1,236 research outputs found

    Practice of law in the provisioning of accessibility facilities for person with disabilities in Malaysia

    Get PDF
    Malaysia’s significant changes can be seen clearly through the improvement of social welfare of the disabled and people with disabilities. Although the governments has carried out various policies and provide facilities as well as provision for the disabled but there are still many obstacles encountered by people with disabilities, especially the legal and the accessibility of facilities and services. Therefore, this paper attempts to discuss the practice of law relating of legal procedure particularly for disabled users which affects the movement of these people from one destination to another. This paper discusses the practice of law adopted in the preparation of facilities for disabled people to help them make movement independently. The study was conducted by secondary data to the Malaysia legal and policies for disabled person by comparing with United Kingdom (UK). Malaysia has come out with a strong legal framework for disabled person through People with Disabilities Act 2008 (Act 685). There are several areas in the act that still can be improved to support disabled person

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    Measuring inefficiency in the rubber manufacturing industry

    Get PDF
    Malaysia is the fifth largest producer of natural rubber in the world after Thailand, Indonesia, Vietnam and China as well as producing rubber products exported to more than 190 countries worldwide. However, the slowdown in growth of major importers such as China, the European Union and the United States and the perception of stock surplus as output exceeds demand led to fluctuating rubber production performance over the period 2010 to 2016. Hence, this article aims at examining the level of technical efficiency (TE) and to analyze the determinants of the inefficiencies of the rubber manufacturing industry. The analysis was conducted using the latest 145 firms’ data obtained from the Department of Statistics Malaysia (DOS) and using the Stochastic Frontier Analysis (SFA) method. The results showed that the overall TE level was high while the determinants such as the capital-labor ratio, wage rate and firm size had a negative and significant impact that could reduce industrial technical efficiencies. The policy implication is that the rubber manufacturing industry needs to focus on high technological production investment, increase employee motivation through wage increment and create more strategic cooperation with international industry

    Flight telerobot mechanism design: Problems and challenges

    Get PDF
    Problems and challenges of designing flight telerobot mechanisms are discussed. Specific experiences are drawn from the following system developments: (1) the Force Reflecting Hand Controller, (2) the Smart End Effector, (3) the force-torque sensor, and a generic multi-degrees-of-freedom manipulator

    Improving Fine Control of Grasping Force during Hand–Object Interactions for a Soft Synergy-Inspired Myoelectric Prosthetic Hand

    Get PDF
    abstract: The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional single-gain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pick-and-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands.View the article as published at https://www.frontiersin.org/articles/10.3389/fnbot.2017.00071/ful

    Proprioceptive Learning with Soft Polyhedral Networks

    Full text link
    Proprioception is the "sixth sense" that detects limb postures with motor neurons. It requires a natural integration between the musculoskeletal systems and sensory receptors, which is challenging among modern robots that aim for lightweight, adaptive, and sensitive designs at a low cost. Here, we present the Soft Polyhedral Network with an embedded vision for physical interactions, capable of adaptive kinesthesia and viscoelastic proprioception by learning kinetic features. This design enables passive adaptations to omni-directional interactions, visually captured by a miniature high-speed motion tracking system embedded inside for proprioceptive learning. The results show that the soft network can infer real-time 6D forces and torques with accuracies of 0.25/0.24/0.35 N and 0.025/0.034/0.006 Nm in dynamic interactions. We also incorporate viscoelasticity in proprioception during static adaptation by adding a creep and relaxation modifier to refine the predicted results. The proposed soft network combines simplicity in design, omni-adaptation, and proprioceptive sensing with high accuracy, making it a versatile solution for robotics at a low cost with more than 1 million use cycles for tasks such as sensitive and competitive grasping, and touch-based geometry reconstruction. This study offers new insights into vision-based proprioception for soft robots in adaptive grasping, soft manipulation, and human-robot interaction.Comment: 20 pages, 10 figures, 2 tables, submitted to the International Journal of Robotics Research for revie

    Bio-Inspired Grasping Controller for Sensorized 2-DoF Grippers

    Full text link
    We present a holistic grasping controller, combining free-space position control and in-contact force-control for reliable grasping given uncertain object pose estimates. Employing tactile fingertip sensors, undesired object displacement during grasping is minimized by pausing the finger closing motion for individual joints on first contact until force-closure is established. While holding an object, the controller is compliant with external forces to avoid high internal object forces and prevent object damage. Gravity as an external force is explicitly considered and compensated for, thus preventing gravity-induced object drift. We evaluate the controller in two experiments on the TIAGo robot and its parallel-jaw gripper proving the effectiveness of the approach for robust grasping and minimizing object displacement. In a series of ablation studies, we demonstrate the utility of the individual controller components

    Active compliance control strategies for multifingered robot hand

    Get PDF
    Safety issues have to be enhanced when the robot hand is grasping objects of different shapes, sizes and stiffness. The inability to control the grasping force and finger stiffness can lead to unsafe grasping environment. Although many researches have been conducted to resolve the grasping issues, particularly for the object with different shape, size and stiffness, the grasping control still requires further improvement. Hence, the primary aim of this work is to assess and improve the safety of the robot hand. One of the methods that allows a safe grasping is by employing an active compliance control via the force and impedance control. The implementation of force control considers the proportional–integral–derivative (PID) controller. Meanwhile, the implementation of impedance control employs the integral slidingmode controller (ISMC) and adaptive controller. A series of experiments and simulations is used to demonstrate the fundamental principles of robot grasping. Objects with different shape, size and stiffness are tested using a 3-Finger Adaptive Robot Gripper. The work introduces the Modbus remote terminal unit [RTU] protocol, a low-cost force sensor and the Arduino IO Package for a real-time hardware setup. It is found that, the results of the force control via PID controller are feasible to maintain the grasped object at certain positions, depending on the desired grasping force (i.e., 1N and 8N). Meanwhile, the implementation of impedance control via ISMC and adaptive controller yields multiple stiffness levels for the robot fingers and able to reduce collision between the fingers and the object. However, it was found that the adaptive controller produces better impedance control results as compared to the ISMC, with a 33% efficiency improvement. This work lays important foundations for long-term related research, particularly in the field of active compliance control that can be beneficial to human–robot interaction (HRI)

    Advanced grasping with the Pisa/IIT softHand

    Get PDF
    This chapter presents the hardware, software and overall strategy used by the team UNIPI-IIT-QB to participate to the Robotic Grasping and Manipulation Competition. It relies on the PISA/IIT SoftHand, which is underactuated soft robotic hand that can adapt to the grasped object shape and is compliant with the environment. It was used for the hand-in-hand and for the simulation tracks, where the team reached first and third places respectively

    Pembangunan kerangka konsep penyertaan latihan : kajian kes staf akademik di universiti awam Malaysia

    Get PDF
    Latihan merupakan aktiviti formal dan usaha berterusan yang dilakukan oleh pengurusan universiti dalam meningkatkan prestasi dan kualiti kerja staf akademik di Universiti Awam Malaysia. Latihan juga penting kepada staf akademik meningkatkan keupayaan dan keyakinan dalam menjalankan tugas yang diberikan. Namun terdapat isu dan permasalahan tentang ketidakcukupan penyertaan staf akademik dalam latihan. Kajian lepas menunjukkan kebanyakkan permasalahan dalam penyertaan latihan diselesaikan hanya melalui kajian peringkat penentuan faktor sahaja. Oleh itu, kajian ini dijalankan bagi meneroka dan mendalami faktor-faktor yang mempengaruhi penyertaan staf akademik Universiti Awam Malaysia dalam latihan. Seterusnya satu kerangka konsep baharu telah dibangunkan bagi melihat signifikan perkaitan faktor yang mempengaruhi penyertaan dalam latihan. Kajian ini telah menggunakan kaedah kualitatif kajian kes di mana seramai tujuh (7) orang pegawai latihan dan dua puluh lapan (28) orang staf akademik Universiti Awam Malaysia telah ditemu bual. Temu bual separa berstruktur bersama kaedah ’probing’ digunakan bagi mendapatkan maklumat dengan lebih mendalam. Data yang diperolehi telah dianalisis dengan menggunakan kaedah Analisis Tematik. Berdasarkan analisa yang dijalankan, didapati empat faktor domain mempengaruhi penyertaan staf akademik Universiti Awam Malaysia dalam latihan. Empat faktor yang dimaksudkan adalah faktor kerja, individu, organisasi dan latihan. Berdasarkan keempat-empat faktor yang telah dikenalpasti, kajian ini telah membangunkan kerangka konsep berdasarkan pengintegrasian teori (Teori Tindakan Bersebab, Teori Tingkahlaku Terancang, Teori Hierarki Keperluan Maslow, Teori Jangkaan, Teori Pembelajaran Sosial, Teori Pembelajaran Dewasa, Teori Modal Insan, Teori Matlamat dan Teori Kerjaya Holland) yang berkaitan penyertaan dalam latihan. Kerangka konsep yang dicadangkan dapat mengisi kelompongan permasalahan kajian serta boleh dimanfaatkan oleh pihak yang berkepentingan terutama Universiti Awam Malaysia dan Kementerian Pendidikan Tinggi Malaysia (KPTM) yang merupakan badan induk kepada Institusi Pengajian Tinggi Malaysia bagi meningkatkan penyertaan staf akademik dalam latihan
    corecore