximal

∑
v∈V τv . In this case,

τv equals zero. This assignment problem is solved using an
auction algorithm considering tracks as the bidders, vehicle
traces as the items and l(v, t) as the bidding price. After
the optimal assignment is obtained, the traceability of the
whole scenario is calculated by counting the percentage of
significantly tracked vehicles. Thus, the traceability metric
Π is defined as:

Π =
1

N

∑
v∈V

λv × 100, λv =

{
1 τv

L(v) ≥ 0.90

0 otherwise
(2)

where L(v) is the lifetime of v and N is the total number
of traces included in the dataset. This metric allows few
confusions around the endpoints of a vehicle trace (10%
of the trace lifetime) since inaccuracies in endpoints can
be smoothed by a clustering technique in a re-identification
process, as shown in [29]. According to this definition, the
privacy of the driver is considered breached if the adversary
is able to continuously track 90% of her trace. Also, this
metric reflects the probability of being tracked by calculating
the ratio of tracked vehicles rather than how long a tracker
can estimate from the actual trace as in [3], [4].

In some cases, some vehicles never change their
pseudonyms during their lifetime. Thus, we additionally
calculate the normalized traceability Πn by excluding these
vehicles since they are easily tracked by the adversary and
reflected in the original traceability metric. This normalized
metric considers the effectiveness of the privacy scheme
when a vehicle changes its pseudonym at least once and
can be defined as:

Πn =
1

N

∑
v∈V

λnormv × 100, (3)

λnormv =

{
1 τv

L(v) ≥ 0.90 ∧ psd(v, k0) 6= psd(v, k0 + L(v))

0 otherwise

(4)

where psd(v, k0) and psd(v, k0 +L(v)) are the pseudonyms
of the vehicle v at the first and last time steps in its lifetime,
respectively.

D. Quality of Safety Application

It is important to evaluate the impact of a privacy scheme
on safety applications because these applications require
accurate and continuous information about nearby vehicles
but, in the same time, privacy schemes usually perturb
such information. We use our methodology proposed in
[30] to evaluate the impact of a privacy scheme on a for-
ward collision warning (FCW) application. In this method,
vehicles estimate the states of the nearby vehicles when
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Figure 2. Forward collision warning scenario.

applying the evaluated privacy scheme and calculate the
error δ between their estimation and the ground truth. Then,
the probability of correctly calculating the main application
factors is estimated using these error samples in Monte Carlo
analysis. The main factors of the FCW application are (1)
identifying the correct lane of the other vehicle and (2)
calculating the time to collision (TTC) accurately within
small tolerance (e.g., within 500 ms).

For the first application requirement, the SV must cor-
rectly identify that OV1 is in its own path (i.e., high
sensitivity) while OV2 is not (i.e., high specificity), as shown
in Figure 2. The criteria for identifying an OV as in path
is that its lateral position is within ± 1.8 m of the lateral
position of the SV, assuming a 3.6 m lane width. Otherwise,
it should be identified as not in path. In our analysis, we set
the true lateral position of the SV as same as the lateral
position of OV1, while the true position of the OV2 is
located in the center of the next lane. Thus, the measured
lateral positions y of SV, OV1 and OV2 are obtained by
adding the errors to their true positions as follows:

ySV = 1.8 +N (0, 0.5)
yOV 1 = 1.8 + δy
yOV 2 = 5.4 + δy

(5)

where δy is an error sample in the lateral position. There-
fore, the true and false positive probabilities for correctly
identifying lanes of the OVs can be calculated by:

Ptrue+ = P (|yOV 1 − ySV | ≤ 1.8) (6)
Pfalse+ = P (|yOV 2 − ySV | ≤ 1.8) (7)

For the second requirement, we assume that the SV is
approaching the OV1 at speed differences ∆s of 5 m/s and
15 m/s. The assumed true TTC is set to three seconds as
an example; thus, the true position of OV1 is generated
to be three seconds distance from the true position of SV
and is calculated based on the evaluated speed difference as
follows:

xSV = N (0, 0.5)
xOV 1 = 3 ·∆s+ δx
ẋSV = x̂OV 1 + ∆s+N (0, 0.02 · (x̂OV 1 + ∆s))
ẋOV 1 = x̂OV 1 + δẋ

(8)

where x̂OV 1 is the true longitudinal speed of the OV1
and δẋ is an error sample in the longitudinal speed. Here,
there is no binary classification to calculate false positives;
instead, we calculate the probability of calculating TTC
within a small tolerance of 500 ms. This 500 ms tolerance
is chosen by Shladover and Tan [24] as the maximum
tolerance for issuing a useful warning. They also analyzed
the implication of a desirable tolerance of 200 ms but they
found that it requires a positioning accuracy of 20 cm to
attain this restrict tolerance, wherefore we considered only
the maximum tolerance of 500 ms. Therefore, the TTC and
the probability of correctly estimating it within 500 ms can
be calculated by:

TTC =
xOV 1 − xSV
ẋSV − ẋOV 1

(9)

PTTC = P (|TTC − 3| ≤ 0.5) (10)

In this equation, we determine how frequently the difference
between the calculated TTC and the true TTC (3 s) is
less than the tolerance threshold of 0.5 s. Finally, the
probability of the FCW application (PFCW ) can be obtained
by multiplying all three probabilities together, assuming they
are independent, as follows:

PFCW∆s = Ptrue+ × (1− Pfalse+)× PTTC∆s (11)

Experiments show that estimating TTC in high speed dif-
ferences is much more accurate than low speed differences
with the same position noise. Therefore, the QoS of the FCW
application (QoSFCW ) is defined as PFCW∆s=5 multiplied
by 100 to obtain a percentage, as follows:

QoSFCW = PFCW∆s=5 × 100 (12)

E. Vehicle Traces

We employ realistic vehicle traces in evaluation which are
obtained from [31]. This dataset is mainly based on the data
made available by the TAPASCologne project [32] which
is an initiative by the Institute of Transportation Systems
at the German Aerospace Center (ITS-DLR). This dataset
reproduces vehicle traffic in the greater urban area of the city
of Cologne, Germany with the highest level of realism pos-
sible. The street layout of the Cologne urban area is obtained
from the OpenStreetMap (OSM) database. The microscopic
mobility of vehicles is simulated using the Simulation of
Urban Mobility (SUMO). The source and destination of
vehicle traces are derived through the Travel and Activity
PAtterns Simulation (TAPAS) methodology. Uppoor et al.
[33] pointed out several problems when combining these
data sources to produce traffic data. Among these problems,
vehicles are moving rapidly to large traffic jams, travel times
are unrealistic and vehicle speeds turn to very low values.
Uppoor et al. resolved these problems so that the synthetic
traffic match that observed in the real world, through real-
time traffic information services. This is why we name this
dataset as realistic traces.



Figure 3. The road map of the realistic traces.

We obtained the two-hour sample published online [31]
and selected 30 min (from 6:15 AM till 6:45 AM) for the
middle 64 km2 region, as shown in Figure 3. We selected
this time period because the vehicle density increases dra-
matically, which provides a challenging evaluation for the
operation of privacy scheme in different densities. As we
cropped the vehicle traces in both space and time, we ex-
cluded very short traces that move within 100 m2 or start and
end in less than 15 s. There are 19,704 remaining traces with
increasing density, ranging from 1,929 to 4,572 simultaneous
vehicles in the first and last time steps, respectively. The
vehicle positions in the last time step are drawn as red spots
in Figure 3. Moreover, we processed the dataset to calculate
the heading and velocity in the xy-coordinates using every
two consecutive time steps for each vehicle. The last heading
value is preserved when the vehicle stops and is changed
when it starts to move.

IV. CONTEXT-AWARE PRIVACY SCHEME (CAPS)
The basic concept of our Context-aware Privacy Scheme

(CAPS) is to determine the appropriate context in which a
vehicle should change its pseudonym. This approach aims to
increase the effectiveness of such changes against tracking
and avoid wasting pseudonyms in easily traceable situations.
More specifically, a vehicle continuously monitors other
vehicles located within its communication range and tracks
their beacons using an NNPDA tracker. As explained in our
work [26], the NNPDA is an efficient multi-target tracking
algorithm that has exhibited a high tracking accuracy for
anonymous beacons with different amounts of noise and
beaconing rates.

As illustrated in Figure 4, the CAPS works as follows.
During its active status, the subject vehicle (SV) uses its
current pseudonym in beacons until the pseudonym lifetime
reaches a minimum time. Once it exceeds this time, the
vehicle checks whether any of monitored neighbors missed
its beacons for several time steps. Here, neighbors refer to
vehicles located within a predefined radius from the subject
vehicle (e.g., 50 or 100 m). If the SV finds a silent neighbor,
it turns to silence as well. Otherwise, it continues using

Subject vehicle (SV)

Monitored vehicles

Neighbors 

Non-monitored vehicles

Vehicle track

Communication range

Neighborhood threshold

Figure 4. Illustration for the CAPS operations

its current pseudonym until its lifetime reaches a maximum
pseudonym time and then the vehicle turns to silence.

When a vehicle is silent, it returns to beaconing under
more complex conditions based on the gating phase of
vehicle tracking. It was explained in [26] that a gating
process is required in target tracking to eliminate unlikely
measurement-to-track associations from being tested. It re-
quires any new measurement to be located within the track
gate to be a valid candidate for association with this track.
The most common gating technique is ellipsoidal which
defines the norm of the residual vector (d2):

d2 = z̃TS−1z̃ (13)

where z̃ and S are the residual vector and its covariance
matrix obtained from the Kalman filter, respectively. We
exploit this fact and require the beacon after silence to
achieve one of the following two conditions to guarantee no
correlation with previous beacons. As illustrated in Figure 5,
the SV state should be nearer to the track of a silent neighbor
than its original track or completely outside the gate of its
original track. When these conditions hold, the adversary
will most probably become confused when attempting to
correlate this new beacon because it will not be assigned to
its original track.

Beacons

Beaconing Silence Beaconing

Max gate

Estimated track of SV during silence

Beacons

Estimated track of SV during silence

Figure 5. Illustration for the two conditions to exit silence.

Formally, when the SV is silent, it continues monitoring
surrounding vehicles and waits for the minimum silence



time. Once exceeded, it checks if one of the following
conditions holds regarding the norm of the residual vector
(d2) between its actual and estimated states:

1) d2 > d2
Nmin, where d2

Nmin is the minimum norm of
the residual vector between the SV actual state and
the estimated states of its silent neighbors, as shown
in the upper part of Figure 5.

2) d2 > max gate, where max gate is the maximum
gate that the adversary may use, as shown in the lower
part of Figure 5.

If one of these conditions holds, this new beacon is likely
to be mixed with one of its silent neighbors or recognized as
a new vehicle. Therefore, it is a suitable time to exit silence
with a new pseudonym. If these conditions never occur, the
SV remains silent until a maximum silence time is reached.

A. CAPS Evaluation

We evaluate the CAPS in comparison with two silent-
based schemes: the random and coordinated silent period
schemes. The random silent period (RSP) allows a vehicle
to change its pseudonym after a fixed pseudonym time and
keep silent for a uniformly random period within a preset
range (e.g., from 3 to 13 s). As the two schemes have differ-
ent assumptions and parameters, they are aligned based on
the median silent and pseudonym times for all vehicles, actu-
ally performed in the simulation. The maximum pseudonym
time of CAPS is 300 s while the fixed pseudonym time of
RSP is 120 s. In CAPS, we assigned 50 m to the neighbor-
hood threshold and 60 s to the minimum pseudonym time.
The coordinated silent period (CSP) is proposed by Tomandl
et al. [34] in their comparison of silent period and mix zone
schemes. CSP coordinates all vehicles in the network to
remain silent and change pseudonyms synchronously. CSP
seems to be theoretical since the coordination overhead in
real world situations increases dramatically [34]. However,
CSP increases the privacy significantly because it maximizes
the size of the anonymity set at every pseudonym change.
The pseudonym lifetime of CSP is 300 s and all vehicles
are synchronized so that they turn to silence and change
pseudonyms simultaneously.

In Figure 6, we show the traceability Π, normalized
traceability Πn and QoS of a FCW application for all
schemes. The CAPS slightly reduces the traceability Π
especially in short median silence times (up to 10% lower
than RSP) as shown in Figure 6(a). In longer silent times, all
schemes result in similar traceability. Since many vehicles
did not change their pseudonyms in simulation, CAPS and
CSP reduced the normalized traceability by up to 20% and
30% from the traceability metric, respectively. This happens
because the CAPS chooses the right context to change
the pseudonym which increases the probability of tracker
confusion. Hence, the pseudonym change made by the CAPS
is much more effective than that made randomly by the RSP.
For CSP, vehicles are synchronized which maximizes the

size of the anonymity set and increases the tracker confusion
significantly.

For the QoS, the CAPS achieves a higher QoS than the
RSP (up to 6% higher) and slightly lower than CSP (up to
2% lower). This QoS decrease in the RSP occurs due to
the unnecessary and ineffective pseudonym changes. These
pseudonym changes are followed by silence periods which
affects identifying the application requirements correctly
especially with relatively long silence periods.

B. CAPS Shortcomings

We note three shortcomings of the CAPS. First, we ob-
serve that some vehicles change pseudonyms unnecessarily
several times with no significant advantage in decreasing the
traceability. Having a few confusions per trace is sufficient
to avoid continuous vehicle tracking. However, frequent
pseudonym changes and confusions may negatively affect
the QoS of a safety application, as neighbors cannot estimate
the vehicle state correctly. Therefore, we propose increasing
the minimum pseudonym time each time a vehicle changes
its pseudonym with a probable confusion. Second, the CAPS
takes several parameters that may not be optimized for
different traffic densities and situations. For example, a wide
neighborhood threshold may be more suitable for sparse
traffic than dense traffic. Third, the CAPS does not consider
the driver’s preference regarding privacy. In fact, privacy
depends on the preferences of the user and the technical
solutions should be adaptable to empower users to determine
what is allowed with their personal information [35]. For
example, it may be desirable to maximize the privacy level
when the driver goes to a sensitive place. For these reasons,
we propose a more advanced scheme that considers these
shortcomings, which we call the context-adaptive privacy
scheme (CADS) as explained next.

V. CONTEXT-ADAPTIVE PRIVACY SCHEME (CADS)

The CADS allows a driver to choose among privacy
preferences, whether low, normal or high. It optimizes the
internal parameters dynamically according to the density of
the surrounding traffic and the driver’s privacy preference.
In addition, it preserves the vehicle pseudonyms pool for
a longer time if the pseudonym is already changed with a
probable confusion.

To optimize the scheme parameters with respect to the
surrounding traffic, we investigate the performance of the
CAPS in two different densities; sparse and dense traffic.
First, we select two relatively short sub-datasets from the
realistic vehicle traces with low and high traffic densities. We
then test the CAPS on each sub-dataset with many parameter
combinations and obtain the resulting traceability and QoS
metrics. Second, to incorporate the privacy preference in
CADS, we divide the results of the sub-dataset experiments
into three categories according to the achievable traceability.
Next, we identify the parameters that result in the best
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Figure 6. Evaluation comparison among CAPS, RSP and CSP.

Table I
OPTIMIZED CADS PARAMETERS AND THEIR RESULTS

Privacy Preference
Sparse sub-dataset Dense sub-dataset

Parameter/Result Low Normal High Low Normal High
Max pseudonym time (s) 240 300 180 240 180 180
Max silence time (s) 11 11 11 11 13 11
Pseudonym time increment (s) 60 60 0 60 60 0
Neighborhood threshold (m) 50 100 100 50 50 100
Traceability (%) 75 59 49 68 49 38
Normalized Traceability (%) 52 33 31 43 26 21
QoS (%) 90 87 85 91 88 85

compromise between traceability and QoS in each category.
Third, we insert these categorized parameters of each density
into CADS and bind them according to the real-time vehicle
density and the input privacy preference.

A. Sub-datasets Evaluation

As explained in Section III-E, the vehicle traces have an
increasing density ranging from 1,929 to 4,572 vehicles.
We selected two sub-datasets, 6 min long each from the
beginning and end of vehicle traces, as shaded in Figure
7(a). We excluded traces that last less than one minute from
these sub-datasets. The CAPS is then evaluated using each
sub-dataset and the following parameter combinations: max-
imum pseudonym times of 180, 240 and 300 s, maximum
silence times of 7, 9, 11 and 13 s, neighborhood thresholds of
50 and 100 m and increments of the minimum pseudonym
time after a probable confusion of 0 or 60 s. We run the
CAPS using these parameter combinations on both sub-
datasets and obtain the achieved privacy and QoS metrics.

B. Parameters Selection

From all experiments tested in the previous step, we
exclude those results with a QoS less than 85% as we
assume that the safety application will not operate with an
acceptable accuracy in such cases. Although the traceability
and the QoS are proportional, we notice that the QoS varies
much less than the traceability. Therefore, the results are
categorized based on the QoS instead, to facilitate catego-
rization. The results are divided into low, normal and high

privacy levels when they achieve the maximum, average and
minimum QoS, respectively in each sub-dataset. Thus, the
parameters for a high privacy preference are selected when
a QoS of 85% is attained. The parameters for a low privacy
preference are selected when the highest QoS is obtained
but with a traceability of at most 75%. This traceability
constraint is added to ensure some privacy even when low
privacy preference is selected. The parameters for normal
privacy preference are selected when the average QoS is
attained with the lowest traceability.

In Table I, we show the selected parameter set for each
privacy preference and vehicle density. In the last three
rows, we include the resulting traceability and QoS of each
parameter set when applied to the sub-datasets. We notice
that the achievable traceability in the sparse sub-dataset is
higher than that achievable in the dense sub-dataset. The
traceability can be decreased using more restrict parameters
but only at the cost of the QoS.

C. CADS Algorithm

The parameter table I is integrated into the CADS to let
a vehicle choose the adequate parameter set based on the
driver’s privacy preference and the real-time density of the
surrounding traffic. A vehicle can estimate the traffic density
by evaluating the average number of neighbors encountered
over time. For this purpose, we analyzed the distribution of
neighbors in both sub-datasets, as shown in Figure 7. We
notice that the average number of neighbors that a vehicle
encounters is 30 and 68 with 95% confidence in the sparse
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Figure 7. (a) Vehicle density versus time with sub-datasets highlighted. (b) and (c) Average number of neighbors encountered by a vehicle in each
sub-dataset.

and dense sub-datasets, respectively. Therefore, a neighbors
threshold of 30 vehicles is assigned to discriminate between
sparse and dense traffic. In other words, a vehicle continu-
ously counts the surrounding vehicles in its communication
range and calculates the average over time. If the average
number of surrounding vehicles is lower than 30 then the
traffic is considered sparse, otherwise it is considered dense.

D. CADS Evaluation

1) Location Privacy under GPA: CADS was evaluated
under the GPA in two different scenarios. In the first sce-
nario, all drivers select the same privacy preference whether
low, normal or high level. Figure 8 displays the traceability,
the normalized traceability and the quality of service of each
privacy level. As a kind of comparison, the measurements for
the CAPS scheme of 11 s maximum silent time are shown
as dashed lines. The traceability and normalized traceability
of CADS decrease when drivers select a higher privacy
preference with a slight decrease in the QoS. Compared to
CAPS, the CADS achieves a better compromise between
traceability and QoS. Specifically, when a high privacy pref-
erence is used, the CADS achieves a 13% lower traceability
but with a slight decrease in QoS (only 4%). When a low
privacy preference is used, the QoS is enhanced by 2% while
the normalized traceability is still lower than 40%. In normal
privacy preference, traceability is slightly decreased because
of the adaptation of the parameters based on the traffic
density. These results confirm the validity and effectiveness
of the context-adaptability to find a practical compromise
between privacy preference and QoS.

In the second scenario, we allow vehicles to select the
preferred privacy level randomly based on given percentages.
In this scenario, we aim to confirm that the privacy is
more enhanced for vehicles that select a higher privacy
level than the others. As the vehicles use a mix of privacy
preferences, each privacy preference group is evaluated sep-
arately showing its traceability and normalized traceability.
However, the QoS is evaluated over all vehicles, as lower-
quality information obtained from vehicles that use a high
privacy preference will affect other vehicles of lower privacy
preferences and vice versa. In this scenario, we repeat each
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experiment five times with random selection of the privacy
preference assigned to vehicles.

In the first and second experiments, 25% and 75% of
vehicles use the normal privacy preference, respectively,
while the rest uses the high privacy preference, as shown
in Figure 9. Although both experiments employ swapped
percentages of normal and high privacy levels, they achieve
similar (normalized) traceability for both level groups with



Table II
CADS RESULTS UNDER THE LAA PSEUDONYM DEPLETION ATTACK IN

SPARSE SUB-DATASET (SILENT NEIGHBOR THRESHOLD = 1; 3967
VEHICLES)

LAA strength
No LAA 1% 3% 5% 10%

Compromised vehicles 0 40 119 198 397
Concerned vehicles (victim) 2106 224 557 1041 1562
Avg. pseudonym lifetime (s) 114 88 85 80 74

Pseudonym change/Vehicle 1.3 1.8 1.8 1.8 1.9

Πn (%) 37 24 21 24 25
QoS (%) 88 87 85 83 79

slight effect of the major group on the performance of the
minor group.

In the third and fourth experiments, 75% of vehicles use
the low privacy preference while the rest use normal and
high levels, respectively. It is observable that the high level
group in the fourth experiment achieves a lower traceability
than that is achieved by the normal level group in the third
experiment. Additionally, we notice that the high level group
in the fourth experiment achieves slightly higher traceability
than the same group in the second experiment. This result
may attributed to the major privacy preference group being
low-level in the fourth experiment but normal-level in the
second. Regarding the QoS, we notice that it follows the QoS
of the major group with a slight effect from the minor. For
example, the QoS in the first experiment is higher 1% than
that in the “100% high-privacy” experiment, and the QoS in
the fourth experiment is lower 1.5% than that in the “100%
low-privacy” experiment. From all these observations, we
can conclude that the traceability is mainly affected by
the configured privacy level with a slight effect from the
surrounding traffic. However, this change in traceability is
compensated in the QoS.

2) Location Privacy under LAA: The local active adver-
sary (LAA) performs a pseudonyms depletion attack which
tries to force victim vehicles to change pseudonyms as
soon as possible. It is important to evaluate context-based
schemes under this attack because these schemes change
pseudonyms based on conditions that are external from the
vehicle. Therefore, an adversary may try to mimic these
conditions to force vehicles change pseudonyms frequently
and deplete their pseudonyms pool. We simulate this attack
by letting a random number of compromised vehicles drive
within the road network. These vehicles act as LAA by
changing their pseudonyms every 5 s and keep silent for
3 s and so on. This behavior is challenging the practicality
of this attack because if the compromised vehicles change
their pseudonyms, they will suffer from self-depletion in
short time when they use authenticated pseudonyms. If they
use fake pseudonyms or do not change pseudonyms but
switch to silence frequently, surrounding vehicles can detect
this behavior and abandon the compromised vehicles from

Table III
CADS RESULTS UNDER THE LAA PSEUDONYM DEPLETION ATTACK IN

DENSE SUB-DATASET (SILENT NEIGHBOR THRESHOLD = 2; 7390
VEHICLES)

LAA strength
No LAA 1% 3% 5% 10%

Compromised vehicles 0 74 222 370 739
Concerned vehicles (victim) 3526 744 2015 2946 3855
Avg. pseudonym lifetime (s) 156 142 132 122 103

Pseudonym change/Vehicle 1.1 1.2 1.2 1.3 1.4

Πn (%) 38 30 31 30 27
QoS (%) 91 90 89 88 86

affecting their decisions. Regardless of the practicability
issues, we assume here that the compromised vehicles own
infinite number of authenticated pseudonyms and is able to
change it freely.

In the worst case scenario, a victim vehicle will change its
pseudonym every minimum pseudonym time, but the CADS
can reduce the effect of this attack through its parameter: the
silent neighbor threshold. When the silent neighbor threshold
is set to be more than one, the scheme requires several silent
neighboring vehicles to switch to silence. This condition
hinders the LAA attack since it is unlikely to have several
LAA vehicles neighboring the victim vehicle. Also, CADS
can employ the pseudonym time increment parameter to
increase the minimum pseudonym time when the pseudonym
is changed with a likely tracker confusion.

The CADS is evaluated against the LAA of different
strengths in terms of the number of the compromised
vehicles. The protection against this attack is measured
by the number of pseudonym changes and the pseudonym
lifetime made by vehicles on average. When calculating this
metric, we considered only vehicles that met a LAA vehicle
within 50 m radius for at least 15 s and changed their
pseudonyms during simulation at least once. We selected
the first and the last 5 min of the realistic traces and run
simulation five times for each LAA strength with different
compromised vehicles selected randomly. We selected 2 sub-
datasets to show the effect of LAA on both sparse and dense
traffic. These short traces will not affect the generality of
the obtained results because we consider the pseudonym
changing behavior rather than a full reconstruction of long
traces. We tested two thresholds of silent neighbors of 1
and 2 vehicles where all vehicles choose the normal privacy
preference.

Table II shows the average metrics obtained using a
silent neighbor threshold of one for the sparse sub-dataset.
Four LAA strengths along with the case of no LAA are
evaluated. The number of the compromised vehicles and
the concerned vehicles, on which the given metrics are
calculated, are listed in the first two rows of Table II. The
concerned vehicles are those changed their pseudonyms at
least once and refer to the victim vehicles when LAA is



present or all vehicles for the no LAA case. The next two
rows show the average pseudonym lifetime and the number
of pseudonyms changed per vehicle. It can be observed that
the victim vehicles changed pseudonyms 1.38 times more
than the case of no LAA. This small increase in pseudonym
changes cannot result in pseudonym depletion unless the
LAA vehicles continuously follow the victim vehicles.
Furthermore, we show the traceability and QoS metrics for
each case. Interestingly, the normalized traceability metric
Πn is decreased when the LAA is present because the
compromised vehicles force surrounding vehicles to change
pseudonyms. The increased pseudonym changes result in
a decrease in QoS depending on the LAA strength. We
repeated this experiment with a silent neighbor threshold
of 2 but we found that the traceability is significantly
increased because it is rarely to find two silent neighbors
in this sparse traffic.

Table III shows the average metrics obtained using a
silent neighbor threshold of 2 for the dense sub-dataset. We
use here a threshold of 2 because the traffic is dense and it
is common to meet with a compromised vehicle repeatedly.
We observe that the victim vehicles changed pseudonyms
1.27 times more than the case of no LAA at maximum. The
same behavior of decreased traceability and slight reduction
in QoS is also observed.

From these observations, we conclude that a weak LAA of
small percent of compromised vehicles (e.g., up to 3%) does
not add a significant risk of pseudonyms depletion specially
when setting the silent neighbor threshold to more than one.
Also, this attack may hinder the threat of the GPA attack
with a small impact on the QoS of safety applications.

E. CADS Efficiency

CADS was implemented using MATLAB as a central-
ized program, which operates on samples located in the
communication range of each vehicle separately. We exploit
the parallel for loop feature in MATLAB to iterate on
vehicles asynchronously at every time step. We run our
experiments on an Intel QuadCore i7-4800MQ @ 2.70GHz
Hyper-threaded CPU. We calculate the running time of the
CADS to process samples received by a vehicle in a single
time step and average over all vehicles and time steps. We
found that the average running time is 5 ms for realistic
traces. Note that this running time is obtained using a single
thread, as the CADS code is basically sequential. Thus,
this running time is reproducible on single-thread single-
core CPUs of the given speed. Therefore, we can conclude
that the CADS is efficient when high-end CPUs are used
because the most frequent beaconing rate is 100 ms and the
vehicle will have plenty of time to do other tasks. However,
if lower-end CPUs are used inside vehicles, then further code
optimization should be investigated. The memory is not an

issue, as the CADS uses only a few hundreds of kBs for the
Kalman filter tracks of the nearby vehicles.

VI. CONCLUSION

We discussed context-aware (CAPS) and context-adaptive
(CADS) privacy schemes for vehicular networks. They uti-
lize a context monitoring module to track surrounding neigh-
bors and identify adequate situations to change pseudonym
and determine the effective length of silence period. In
CADS, a driver can choose the desired privacy level and
the scheme can automatically identify the appropriate pa-
rameters that match this desired level based on the real-time
traffic density. Based on the experimental results, CADS
can reduce traceability than the CAPS does when normal
or high privacy levels are selected with a slight reduction in
the QoS. Also, the CADS can preserve lowest traceability
for vehicles that select a high privacy level even when they
drive within a majority of vehicles selected a lower privacy
level. In future work, we will compare CADS with advanced
privacy schemes such as mix-zones. Also, we will investigate
allowing vehicles measure the safety level in real-time to
stop silence in critical situations, for example. Lastly, we will
consider deploying CADS on a test platform for VANET
such as NEC LinkBird-MX to measure and optimize its
practical efficiency.
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