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Abstract. It is vital to ensure that a robotic hand can successfully grasp the objects without 

damaging them. In order to allow a safe grasping, a technique called an active compliance 

control has been deployed. Active compliance control is an increasingly employed technique 

used in the robotic field such as service robotics, virtual reality and haptics, telemanipulation, 

human augmentation, and assistant. Recent research trends show that there are two main 

methods used in establishing active compliance control for robotic hand namely the force 

control and the impedance control. This paper highlights a summary of currently related works 

on active compliant control by using the force control and the impedance control. In addition, 

several control strategies of active compliance control are also discussed and highlighted for a 

safe grasping. 

 

Introduction 

In the context of robot control, compliant control can be defined as the allowance of 

deviations from its own equilibrium position, depending on the applied external force. The 

equilibrium position of a compliant actuator is defined as the position of the actuator where the 

actuator generates zero force or zero torque. Hence, by this definition, compliance will allow us 

to minimize the impact during collision of an end-effector with the contact environment. Detail 

definition of compliant control can be found in [1] and [2]. One way to attain a compliant 

control is via an active compliant control strategy. In general, an active compliance control can 

be divided into two categories which are force control and impedance control [3] as depicted in 

Fig. 1. 

Over the last ten years, the work on active and passive compliance control have been 

extensively deployed on the robotic hand to imitate human hand capability. The active 

compliance control uses the force feedback method while passive compliance control applies 

the element of elasticity and mechanical structure to specifically generate compliance tasks at 

the robot endpoint [4]. The work presented here is an attempt to highlight the latest current 

research activities on an active compliance control for a robot hand.  

Position/force control is defined as a control technique where both desired interaction 

force and robot position are controlled. Moreover, in force control, a desired force trajectory is 

commanded and force is measured in real time to realize the feedback control. There are two 

types of force control that have been widely used; hybrid position/force and unified 

position/force. Hybrid position/force control can be described as the position and force control 

that are controlled in two orthogonal subspaces. One the other hand, the unified position/force 

control, both position and force are along each task space direction. 
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Impedance control is basically based on position control which requires positioning 

commands and measurements in order to close the feedback loop. In addition, force 

measurements are also needed to realize the target impedance characteristic. It uses the different 

relationships between the acting forces and manipulator position to adjust the mechanical 

impedance of the end-effector to the external forces. The most common types of impedance 

control are stiffness (position proportional), damping (velocity proportional), general 

impedance (position, velocity and acceleration proportional). 

 

 

Fig. 1: Classification of Active Compliance Control 

 

Active Compliance with Force Control 

In 2010, a group in [5] has conducted a research on an active compliance control to 

improve the stability of multi-fingered robot hand by the measurement of disturbance. 

Additionally, a linear elastic stiffness was analyzed by considering contact-gravity effect. The 

drawback has been identified where the compliance performance decreased in the z-direction 

because the finger tip rolled on the plate when the contact points are located above the center of 

gravity [5].  

Later, in 2011, an active compliance control was introduced by utilizing F/T sensor on 

the finger tips of KIST-Hand [6]. The sensors initially calibrated and the signals were going 

through a low-pass filtering which is necessary for accurate detection. However, the results 

from this approach showed that the quality of the output signals from the F/T sensor were low 

due to the presence of noises. Eventually, additional filtering process was required in order to 

filter the noises [6].  

In 2012, a research on a real-time detection and physical modeling of robot folding a 

paper by using the Shadow Dexterous Hand had been demonstrated [7]. The improvement was 

done by attaching tactile sensors on the right hand finger and PST sensors on the left hand 

finger [7]. However, the drawbacks were identified where the requirement of visual fiducial 

guide and the response of tactile sensors restricted on the sensor areas only.  

Moreover, in 2013, the group in [2] introduced an approach of active compliance control 

via the Integral Sliding Mode Control (ISMC) on a BERUL fingers. The results showed that the 

implementation of positioning error control and force control with a robust posture optimization 

had improved the tracking performance although the levels of stiction and friction were 

remarkably high.  

Recently, in 2014, a research had been carried out to study the robot hand grasping for 

typical small objects such as pens, screwdrivers, cellphones, and hammers [8]. The researcher 

had implemented a closed-loop hybrid strategy and contact-rich strategy for fingers placement. 

The study suggested that the grasping dynamic force/torque equilibrium required further 

improvement. Also in the same year, a prototype of robot hand which was affordable, modular, 

light-weight, intrinsically-compliant as well as, underactuated had been developed. The 



prototype was equipped with Arduino board and sensors such as force and joint angle sensors. 

However, the performance of grasping was limited since the object tended to last from the grasp 

[9]. 

Active Compliance with Impedance Control 

Apart from the force control strategy, an impedance control had also been frequently 

introduced to achieve active compliant control for robotic hand. For example, in 2010, a 

Cartesian impedance control was proposed in the application of joint torque and nonlinearity 

compensation for the elasticity of dexterous robot joints. The method realized a desired 

dynamical relationship between the motion of the end-effector and the external forces/torques. 

Based on the results, the impedance control response that relates to the friction observer and the 

stability analysis need to be improved [10]. In 2011, a research had been conducted to study the 

robot dynamic stiff in term of robustness, dynamic performance and dexterity of the DLR Hand 

Arm System. The group had proposed a variable stiffness actuation with impedance control 

[11].  However, the researchers claimed that a higher power density was needed to carry the 

torques resulting from the finger tendon loads at the wrist [12]. In 2011, improvement had been 

made on the same robot by implementing internal force impedance controller which then had 

successfully controlled the squeezing force. However, since the internal controller was not 

purposely designed to compensate with certain undesired motions, the trajectory problem was 

aroused [11].  

In 2013, a research on the evaluation of the structural compliance of hand links, joints 

and the gains of impedance controllers had been carried out. However, the results suggested 

that the compliance design mainly for grasping force distribution required further improvement 

[13]. A year after, a new study on the implementation of a teleimpedance controller with tactile 

feedback on the Pisa/IIT SoftHand had been conducted. In the study, an active impedance 

controller was applied to the motor to establish safe and reliable control of the applied pressure 

[14]. The study however found that there were slight reductions of physiological load with 

force feedback. Further testing on the actual amputees is required for results validation.  

Discussion 

Several factors have been identified may influence the performance of force control and 

impedance control to achieve active compliance control. The factors can be summarized as 

shown in Fig. 2. It is essential to properly design the mechanical part and the sensory system at 

the contact point of the robot hand.  Applying the force control always requires good sensory 

system. Note that insufficient sensory information can lead to errors in controller [4]. The 

possible solution is to express the contact models as a function of unknown parameter. This 

allows the recognition state simultaneously perform with the parameter estimation. Thus, this 

will improve the force control, the contact state transition monitoring and the contact state 

recognition [15]. 

 



Fig. 2: Summary of Problems for Achieving Active Compliance Control  

 

On the other hand, the primary issue hampered during the implementation of the 

impedance control is at the controller stage where the algorithms and system judgments must be 

catered for [16]. Here, the contact state modeling is the key towards the capability of a 

controller [3]. The more accurate parameters are applied in the contact model, the lesser errors 

will be generated by the robot controller. This can be achieved by exploiting an adaptive 

impedance control which can yield an extremely flexible way to provide high fidelity 

kinaesthetic feedback [4].  

The other aspects of impedance and force control problem are, both control strategies 

depend on the effectiveness of the electrical hardware. The presence of noise and fluctuated 

signal affects the performance of force control. Meanwhile, the use of power consumption in 

robotics hand for impedance control must be carefully designed to retain the reliability of the 

electrical hardware [12]. In addition to impedance control, human error may contribute to the 

poor performance of active compliance control. 

 

Control Methods for Active Compliance Control 

Several methods are proposed in order to achieve a compliant control for a robot [18]. A few 

approaches seem to be the most promising in a humanoid robot control environment: 

1. Model-based Passivity based control [17] [18]. 

2. Intelligent non-model based neural network control [19]. 

3. Adaptive control [20] 

4. A synergy of passivity and Intelligent non-model based neural network or 

adaptive control will guarantee social context dependent compliant control [19]. 

 

Firstly by using passivity based control [17] [18]. A passivity based controller for 

control of a humanoid requires only the available motor position and joint torque signals, as 

well as their first-order derivatives [17]. The approach of passivity relies on the idea of energy 

conservation. A system is passive if it is dissipating energy rather than producing energy. 

Hence, by having two passive systems creating a control loop than it is intuitively clear that the 



relevant closed loop control is also passive and stable. The advantage of this model based 

control approach is that it provides a high degree of robustness to unmodeled robot parameters 

and dynamics. Moreover, the passivity based controller ideally lends itself to compliance 

control, where the environment can be modelled to be passive and the notion of the impedance 

of obstacles can be introduced. Compliance is quantified by the (‘mechanical’) stiffness of the 

controller rather through position accuracy usually required for servo-control.  

Secondly, a non-model based controller namely Neural Network Controller is proposed 

and to be applied. It is known that Neural Networks are capable to work in a highly nonlinear 

environment and the design method is not time consuming [21]. The fact is that humanoid 

robots are very nonlinear systems; therefore, neural networks can be very helpful. Thirdly, it is 

known that adaptive control is capable to work in highly nonlinear and uncertain environments 

and the design method is not time consuming. Adaptive control allows adaptation to large 

parameter changes in the robot and also a better adjustment to unmodelled dynamics of the 

environment. The fact is that humanoid robots are highly nonlinear systems; therefore, adaptive 

control can be very helpful. Lastly, the synergy of both control methods, i.e. intelligent non-

model based neural network/adaptive control and passivity based control, will allow at first 

adaptation to large parameter changes in the robot and also better adjustment to the unmodelled 

dynamics of the environment. Most importantly the synergy of both control approaches should 

allow for ‘social’ context compliance control. 

The aforementioned controllers clearly shown their advantages for the implementation 

of the active compliance control strategy. However, the drawbacks of each controller are 

inevitable. It is to note that the passivity based controller deals with the energy dissipation and 

transformation (i.e. energy conservation) and not easy to control. There is no theoretical 

guideline for choosing additional energy function; it is not easy to evaluate the control 

performance and to determine design parameters [22].  Moreover, the neural network has its 

own limitation where it requires a highly computational level during control execution, prone to 

over fitting and unstructured control method (see [23] and [24] for other drawbacks). 

Meanwhile, adaptive control could easily go unstable in the presence of small disturbances as 

discussed in [25] which will become a challenge to realize active compliance control. More 

problems with adaptive control were highlighted in [25] and [26]. Nonetheless, the above 

mentioned problems can be resolved and feasible. 

 

Conclusion 

A summary of current studies on an active compliance control has been highlighted for the past 

5 years. It has been shown that there are many factors must be considered to achieve a desired 

performance of active compliant control. The research areas are open to many alternative 

solutions for a greater grasping performance. There is no unique solution for safely grasping an 

object/human; therefore the control approaches for grasping are diversified. Some potential 

techniques can be employed to introduce an active compliant control. Robotic hands on the 

hand are still a long way from matching the grasping and manipulation capability of their 

human counterparts. 
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