620 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    A Primer on Seq2Seq Models for Generative Chatbots

    Get PDF
    The recent spread of Deep Learning-based solutions for Artificial Intelligence and the development of Large Language Models has pushed forwards significantly the Natural Language Processing area. The approach has quickly evolved in the last ten years, deeply affecting NLP, from low-level text pre-processing tasks –such as tokenisation or POS tagging– to high-level, complex NLP applications like machine translation and chatbots. This paper examines recent trends in the development of open-domain data-driven generative chatbots, focusing on the Seq2Seq architectures. Such architectures are compatible with multiple learning approaches, ranging from supervised to reinforcement and, in the last years, allowed to realise very engaging open-domain chatbots. Not only do these architectures allow to directly output the next turn in a conversation but, to some extent, they also allow to control the style or content of the response. To offer a complete view on the subject, we examine possible architecture implementations as well as training and evaluation approaches. Additionally, we provide information about the openly available corpora to train and evaluate such models and about the current and past chatbot competitions. Finally, we present some insights on possible future directions, given the current research status

    Taylor University Catalog 2023-2024

    Get PDF
    The 2023-2024 academic catalog of Taylor University in Upland, Indiana.https://pillars.taylor.edu/catalogs/1128/thumbnail.jp

    Towards a Digital Capability Maturity Framework for Tertiary Institutions

    Get PDF
    Background: The Digital Capability (DC) of an Institution is the extent to which the institution's culture, policies, and infrastructure enable and support digital practices (Killen et al., 2017), and maturity is the continuous improvement of those capabilities. As technology continues to evolve, it is likely to give rise to constant changes in teaching and learning, potentially disrupting Tertiary Education Institutions (TEIs) and making existing organisational models less effective. An institution’s ability to adapt to continuously changing technology depends on the change in culture and leadership decisions within the individual institutions. Change without structure leads to inefficiencies, evident across the Nigerian TEI landscape. These inefficiencies can be attributed mainly to a lack of clarity and agreement on a development structure. Objectives: This research aims to design a structure with a pathway to maturity, to support the continuous improvement of DC in TEIs in Nigeria and consequently improve the success of digital education programmes. Methods: I started by conducting a Systematic Literature Review (SLR) investigating the body of knowledge on DC, its composition, the relationship between its elements and their respective impact on the Maturity of TEIs. Findings from the review led me to investigate further the key roles instrumental in developing Digital Capability Maturity in Tertiary Institutions (DCMiTI). The results of these investigations formed the initial ideas and constructs upon which the proposed structure was built. I then explored a combination of quantitative and qualitative methods to substantiate the initial constructs and gain a deeper understanding of the relationships between elements/sub-elements. Next, I used triangulation as a vehicle to expand the validity of the findings by replicating the methods in a case study of TEIs in Nigeria. Finally, after using the validated constructs and knowledge base to propose a structure based on CMMI concepts, I conducted an expert panel workshop to test the model’s validity. Results: I consolidated the body of knowledge from the SLR into a universal classification of 10 elements, each comprising sub-elements. I also went on to propose a classification for DCMiTI. The elements/sub-elements in the classification indicate the success factors for digital maturity, which were also found to positively impact the ability to design, deploy and sustain digital education. These findings were confirmed in a UK University and triangulated in a case study of Northwest Nigeria. The case study confirmed the literature findings on the status of DCMiTI in Nigeria and provided sufficient evidence to suggest that a maturity structure would be a well-suited solution to supporting DCM in the region. I thus scoped, designed, and populated a domain-specific framework for DCMiTI, configured to support the educational landscape in Northwest Nigeria. Conclusion: The proposed DCMiTI framework enables TEIs to assess their maturity level across the various capability elements and reports on DCM as a whole. It provides guidance on the criteria that must be satisfied to achieve higher levels of digital maturity. The framework received expert validation, as domain experts agreed that the proposed Framework was well applicable to developing DCMiTI and would be a valuable tool to support TEIs in delivering successful digital education. Recommendations were made to engage in further iterations of testing by deploying the proposed framework for use in TEI to confirm the extent of its generalisability and acceptability

    Optimising multimodal fusion for biometric identification systems

    Get PDF
    Biometric systems are automatic means for imitating the human brain’s ability of identifying and verifying other humans by their behavioural and physiological characteristics. A system, which uses more than one biometric modality at the same time, is known as a multimodal system. Multimodal biometric systems consolidate the evidence presented by multiple biometric sources and typically provide better recognition performance compared to systems based on a single biometric modality. This thesis addresses some issues related to the implementation of multimodal biometric identity verification systems. The thesis assesses the feasibility of using commercial offthe-shelf products to construct deployable multimodal biometric system. It also identifies multimodal biometric fusion as a challenging optimisation problem when one considers the presence of several configurations and settings, in particular the verification thresholds adopted by each biometric device and the decision fusion algorithm implemented for a particular configuration. The thesis proposes a novel approach for the optimisation of multimodal biometric systems based on the use of genetic algorithms for solving some of the problems associated with the different settings. The proposed optimisation method also addresses some of the problems associated with score normalization. In addition, the thesis presents an analysis of the performance of different fusion rules when characterising the system users as sheep, goats, lambs and wolves. The results presented indicate that the proposed optimisation method can be used to solve the problems associated with threshold settings. This clearly demonstrates a valuable potential strategy that can be used to set a priori thresholds of the different biometric devices before using them. The proposed optimisation architecture addressed the problem of score normalisation, which makes it an effective “plug-and-play” design philosophy to system implementation. The results also indicate that the optimisation approach can be used for effectively determining the weight settings, which is used in many applications for varying the relative importance of the different performance parameters

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Managing healthcare transformation towards P5 medicine (Published in Frontiers in Medicine)

    Get PDF
    Health and social care systems around the world are facing radical organizational, methodological and technological paradigm changes to meet the requirements for improving quality and safety of care as well as efficiency and efficacy of care processes. In this they’re trying to manage the challenges of ongoing demographic changes towards aging, multi-diseased societies, development of human resources, a health and social services consumerism, medical and biomedical progress, and exploding costs for health-related R&D as well as health services delivery. Furthermore, they intend to achieve sustainability of global health systems by transforming them towards intelligent, adaptive and proactive systems focusing on health and wellness with optimized quality and safety outcomes. The outcome is a transformed health and wellness ecosystem combining the approaches of translational medicine, 5P medicine (personalized, preventive, predictive, participative precision medicine) and digital health towards ubiquitous personalized health services realized independent of time and location. It considers individual health status, conditions, genetic and genomic dispositions in personal social, occupational, environmental and behavioural context, thus turning health and social care from reactive to proactive. This requires the advancement communication and cooperation among the business actors from different domains (disciplines) with different methodologies, terminologies/ontologies, education, skills and experiences from data level (data sharing) to concept/knowledge level (knowledge sharing). The challenge here is the understanding and the formal as well as consistent representation of the world of sciences and practices, i.e. of multidisciplinary and dynamic systems in variable context, for enabling mapping between the different disciplines, methodologies, perspectives, intentions, languages, etc. Based on a framework for dynamically, use-case-specifically and context aware representing multi-domain ecosystems including their development process, systems, models and artefacts can be consistently represented, harmonized and integrated. The response to that problem is the formal representation of health and social care ecosystems through an system-oriented, architecture-centric, ontology-based and policy-driven model and framework, addressing all domains and development process views contributing to the system and context in question. Accordingly, this Research Topic would like to address this change towards 5P medicine. Specifically, areas of interest include, but are not limited: • A multidisciplinary approach to the transformation of health and social systems • Success factors for sustainable P5 ecosystems • AI and robotics in transformed health ecosystems • Transformed health ecosystems challenges for security, privacy and trust • Modelling digital health systems • Ethical challenges of personalized digital health • Knowledge representation and management of transformed health ecosystems Table of Contents: 04 Editorial: Managing healthcare transformation towards P5 medicine Bernd Blobel and Dipak Kalra 06 Transformation of Health and Social Care Systems—An Interdisciplinary Approach Toward a Foundational Architecture Bernd Blobel, Frank Oemig, Pekka Ruotsalainen and Diego M. Lopez 26 Transformed Health Ecosystems—Challenges for Security, Privacy, and Trust Pekka Ruotsalainen and Bernd Blobel 36 Success Factors for Scaling Up the Adoption of Digital Therapeutics Towards the Realization of P5 Medicine Alexandra Prodan, Lucas Deimel, Johannes Ahlqvist, Strahil Birov, Rainer Thiel, Meeri Toivanen, Zoi Kolitsi and Dipak Kalra 49 EU-Funded Telemedicine Projects – Assessment of, and Lessons Learned From, in the Light of the SARS-CoV-2 Pandemic Laura Paleari, Virginia Malini, Gabriella Paoli, Stefano Scillieri, Claudia Bighin, Bernd Blobel and Mauro Giacomini 60 A Review of Artificial Intelligence and Robotics in Transformed Health Ecosystems Kerstin Denecke and Claude R. Baudoin 73 Modeling digital health systems to foster interoperability Frank Oemig and Bernd Blobel 89 Challenges and solutions for transforming health ecosystems in low- and middle-income countries through artificial intelligence Diego M. López, Carolina Rico-Olarte, Bernd Blobel and Carol Hullin 111 Linguistic and ontological challenges of multiple domains contributing to transformed health ecosystems Markus Kreuzthaler, Mathias Brochhausen, Cilia Zayas, Bernd Blobel and Stefan Schulz 126 The ethical challenges of personalized digital health Els Maeckelberghe, Kinga Zdunek, Sara Marceglia, Bobbie Farsides and Michael Rigb

    Learning from imperfect data : incremental learning and Few-shot Learning

    Get PDF
    In recent years, artificial intelligence (AI) has achieved great success in many fields, e.g., computer vision, speech recognition, recommendation engines, and neural language processing. Although impressive advances have been made, AI algorithms still suffer from an important limitation: they rely on large-scale datasets. In contrast, human beings naturally possess the ability to learn novel knowledge from real-world and imperfect data such as a small number of samples or a non-static continual data stream. Attaining such an ability is particularly appealing. Specifically, an ideal AI system with human-level intelligence should work with the following imperfect data scenarios. 1)~The training data distribution changes while learning. In many real scenarios, data are streaming, might disappear after a given period of time, or even can not be stored at all due to storage constraints or privacy issues. As a consequence, the old knowledge is over-written, a phenomenon called catastrophic forgetting. 2)~The annotations of the training data are sparse. There are also many scenarios where we do not have access to the specific large-scale data of interest due to privacy and security reasons. As a consequence, the deep models overfit the training data distribution and are very likely to make wrong decisions when they encounter rare cases. Therefore, the goal of this thesis is to tackle the challenges and develop AI algorithms that can be trained with imperfect data. To achieve the above goal, we study three topics in this thesis. 1)~Learning with continual data without forgetting (i.e., incremental learning). 2)~Learning with limited data without overfitting (i.e., few-shot learning). 3)~Learning with imperfect data in real-world applications (e.g., incremental object detection). Our key idea is learning to learn/optimize. Specifically, we use advanced learning and optimization techniques to design data-driven methods to dynamically adapt the key elements in AI algorithms, e.g., selection of data, memory allocation, network architecture, essential hyperparameters, and control of knowledge transfer. We believe that the adaptive and dynamic design of system elements will significantly improve the capability of deep learning systems under limited data or continual streams, compared to the systems with fixed and non-optimized elements. More specifically, we first study how to overcome the catastrophic forgetting problem by learning to optimize exemplar data, allocate memory, aggregate neural networks, and optimize key hyperparameters. Then, we study how to improve the generalization ability of the model and tackle the overfitting problem by learning to transfer knowledge and ensemble deep models. Finally, we study how to apply incremental learning techniques to the recent top-performance transformer-based architecture for a more challenging and realistic vision, incremental object detection.Künstliche Intelligenz (KI) hat in den letzten Jahren in vielen Bereichen große Erfolge erzielt, z. B. Computer Vision, Spracherkennung, Empfehlungsmaschinen und neuronale Sprachverarbeitung. Obwohl beeindruckende Fortschritte erzielt wurden, leiden KI-Algorithmen immer noch an einer wichtigen Einschränkung: Sie sind auf umfangreiche Datensätze angewiesen. Im Gegensatz dazu besitzen Menschen von Natur aus die Fähigkeit, neuartiges Wissen aus realen und unvollkommenen Daten wie einer kleinen Anzahl von Proben oder einem nicht statischen kontinuierlichen Datenstrom zu lernen. Das Erlangen einer solchen Fähigkeit ist besonders reizvoll. Insbesondere sollte ein ideales KI-System mit Intelligenz auf menschlicher Ebene mit den folgenden unvollkommenen Datenszenarien arbeiten. 1)~Die Verteilung der Trainingsdaten ändert sich während des Lernens. In vielen realen Szenarien werden Daten gestreamt, können nach einer bestimmten Zeit verschwinden oder können aufgrund von Speicherbeschränkungen oder Datenschutzproblemen überhaupt nicht gespeichert werden. Infolgedessen wird das alte Wissen überschrieben, ein Phänomen, das als katastrophales Vergessen bezeichnet wird. 2)~Die Anmerkungen der Trainingsdaten sind spärlich. Es gibt auch viele Szenarien, in denen wir aus Datenschutz- und Sicherheitsgründen keinen Zugriff auf die spezifischen großen Daten haben, die von Interesse sind. Infolgedessen passen die tiefen Modelle zu stark an die Verteilung der Trainingsdaten an und treffen sehr wahrscheinlich falsche Entscheidungen, wenn sie auf seltene Fälle stoßen. Daher ist das Ziel dieser Arbeit, die Herausforderungen anzugehen und KI-Algorithmen zu entwickeln, die mit unvollkommenen Daten trainiert werden können. Um das obige Ziel zu erreichen, untersuchen wir in dieser Arbeit drei Themen. 1)~Lernen mit kontinuierlichen Daten ohne Vergessen (d. h. inkrementelles Lernen). 2) ~ Lernen mit begrenzten Daten ohne Überanpassung (d. h. Lernen mit wenigen Schüssen). 3) ~ Lernen mit unvollkommenen Daten in realen Anwendungen (z. B. inkrementelle Objekterkennung). Unser Leitgedanke ist Lernen lernen/optimieren. Insbesondere verwenden wir fortschrittliche Lern- und Optimierungstechniken, um datengesteuerte Methoden zu entwerfen, um die Schlüsselelemente in KI-Algorithmen dynamisch anzupassen, z. B. Auswahl von Daten, Speicherzuweisung, Netzwerkarchitektur, wesentliche Hyperparameter und Steuerung des Wissenstransfers. Wir glauben, dass das adaptive und dynamische Design von Systemelementen die Leistungsfähigkeit von Deep-Learning-Systemen bei begrenzten Daten oder kontinuierlichen Streams im Vergleich zu Systemen mit festen und nicht optimierten Elementen erheblich verbessern wird. Genauer gesagt untersuchen wir zunächst, wie das katastrophale Vergessensproblem überwunden werden kann, indem wir lernen, Beispieldaten zu optimieren, Speicher zuzuweisen, neuronale Netze zu aggregieren und wichtige Hyperparameter zu optimieren. Dann untersuchen wir, wie die Verallgemeinerungsfähigkeit des Modells verbessert und das Overfitting-Problem angegangen werden kann, indem wir lernen, Wissen zu übertragen und tiefe Modelle in Ensembles zusammenzufassen. Schließlich untersuchen wir, wie man inkrementelle Lerntechniken auf die jüngste transformatorbasierte Hochleistungsarchitektur für eine anspruchsvollere und realistischere Vision, inkrementelle Objekterkennung, anwendet
    corecore